

Article (refereed) - postprint

Mills, Gina; **Hayes, Felicity**; Simpson, David; Emberson, Lisa; **Norris, David**; **Harmens, Harry**; Buker, Patrick. 2011 Evidence of widespread effects of ozone on crops and (semi-)natural vegetation in Europe (1990 – 2006) in relation to AOT40– and flux-based risk maps. *Global Change Biology*, 17. 592-613. <u>10.1111/j.1365-2486.2010.02217.x</u>

Copyright © 2010 Blackwell Publishing Ltd

This version available http://nora.nerc.ac.uk/7942/

NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access

This document is the author's final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. Some differences between this and the publisher's version remain. You are advised to consult the publisher's version if you wish to cite from this article.

The definitive version is available at http://onlinelibrary.wiley.com

Contact CEH NORA team at <u>noraceh@ceh.ac.uk</u>

The NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

1	Evidence of widespread effects of ozone on crops and (semi-)natural vegetation
2	in Europe (1990 - 2006) in relation to AOT40 - and flux-based risk maps
3	
4	
5	Running title
6	Ozone effects on vegetation in Europe
7	
8	Authors
9	Gina Mills ¹ , Felicity Hayes ¹ , David Simpson ^{2,3} , Lisa Emberson ⁴ , David Norris ¹ , Harry
10	Harmens ¹ and Patrick Büker ⁴
11	
12	¹ Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road,
13	Bangor, Gwynedd, UK, LL57 2UW
14	² EMEP MSC-W, Norwegian Meteorological Institute, Oslo, Norway
15	³ Dept. Radio & Space Science, Chalmers University of Technology, Gothenburg,
16	Sweden
17	⁴ Stockholm Environment Institute, York, UK
18	
19	Corresponding author
20	Dr Gina Mills
21	Email: gmi@ceh.ac.uk, Tel: 44 (0)1248 374500, Fax: 44 (0)1248 362133
22	
23	Key words
24	Ozone, crops, (semi-)natural vegetation, clover, ozone injury, biomass reduction,
25	ambient air, AOT40, flux, risk assessment

1 Abstract

2 Records of effects of ambient ozone pollution on vegetation have been compiled for 3 Europe for the years 1990 – 2006. Sources include scientific papers, conference 4 proceedings, reports to research funders, records of confirmed ozone injury symptoms 5 and an international biomonitoring experiment coordinated by the ICP Vegetation. 6 The latter involved ozone-sensitive (NC-S) and ozone-resistant (NC-R) biotypes of 7 white clover (Trifolium repens L.) grown according to a common protocol and 8 monitored for ozone injury and biomass differences in 17 European countries, from 9 1998 to 2006. Effects were separated into visible injury or growth/yield reduction. 10 Of the 644 records of visible injury, 39% were for crops (27 species), 38.1 % were for (semi-)natural vegetation (95 species) and 22.9% were for shrubs (49 species). Due 11 12 to inconsistencies in reporting effort from year to year it was not possible to determine 13 geographical or temporal trends in the data. Nevertheless, this study has shown 14 effects in ambient air in 18 European countries from Sweden in the north to Greece in 15 the south. These effects data were superimposed on AOT40 (accumulated ozone 16 concentrations over 40 ppb) and POD3_{gen} (modelled accumulated stomatal flux over a threshold of 3 nmol $m^{-2} s^{-1}$) maps generated by the EMEP Eulerian model (50 km x 50 17 18 km grid) that were parameterised for a generic crop based on wheat and NC-S/NC-R 19 white clover. Many effects were found in areas where the AOT40 (crops) was below 20 the critical level of 3 ppm h. In contrast, the majority of effects were detected in grid squares where POD3_{gen} (crops) were in the mid-high range (> 12 mmol m⁻²). Overall, 21 22 maps based on POD3_{gen} provided better fit to the effects data than those based on 23 AOT40, with the POD3_{gen} model for clover fitting the clover effects data better than 24 that for a generic crop.

1 Introduction

2

3 Concentrations of ozone in the troposphere have increased over recent decades 4 (Vingarzan, 2004, Derwent et al., 2007), with health-based guidelines regularly 5 exceeded across much of Europe (Meleux et al., 2007, EEA, 2009). In addition to 6 health impacts (described in WHO, 2008), ozone is considered to be more damaging 7 to vegetation than any other air pollutant (Ashmore, 2005). Experimental exposures 8 at concentrations that can be experienced in Europe, especially in hot summers like 9 2003, have shown that crops and (semi-)natural vegetation could be damaged by 10 reduced growth and seed production (e.g. Mills et al., 2007a, Hayes et al., 2007a, 11 Booker et al., 2009), premature senescence (e.g. Tonneijck et al., 2004), reduced 12 ability to over-winter (e.g. Hayes et al., 2006) and withstand stresses such as drought, 13 (e.g. Wilkinson and Davies, 2009), and by producing visible injury symptoms such as 14 chlorotic and bronze stippling of leaves (e.g. Manning et al., 2002). Earlier European 15 surveys and biomonitoring experiments conducted during the 1980s and 1990s 16 indicated that ambient ozone concentrations were sufficiently high to induce visible 17 injury on over 20 crops growing in countries extending from Sweden in the north to 18 Italy and Spain in southern Europe (Benton et al., 2000, Fumagalli et al., 2001). With 19 northern hemispheric ozone concentrations predicted to continue to rise, at least for 20 the next few decades (Royal Society, 2008), we undertook a study to review the 21 evidence for effects of current ambient ozone on crops and (semi-)natural vegetation 22 in Europe over the period 1990 – 2006, and related this evidence to maps being used by the LRTAP Convention¹ to indicate the areas of greatest risk of effects over these 23 24 years. For one biomonitoring system (ozone-sensitive and -resistant white clover,

¹ Convention on Long-range Transboundary Air Pollution

described later) we also related biomass effects and visible injury to site- and yearspecific modelled ozone parameters that describe both ozone concentration and ozone
flux (uptake *via* the stomatal pores on the leaf surface). Thus, we provide here fieldbased biological validation of mapped European ozone risk assessment indices,
information identified as urgently required by both Manning (2003) and Simpson *et al.* (2007).

7 The general increase in ozone concentrations in the Northern hemisphere in recent 8 decades has been associated with a change in the profile of maximum seasonal and 9 diurnal ozone concentrations. Owing to implementation of precursor emission 10 controls, peak ozone concentrations in the USA and Western Europe have declined 11 from 1980 to present, with the decline being less steep in recent years (Derwent et al., 12 2007, Vingarzan, 2004, Jenkin, 2008, Lefohn et al., 2008, Solberg et al., 2005). At 13 the same time, background ozone concentrations have increased due to hemispheric 14 transport of precursors from the developing areas of the world (NEGTAP, 2001, 15 Dentener et al., 2006). Looking to the future, significant declines in background 16 ozone in Europe will only be achievable if strict global controls on ozone precursor 17 emissions are implemented (Royal Society, 2008, Dentener et al., 2006). A 18 confounding factor in predicting future ozone climates is that higher temperatures and 19 reduced cloudiness and precipitation as a result of climate change may increase 20 summer peak and average ozone concentrations (Meleux et al., 2007). Current 21 predictions are that by 2030, effects of ground level ozone pollution will have major 22 implications for global food security with global yield losses due to ozone rising to 9 23 -18% for wheat and 4-8% for rice under scenarios that allow for implementation of 24 current legislation to control pollutant emissions (Van Dingenen et al., 2009). It has 25 also recently emerged that ozone may reduce the ability of vegetation to absorb

1	carbon dioxide resulting in even greater carbon dioxide concentrations in the
2	atmosphere in the future, further increasing radiative forcing (Felzer et al., 2005, Sitch
3	et al., 2007). Predictions for the future are complicated by enhanced temperature
4	increasing ozone production over and above that associated with global increases in
5	precursor emissions, and the ameliorating effect of increasing carbon dioxide
6	concentration on ozone effects (by reducing stomatal uptake), see reviews by Booker
7	et al., 2009, Feng and Kobayashi, 2009. Within the context of evaluating potential
8	effects of ozone in the future, it is timely to synthesise data on the current evidence of
9	effects of ozone in Europe on crops and (semi-)natural vegetation, and to draw
10	attention to the urgent need to further reduce the emissions of ozone precursors on a
11	global scale.
12	
13	A recent synthesis of published dose-response function data from field-based chamber
14	experiments revealed that the most ozone-sensitive crops include wheat, soybean,
15	pulses and tomato, with potato, sugar beet, rape and maize being moderately sensitive
16	(Mills et al., 2007a). In a similar study for (semi-)natural vegetation, Mills et al.
17	(2007b), compiled published dose-response functions for individual species and
18	proposed that grasslands (especially uplands, dry grasslands and woodland fringes),
19	heaths and wetlands are amongst the most ozone-sensitive habitats in Europe.
20	Although these compilations of exposure-response data provide an indication of the
21	relative sensitivity of different species, they do not provide actual evidence that
22	current ozone climates are damaging vegetation in the open field without any
23	confounding influence of an exposure chamber (as described in Heagle, 1989 and
24	Sanders et al., 1991). Field-release studies with ozone are relatively few, and have
25	provided mixed results. For example, Morgan et al. (2006) found that yield

Global Change Biology

Page 6 of 74

6

1	reductions for soybean were even larger than those predicted from open-top chamber
2	experiments whilst Bassin et al. (2009) found that alpine vegetation was relatively
3	resistant to ozone despite the sensitivity of the component species.
4	
5	Several previously un-collated sources of evidence of visible ozone injury in ambient
6	air in Europe exist in the literature including surveys of crops and (semi-)natural
7	vegetation together with ad hoc observations. Examples include a survey of ozone
8	injury symptoms on vegetation in an alpine valley (Bussotti et al., 2003b); surveys of
9	symptoms on crops in Belgium, France, Spain and Switzerland (Benton et al., 2000)
10	and surveys conducted in countries in the Carpathian mountain range area of central

11 Europe (Manning *et al.*, 2002). Researchers have also reported the presence of visible

12 injury symptoms on crops grown in ambient air plots included as part of open-top

13 chamber based ozone exposure experiments (e.g. De Temmerman *et al.*, 2002).

14 These types of data are useful sources of evidence of ozone effects in the field

15 providing (as in the examples quoted), the assessors of ozone injury are well trained,

16 follow a clearly defined protocol and preferably, that the ozone symptoms have been

17 confirmed using ozone exposure experiments (Bussotti et al., 2006, Lorenz et al.,

18 2008, Manning and Godzik, 2004).

19

Further evidence of ozone effects in ambient air derives from surveys conducted by
placing a sentinel bioindicator species of known sensitivity to ozone at a series of sites
in a local area and assessing the plants for injury symptoms at intervals thereafter.
Ozone-sensitive tobacco (*Nicotiana tabacum* L. cv BELW3) has been used in several
such surveys, particularly in Southern Europe (e.g. Spain, Ribas and Penuelas, 2003
and Italy, Nali *et al.*, 2006). Over the last fifteen years, the participants of the ICP

1	Vegetation ² have compiled evidence of ozone effects in ambient air by conducting a
2	series of coordinated experiments across Europe with ozone-sensitive- (NC-S) and
3	ozone-resistant (NC-R) biotypes of a commercial cultivar of white clover (Trifolium
4	repens cv Regal) originally selected in Raleigh, North Carolina (Heagle et al., 1994).
5	The NC-S strain develops ozone injury symptoms following an ambient ozone
6	episode involving ozone concentrations of $50 - 60$ ppb and higher, and after
7	prolonged exposure to ozone has reduced above-ground growth whilst the NC-R
8	biotype only responds to ozone at substantially higher concentrations. In addition to
9	ozone injury data, this biomonitoring system also provides evidence of ambient ozone
10	effects of ambient concentrations on biomass – an effect of potentially greater
11	importance than visible injury.
12	
13	During the last fifteen years, the ozone-effects research community in Europe has
14	been establishing methods for determining the critical levels for ozone, above which
15	effects on sensitive species can be expected. The overall aim has been to develop
16	methods for mapping the areas of Europe where vegetation is at highest risk of ozone
17	damage. The resulting maps are used within the LRTAP Convention as part of the
18	damage. The resulting maps are used within the ERTIM Convention as part of the
	negotiations for reductions in emissions of the precursors of ozone from the 51
19	
19 20	negotiations for reductions in emissions of the precursors of ozone from the 51
	negotiations for reductions in emissions of the precursors of ozone from the 51 signatories to the Convention (for details, see
20	negotiations for reductions in emissions of the precursors of ozone from the 51 signatories to the Convention (for details, see http://www.unece.org/env/lrtap/lrtap_h1.htm). Contributing countries agree to
20 21	negotiations for reductions in emissions of the precursors of ozone from the 51 signatories to the Convention (for details, see http://www.unece.org/env/lrtap/lrtap_h1.htm). Contributing countries agree to reductions by signing Convention Protocols, the most recent being the Gothenburg

 $^{^{2}}$ The International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops

1	of ozone for crops and (semi-)natural vegetation. This value, an AOT40 ³ of 3 ppm h
2	accumulated over three months was set at the Kuopio Workshop in 1996 (Kärenlampi
3	and Skärby, 1996) and is still considered to be the lowest AOT40 at which significant
4	yield or biomass loss due to ozone can be detected for agricultural crops and (semi-
5)natural vegetation dominated by annuals, according to current knowledge (LRTAP
6	Convention, 2004). A critical level for visible injury has also been derived based on
7	analysis of many ozone parameters in the days preceding ozone injury development
8	on Trifolium subterraneum (Pihl-Karlsson et al., 2004). The "short-term" critical level
9	is a VPD-modified AOT30 (AOT30 _{VPD} ⁴) of 0.16 ppm.h accumulated over the eight
10	days prior to injury development (LRTAP Convention, 2004).
11	
12	Recent research for the LRTAP Convention has led to a new index being developed
13	that has a stronger biological basis than AOT40. It models the flux of ozone from the
14	exterior of the leaf through the stomatal pores to the sites of damage ("stomatal flux"
15	or "flux") using algorithms describing the species-specific effects of temperature,
16	Photosynthetic Photon Flux Density (PPFD), soil water potential, vapour pressure
17	deficit (VPD) and plant growth stage on stomatal functioning (Emberson et al., 2000,
18	Pleijel et al., 2007). To date, flux-based critical levels have been derived for wheat,
19	potato and provisionally for beech and birch, and flux-based risk assessment methods
20	have been developed for a generic crop and generic tree species for use in large-scale
21	integrated assessment modelling (LRTAP Convention, 2004). The latter are
22	simplified full flux models that do not take into account genetic variability in
23	sensitivity and use only temperature, PPFD and VPD as factors modifying stomatal

 ³ The sum of the differences between the hourly mean ozone concentration (in ppb) and 40 ppb for each hour when the concentration exceeds 40 ppb, accumulated during daylight hours.
 ⁴ The sum of the differences between the hourly mean ozone concentration (in ppb) modified by VPD (using the function described in LRTAP Convention, 2004) and 30 ppb when the concentration exceeds 30 ppb during daylight hours.

1	conductance with the notation, $PODY_{gen}^{5}$ and units mmol m ⁻² , where Y = 3 for the
2	generic crop flux model used in this study. The threshold Y is similar in concept to
3	"40" in AOT40 and represents an amount of ozone flux that can be tolerated (or
4	detoxified) by the plant before negative effects begin to occur. The $POD3_{gen}$ (crop)
5	model is based on the parameterisation for wheat described in Pleijel et al. (2007).
6	Unfortunately, there is no generally-accepted $POD3_{gen}$ for clover yet, and in any case
7	the environmental and pollution-exposure conditions of potted plants within the ICP
8	programme differ from those that would apply to homogeneous canopies of clover,
9	but we use here available knowledge to derive a flux estimate for this network. This
10	new index, $POD3_{gen}(Clover)$ is used alongside the more standard AOT40 and
11	POD3 _{gen} (Crop) functions in this paper.
12	
13	Risk maps produced using AOT40 and generic flux (to crops or trees) provide very
13 14	Risk maps produced using AOT40 and generic flux (to crops or trees) provide very different spatial patterns of ozone impacts (Simpson <i>et al.</i> , 2007, Karlsson <i>et al.</i> ,
14	different spatial patterns of ozone impacts (Simpson et al., 2007, Karlsson et al.,
14 15	different spatial patterns of ozone impacts (Simpson <i>et al.</i> , 2007, Karlsson <i>et al.</i> , 2009). For both metrics, ozone impacts are predicted for southern Europe where
14 15 16	different spatial patterns of ozone impacts (Simpson <i>et al.</i> , 2007, Karlsson <i>et al.</i> , 2009). For both metrics, ozone impacts are predicted for southern Europe where ozone concentrations are highest. However, risk maps based on generic flux to crops
14 15 16 17	different spatial patterns of ozone impacts (Simpson <i>et al.</i> , 2007, Karlsson <i>et al.</i> , 2009). For both metrics, ozone impacts are predicted for southern Europe where ozone concentrations are highest. However, risk maps based on generic flux to crops indicate effects in central and north-west Europe where lower ozone concentrations
14 15 16 17 18	different spatial patterns of ozone impacts (Simpson <i>et al.</i> , 2007, Karlsson <i>et al.</i> , 2009). For both metrics, ozone impacts are predicted for southern Europe where ozone concentrations are highest. However, risk maps based on generic flux to crops indicate effects in central and north-west Europe where lower ozone concentrations and AOT40 values below the critical level occur in climatic conditions (moderate
14 15 16 17 18 19	different spatial patterns of ozone impacts (Simpson <i>et al.</i> , 2007, Karlsson <i>et al.</i> , 2009). For both metrics, ozone impacts are predicted for southern Europe where ozone concentrations are highest. However, risk maps based on generic flux to crops indicate effects in central and north-west Europe where lower ozone concentrations and AOT40 values below the critical level occur in climatic conditions (moderate temperatures, moist climates) that are conducive to relatively high ozone flux. In the
14 15 16 17 18 19 20	different spatial patterns of ozone impacts (Simpson <i>et al.</i> , 2007, Karlsson <i>et al.</i> , 2009). For both metrics, ozone impacts are predicted for southern Europe where ozone concentrations are highest. However, risk maps based on generic flux to crops indicate effects in central and north-west Europe where lower ozone concentrations and AOT40 values below the critical level occur in climatic conditions (moderate temperatures, moist climates) that are conducive to relatively high ozone flux. In the current study, we superimpose maps of ozone effects detected in the field onto
14 15 16 17 18 19 20 21	different spatial patterns of ozone impacts (Simpson <i>et al.</i> , 2007, Karlsson <i>et al.</i> , 2009). For both metrics, ozone impacts are predicted for southern Europe where ozone concentrations are highest. However, risk maps based on generic flux to crops indicate effects in central and north-west Europe where lower ozone concentrations and AOT40 values below the critical level occur in climatic conditions (moderate temperatures, moist climates) that are conducive to relatively high ozone flux. In the current study, we superimpose maps of ozone effects detected in the field onto AOT40- and POD3 _{gen} flux-based risk maps (for crops and NCS/NCR white clover) to

⁵Accumulated flux above a flux threshold of Y nmol m⁻² s⁻¹, accumulated over a defined time period during daylight hours, using the generic flux model. Note, this index was formerly known as $AF_{st}Y$.

Global Change Biology

Page 10 of 74

10

1	concentrations are only available from ca. 130 sites in Europe (reported in
2	EMEP/CCC reports available at <u>www.emep.int</u> such as Fjæraa and Hjellbrekke,
3	2008), and spatial distribution of measurements is not uniform with many parts of
4	eastern and southern Europe poorly covered. For ozone fluxes, hardly any measured
5	data exist, with just a few research sites providing values (e.g. Tuovinen et al., 2004,
6	2007). Thus, assessment of risk of effects to vegetation is dependant on modelling
7	procedures that can provide a geographically broad-scale prediction of both the
8	AOT40 and the $POD3_{gen}$ metrics. Within Europe, the model of the European
9	Evaluation and Monitoring Programme (EMEP) plays a key role in developing air
10	pollution control strategies for both the LRTAP Convention and the European Union
11	(see Simpson et al., 2003 for details). The model results for AOT40 have been
12	compared with observations in, for example, Fowler et al. (1999) and Simpson et al.
13	(2003), and in general fair agreement (R>0.7) was obtained. Far fewer data are
14	available to evaluate the model's flux predictions, but studies by, for example,
15	Tuovinen et al. (2004) and Klingberg et al. (2008), provide support for the basic
16	formulation and deposition rates. The uncertainties associated with the EMEP model
17	are considered further in the Discussion.
18	

In conducting this study, we set out to answer the following questions: How
widespread is the occurrence of ozone injury and ozone-induced biomass reduction in
Europe and which species of crops, (semi-)natural vegetation and shrubs are affected?
Is there any evidence of temporal or spatial trends in ozone effects as a result of
changing ozone profiles? How well do AOT40-based and flux-based maps predict the
areas where ozone injury and/or biomass reductions have been detected in ambient
air? This paper provides an overview of analysis of ozone effects data for the period

1990 – 2006; further details including the regional distributions of effects can be
 found in a report by Hayes *et al.* (2007b).

- 4

5 Materials and methods

6 Sources of ozone–effects data

7 Data were sourced from scientific papers and conference proceedings published up to 8 2007 (see Tables 1 - 3), national-scale reports to funders of research (listed in Tables 9 1-3 as unpublished), the ICP Vegetation database for the clover experiment (described 10 below) and specialists that have published papers on ozone effects that had noted 11 confirmed ozone injury symptoms in the field (listed in Tables 1 - 3 as unpublished). 12 Each record of an effect was entered into a database together with the species name, 13 location of species (pot, experimental plot, commercial field, natural vegetation), date 14 of observation, nature and extent of effect (injury, biomass or yield), local ozone and 15 climate data if available, grid reference and data source. Only data with a known grid 16 reference were included in the database.

17

18 Records of observations of visible-injury symptoms in ambient air

Records of visible injury symptoms attributed to ozone included data observed on grasses, forbs, shrubs and crop species growing in experimental pots or plots, natural vegetation communities and commercial crops from surveys conducted during spring and summer months over the period 1990 - 2006. The database includes records of visible injury from biomonitoring experiments conducted for the ICP Vegetation using nine species from 1994 - 1996 (see Benton *et al.*, 2000 for details), and white clover conducted from 1996 – 2006 (see below for details). There are also records

included from both unpublished data and *ad-hoc* observations supplied by ozone specialists that participate in the ICP Vegetation. Overall, this part of the database
 contained 644 records, of which 70.6% were published in the scientific literature and
 29.3% were unpublished data.

6 With such a diverse dataset, there was a need to apply quality assurance procedures to ensure the data were comparable. Records of the highest quality were supplied by 7 8 scientists that have collected seeds or cuttings from species showing injury in the 9 field, grown the species and exposed it to ozone experimentally to confirm the 10 symptoms. Since such records only accounted for ca. 6% of the data available, 11 records were also included if collected by scientists who research and publish papers 12 on ozone pollution effects and therefore are familiar with 'typical' ozone injury 13 symptoms and could confirm that the symptoms seen matched those published 14 following ozone exposure of the same or related species. No symptoms described as 15 'possibly' due to ozone were included in the analysis presented here. Assessments of 16 the amount of injury per leaf are subject to variation between researchers with 17 underestimates of damage commonly occurring (e.g. Bussotti et al., 2006). To avoid 18 such confounding factors when comparing across survey types, ozone leaf injury data 19 were only included if the presence, rather than the extent, of symptoms was recorded. 20

Evidence of ozone effects from ICP Vegetation biomonitoring studies with white clover

The ICP Vegetation biomonitoring programme has involved exposure of an ozone
sensitive (NC-S) biotype of white clover (*Trifolium repens* L. cv. Regal) to ambient
air since 1996. Cuttings of clover were sent by the Programme Coordination Centre

1	at the Centre for Ecology and Hydrology, Bangor (UK) to participants across Europe,
2	who established the plants according to a standard protocol (see Mills <i>et al.</i> , 2000 for
3	details). Twenty-eight days after establishing the cuttings, 10 to 25 plants of the NC-
5	dounis). Twonty orgin days after estublishing the outlings, To to 25 plants of the TC
4	S clover were placed in 15 l pots and exposed to ambient air for four to six months at
5	each site. The date for the start of the exposure varied between sites and between
6	years, according to local growing seasons and experimental needs. The majority of
7	sites began exposure of plants in May or June, and the last assessments were carried
8	out in September or October. Plants were cut back to a height of 7cm every 28 days
9	to allow new leaves to develop. At the time of these harvests, the plants were
10	assessed for ozone-specific leaf injury using a common protocol. Injury was apparent
11	in varying magnitudes ranging from pale cream stipples on the leaf surface to large
12	necrotic patches with leaves severely damaged. For comparison across sites, ozone
13	injury was scored as the percentage of leaves visibly damaged by ozone using the
14	following key: 1 = <1% of leaves affected, 2 = 1-5%, 3 = 5-25%, 4 = 25-50%, 5 = 50-
15	90% and $6 = 90-100\%$. At some sites, ozone-resistant plants (NC-R) were also grown
16	according to the same protocol; the ratio of the biomass of NC-S to NC-R
17	(accumulated over harvests 2, 3 and 4 representing three months of growth) provided
18	an indication of ambient ozone effects on growth at these sites. For those sites visited
19	daily, the date of first appearance of ozone injury symptoms, defined as the date when
20	20% of the plants have one or more injured leaves, was recorded. All data were
21	checked for quality assurance prior to inclusion in the dataset as described in Mills et
22	al. (2000).
a a	

Scored injury data were available from a total of 45 sites, representing 16 countries
across Europe from 1998 to 2006 and biomass ratio data were available from 1996 to

2006 for a total of 41 sites from 15 countries (Table 4). However, each individual site
 did not necessarily perform the investigation every year meaning there were very few
 sites with a long time-run of data.

4

5 Ozone risk maps

6 The EMEP Eulerian model maps ozone concentrations and fluxes on an (approx.) 50 7 km x 50 km grid. Described in detail by Simpson et al. (2003), the EMEP model 8 simulates the emissions, transport, transformation and removal of pollutants, and 9 includes the calculation of ozone fluxes using the Deposition of Ozone and Stomatal 10 Exchange module (DO₃SE, described in Emberson et al., 2000, Simpson et al., 2003, 11 2007 and references therein). For use in this study, the EMEP model generated 12 AOT40 values for crops (termed here AOT40 (crop)) and generic crop flux (POD3gen 13 (crop)) maps using the methods described in the Modelling and Mapping Manual of 14 the LRTAP Convention (LRTAP Convention, 2004) for the years 1995 through to 15 2004, inclusive. Parameterisation of the generic crop flux model is reproduced in 16 Table 5. The accumulation period for AOT40 (crop) and POD3_{gen} (crop) was three 17 months, with the timing of the accumulation window reflecting the period of active 18 growth of wheat and centred on anthesis (LRTAP Convention, 2004). This approach 19 provided a moving time interval to reflect the early growing seasons in southern 20 Europe and later growing seasons in northern Europe. The classification scales for 21 the EMEP risk maps presented here have been chosen to provide a fair comparison 22 between AOT40 and POD3_{gen} maps. Each map has six categories for values 23 exceeding zero, plus a zero category, with the maximum whole number value 24 recorded in any of the years included being divided by six to provide the six evenly 25 spaced categories.

1	
2	For this study we have also developed a clover flux model that is specific to NC-
3	S/NC-R clover (POD3 $_{gen}$ (clover)) as used at the ICP biomonitoring network. The
4	basic formulation is similar to that of other vegetation but uncertainties are introduced
5	in calculating the ozone concentration at the canopy height because the clover plants
6	in the ICP Vegetation network were in pots surrounded by short vegetation (grass
7	species) – a complex situation for modelling. Thus, here we have assumed that the
8	dominant vegetation is grassland rather than clover itself, with the ozone
9	concentration gradients around the plants being driven more by the surroundings than
10	by the characteristics of clover. On the other hand, the stomatal conductance of the
11	clover itself still drives the uptake of O_3 into the plant. In an effort to account for this
12	complex situation, we calculate the stomatal conductance of clover with clover-
13	specific parameters, but make use of the O ₃ gradients calculated for grassland to
14	calculate the O_3 at canopy top. The parameterisations for this model are provided in
15	Table 5, with the derivation and equations described in the Annex to this paper.
16	Clover POD3 _{gen} and clover AOT40 maps have been generated for values accumulated
17	over 84 days starting 15 June (the mean start date for ICP Vegetation clover
18	experiments) to represent the three 28d growth periods. Grid square values for these
19	maps are the average of five years data for $2000 - 2004$.
20	
21	Comparison of ozone-effects data with EMEP modelled AOT40 and $POD3_{gen}$
22	Four sets of data were compared with EMEP modelled AOT40 and $POD3_{gen}$ maps
23	and/or grid square values. Firstly, the 50 x 50 km grid squares where visible injury
24	had been detected in published surveys and ad hoc observations and the ICP

25 Vegetation biomonitoring experiments described here during the period 1995 -2004

1	were mapped with the ten year mean values for crop AOT40 and crop $POD3_{gen}$. For
2	grid squares where an effect was detected in more than one year in the five-year
3	periods, the presence of effect was only counted once. The second dataset was the
4	mean injury score on white clover for the period June to August on NC-S white clover
5	over the five-year period $2000 - 2004$. This data were mapped against AOT40
6	(clover), AOT40 (crop), $POD3_{gen}$ (clover) and $POD3_{gen}$ (crop) for illustration but
7	could not be used to produce dose-response functions due to the non-linearity in the
8	injury score used in the plant-level assessments. The third dataset was for a sub-set of
9	the clover biomonitoring sites where the first day of ozone injury was recorded.
10	Clover AOT40, AO30 _{VPD} and POD3 _{gen} were calculated for the days from the start of
11	the experiment and the eight days prior to ozone injury for use in an assessment of the
12	short-term critical level for visible injury. Lastly, the fourth dataset used was the
13	white clover biomass ratio (NC-S/NC-R) calculated from the total biomass for the
14	months May, June and July, normalised for the 1.05 ratio recorded at zero AOT40
15	(Hayes et al., 2007b) and converted to percentage biomass reduction. The five-year
16	mean values per site were mapped against the five-year mean crop and clover AOT40
17	and $POD3_{gen}$ (2000 – 2004). In addition, the site- and year-specific values for clover
18	AOT40 (clover) and POD3 _{gen} (clover) using the site starting date were accumulated
19	over 84 days and plotted against biomass ratio.

20

21 Statistical analysis

The datasets described were deemed too inconsistent for analysis of temporal and spatial trends as the number of sites surveyed for injury or included in the clover biomonitoring experiment varied from year to year and were not systematically selected for geographical representation. Response functions were fitted to the

1	biomass data by non-linear regression within Minitab V.15. Where applicable, data
2	are presented visually for four regions of Europe Northern Europe (NE), Atlantic
3	Central Europe (ACE), Continental Central Europe (CCE), Mediterranean (Med),
4	with countries included in each region as listed in LRTAP Convention (2004). In
5	Tables 1-3, the Mediterranean region is split into eastern and western Mediterranean.
6	
7	Results
8	Visible injury surveys, including injury occurrence on experimental ambient air plots
9	Over the years 1990 – 2006, ozone injury was detected in 16 countries of Europe
10	representing each of the five geographical regions studied (Tables 1 - 3 and Figures 1-
11	3). Records of injury were particularly common from Italy, Spain, and Switzerland,
12	but were also common for more northern countries such as Belgium and Sweden.
13	Overall, ozone injury was most commonly reported in central and Mediterranean
14	Europe with more than 200 published records available for each of these regions, with
15	fewer records reported in ACE and NE. There were large year-to-year differences in
16	the number of published and unpublished records reported across Europe (Figure 2).
17	Since this inconsistency may well have reflected the sporadic nature of surveys rather
18	than fluctuations in ozone climate, it was not possible to statistically analyse this
19	dataset for any geographical or temporal trends. Instead, the focus of the analysis of
20	the visible injury dataset has been the overall geographical spread of sites where
21	injury occurred together with the range of species injured in each region, based on the
22	combined records for the period 1990 - 2006.
23	
24	Of the 644 records of visible injury over the period 1990 – 2006, 39% were for crops,

25 38.1 % were for forbs and grasses, and 22.9% were for shrubs. Overall, 27 crop

species exhibited visible injury including agricultural crops such as maize, potato,
 wheat, durum wheat and soybean, and horticultural crops such as lettuce, chicory,
 radish, courgette and onion (Table 1). These effects were detected in 14 countries
 representing each of the five geographical regions. Ten or more crops were injured in
 Greece, Italy and Spain and it is also of note that ozone injury was detected on six
 crop species in Sweden (NE).

7

8 Ninety-five species of grasses and forbs exhibited typical ozone injury in ambient air 9 at sites across Europe (Table 2). Overall, the vast majority of the species injured were 10 forbs, with injury being more difficult to identify on grasses and only reported for 8 11 species. Species from the same genus were injured at sites in several countries. For 12 example, Centaurea jacea was injured in Poland, Switzerland and Italy, Centaurea 13 nigra was injured in Italy, UK and Ukraine, Centaurea paniculata was injured in 14 Switzerland and Centaurea scabiosa was injured in France and the Ukraine. In 15 addition to the *Trifolium* spp. used in the ICP Vegetation biomonitoring programme, 16 other examples of genus' that were well represented within the database were Rubus 17 spp, with injury recorded on five species growing in France, Switzerland, Italy and 18 Spain and *Epilobium* spp. with three species injured in France, Spain and Italy.

19

Ozone injury was reported for 49 species of shrubs growing in France, Italy, Poland,
Spain and Switzerland (Table 3). Records for *Viburnum* spp. were the most
widespread with injury occurring on four species at sites in France, Italy, Spain and
Switzerland. *Rosa canina* was injured in three countries (Italy, Spain and
Switzerland) whilst many other species were injured in two countries such as *Lonicera caprifolium, Robinia pseudoacacia* and *Sambucus racemosa*.

1	
2	The geographical distribution of locations in Europe where visible injury was detected
3	and published in the scientific literature over the period 1995 – 2004 is shown in
4	Figure 3 superimposed on the 10 year average for AOT40 (crop) and $POD3_{gen}$ (crop).
5	There was a clear north-south increase for AOT40 (crop), with the highest modelled
6	values being found in Italy, whilst $POD3_{gen}$ (crop) was > 18 mmol m ⁻² across a large
7	region of Europe covering central and southern areas and spreading northwards into
8	southern UK and Scandinavia. Overall, 62% of injury locations were in grid squares
9	with AOT40 (crop) values below the critical level of 3 ppm h to protect crops against
10	effects on biomass and yield suggesting that some effects (even if not on biomass and
11	yield) can occur well below this value (Figure 3). No obvious threshold value was
12	apparent but most grid squares (29%) were in the category 2 - 3 ppm h for AOT40
13	(crop). In contrast, only 9% of the injury locations were found within grid squares
14	with an POD3 _{gen} (crop) of < 12 mmol m ⁻² , with 7%, 27% and 47.3% of locations
15	falling in grid square categories 12 - 18, $18 - 24$ and $24 - 30$ mmol m ⁻² respectively.
16	The proportion of grid squares with injury falling within the three highest categories
17	was 22% for AOT40 (crop) and 56% for POD3 _{gen} (crop). From Figure 3b, a
18	$POD3_{gen}$ (crop) of 12-18 mmol m ⁻² can be tentatively interpreted as a threshold for
19	likely occurrence of ozone injury. Unfortunately, published records of the absence of
20	ozone symptoms are extremely rare making it impossible from this evidence to
21	confirm this threshold.
22	

23 Visible injury occurrence in the ICP Vegetation white clover biomonitoring

24 *experiments*.

1	Ozone injury occurred at almost all sites in the years included in this study (1998 -
2	2004), with only 5 of the 52 site/year combinations recording an absence of injury. A
3	sub-set of sites (28 data points) recorded the first date of ozone injury on NC-S white
4	clover. For the 8 days prior to injury appearance or for all days since day 0 of the
5	experiment, the EMEP modelled AOT40 (clover) provided little evidence for a
6	threshold AOT40 value (Figure 4a). For both time periods, the cumulative frequency
7	of percentage of data points increased rapidly with increasing AOT40 (clover), with
8	42.9% and 35.7% of data being for AOT40s below 0.1 ppm h (for 8 days and day 0 to
9	first day of injury, respectively). A similar pattern existed for $AOT30_{VPD}$ (clover)
10	(Figure 4b) with 4 sites recording ozone injury at grid square $AOT30_{VPD}$ of below the
11	critical level of 0.16 ppm h (Italy-Isola Serafini 1999, Italy-Rome 2004, Belgium-
12	Tervuren 2004, UK-Ascot 2004). In contrast, there was stronger evidence of a
13	threshold for POD3 _{gen} (clover) of ca. 3-4 mmol m^{-2} with 3.5% of data points falling
14	below 2 mmol m ⁻² , 7.2% falling between 2 and 3 mmol m ⁻² , and 30.2% falling
15	between 3 and 4 mmol m^{-2} for POD3 _{gen} (clover) values accumulated for 8 days prior
16	to injury (Figure 4c).

18 The five-year mean injury score values were superimposed on crop and clover AOT40 and POD3_{gen} maps to illustrate the geographical distribution (Figure 5). The 19 20 AOT40 maps for the two time periods showed similar patterns but AOT40 (clover) 21 values were larger than AOT40 (crop) values. Site-specific AOT40 (clover) values, 22 determined for 84 days from 15 June were higher than AOT40 (crop) values (clover AOT40 (clover) = 1.72 * AOT40 (crop), $r^2 = 0.75$, figure not presented) reflecting the 23 24 higher ozone concentrations in the later months of the clover experiment (mean start dates were 33, 35 and 54 days later for ACE, CCE and Med respectively). POD3gen 25

1	(clover) values were also higher than $POD3_{gen}$ (crop) values with the region of
2	medium - high fluxes (> 24 mmol m^{-2}) covering larger areas of Europe stretching as
3	far north as southern UK and southern Scandinavia. Overall, the highest injury scores
4	on white clover were detected in central and southern Europe, but not all of these sites
5	coincided with the highest mean crop or clover AOT40 values (Figure 5). In contrast,
6	the injury score data showed a closer correlation with $POD3_{gen}$ with the highest injury
7	scores being associated with medium to high fluxes. For example, all sites with a
8	mean score >1 had an POD3 _{gen} (clover) of > 36 mmol m ⁻² . The corresponding value
9	for AOT40 was an AOT40 (clover) of 1 ppm h.
10	
11	
12	Effects on biomass in the ICP Vegetation white clover biomonitoring experiment
13	Data from 10 countries contributed to this analysis, with the mean normalised $\%$
14	biomass reduction being greatest in Italy (33.3 %, n=10) and Greece (30%, n=2),
15	with no effects being consistently detected in the UK (Table 4). For other countries
16	there was a wide range in % biomass reduction reflecting year to year variation in
17	AOT40 (clover) and POD3 $_{gen}$ (clover), with maximum reductions being as high as
18	25.2 %, 20.8%, and 24.8 % for Austria, Germany and Spain respectively. The mean
19	biomass reduction per site is shown in Figure 6 for crop and clover AOT40 and
20	$POD3_{gen}$ averaged over the period 2000 – 04. For both AOT40 (crop) and AOT40
21	(clover), mean biomass reductions of > 10% were detected in areas where the
22	modelled AOT40 was below the critical level of 3 ppm h (Figure 6). By comparison,
23	such higher mean effects were found in the grid squares with medium – high fluxes.
24	

1 Site- and year-specific grid values for AOT40 (clover) and AOT40 (crop) were 2 calculated from the EMEP model outputs and plotted against percentage biomass 3 reduction (Figure 7). Not surprisingly there was a lot of scatter in this data (discussed 4 later). Separate plots of the data for sites with modelled AOT40 values that exceeded 5 the critical level of 3 ppm h revealed linear relationships that were significant for AOT40(clover) ($r^2 = 0.58$, p < 0.001) where data from CCE and MED contributed, but 6 not for AOT40 (crop) (r^2 =0.28, p=0.179) where only data from MED had an AOT40 7 8 of > 3 ppm h. However, the relationship for AOT40 (clover) seems to be being 9 driven by the large number of points with an AOT40 of 3 - 4 ppm h, with relatively 10 few points for the higher AOT40 values. A similar approach was used for POD3_{gen}. 11 For both Figure 8a and Figure 8b there is some indication of a threshold value, above 12 which ozone effects start to occur consistently. For POD3_{gen} (clover), this threshold is ca. 40 mmol m⁻²; a separate plot of the sub-set of data for POD3_{gen} > 40 shows a 13 strong linear relationship ($r^2 = 0.58$, p < 0.001), with data points from ACE and CCE 14 15 well spread along the regression line. The relationship between POD3_{gen} (crops) and clover biomass reduction was less strong for data points where $POD3_{gen}$ (crops) > 15 16 mmol m⁻² especially for the higher fluxes, but was significant ($r^2 = 0.21$, p=0.002). 17 18

For the 57 data points within the clover biomass dataset, the grid square values were compared for AOT40 (clover) and POD3_{gen} (clover) (Figure 9). There was a strong polynomial relationship between the two parameters (p = 0.93) which could be broken down into region-specific linear relationships. At low AOT40s, POD3_{gen} was higher for CCE than for ACE presumably indicating climatic conditions that were more conducive to ozone uptake. Between AOT40s of 0 and 3 ppm h, POD3_{gen} for ACE increased more slowly for CCE and MED than for ACE; this slower rate of

1	accumulation of POD3 _{gen} per unit AOT40 in CCE and MED continued at the higher
2	AOT40s not found in ACE.

3

4 **Discussion**

5 This study has clearly indicated that many crops and (semi-)natural vegetation 6 communities are responding to current ambient ozone in Europe. The most easily 7 recognisable and most commonly reported effect has been the development of 8 characteristic ozone injury on leaves. Such effects have been noted every year over 9 the period 1990 - 2006, with over 170 species being reported as having developed 10 ozone injury. Injury was reported in each of the five geographical regions of Europe, 11 including in northern Europe where maps indicate relatively low AOT40. There is 12 also evidence from the ICP Vegetation clover experiment that ambient ozone 13 concentrations are sufficiently high at several locations in Europe to reduce the 14 growth of an ozone-sensitive species. Injury and biomass effects were most 15 prevalent in southern European countries, but were also found in central and northern 16 Europe. The results presented here provide significant progress towards identifying 17 field evidence of the improved performance of flux-based compared to concentration-18 based risk maps and provide some justification for the biologists' preference for flux-19 based approaches (as outlined by Simpson et al., 2007). They also highlight the 20 potential threat to vegetation from future increases in ozone pollution predicted for the 21 near decades.

22

The ozone effects data presented here have been subjected to quality assurance
procedures in order to reduce uncertainty. The highest potential source of uncertainty
was in the field observations whereby scientists may have wrongly assigned visible

1	injury caused by other stresses to ozone pollution. This was minimised by inclusion
2	of observations that were either verified by ozone exposure experiments or recorded
3	by experienced ozone-specialist scientists, the latter being the most consistent of 25
4	observers in a quality assurance trial described by Bussotti et al. (2006). Injury data
5	from the ICP Vegetation clover experiments were more robust as a common protocol
6	was followed using plant material originating from the same source. Photographs
7	were provided to guide assessments and the use of a broad range of injury scores
8	rather than % injury helped to prevent the problems of under-estimation of damage
9	described by Bussotti et al. (2003a). The NC-S and NC-R biotypes were originally
10	selected in the southern-Europe-like climate of North Carolina, USA (Heagle et al.,
11	1994), but have been extensively employed in many parts of the USA as
12	bioindicators. In the current study, rigorous quality assurance checks (described in
13	Mills et al., 2000) resulted in exclusion of about one-quarter of the data, including
14	some from northern Europe where the NC-R biotype was sensitive to downy mildew
15	in wetter summers.
16	
17	Much of the evidence presented here is based on the occurrence of ozone injury on
18	the leaves of sensitive species. Several authors have argued that visible injury is
19	sometimes of little biological significance to the plant in that growth or seed

20 production are not always reduced by ozone when injury symptoms are present (e.g.

21 review by Bassin *et al.*, 2007). We tested this argument by comparing lists of species

22 injured by ozone in ambient air with response functions we derived in earlier studies

- 23 for yield and biomass effects that were based on ozone-exposure experiments (Hayes
- 24 et al., 2007a, Mills et al., 2007a). Of the nine crop species with an AOT40 critical
- 25 level of <= 5 ppm h (Mills *et al.*, 2007a), all except cotton and turnip exhibited ozone

1	injury in the surveys reported here. Similarly, 5 of the 8 species classified by Mills et
2	al. (2007a) as moderately sensitive (maize, sugar beet, potato, tobacco and grapevine)
3	were identified as showing ozone injury in the field whilst no visible effects were
4	reported for the crops classified by Mills et al. (2007a) as resistant to ozone. Of the
5	species of (semi-)natural vegetation exhibiting injury, 9 were reported by Hayes et al.
6	(2007a) as having a relative sensitivity based on biomass effects of <0.9, and 6 had a
7	relative sensitivity of $0.9 - 1$. At the time of the Hayes <i>et al.</i> (2007a) study, there was
8	no/insufficient biomass response data available with which to classify the other
9	species that are reported here as developing ozone injury in the field. Although data
10	from injury surveys cannot be directly compared with yield or biomass response data,
11	there is thus clear evidence that those species known to respond negatively to ozone in
12	experiments by either reduced growth or reduced seed production often develop
13	ozone injury in the field in response to ambient ozone, whilst those known to be
14	ozone insensitive have not been reported as showing such symptoms.

15

16 Before considering the link between measured effects and modelled ozone exposure it 17 is important to consider the uncertainty associated with mapping AOT40 and POD3gen 18 within the EMEP model. Both of these indices are sensitive to the characteristics of 19 the frequency distribution of ozone concentrations (Tuovinen et al., 2007, 2009) with 20 both showing increased sensitivity with increasing threshold. However, as lower 21 ozone concentrations contribute more to POD3gen than to AOT40 (ca. 7 ppb for the 22 POD3_{gen} (clover) model included here), this parameter is less sensitive to threshold 23 effects than AOT40 (LRTAP Convention, 2004, Tuovinen et al., 2007). Additional 24 sources of uncertainty associated with the simulation of the emissions, transport and 25 deposition of ozone and its precursors are described in Simpson et al. (2003a, 2003b,

1	2007). Because of the disparity between both the AOT40 (crop) and $POD3_{gen}$ (crop)
2	accumulation periods in relation to the timing of the ICP Vegetation experiments
3	(which usually start in June, $30 - 55$ days after the latitude-derived POD3 _{gen} (crop)
4	accumulation period starts, for further details, see Hayes et al., (2007b)), and the
5	physical nature of the ICP network (potted plants surrounded by short vegetation), we
6	devised for this study a generic clover flux model for the pot-based clover
7	biomonitoring system (Annex 1). The higher g_{max} , lower f_{min} and higher T_{max} for
8	$POD3_{gen}$ (clover) compared to $POD3_{gen}$ (crop), together with the higher ozone
9	concentrations and warmer climate for the mid-June to mid-August period result in
10	higher values for $POD3_{gen}$ (clover) than $POD3_{gen}$ (clover) for the same geographical
11	region. A major uncertainty in the clover model is the calculation of canopy-height
12	ozone concentration. This uncertainty is caused by a number of factors including the
13	dense canopy and high stomatal conductance of the potted clover in relation to the
14	surrounding grassland, and the experimental design with pots usually placed on grass
15	and being well-spaced out, resulting in an heterogeneous surface roughness that is
16	difficult to model. The method for calculating ozone concentration provided here for
17	the clover model was thus a first attempt to account for such factors. It provides a
18	consistent methodology across all sites, but it is impossible to assess any biases
19	associated with the difficulty of modelling ozone concentration. In addition, the
20	clover stomatal conductance parameterisation was generalized to provide one
21	parameterisation for the 8 countries contributing data and for the two biotypes (NC-S
22	and NC-R). This introduces some uncertainty into the analysis as within the gs
23	datasets there was some evidence that plants showed variable acclimatisation to local
24	conditions (e.g. in cooler climates the stomates show a tendency for closure at lower
25	VPDs than in warmer climates, Mills et al., 2003). Unfortunately, the limited range of

Page 27 of 74

Global Change Biology

1	key environmental variables measured at individual sites did not allow for climate
2	specific parameterisations to be developed; a generic "pan-European" flux modelling
3	approach was selected enabling direct comparison with the crop maps shown.
4	
5	At the farm scale, injury-causing ozone episodes can have a catastrophic effect, for
6	example, one farmer in Greece lost a chicory crop worth Euro 15000 as a result of one
7	ozone episode (Velissariou, pers. comm. and described in more detail in Hayes et al.,
8	2007b). Thus, there is a need to develop a method for assessing the risk of such
9	catastrophic effects on a pan-European scale. Although the number of incidences of
10	ozone injury per area strongly reflects the reporting effort, this study has nevertheless
11	shown that ambient ozone over the period 1990 – 2006 induced visible injury on
12	ozone sensitive species in many parts of Europe, including in northern Europe where
13	ozone concentrations are generally lower than in central and southern Europe. Injury
14	was detected in areas where there is a long history of relatively high ozone
15	concentrations and some resistance to ozone has been detected in the field (e.g.
16	Centaurea jacea, Bassin et al., 2004, Plantago major, Reiling and Davison, 1992). To
17	fully understand the thresholds above which ozone injury occurs, more data is needed
18	on the conditions that do not lead to ozone injury. In the absence of such data, we
19	have analysed the data from the ICP Vegetation clover biomonitoring experiment by,
20	for the first time, applying the EMEP model to short-time periods to determine
21	whether exceedance of the modelled $AOT30_{VPD}$ critical level was associated with
22	occurrence of visible injury. For 24 of the 28 data points this was found to be the
23	case. However, a threshold was more evident for $POD3_{gen}$ (clover), with a rapid
24	increase in incidences of ozone injury for values between 2 and 3 mmol m^{-2} for the 8
25	days prior to injury and from day 0 to injury. Using either index, the EMEP model

could be used to predict for current and future ozone conditions the frequency of
 injury-causing episodes. Such maps and data could be used to assess the risk of
 damage to leafy vegetable crops, the economic value of which depends on the
 appearance of the leaf.

5

6 We tested here the efficacy of the AOT40-based critical level for crops using the 7 clover biomass data and the EMEP modelled data for AOT40. Whether AOT40 was 8 calculated for the crop growth period or the clover growth period, ca. 40% of sites had 9 a > 10% biomass reduction in NC-S at modelled AOT40 values below the critical 10 level of 3 ppm h. For both accumulation periods, a relatively small number of points 11 for higher effects at high AOT40 values led to a significant linear relationship 12 between AOT40 and % biomass reduction above the current critical level. 13 Furthermore, there was widespread occurrence of visible injury in grid squares that 14 were below the critical level for yield reduction. Although, as already discussed, the 15 latter cannot necessarily be equated with an effect of biological significance to the 16 plant, when taken with the biomass reduction data such widespread occurrence does 17 tend to suggest that the AOT40-based critical level is insufficiently robust for 18 predicting the damaging effects of ozone on vegetation in Europe. This approach to 19 mapping risk could possibly be improved by (1) using a different cut-off value instead 20 of 40 ppb as correlations between ozone injury and locally measured ozone 21 concentrations were improved in both Spain and Sweden when 20 and 30 ppb were 22 used as the cut-off values (Ribas and Penuelas, 2003, Pihl Karlsson et al., 2004); and 23 (2) using species-specific time intervals that better captured the time of damaging 24 ozone episodes as tested here for the AOT40 (clover) model.

1	In contrast to the AOT40 maps, the risk maps based on the flux parameter, $POD3_{gen}$,
2	provided a better representation of the areas where ozone effects occurred for all four
3	types of effect data. Flux-effect relationships were improved when a species-specific
4	model (POD3 $_{gen}$ (clover)) was used. These important results are supported by locally
5	parameterised flux models for sites in, for example, Spain (Filella et al., 2005) and
6	Italy (Fagnano and Merola, 2007). They are also supported by analyses of data from
7	early ICP Vegetation experiments that identified the importance of locally measured
8	conductance modifying factors such as VPD and rainfall as contributory factors for
9	the response to ozone (Benton et al., 2000; Ball et al., 2000). Further support for the
10	improved performance of $POD3_{gen}$ maps compared to AOT40 maps comes from the
11	many locations in Germany, The Netherlands and Sweden where ozone effects were
12	noted in grid squares predicted to have relatively low AOT40 (crop) (< 3 ppm h) but
13	mid-range POD3 _{gen} (crop) (18 - 30 mmol m ⁻²). This paper presents some evidence to
14	support critical levels for $POD3_{gen}$ (clover) of ca. 40 - 50 mmol m ⁻² for biomass
15	effects and ca. 3 mmol m ⁻² for appearance of visible injury, but these would need to
16	be tested further with site-specific measured data. Since data from ACE, CCE and
17	MED are contributing to the response function shown in Figure (9d), it can be
18	concluded that it is appropriate to combine data sets from the different regions of
19	Europe for the derivation of a flux-based critical level for Europe-wide application.
20	

21 **Conclusion**

Our study has provided evidence that ambient concentrations of the pollutant ozone have repeatedly induced damage to vegetation across 17 European countries during the period 1990 to 2006. Species exhibiting visible injury in the field match those identified in exposure experiments to be sufficiently sensitive to ozone to have

1	reduced biomass or yield at concentrations within the European range of ozone
2	concentrations. Biomass reductions have been found in ambient air for the sentinel
3	bioindicator species, Trifolium repens. Unfortunately, data records compiled for this
4	study were too inconsistent for identification of long-term trends in effects in response
5	to the changing ozone profile. Overall, flux-based risk maps were better predictors of
6	the areas where ozone damage occurred than AOT40-based risk maps, with
7	predictive ability improving for time-period accumulation and effect data matched
8	maps. In many areas of Europe (e.g. Belgium, northern Germany, southern Sweden)
9	there is evidence of effects where AOT40 values (crop and clover) are predicted to be
10	low, whilst ozone flux (crop and clover) is moderate to high due to the climatic
11	conditions being conducive to high stomatal uptake. Thus, this study provides
12	important validation data to provide support to the use of the biologically more
13	meaningful flux-based approach for risk assessment.

14

15 The most disconcerting outcome of this study is that the current ambient ozone 16 climate of Europe is already having extensive impacts on vegetation across Europe. 17 Since ozone damage has also been detected in other parts of the world including the 18 USA (e.g. Bennett et al., 2006, Davis & Orendovici, 2006, Booker et al., 2009) and 19 south-east Asia (Emberson et al., 2009), the problem appears to be global. Even with 20 implementation of current legislation, ozone concentrations are predicted to continue 21 to rise across most of the world over the coming decades (Royal Society, 2008) and 22 thus it is likely that ozone impacts on vegetation will worsen. Indeed, the Royal 23 Society report (2008) predicted that by 2030, tropospheric ozone pollution could pose 24 as big a threat to global food security as climate change. Thus, there is an urgent 25 global need for coordinated effort to reduce the emissions of the precursors of ozone

1	pollution to benefit security of food supplies, improve human health and help reduce
2	global warming.
3	
4	Acknowledgements
5	We would like to thank the UK Department for Environment, Food and Rural Affairs
6	(Contract AQ03509) and the LRTAP Convention Trust Fund for funding this work.
7	We would like to thank over 80 participants in the ICP Vegetation for providing data
8	for use in this study, and would specifically like to thank the following people for
9	their contributions: Maria Sanz, Marco Ferretti and others (ICP Forests), Jürgen
10	Bender (Germany), Costas Saitanis and Dimitris Velissariou (Greece), Cristina Nali,
11	Alessandra Francini, Elisa Pellegrini, Valentina Picchi (Italy), Franc Batič and Boris

12 Turk (Slovenia), Viki Bermejo and Ben Gimeno (Spain), Håkan Pleijel and Per Erik

13 Karlsson (Sweden). Nina Menichino is also thanked for assistance with compiling

14 references and tables for this manuscript.

15

16 **References**

17 Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation.

19

Ball GR, Palmer-Brown D, Fuhrer J, et al. (2000) Identification of non-linear
influences on the seasonal ozone dose-response of sensitive and resistant clover
clones using artificial neural networks. *Ecological Modelling*, **129**, 153-168.

¹⁸ Plant Cell and Environment, **28**, 949-964.

1	Bassin S, Kölliker R Cretton C, et al. (2004) Intra-specific variability of ozone
2	sensitivity in Centaurea jacea L., a potential bioindicator for elevated ozone
3	concentrations. Environmental Pollution, 131, 1-12.
4	
5	Bassin S, Volk M, Fuhrer J (2007) Factors affecting the ozone sensitivity of temperate
6	European grasslands: An overview. Environmental Pollution, 146, 678-691.
7	
8	Bassin S, Werner RA, Sorgel K et al. (2009) Effects of combined ozone and nitrogen
9	deposition on the in situ properties of eleven key plant species of a subalpine pasture.
10	<i>Oecologia</i> , 158 , 747-756.
11	
12	Bennett JP, Jepsen EA, Roth JA (2006) Field responses of Prunus serotina and
13	Asclepias syriaca to ozone around southern Lake Michigan. Environmental Pollution,
14	142, 354-366.
15	
16	Benton J, Fuhrer J, Gimeno BS, et al. (2000) An international cooperative programme
17	indicates the widespread occurrence of ozone injury on crops. Agriculture Ecosystems
18	& Environment, 78, 19-30.
19	
20	Benton J, Fuhrer J, Skarby L, et al. (1996) Results from the UN/ECE ICP-crops
21	indicate the extent of exceedance of the critical levels of ozone in Europe. In: 5th
22	International Conference on Acidic Deposition - Science and Policy: Acid Reign 95
23	pp. 1473-1478. Kluwer Academic Publ, Gothenburg, Sweden.

1	Bermejo V, Gimeno BS, Sanz J, et al. (2003) Assessment of the ozone sensitivity of
2	22 native plant species from Mediterranean annual pastures based on visible injury.
3	Atmospheric Environment, 37, 4667-4677.
4	
5	Bermejo V, Gimeno BS, Porcuna, JL (2002). Protección de los daños inducidos por
6	los nivels de orzono troposférico en tomate mediante la reducción, del riego. V
7	congresso de la SEAE, la agricultura y grand eria ecologicas en un marco de
8	diversificación y desarrollo solidario. Tomo II. (E depana de la fuente, J.L. Porcuna,
9	Eds.) SEAE, SERIDA, Spain. Pp: 1127-1138.
10	
11	BIOSTRESS (2002) Biodiversity in herbaceous semi-natural ecosystems under stress
12	by global change components. (www.ist-world.org).
13	
14	Booker F, Muntifering R, McGrath M, et al. (2009) The Ozone Component of Global
15	Change: Potential Effects on Agricultural and Horticultural Plant Yield, Product
16	Quality and Interactions with Invasive Species. Journal of Integrative Plant Biology,
17	51 , 337-351
18	
19	Bungener P, Nussbaum S, Grub A, et al. (1999) Growth response of grassland species
20	to ozone in relation to soil moisture condition and plant strategy. New Phytologist,
21	142, 283-293.
22	
23	Bussotti F, Agati G, Desotgiu R et al. (2005) Ozone foliar symptoms in woody plant
24	species assessed with ultrastructural and fluorescence analysis. New Phytologist, 166,

25 941-955.

1	
2	Bussotti F, Cozzi A, Bettini D (2003a) Ozone-like visible foliar symptoms at the
3	permanent monitoring plots of the CONECOFOR programme in Italy. Annali
4	dell'Istituto Sperimentale per la Selvicoltura, 30, 99-106.
5	
6	Bussotti F, Mazzali C, Cozzi A, et al. (2003b) Ozone injury symptoms on vegetation
7	in an Alpine valley, North Italy. Air Pollution, Global Change and Forests in the New
8	Millennium, 3 , 269-276.
9	
10	Bussotti F, Schaub M, Cozzi A, et al. (2006) Sources of errors in assessing ozone
11	visible symptoms on native vegetation. Environmental Pollution, 140, 257-268.
12	
13	Carrasco-Rodriguez JL, del Valle-Tascon S (2001) Impact of elevated ozone on
14	chlorophyll a fluorescence in field-grown oat (Avena sativa). Environmental and
15	Experimental Botany, 45, 133-142.
16	
17	Davis DD, Orendovici T (2006) Incidence of ozone symptoms on vegetation within a
18	National Wildlife Refuge in New Jersey, USA. Environmental Pollution, 143, 555-
19	564.
20	
21	De Temmerman L, Karlsson GP, Donnelly A, et al. (2002) Factors influencing visible
22	ozone injury on potato including the interaction with carbon dioxide. European
23	Journal of Agronomy, 17, 291-302.
24	

1	Dentener F, Stevenson D, Ellingsen K, et al. (2006) The global atmospheric
2	environment for the next generation. Environmental Science & Technology, 40, 3586-
3	3594.
4	
5	Derwent RG, Simmonds PG, Manning AJ, et al. (2007) Trends over a 20-year period
6	from 1987 to 2007 in surface ozone at the atmospheric research station, Mace Head,
7	Ireland. Atmospheric Environment, 41, 9091-9098.
8	
9	EEA (2009). Assessment of ground-level ozone in EEA member countries,
10	with a focus on long-term trends. European Environment Agency Report no
11	7/2009. ISSN 1725-2237.
12	
13	Emberson LD, Ashmore MR, Cambridge HM, et al. (2000) Modelling stomatal ozone
14	flux across Europe. Environmental Pollution, 109, 403-413.
15	
16	Emberson LD, Bűker P, Ashmore MR, et al. (2009) A comparison of North American
17	and Asian exposure-response data for ozone effects on crop yields. Atmospheric
18	Environment, 43, 1945-1953.
19	
20	Feng A, Kobayashi, K (2009) Assessing the impacts of current and future
21	concentrations of surface ozone on crop yield with meta-analysis. Atmospheric
22	Environment, 43 , 1510-1519.

1	Fjæraa AM, Hjellbrekke, A-G (2008) Ozone measurements 2006. (Available at
2	www.emep.int). EMEP/CCC-Report 2/2008, Norwegian Institute for Air Research,
3	Kjeller, Norway
4	
5	Fagnano M, Merola G (2007) Ozone and water stress: effects on the behavior of two
6	white clover biotypes. Italian Journal of Agronomy, 2, 3-12.
7	
8	Felzer B, Reilly J, Melillo J, et al. (2005) Future effects of ozone on carbon
9	sequestration and climate change policy using a global biogeochemical model.
10	<i>Climatic Change</i> , 73 , 345-373.
11	
12	Filella I, Penuelas J, Ribas A (2005) Using plant biomonitors and flux modelling to
13	develop O-3 dose-response relationships in Catalonia. Environmental Pollution, 134,
14	145-151.
15	
16	Fowler D, Cape JN, Coyle M, et al. (1999) Modelling photochemical oxidant
17	formation, transport, deposition and exposure of terrestrial ecosystems.
18	Environmental Pollution, 100, 43-55
19	
20	Fumagalli I, Gimeno BS, Velissariou D, et al. (2001) Evidence of ozone-induced
21	adverse effects on crops in the Mediterranean region. Atmospheric Environment, 35,
22	2583-2587.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Global Change Biology
37
Gimeno BS, Mendoza M, Sánchez S, et al. (1996) Assessment of EDU protection
from ozone exposure on three horticultural crops. In: G. Soja and M Knoflacher (eds).
Exceedances of critical loads and levels. Umweltbundesamt. 123-135.
Gimeno BS, Penuelas J, Porcuna JL et al. (1995) Biomonitoring ozone phytotoxicity
in eastern Spain. Water Air and Soil Pollution, 85, 1521-1526.
Gimeno BS, Salleras JM, Porcuna JL, et al. (1992) The use of watermelon as an
ozone bioindicator. In: 7th International Bioindicators Symposium (Eds. Munawar
M, Hanninen O, Roy S, et al.). pp. 55-62. S P B Academic Publ Bv, Kuopio, Finland.
Hayes F, Jones MLM, Mills G, et al. (2007a) Meta-analysis of the relative sensitivity
of semi-natural vegetation species to ozone. <i>Environmental Pollution</i> , 146 , 754-762.
Hayes F, Mills G, Harmens H, et al. (2007b) Evidence of widespread ozone damage
to vegetation in Europe (1990-2006). ICP Vegetation Programme Coordination
Centre, CEH Bangor, UK, 58pp. (CEH Project No: C03077).
ISBN 978-0-9557672-1-0.

17 Centre, CEH Bangor, UK, 5 18 ISBN 978-0-9557672-1-0. 19 20 Hayes F, Mills G, Williams P, et al. (2006) Impacts of summer ozone exposure on the 21 growth and overwintering of UK upland vegetation. Atmospheric Environment, 40, 22 4088-4097.

23

24 Heagle AS (1989) Ozone and crop yield. Annual Review of Phytopathology, 27, 397 -25 423.

1	
2	Heagle AS, Miller JE, Sherrill DE (1994) A white clover system to estimate effects of
3	tropospheric ozone on plants. Journal of Environmental Quality, 23, 613-621.
4	
5	ICP-Forests (2003) Executive Report (2003) Geneva: Federal Research Centre for
6	Forestry and Forest Products (BFH). EC, UN/ECE. 43.
7	
8	Iglesias DJ, Calatayud A, Barreno E, et al. (2006) Responses of citrus plants to ozone:
9	leaf biochemistry, antioxidant mechanisms and lipid peroxidation. Plant Physiology
10	and Biochemistry, 44, 125-131.
11	
12	Innes JL, Skelly JM, Schaub M (2001) Ozone and Broadleaved Species: A Guide to
13	the Identification of Ozone-Induced Foliar Injury.
14	
15	Jenkin ME (2008) Trends in ozone concentration distributions in the UK since 1990:
16	Local, regional and global influences. Atmospheric Environment, 42, 5434-5445.
17	
18	Kärenlampi L, Skärby L (1996) Critical levels for ozone in Europe: testing and
19	finalising the concepts. UNECE workshop report. University of Kuopio, Department
20	of Ecology and Environmental Science, Kuopio.
21	
22	Karlsson PE, Pleijel H, Simpson D (2009) Ozone Exposure and Impacts on
23	Vegetation in the Nordic and Baltic Countries. Ambio, 38, 402-405.

1	Karlsson GP, Sellden G, Skarby L, et al. (1995) Clover as an indicator plant for
2	phytotoxic ozone concentrations - visible injury in relation to species, leaf age and
3	exposure dynamics. New Phytologist, 129, 355-365.
4	
5	Klingberg J, Danielsson H, Simpson D, et al. (2008). Comparison of modelled and
6	measured ozone concentrations and meteorology for a site in south-west Sweden:
7	Implications for ozone uptake calculations. Environmental Pollution, 115, 99-111.
8	
9	Lefohn AS, Shadwick D, Oltmans SJ (2008) Characterizing long-term changes in
10	surface ozone levels in the United States (1980-2005). Atmospheric Environment, 42,
11	8252-8262.
12	
13	Lorenz M, Fischer R, Becher G et al. (2008). Forest condition in Europe. 2008
14	technical report of the ICP Forests. Available from www.icp-forests.org.
15	
16	LRTAP Convention (2004). Manual on methodologies and criteria for modelling and
17	mapping critical loads and levels and air pollution effects, risks and trends. (2007
18	revision). Available from <u>www.icpmapping.org</u> .
19	
20	Manning WJ (2003) Detecting plant effects is necessary to give biological
21	significance to ambient ozone monitoring data and predictive ozone standards.
22	Environmental Pollution, 126, 375-379.
23	
24	Manning WJ, Godzik B (2004) Bioindicator plants for ambient ozone in Central and
25	Eastern Europe. Environmental Pollution, 130, 33-39.

1	
2	Manning WJ, Godzik B, Musselman R (2002) Potential bioindicator plant species for
3	ambient ozone in forested mountain areas of central Europe. Environmental Pollution,
4	119, 283-290.
5	
6	Massman WJ (1998) A review of the molecular diffusivities of H ₂ O, CO ₂ , CH ₄ , CO,
7	O ₃ , SO ₂ , NH ₃ , N ₂ O, NO, and NO ₂ in air, O ₂ and N ₂ near STP. Atmospheric
8	Environment 32 , 1111-1127.
9	
10	Meleux F, Solmon F, Giorgi F (2007) Increase in summer European ozone amounts
11	due to climate change. Atmospheric Environment, 41, 7577-7587.
12	
13	Mills G, Büker P, Hayes F, et al. (2003) Developing ozone flux-response models for
14	white clover from the ICP Vegetation ambient air monitoring experiment. In:
15	Karlsson, P.E., Selldén, G. and Pleijel, H. (eds). Establishing Ozone Critical Levels II.
16	UN-ECE Workshop Report. IVL Report B 1523. IVL Swedish Environmental
17	Research Institute, Gothenburg. P 128 – 139.
18	
19	Mills G, Ball G, Hayes F, et al. (2000) Development of a multi-factor model for
20	predicting the effects of ambient ozone on the biomass of white clover.
21	Environmental Pollution, 109, 533-542.
22	
23	Mills G, Buse A, Gimeno B, et al. (2007a) A synthesis of AOT40-based response
24	functions and critical levels of ozone for agricultural and horticultural crops.
25	Atmospheric Environment, 41, 2630-2643.

1	
2	Mills G, Hayes F, Jones MLM, et al. (2007b) Identifying ozone-sensitive
3	communities of (semi-) natural vegetation suitable for mapping exceedance of critical
4	levels. Environmental Pollution, 146, 736-743.
5	
6	Morgan PB, Mies TA, Bollero GA et al. (2006) Season-long elevation of ozone
7	concentration to projected 2050 levels under fully open-air conditions substantially
8	decreases the growth and production of soybean. New Phytologist, 170, 333-343.
9	
10	Nali C, Francini A, Lorenzini G (2006) Biological monitoring of ozone: the twenty-
11	year Italian experience. Journal of Environmental Monitoring, 8, 25-32.
12	
13	NEGTAP (2001) National Expert Group on Transboundary Air Pollution.
14	Transboundary Air Pollution: Acidification, Eutrophication and Ground-Level Ozone
15	in the UK, Department for Environment, Food and Rural Affairs, U.K (2001).
16	
17	Novak K, Skelly JM, Schaub M, et al. (2003) Ozone air pollution and foliar injury
18	development on native plants of Switzerland. Environmental Pollution, 125, 41-52.
19	
20	Paolacci AR, Badiani M, D'Annibale A, et al. (1995) The effects of realistic ozone
21	exposure on the biology and productivity of peach trees and durum wheat grown in
22	open-top chambers in Central Italy. In: Agricoltura Mediterranea, S.V. In: Responses
23	of Plants to Air Pollution. Biologic and Economic Aspects, pp. 125-139.
24	

1	Persson K, Danielsson H, Sellden G, et al. (2003) The effects of tropospheric ozone
2	and elevated carbon dioxide on potato (Solanum tuberosum L. cv. Bintje) growth and
3	yield. In: Detecting Environmental Change - Science and Society Conference (p. 191-
4	201). Elsevier Science Bv, London, England.
5	
6	Pihl Karlsson G, Karlsson PE, Soja G et al. (2004). Test of the short-term critical
7	levels for acute ozone injury on plants - improvements by ozone uptake modelling
8	and the use of an effect threshold. Atmospheric Environment, 38, 2237 - 2245.
9	
10	Piikki K, Sellden G, Pleijel H (2004) The impact of tropospheric O-3 on leaf number
11	duration and tuber yield of the potato (Solanum tuberosum. L.) cultivars Bintje and
12	Kardal. Agriculture Ecosystems & Environment, 104, 483-492.
13	
14	Piikki K, Vorne V, Ojanpera K, et al. (2007) Impact of elevated O-3 and CO2
15	exposure on potato (Solanum tuberosum L. cv. Bintje) tuber macronutrients (N, P, K,
16	Mg, Ca). Agriculture Ecosystems & Environment, 118, 55-64.
17	
18	Pihl Karlsson G, Pleijel H, Sild E, et al. (1995) Clover sweden - a national three-year
19	study of the effects of tropospheric ozone on Trifolium subterraneum. Water Air and
20	Soil Pollution, 85, 1503-1508.
21	
22	Pleijel H, Ahlfors A, Skarby L, et al. (1994) Effects of air pollutant emissions from a
23	rural motorway on Petunia and Trifolium. Science of the Total Environment, 146-147,
24	117-123.
25	

1	Pleijel H, Danielsson H, Emberson L, et al. (2007) Ozone risk assessment for
2	agricultural crops in Europe: Further development of stomatal flux and flux-response
3	relationships for European wheat and potato. Atmospheric Environment, 41, 3022-
4	3040.
5	
6	Pleijel H, Norberg PA, Sellden G, et al. (1999) Tropospheric ozone decreases biomass
7	production in radish plants (Raphanus sativus) grown in rural south-west Sweden.
8	Environmental Pollution, 106, 143-147.
9	
10	Pleijel H, Ojanpera K, Danielsson H, et al. (1996) Effects of ozone on leaf senescence
11	in spring wheat - Possible consequences for grain yield. In: 2nd International
12	Conference on Oxygen, Free Radicals and Environmental Stress in Plants (Ed.^(Eds.,
13	pp. 227-232. Ferdinand Berger Soehne, Vienna, Austria.
14	
15	Postiglione L, Fagnano M (1995) Ozone injury and ethylene diurea: first results on
16	different species in the Campania region, Agricoltura Mediterranea, S.V. "Responses
17	of Plants to Air Pollution. Biologic and Economic Aspects" 154 (1995), pp. 109–118.
18	
19	Quaroni S, Saracchi, M., Iriti, M. (2003) Progetto di ricerca regionale danni da ozono
20	troposferico sulle colture erbacee estensive. RegioneLombardia Agricoltura.
21	Università degli Studi di Milano.
22	
23	Ribas A, Penuelas J (2000). Effects of Ethylene diurea as a protective antiozonant on
24	beans (Phaseolus vulgaris cv Lit) exposed to different tropospheric ozone doses in
25	Catalonia (NE Spain). Water Air and Soil Pollution, 117, 263-271.

1	
2	Ribas A, Penuelas J (2003). Biomonitoring of tropospheric ozone phytotoxicity in
3	rural Catalonia. Atmospheric Environment, 37, 63-71.
4	
5	Reiling K, Davison A (1992). Spatial variation in ozone resistance of british
6	populations of <i>Plantago major</i> L New Phytologist, 122, 699 - 708. Ribas A, Penuelas
7	J (2003) Biomonitoring of tropospheric ozone phytotoxicity in rural Catalonia.
8	Atmospheric Environment, 37 , 63-71.
9	
10	Royal Society (2008) Ground-level ozone in the 21st century: future trends, impacts
11	and policy implications. Science Policy Report 15/08.
12	
13	Saitanis CJ (2003) Background ozone monitoring and phytodetection in the greater
14	rural area of Corinth - Greece. Chemosphere, 51, 913-923.
15	
16	Saitanis CJ, Katsaras DH, Riga-Karandinos AN, et al. (2004) Evaluation of ozone
17	phytotoxicity in the greater area of a typical Mediterranean small city (Volos) and in
18	the nearby forest (Pelion Mt.), central Greece. Bulletin of Environmental
19	Contamination and Toxicology, 72, 1268-1277.
20	
21	Sanders GE, Clark AG, and Colls JJ (1991) The influence of open-top chambers on
22	the growth and development of Vicia faba. New Phytologist, 117, 439-447.
23	
24	Schenone G, Fumagalli I, Mignanego L et al. (1995) Effects of ambient ozone on
25	bean (Phaseolus vulgaris L.): Results of an experiment with the antioxidant EDU in

1	the Po plain (Italy) in the 1993 season. In: Lorenzini G, Soldatini GF. (Eds.).
2	Responses of Plants to Air Pollution. Biological and Economic Aspects. Agricoltura
3	Mediterranea, Special Volume, 104-108.
4	
5	Simpson D, Ashmore MR, Emberson L, et al. (2007) A comparison of two different
6	approaches for mapping potential ozone damage to vegetation. A model study.
7	Environmental Pollution, 146, 715-725.
8	
9	Simpson D, Fagerli H, Solberg S, et al. (2003a) In Tarrasón, L. (ed.) Photo-oxidants
10	Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe.
11	EMEP Status Report 1/2003, Part II Unified EMEP Model Performance, The
12	Norwegian Meteorological Institute, Oslo, Norway, 2003, 67-104.
13	
14	Simpson D, Tuovinen, J-P, Emberson L et al. (2003b) Characteristics of an ozone
15	deposition module II: sensitivity analysis. Water, Air and Soil Pollution, 143, 123-
16	137.
17	
18	Sitch S, Cox PM, Collins WJ, et al. (2007) Indirect radiative forcing of climate
19	change through ozone effects on the land-carbon sink. Nature, 448, 791-U4.
20	
21	Skelly JM, Innes JL, Savage JE, et al. (1998) Observation and confirmation of foliar
22	ozone symptoms of native plant species of Switzerland and southern Spain. In: 18th
23	IUFRO Workshop on Air Pollution Stress, Forest Responses to the Pollution Climate
24	of the 21st Century (Eds., pp. 227-234. Kluwer Academic Publ, Edinburgh, Scotland.
25	

1	Solberg S, Bergstrom R, Langner J, et al. (2005) Changes in Nordic surface ozone
2	episodes due to European emission reductions in the 1990s. Atmospheric
3	Environment, 39 , 179-192.
4	
5	Treshow M, Bell JNB (2002) Historical perspectives. In: J.N.B. Bell et al. (Eds.). Air
6	Pollution and Plant Life, Wiley, Chichester (2002), pp. 5-21.
7	
8	Tuovinen J-P, Ashmore M, Emberson L, et al. (2004) Testing and improving the
9	EMEP ozone deposition module. Atmospheric Environment, 38, 2373-2385.
10	
11	Tuovinen JP, Emberson L, Simpson D (2009) Modelling ozone fluxes to forests for
12	risk assessment: status and prospects. Annals of Forest Science, 66, article no. 401
13	
14	Tuovinen JP, Simpson D, Emberson L (2007) Robustness of modelled ozone
15	exposures and doses. Environmental Pollution, 146, 578-586.
16	
17	Tonneijck AEG, Franzaring J, Brouwer G, et al. (2004) Does interspecific
18	competition alter effects of early season ozone exposure on plants from wet
19	grasslands? Results of a three-year experiment in open-top chambers. Environmental
20	Pollution, 131 , 205-213.
21	
22	Van Dingenen R, Frank J, Dentener FJ, et al. (2009) The global impact of ozone on
23	agricultural crop yields under current and future air quality legislation. Atmospheric
24	Environment, 43, 604-618.
25	

1	VanderHeyden D, Skelly J, Innes J, et al. (2001) Ozone exposure thresholds and
2	foliar injury on forest plants in Switzerland. Environmental Pollution, 111, 321-331.
3	
4	Velissariou D (1999) Toxic effects and losses of commercial value of lettuce and
5	other vegetables, due to photochemical air pollution in agricultural areas of Attica
6	Greece p253-256. In: Fuhrer, J., Achermann, B. (Eds.) 1999. Critical levels for ozone
7	level II. Environmental documentation No. 115. Swiss Agency for the Environment,
8	Forests and Landscape, Bern, Switzerland.
9	
10	Velissariou D, Gimeno BS, Badiani M, et al. (1996) Records of O ₃ visible injury in
11	the ECE Mediterranean region. In: Kärenlampi L., Skärby, L. (Eds). Critical levels for
12	ozone in Europe: testing and finalizing the concepts. UNECE workshop report, p 343-
13	350.
14	
15	Vingarzan R (2004) A review of surface ozone background levels and trends.
16	Atmospheric Environment, 38 , 3431-3442.
17	
18	WHO (2008) Health risks of ozone from long-range transboundary air pollution.
19	Report editors: Amann M, Derwent, R, Forsberg B, et al.
20	
21	Wilkinson S and Davies WJ (2009) Ozone suppresses drought- and ABA-induced
22	stomatal closure via an ethylene-dependent mechanism. Plant, Cell and Environment,
23	32 , 949 – 959.

Global Change Biology

1	Annex. The estimation of ozone flux to the ICP clover biomonitors.
2 3	The procedures specified in the Modelling and Mapping Manual (LRTAP
4	Convention, 2004) for calculating PODY (described as AFstY in LRTAP Convention,
5	2004) or indeed AOTX, and implemented in the EMEP chemical transport model
6	(Simpson et al., 2003), have been designed on the assumption that the vegetation in
7	question provides a homogeneous canopy (`big-leaf'), so that vertical O3 gradients
8	above the canopy can be derived with standard turbulence profiles (Tuovinen et al.,
9	2009).
10	
11	The ICP Vegetation biomonitoring programme consists of potted clover plants, sitting
12	above a short vegetation (or bare-soil) surface, surrounded usually by grassland or
13	other low vegetation. Such a situation is theoretically difficult to model, and does not
14	conform to the assumptions of the Modelling and Mapping Manual methods. The O_3
15	concentration impinging on the upper leaves of these clover plants will be affected
16	more by the characteristics of the surrounding vegetation than of the clover plants
17	themselves. To generate a flux-estimate for potted clover (F_{st} (clover)) which accounts
18	for this situation, we calculate
19 20 21 22	$F_{st}(clover) = O_3(grass) . g_{sto}(clover)$ where $g_{sto}(clover)$ is the effective stomatal conductance of clover found by applying
23	the DO ₃ SE model, using the NC-S/NC-R parameterisation derived as described below
24	and presented in Table 5. O_3 (grass) is the O_3 concentration found at the top of a grass
25	canopy, estimated using the grassland parameterisation from the standard EMEP
26	model (Simpson et al., 2003). The effective stomatal conductance represents that
27	fraction of the O_3 flux entering via the stomata, as opposed to that lost through

1	deposition to the external leaf surface. The relation between these terms is discussed
2	in Tuovinen et al., (2009).
3	
4	The $g_{sto}(clover)$ model uses the following formulation based on the stomatal
5	conductance algorithm described in the Modelling and Mapping Manual, see LRTAP
6	Convention (2004) for further details.
7 8 9 10	$g_{sto}(clover) = g_{max} * f_{phen} * f_{light} * max \{f_{min}, (f_{temp} * f_{VPD} * f_{SWP})\}$ The g _{sto} (clover) model is parameterized to represent a hybrid NC-S/NC-R clover plant
11	based on a dataset described in Mills et al. (2003) that includes over 5000 stomatal
12	conductance measurements made at nine sites in Europe from 1998 - 2000 (Austria-
13	Seibersdorf, Belgium-Tervuren, Germany-Essen, Germany-Trier, Italy-Milan, Italy-
14	Rome, Spain-Ebro Delta, Sweden-Gothenburg, UK-Bangor). Data was supplied by G
15	Mills, P Büker, F Hayes, W Werner, B Gimeno, I Fumagalli, B Köllner, F Manes, G Pihl
16	Karlsson, G. Soja and K Vandermeiren.
17 18 19	g_{max} and f_{min} g_{max} is derived from the 90 th percentile and g_{min} from the 10 th percentile values of the
20	entire NC-S and NC-R stomatal conductance dataset. g_{max} was converted from a
21	conductance for water vapour (H_2O) to a conductance for O_3 using a ratio of 0.662
22	based on the diffusivities of H_2O to O_3 in air after Massman (1998). This gave a value
23	of 532 mmol $O_3 \text{ m}^{-2} \text{ s}^{-1}$ for the mean of the two biotypes. The f_{min} is expressed as a
24	fraction of g_{max} . All values are shown in Table A1.
25 26 27	Boundary line derivation for f _{light} , f _{temp} and f _{VPD} For the derivation of f _{light} , f _{temp} and f _{VPD} relationships a boundary line approach was
28	used. This method defined the 90 th percentile values of stomatal conductance within

29 different incremental classes of environmental data which were: 100 μ mol m⁻² s⁻¹ for

1	f_{light} ; 2°C for f_{temp} and 0.1 kPa for f_{VPD} . Figure A1 shows the resulting boundary lines,
2	fitted by eye, for each biotype of clover using the generic functions described in the
3	Mapping Manual (LRTAP Convention, 2004). To derive the NC-S/NC-R
4	parameterization, mean values (i.e. the mean of the co-efficient for f_{light} and means of
5	the threshold values for f_{temp} and f_{VPD}) were calculated from the individual biotypes;
6	all values are presented in Table A1. Note: for f_{VPD} , data classes with fewer than 10
7	data points were used to guide the derivation for high VPDs; these are denoted by
8	grey shading in the figures.
9	
10	The g_{sto} (clover) model assumes that f_{phen} and f_{SWP} are both equal to 1. This maintains

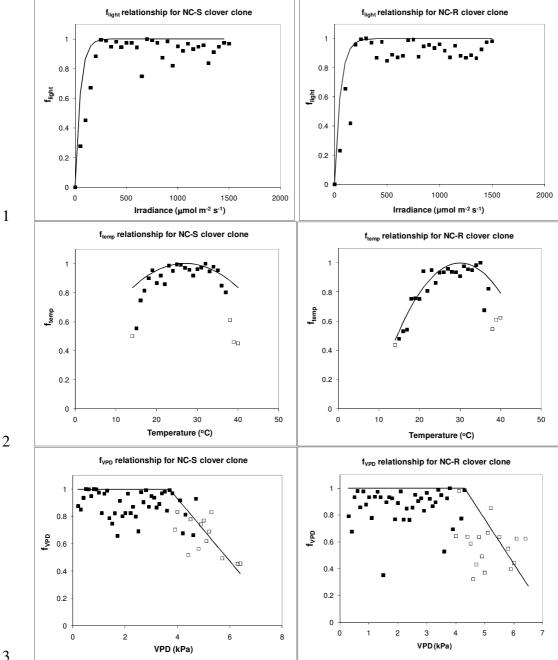
11 consistency with the crop generic flux model (LRTAP Convention, 2004).

12

13 Table A1 Parameterisation for the NC-S and NC-R clover clones and the hybrid NC-

14 S/NC-R clover clone used to parameterise the g_{sto} (clover) model.

15


	NC-S	NC-R	Combined NC-
			S/NC-R values
			used
$g_{max} (mmol O_3 m^{-2} PLA s^{-1})$	534	527	530
g_{\min}	0.12	0.09	0.105
f _{light}	-0.02	-0.018	-0.019
T_{min}	-5	8	1
T _{opt}	27	30	28
T _{max}	59	52	55
VPD _{max}	3.7	4.3	4
VPD _{min}	7.54	7.05	7.30

16

17

18

19

<u>Figure A1.</u> Boundary line derivation of f_{light}, f_{temp} and f_{VPD} for the NC-S and NC-R
clover bio-types. Solid line represents the boundary line; filled squares represent data
points with equal or greater than 10 data points within each environmental class; open
squares represent data points with less than 10 data points within each environmental
class.

11

Figure Legends

Figure 1: Locations of records of visible injury attributed to ozone on crops, (semi)natural vegetation and shrub species for the period 1991 – 2006 (includes published
data and previously unpublished observations).

6

1

2

7 Figure 2: Number of published and unpublished records of visible leaf injury

8 symptoms attributed to ambient ozone for each year (1991 - 1996). Note: the

9 fluctuation in number of records per year may be more strongly associated with

10 recording effort than with severity of ozone effect.

11

12 Figure 3: Locations where ozone injury has been detected in the field and published 13 in scientific papers for the period 1995 – 2004 superimposed on EMEP modelled (a) AOT40 (crop), ppm h (b) and POD3_{gen} (crop), mmol m⁻² using methods described in 14 15 LRTAP Convention (2004), and averaged over the same time period. Data sources: 16 Benton et al. 2000; Benton et al. 1996; Bermejo et al. 2003; Bermejo, et al. 2002; 17 Bungener et al. 1999; Bussotti et al. 2003; Carrasco-Rodriguez et al. 2001; Faoro and 18 Iriti, 2003; Gimeno et al. 1996; Innes et al. 2001; Manning et al. 2002; Manning and 19 Godzik, 2004; Novak et al. 2003; Persson et al. 2003; Pihl Karlsson, et al. 1995; 20 Piikki et al. 2004; Pleijel et al. 1994; Pleijel et al. 1999; Pleijel et al. 1997; Ribas and 21 Penuelas, 2000; Saitanis et al. 2004; Saitanis, 2003; Skelly et al. 1999; VanderHeyden 22 et al. 2001; Velissariou, 1999; Velissariou and Kyriazi, 1996; Velissariou et al. 1996; 23 Velissariou et al. 1992 and Velissariou, 1999. Note: some dots for injury location 24 overlap.

24 25

Figure 4: Cumulative frequency of number of records for (a) AOT40(clover), (b) AOT30_{VPD} (clover) and (c) POD3_{gen} (clover) accumulated from either day 0 of the experiment (\blacksquare) or for the 8 days prior (\square), to the first occurrence of visible ozone injury on NC-S white clover.

30

31 Figure 5: Five-year mean ozone injury score (June to August) on ozone-sensitive 32 white clover (NC-S) at ICP Vegetation sites for the period 2000 – 2004 superimposed 33 on the EMEP five-year mean for (a) AOT40 (crop), ppm h, and (b) AOT40 (clover), ppm h (c) POD3_{gen} (crop), mmol m^{-2} and (d) POD3_{gen} (clover), mmol m^{-2} for the same 34 35 years. The injury score data by country was (n, mean, SE mean): Austria (4, 1.3, 36 0.37); Belgium (3, 1.4, 0.35); Germany (15, 1.7, 0.79); Italy (7, 3.5, 0.4); The 37 Netherlands (1, 0.7, -); Slovenia (5, 2.3, 0.3); Spain (3, 4.07, 0.04); Sweden (5, 1.7, 38 0.3); Switzerland (4, 4.0, 0.3); UK (5, 0.7, 0.3).

39

Figure 6: Mean normalised percentage biomass reduction in ozone-sensitive white
clover (NC-S relative to NC-R) at ICP Vegetation sites in 2000 – 2004 superimposed
on the EMEP five-year mean for (a) AOT40 (crop), ppm h, and (b) AOT40 (clover),
ppm h, (c) POD3_{gen} (crop), mmol m⁻² and (d) POD3_{gen} (clover), mmol m⁻². The
biomass data is described in Table 4.

45

46 Figure 7 Response functions for clover biomass reduction and site- and year-specific

47 grid square values for AOT40 (crop), (a) and (c), and AOT40 (clover), (b) and (d).

48 Figures (a) and (b) show the complete data set and Figures (c) and (d) show only the

- 49 values for effects at AOT40 > 3 ppm h.
- 50

- 1 Figure 8 Response functions for clover biomass reduction and site- and year-specific
- 2 grid square values for POD3_{gen} (crop), (a) and (c), and POD3_{gen} (clover), (b) and (d).
- Figures (a) and (b) show the complete data set and Figures (c) and (d) show only the values for effects at (c) POD3_{gen} (crop) > 15 mmol m⁻² and (d) POD3_{gen} (clover) > 40 3
- 4 5 mmol m^{-2} .
- 6
- 7 Figure 9: Relationship between clover site and year specific values for AOT40
- 8 (clover) and POD3_{gen} (clover) accumulated over 3 months from experimental start
- 9 date. (a) whole dataset, (b) data set separated into regions, with the key: NE
- 10 (Northern Europe); ACE (Atlantic Central Europe); CCE (Continental Central
- Europe) and Med (Mediterranean Europe). Note: linear function not fitted for NE as 11
- 12 there were only 3 data points.
- 13
- 14

- **Table 1**: Agricultural and horticultural crops exhibiting visible leaf ozone injury in the field(ad hoc observations, surveys). Note: Records of injury on clover species (*Trifolium* spp.) 1
- 2 3 where they occur as components of managed pasture are included within this table.
- 4

Region	Country	Species	Reference
Northern Europe	Sweden	Raphanus sativus	Pleijel et al. 1999
		Solanum tuberosum	Persson <i>et al.</i> 2003, Piikki et al. 2004
		Trifolium repens	Karlsson et al. (1995)
		Trifolium subterraneum	Pleijel <i>et al.</i> 1994, Pihl Karlsson <i>et al.</i> 1995, Benton <i>e</i> <i>al.</i> 2000
		Trifolium pratense	Pleijel <i>et al.</i> 1994, Karlsson <i>et al.</i> 1995
		Triticum aestivum	Pleijel et al. 1996
Atlantic Central Europe	Belgium	Phaseolus lunatus, Phaseolus vulgaris, Solanum tuberosum, Trifolium subterraneum, Triticum aestivum, Zea mays	Benton et al. 2000
	Netherlands	Phaseolus vulgaris, Trifolium subterraneum	Benton et al. 2000
	UK	Trifolium repens	Benton et al. 2000
Continental Central Europe	Austria	Phaseolus vulgaris, Trifolium subterraneum	Benton et al. 2000
	France	Glycine max, Phaseolus vulgaris, Trifolium repens	Benton et al. 2000
	Germany	Phaseolus vulgaris	Bender (unpublished))
	-	Trifolium repens	Benton et al. 2000
	Hungary	Phaseolus vulgaris	Benton et al. 2000
	Poland	Phaseolus vulgaris, Trifolium repens	Benton et al. 2000
	Russian Federation	Phaseolus vulgaris, Trifolium subterraneum	Benton et al. 2000
	Switzerland	Vitis vinifera	Innes et al. 2001
		Solanum tuberosum, Trifolium subterraneum	Benton et al. 2000
		Vitis spp.	Skelley et al. 1998
Eastern Mediterranean	Greece	Chicorium endive, Cucurbita pepo, Trifolium alexandrinum	Velissariou <i>et al.</i> 1996
		Allium cepa, Petroselinum crispum, Phaseolus vulgaris, Beta vulgaris, Nicotiana tabacum, Beta vulgaris, Vitis vinifera, Citrullus lanatus, Zea mays	Velissariou <i>et al.</i> 1996, Velissariou 1999

1	1		1
		Solanum tuberosum	Velissariou <i>et al.</i> 1996
		Solutium luberosum	
		Vitis vinifera	Saitanis <i>et al.</i> 2004, 2003, Saitanis (un-published)
	Slovenia	Phaseolus vulgaris, Trifolium repens	Benton et al. 2000
Western Mediterranean	Italy	Glycine max, Lycopersicon esculentum, Phaseolus vulgaris	Gerosa (unpublished))
		Triticum durum, Cucurbita pepo	Schenone (unpublished))
		Phaseolus vulgaris	Schenone <i>et al.</i> 1995, Postiglione and Fagnano 1995, Manes and Vitale (unpublished)
		Trifolium repens, Phaseolus vulgaris	Benton et al. 2000
		Allium cepa, Glycine max, Triticum aestivum, Triticum durum	(Quaroni <i>et al.</i> 2003), Faoro and Iriti (unpublished)
		Beta vulgaris, Vitis vinifera	Bussotti et al. 2003a
		Prunus persica	Paolacci et al. 1995
		Trifolium subterraneum, Phaseolus vulgaris	Postiglione and Fagnano 1995
	Spain	Citrullus lanatus	Benton et al. 2000
		Phaseolus vulgaris	Gimeno and Bermejo (unpublished)), Gimeno <i>et al.</i> 1996, Ribas and Penuelas 2000
		Lycopersicon esculentum	Bermejo et al. 2002, Gimeno et al 1995
		Avena sativa	Carrasco-Rodriguez and del Valle-Tascon, 2001
		Citrus clementina	Iglesias et al. 2006
		Arachis hypogaea, Glycine max, Nicotiana tabacum, Vitis vinifera	Gimeno et al. 1995
		Solanum tuberosum	Calvo and Sanz (unpublished))
		Citrullus lanatus	Gimeno et al. 1992

Table 2: Species of (semi-)natural vegetation (grasses and forbs) exhibiting visible leaf ozone injury in the field (ad hoc observations, surveys). Note: Records of injury on clover species (*Trifolium* spp.) where they occur as components of meadows and unmanaged grasslands are included within this table.

Region	Country	Species	Reference
Northern Europe	Sweden	Trifolium subterraneum	Benton et al. 200)
Atlantic Central	Belgium	Malva sylvestris	Benton et al. 1996
Europe		Trifolium subterraneum	Benton et al. 2000
	Netherlands	Trifolium subterraneum	Benton et al. 2000
	United Kingdom	Centaurea nigra, Eupatorium cannabinum	Hayes (unpublished)
		Trifolium repens, Trifolium subterraneum	Benton, et al. 2000
Continental	Austria	Trifolium subterraneum	Benton, et al. 2000
Central Europe	France	Rubus idaeus	Schelfaut et al (unpublished)
		Trifolium repens	Benton, et al. 2000
		Epilobium angustifolium, Calamagrostis villosa, Cephalaria brevipalea, Dryas octopetala, Fragaria viridis, Geum montanum, Rubus articus, Rubís saxatilis, Centaurea scabiosa	Bussotti <i>et al.</i> 2003a
		Rubus idaeus	Bussotti <i>et al.</i> 2003), Gillot (unpublished)
	Germany	Achillea millefolium	Bender (unpublished)
		Mentha aquatica	Biostress 2002
	Poland	Trifolium repens	Benton, et al. 2000
		Alchemilla spp., Angelica sylvestris, Astrantia major, Centaurea jacea, Centaurea mollis, Chaerophyllum aromaticum, Geranium palustre, Impatiens parviflora, Lapsana communis, Thymus alpestris	Manning <i>et al.</i> 2002, Manning and Godzik 2004
	Russian Federation	Trifolium subterraneum	Benton, et al. 2000
	Switzerland	Centaurea jacea, Knautia arvensis, Leucanthemum vulgare, Plantago lanceolata, Rumex obtusifolius, Salvia pratensis	Bungener et al. 1999

	Epilobium hirsutum,	Innes et al. 2001
	Oenothera biennis, Rubus	
	fruticosus, Tragopogon	
	pratensis, Artemisia	
	vulgaris, Plantago major,	
	Impatiens parviflora,	
	Calystegia sepium,	
	Epilobium angustifolium,	
	Geranium sylvaticum,	
	Parthenocissus	
	quinquifolia, Rumex	
	obtusifolius Malua anticia	Denten et al. 1006
	Malva sylvestris, Trifolium subtormanoum	Benton et al. 1996
	Trifolium subterraneum	Shallow et al. 1009
	Alchemilla spp., Artemisa	Skelley et al. 1998
	vulgaris, Calamentha	
	grandifolia, Calystegia	
	spp. Centaurea	
	paniculata, Chenopodium	
	spp., Convovulus	
	arvensis, Epilobium	
	angustifolium, Epilobium	
	hirsutum, Impatiens	
	parviflora, Lamium	
	galeobdolon, Lapsana	
	communis, Malva spp.	
	Oenothera spp.,	
	Parthenocissus	
	quinquifolia, Plantago	
	major, Polygonum spp.,	
	Reynoutria japonica,	
	Rubus fruticosus,	
	Rudbeckia lacinata,	
	Rumex obtusifolius,	
	Solidago canadensis,	
	Stachys officinalis,	
	Succisa pratensis	
	Rumex obtusifolius	VanderHeyden et al. 2001
Ukrai	ne Betonica officinalis,	Manning et al. 2002, Manning
	Centaurea nigra,	and Godzik 2004
	Centaurea scabiosa,	
	Gentiana asclepiada,	
	Vincetoxium officianalis	
Eastern Greec		Velissariou 1999
Mediterranean Slove		Benton et al. 2000
Western Italy	Astrantia major,	Bussotti <i>et al.</i> 2006
Mediterranean	Cyclamen spp.,	Dussotti <i>ei ui</i> . 2000
monunali	Euphorbia dulcis,	
	<i>Gentiana asclepiadea,</i>	
	Genitana asciepitatea, Globularia nudicaulis,	
	Pastinaca sativa,	
	Polygonatum spp.,	
	Stachys spp., Centaurea	
	spp., Helleborus níger,	
	Rubia peregrina	<u> </u>
	Astrantia major,	ICP Forests 2003
	Astrantia major, Centaurea nigra,	ICP Forests 2003

	Astrantia major, Centaurea nigra, Geranium nodosum, Mycelis muralis, Veronica urticifolia, Lamium spp. Rubus ulmifolius Centaurea jacea Eupatorium cannabinum, Origanum vulgare	Bussotti <i>et al.</i> 2003b Bungener <i>et al.</i> 1999 Bussotti <i>et al.</i> 2003a.)
Spain	Briza maxima, Bromas hordaceus, Cynosurus echinatus, Trifolium striatum	Sanz and Bermejo (unpublished)
	Aegilops geniculata, Aegilops triuncialis, Avena barbata, Avena sterilis, Biserrula pelecinus, Briza maxima, Lolium rigidum, Trifolium cherleri, Trifolium glomeratum, Trifolium subterraneum	Bermejo <i>et al.</i> 2003
	Agrimonia eupatoria, Abutilon theophrasti, Anthyllis cytisoides, Calystegia sepium, Capanula spp., Chenopodium album, Colutea arborescens, Cytisus patens, Epilobium angustifolium, Epilobium collium, Inula viscosa, Ipomea sagitatta, Lagersteroemia indica, Oenothera rosea, Plantago lanceolata,	Skelley et al. 1998
	Rubina peregrina, Rubus ulmifolius, Rumex pulcher, Verbascum sinuatum, Vinca difformis	

- 1 2 3 4

Table 3: Species of shrubs exhibiting visible leaf ozone injury in the field (ad hoc
observations, surveys).

Region	Country	Species	Reference
Continental Central Europe	Czech Republic	Corylus avellana	Manning <i>et al.</i> 2002, Manning and Godzik 2004
	France	Cornus sanguinea, Clematis vitalba	Remy (unpublished)
		Ampelopsis tricuspidata, Cornus sanguinea, Symphoricarpos alba	Garrec (unpublished)
		Cornus sanguinea	Rainouard (unpublished)
		Viburnum lantana, Berberis vulgaris, Cornus sanguinea, Prunus brigantina	Remy (unpublished)
	Poland	Cornus sanguinea	Manning <i>et al.</i> 2002, Manning and Godzik 2004
	Switzerland	Clematis alpina, Ribes rubrum, Robinia pseudoacacia, Rosa canina, Rubís fruticosus	Innes <i>et al.</i> 2001
		Alnus viridis, Berberis spp., Clematis spp., Corylopsis pauciflora, Euonymous europeaus, Forsythia spp., Ligustrum ovalifolium, Lilac spp., Lonicera caprifolium, Prunus spinosa, Ribes alpinum, Rosa canina, Salix pentrandra, Salix purpurea, Salix viminalis, Sambucus racemosa, Spirea spp., Viburnum lantana, Viburnum opulus, Viburnum plicatum	Skelley <i>et al.</i> 1999
		Cornus alba, Ribes alpinum, Vibernum opulus	Novak <i>et al.</i> 2003
		Frangula agnus, Rhamnus catharticus, Salix viminalis, Sambucus racemosa, Viburnum lantana	VanderHeyden <i>et al</i> . 2001
Western Mediterranean	Italy	Clematis vitalba, Vaccinium myrtillus, Virburnum lantana, Robinia pseudoacacia	Bussotti et al. 2005
		Clematis vitalba, Lonicera caprifolium, Rosa canina, Rubus idaeus, Sambucus racemosa	Bussotti 2003a

	Robinia pseudoacacia	Innes et al. 2001
	Euonymus europeaus, Syringa vulgaris	Bussotti et al. 2003a,
Spain	Arbutus unedo, Cistus salvifolius, Lagerstroemia indica, Lonicera etrusca, Lonicera implexa, Myrtus communis, Pathenocissus quinquefolia, Pistacia lentiscus, Pistacia terebinthus, Prunus spinosa, Ricinus communis, Rosa canina, Sambucus nigrum, Viburnum tinus	Skelley et al. 1998

Table 4 Description of the ICP Vegetation biomonitoring experiment database (1996 - 2004)on ozone effects on the biomass of NC-white clover. 1 2 3

Country	Sites	No of	AOT40 (clover), ppm h		POD3gen (clover), mmol m ⁻²		Biomass Reduction (NC-S dry weight/NC-R dry weight), %		
		data							
		points							
			Mean	SE	Mean	SE	Mean	SE	Range
				Mean		Mean		Mean	
Austria	Seibersdorf	6	3.38	0.21	54.9	0.5	12.7	3.2	1.8 – 25.2
Belgium	Tervuren	5	1.67	0.34	39.7	2.6	4.9	3.0	-4.1 – 12.9
Germany	Braunschweig, Cologne, Deuselbach, Essen, Giessen, Trier	17	2.84	0.21	49.5	0.9	9.1	1.6	-0.9 – 20.8
Greece	Kalamata, Thessalonika	2	2.13	1.8	46.5	10.1	30.0	13.0	17 - 43
Ireland	Carlow	1	0.43	-	32.4	-	-1.6	-	-
Italy	Isola Serafini, La Casella, Milan, Naples, Pisa, Rome	10	6.53	0.48	66.0	1.3	33.3	3.32	19.8 – 49.7
The Netherlands	Waageningen	1	1.23	-	39	-	7.7	-	-
Slovenia	Iskbra, Llubjiana, Rakican	5	2.93	0.44	51.6	1.9	3.5	4.0	-7.8 – 10.5
Spain	Ebro delta, Navarra, Valencia	4	1.73	0.68	43.6	5.1	11.1	5.7	-2.7 – 24.8
UK	Bangor	3	0.11	0.03	21.9	0.7	2.8	0.7	1.5 – 3.5

1 **Table 5 :** Parameterisation for the generic crop and the NC-S/NC-R clover flux models. For

2 the clover flux model (see Annex for further details), the start of the growing season was

defined as the 15^{th} June (the mean start date for the experiments across all sites), each clover

experiment lasted for 84 days with the end of the experiment defining the end of the growing
 season. Full details of model formulations are provided in the Mapping Manual (LRTAP,

5 season 6 2004).

7

Functions and constants	Generic crop	NC-S/NC-R Clover
g _{max}	450 mmol O ₃ m ⁻² PLA s ⁻¹	530 mmol O ₃ m ⁻² PLA s ⁻¹
f _{min}	0.01	0.11
f _{phen}	1	1
f _{light}	$Light_{a} = 0.0105$	$Light_a = 0.019$
\mathbf{f}_{temp}	$T_{min} = 12 \ ^{\circ}C$	$T_{min} = 1.5 \ ^{\circ}C$
	$T_{opt} = 26 \ ^{\circ}C$	$T_{opt} = 28.5 \ ^{\circ}C$
	$T_{max} = 40 \ ^{\circ}C$	$T_{max}^{1} = 50 \ ^{\circ}C$
\mathbf{f}_{vpd}	$VPD_{max} = 1.2 \text{ kPa}$	$VPD_{max} = 4 kPa$
	$VPD_{min} = 3.2 \text{ kPa}$	$VPD_{min} = 7.3 \text{ kPa}$
Σ VPD routine ²	$\Sigma VPD_{crit} = 8 kPa$	$\Sigma VPD_{crit}^2 = 1000 \text{ kPa}$
f _{SWP}	1	1
f _{O3}	1	1
Y	3 nmol m ⁻² PLA s ⁻¹	$3 \text{ nmol m}^{-2} \text{ PLA s}^{-1}$
SAI ⁴	$5 \text{ m}^2 \text{ PLA m}^{-2}$	_4
Green LAI ⁴	$3.5 \text{ m}^2 \text{ PLA m}^{-2}$	$5 \text{ m}^2 \text{ PLA m}^{-2 4}$
h	1 m	0.3 m ⁴
L	0.02 m	0.03 m

8

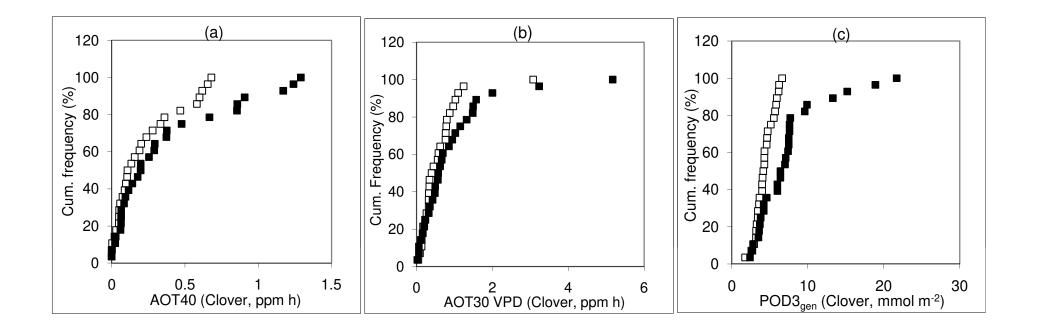
9 $\frac{1}{1}$ estimate from curves

 10^{-2} This routine prevents stomatal re-opening within the model in the late afternoon under

11 declining VPD conditions (see LRTAP Convention, 2004, for further details). We have

12 assumed that this function is not operating in NC-S/NC-R clover as included in the clover

13 model already in DO_3SE .


14 ³ assumed to be same as for generic crop

⁴ Green LAI (Leaf Area Index), SAI (surface area index = green leaf area index + senescent

16 leaf area index) and h are used for the calculation of O₃ concentrations. Here, grassland

17 parameters from Simpson & Emberson (2006) have been used for clover (except grassland

18 height, h, set to 30 cm for this study), for further details see Annex.

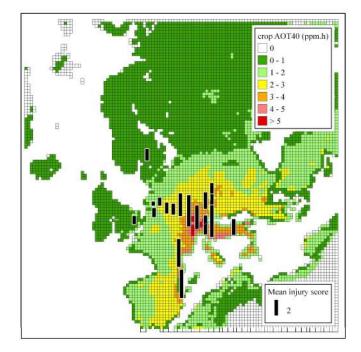


Figure 5a (see ms for legend) 297x209mm (400 x 400 DPI)

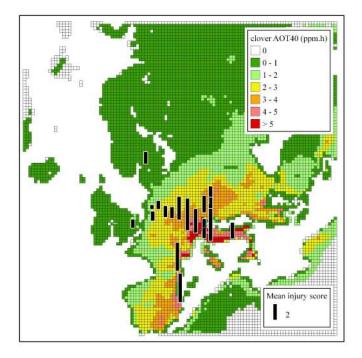


Figure 5b (see ms for legend) 297x209mm (400 x 400 DPI)

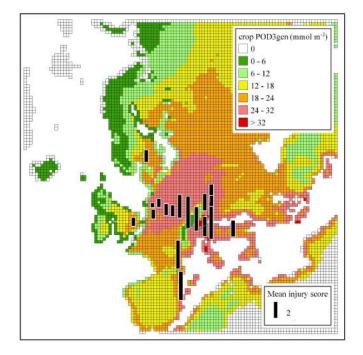


Figure 5c (see ms for legend) 296x210mm (400 x 400 DPI)

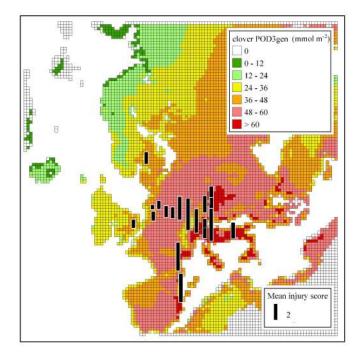


Figure 5d (see ms for legend) 296x210mm (400 x 400 DPI)

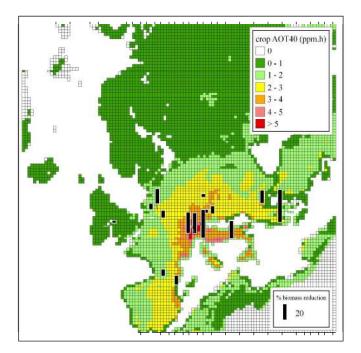


Figure 6a (see ms for legend) 297x209mm (400 x 400 DPI)

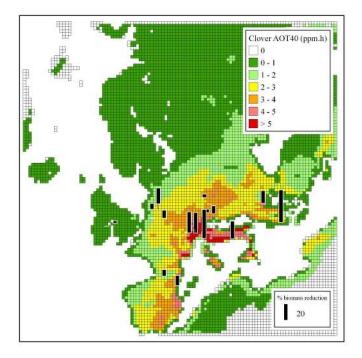


Figure 6b (see ms for legend) 297x209mm (400 x 400 DPI)

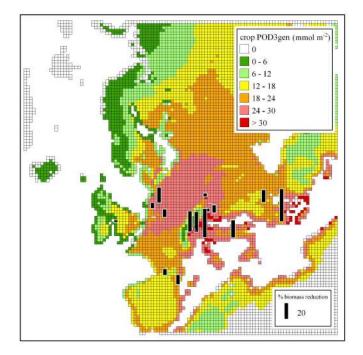


Figure 6c (see ms for legend) 296x210mm (400 x 400 DPI)

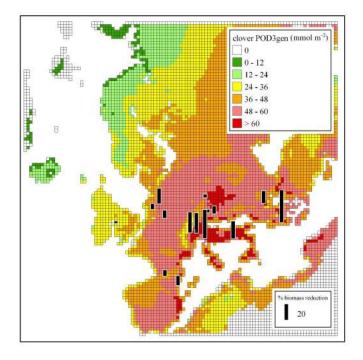
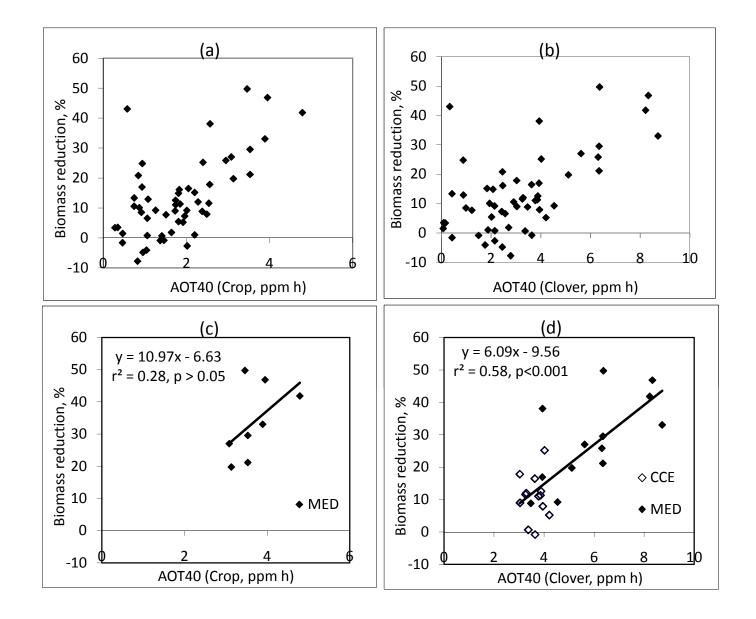
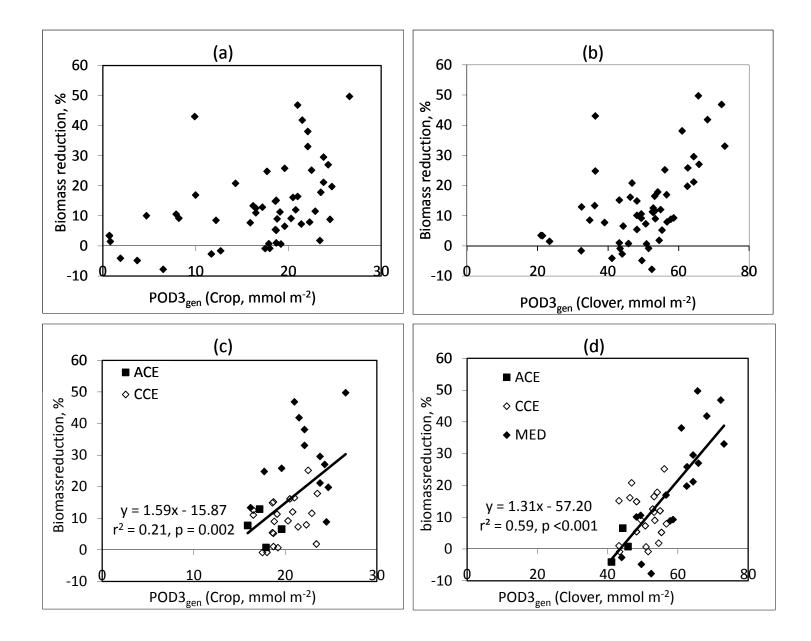
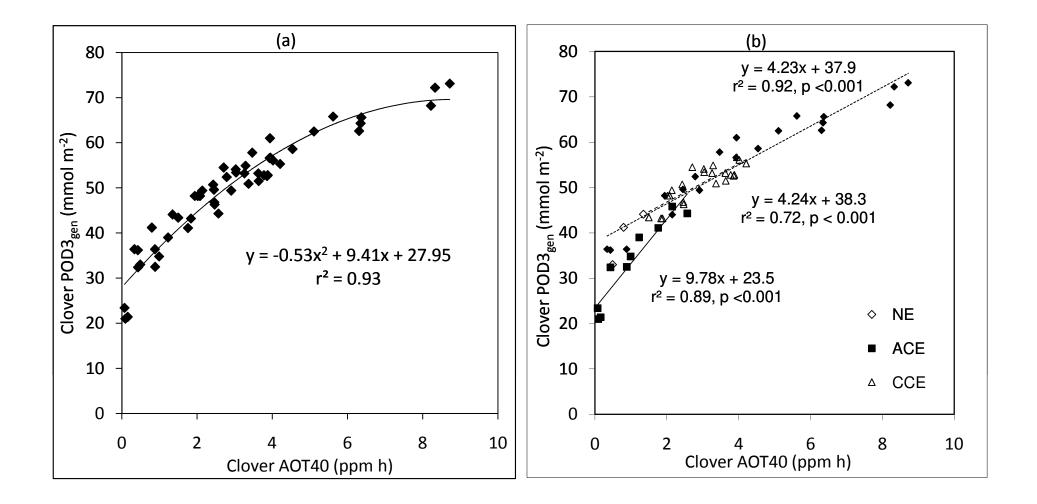





Figure 6d (see ms for legend) 296x210mm (400 x 400 DPI)

