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Researchers and practitioners have found it useful for cost estimation and productivity 
evaluation purposes to think of software development as an economic production process, 
whereby inputs, most notably the effort of systems development professionals, are converted 
into outputs (systems deliverables), often measured as the size of the delivered system. One 
central issue in developing such models is how to describe the production relationship between 
the inputs and outputs. In particular, there has been much discussion about the existence of 
either increasing or decreasing returns to scale. The presence or absence of scale economies at 
a given size are important to commercial practice in that they influence productivity. A project 
manager can use this knowledge to scale future projects so as to maximiT~ the productivity of 
software development effort. The question of whether the software development production 
process should be modelled with a non-linear model is the subject of some recent controversy. 
This paper examines the issue of non-linearities through the analysis of 11 datasets using, in 
addition to standard parametric tests, new statistical tests with the non-parametric Data 
Envelopment Analysis (DEA) methodology. Results of this analysis support the hypothesis of 
significant non-linearities, and the existence of both economies and diseconomies of scale in 
software development. 
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Researchers and practitioners have found it useful to think 
of software development as an economic production 
process, whereby inputs, most notably the effort of systems 
development professionals, are converted into outputs 
(systems deliverables), often measured as the size of the 
delivered system with a metric such as Source Lines of 
Code (SLOC) 1-4 or Function Points (FPs) 5-9. Most 
commonly, such models are used either as aids in software 
cost estimation or in project productivity evaluations. 

One central issue in developing such models is how to 
describe the production relationship between the inputs and 
outputs. In particular, there has been much discussion 
about the existence of either increasing or decreasing 
returns to scale. This discussion was most recently 
summarized in Banker and Kemerer, a portion of which is 
provided here j°. 

A production process exhibits local increasing returns to 
scale if, at a given volume level, the marginal returns of an 
additional unit of input exceed the average returns. Local 
economies of scale are thus present when average product- 

ivity is increasing, and scale diseconomies prevail when 
average productivity is decreasing*. The presence or 
absence of scale economies at a given size are important to 
commercial practice in that they influence productivity, and 
therefore a project manager can use this knowledge to scale 
future projects accordingly so as to maximize the product- 
ivity of software development effort. For example, if a 
software project's size was in the region of decreasing 
returns to scale, a manager could choose to divide the 
project into several smaller projects in order to increase the 
productivity. Conversely, if a software project size was in 
the region of increasing returns to scale, a manager could 
choose to combine several similar projects into one. A 

* In production economics, economies of scale are defined at specific 
volume levels in a production process, and are thus best described as local. 
It is therefore inappropriate to limit the characterization of a production 
process to only global economies (or diseconomies) of  scale. In dealing 
with single input-single output production correspondences, the terms 
'increasing returns to scale' and 'scale economies' may be used inter- 
changeably. 
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Table 1. Summary of sources of economies/diseconomies of scale 

Sources of economies/diseconomies of scale 1° 

Economies of scale 
Specialization of labour 
Learning curves 
Software engineering tools 
Fixed project overhead 

Diseconomies of scale 
Communication path increases 
Complex interface requirements 
Non-linear documentation requirements 
Project slack 

summary of the arguments for either increasing or 
decreasing returns to scale in software development is listed 
in Table 1. 

Prior empirical work had indicated increasing returns for 
some data sets and decreasing returns for others. In the 
Banker and Kemerer ~° paper it was shown that these two 
seemingly contradictory hypotheses could be accommo- 
dated by viewing the software production process with 
models that accommodate both increasing and decreasing 
returns to scale. This paper presented both a parametric and 
a non-parametric model, and used these models to analyse 
eight publicly available datasets, where it was shown that 
both increasing and decreasing returns to scale were 
present in five of the eight datasets. 

Since that paper, researchers and practitioners have 
continued to show interest in this topic H-roT. For 
researchers, the presence of both economies and 
diseconomies of scale requires the estimation of a more 
general model than the simple model employed in prior 
research. For practitioners, this approach highlights the 
need to consider project scale as a productivity factor in 
project planning. 

Most recently, Kitchenham has revisited the question of 
scale economies Is. In analysing six of the original eight 
datasets from Banker and Kemerer ~°, plus four additional 
datasets, she concludes that ' . . .  if models are based on 
data from a single environment, a linear m o d e l . . ,  is likely 
to be sufficient' (p 212). This is a departure, not only from 
the conclusions reached in Banker and Kemerer, but also 
from previous work that estimated either economies or 
diseconomies of scale, such as the COCOMO model of 
Boehm t . 

The current paper examines the question of non- 
linearities in modelling software development as an econ- 
omic production process. All of the eight original datasets 
are analysed, along with three of the four additional 
datasets for a total of eleven*. In addition to the parametric 
regression-based tests, the data are analysed using new 
semi-parametric statistical tests with the non-parametric 
data envelopment analysis methodology. Results of this 
most recent analysis that are reported here continue to 
support the hypothesis of significant non-linearities, and 
hence economies and diseconomies of scale in software 
development. 

The remainder of this paper is organized as follows. The 

* Provision of the additional data and other continued cooperation by B. 
Kitchenham are gratefully acknowledged. 

Table 2. Dataset summary 

Author Date published/available n 

Belady-Lehman 1979 33 
Boehm (COCOMO) 1981 63 
Yourdon 1981 17 
Bailey-Basili 1981 19 
Wingfleld 1982 15 
Albrecht-Gaffney 1983 24 
Behrens 1983 22 
Kitehenham-Taylor 1985 33 
Kemerer 1987 17 
MERMAID-1 1992 81 
MERMAID-2 1992 30 

next section presents the data used in the analysis and the 
third section presents the models and their results. 
Concluding remarks are provided in the final section. 

Data 

The data used in this analysis come from published or 
otherwise publicly available sources. (Many of the datasets 
are available as appendices to the Conte, Dunsmore, and 
Shen textJ9.) Table 2 summarizes the datasets used. 

The above datasets include all eight datasets used 
originally by Banker and Kemerer, and in addition include 
the Kitchenham and Taylor dataset, plus two datasets from 
the MERMAID project, a joint collaborative project funded 
in part by the European Commission's ESPRIT program, 
whose aims included improving the process of software 
cost estimation l°'1s'2°. It includes all of  the datasets used by 
Kitchenham Is except MERMAID-3, which was not made 
available for this research. In addition, it includes two 
datasets, Behrens (1983) and Albrecht and Gaffney 5, 
which were included in the original work, but not in 
Kitchenham ~s. 

Mode l s  an d  resul ts  

Loglinear model 

The relationship of interest is that between the input, effort 
and the output, size, typically represented by the 
production function y = fix), where y = effort and x = size. 
A simple form of the model relating effort and project size 
(typically operationalized as SLOC or FPs) commonly used 
in the prior literature is y =  ax b, estimated in its 
logarithmic form as~'2~: 

In(y) = 13 o +/311n(x ) (1) 

where y = effort, x = size, B0 corresponds to ln(a), and 13t 
to b. 

In this approach, an estimated exponent value b less than 
1 indicates economies of scale, while an exponent greater 
than 1 indicates that diseconomies of scale prevail. One 
problem with this simple model is that it does not allow for 
the possibility of increasing returns for some project and 
decreasing returns for others, and therefore, the general 
hypothesis of both increasing and decreasing returns to 
scale prevailing in the same dataset cannot be adequately 
tested with this model. 

276 Information and Software Technology 1994 Volume 36 Number 5 



Evidence on economies of scale in software development: R D Banker et al. 

Kitchenham 's estimated the loglinear model in Equation 
(1) above and found that the coefficient estimate of/31 was 
not significantly different from one at the oL = 0.05 level for 
her 10 datasets. If 131 = 1, then Equation (1) can be 
rewritten as y = ax, where a = exp(/30). Based on this 
finding, she argued that the evidence supports a linear 
relationship between project size and effort. She concluded 
that software development production functions are ade- 
quately represented by a simple proportionate relationship 
y = ax between size and effort. 

However, there is a significant problem with this 
analysis. Assume for the moment that the true production 
function is not linear in logarithms as in Equation (1). For 
example, assume it is a quadratic function in logarithms. If 
the model is (mis)specified by omitting a relevant variable 
(lnx) 2, the Ordinary I.e, ast Squares (OLS) estimate of the 
coefficient of the included variables (in this case, 130 may 
be biased, and the standard error of the coefficient may be 
biased upward, causing inferences concerning these 
parameters to be inaccurate 22. In other words, with a mis- 
specified model that omits a correlated explanatory variable, 
the researcher is likely to misinterpret the evidence of 
non-linearity. 

Therefore, t-tests of the 131 coefficient of the loglinear 
model are not appropriate t e s t s  of the economies/ 
diseconomies of scale hypothesis. A more suitable test 
would be to estimate functional forms of the production 
model that allow for the presence of both economies and 
diseconomies of scale, and perform the appropriate tests to 
see whether the null hypothesis can be rejected in that case. 

A natural generalization of the loglinear model in 
Equation (1) is a logquadratic model obtained by adding 
another explanatory variable (lnx) 2 as in the following: 

In(y) =/30 + 131 In(x) +/32 (In(x)) 2 (2) 

Conceptually, this model should allow us to test whether 
the dataset reflects both increasing and decreasing returns 

to scale for different data ranges. Empirically, the esti- 
mation of Equation (2) is precluded by severe collinearity 
problems '°. The Belsley-Kuh-Welsch collinearity diag- 
nostics are employed to check for possible coUinearity 
problems 23. The condition number exceeds Belsley-Kuh- 
Welsch's suggested limit of 20 for all 11 datasets, and 
ranges as high as 433, with a median of 128. The associated 
variance proportions also exceed 0.97 for both In(x) and 
(In(x)) 2 in all 11 datasets, much greater than the suggested 
limit of 0.4. Because of the severity of the collinearity 
problem, standard error estimates are biased upward and 
the rejection of the null hypothesis becomes less likely 22. 
Therefore, the alternative of a quadratic form (rather than 
a logquadratic) is considered below. 

Quadratic model 

An alternative parametric model that allows for both 
economies and diseconomies of scale is a quadratic model: 

Y = 7o + 71x + 3'zx 2 (3) 

If the proportionate linear relationship y = ax is an 
adequate representation of the production function then the 
result of estimating Equation (3) must be that 3"0 = 0 and 
3'2 = 0. The results of estimating this model for the 11 
datasets are shown in Table 3. 

While the assumption of 3'0 = 0 cannot be rejected, as 
can be seen in Table 3, six of the 11 estimated coefficients 
3"z for the quadratic term are significantly different from 
zero. The Kitchenham assumption of linearity of the soft- 
ware development production function is thus rejected in 
six of the 11 cases with the quadratic model. Note that this 
is quite a different inference from that available by 
performing only a test of the loglinear model. 

A variety of specification checks were performed for the 
quadratic model in Equation (3). Examination of the 
Belsley-Kuh-Welsch collinearity diagnostics indicated con- 
dition numbers ranging between 5.3 and 16.2 for the 11 

Table 3. OLS Estimates of quadratic model coefficients 

Dalaset  N "~o "]/i 72 R2 
(t-slat) (t-slat) (t-slat) (%) 

Behrens 22 321.667 3.786 0.028 58.41 
(0.437) (0.385) (1.056) 

Bailey-Basili 19 - 10.802 3.233 -0 .019  88.58 
( - 1.359) (6.068 a) ( -  3.07(P) 

Yourdon 17 1.505 1.629 -0 .005  42.84 
(0.072) (1.739) ( -0 .808)  

COCOMO 63 -207 .899  16.949 -0 .009  57.57 
( -  1.093) (6.279 ~) ( - 3 . 122  ~) 

Albrecht-Gaffney 24 8.477 - 0.013 3.43 E-05 94.95 
(1.869) ( - 1.093 ) (5.593 ~) 

Belady-Lehman 33 - 309.055 17.571 - 0.015 46.13 
( -0 .836)  (3.167 ~) ( - 1.757) 

Wingfield 15 510.165 0.082 0.023 71.44 
(0.623) (0.010) (1.307) 

Kemerer 17 26267.622 - 58.620 0.048 81.77 
(1.945) ( - 2 . 3 4 9  ~) (4.605 a) 

MERMAID- 1 81 521.646 13.973 0.004 54.81 
(0.539) (2.717 a) (0.745) 

MERMAID-2 30 -415 .514  44.963 -0 .025  39.77 
( -0 .173)  (3.764 a) (-2.740")  

Kitchenham-Taylor 33 -33 .336  0.012 -2 .71E-07 35.10 
( -  1.484) (3.696 a) ( -3 .073 ' )  

t-statistics in parentheses: ~ indicates significant at 5% 
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datasets, well below the recommended cutoff of 20; thus 
collinearity appears not to be a problem for this model for 
the 11 datasets. The residuals were examined in order to 
determine whether they were distributed normally. The 
Shapiro-Wilk test for normality of residuals was rejected at 
the 10% level (used in the interests of being conservative) 
for seven of the 11 datasets 24. The residuals were also 
examined for violations of the homoscedasticity assumption 
and other mis-specification of the estimation model, including 
violations of the normality assumption. White's test rejected 
this assumption for nine of the 11 datasets at the 10% signifi- 
cance level. Therefore to address this estimation problem 
White's heteroscedasticity-consistent estimator of the co- 
variance matrix was also used to calculate the t-statistics. 
With the White-adjusted estimator, the null hypothesis of 
3'2 = 0 is rejected at the 5 % level in six of the 11 cases as 
before, indicating the presence of non-linearity in the data. 

Given that the datasets used are secondary data from 11 
different sources, the 11 tests of the null hypothesis 
performed above can be regarded as independent tests of a 
common hypothesis. Therefore, the evidence about the 
significance levels for the null hypothesis 3"2 = 0 can be 
aggregated for the 11 datasets using Fischer's exact chi- 
square test 25.. With both the OLS estimates in Table 3, 
and the corresponding White-adjusted estimates, the 
cumulative evidence rejects the null hypothesis at the 0.001 
significance level. It is concluded, therefore, that the data 
reject the use of a simple linear form to model the relation 
between project size and effort. 

One concern with such results might be the effect of a 
small number of influential data (points) (outliers). In 
addition to the sensitivity analysis described earlier, data 

were also screened for robustness to deletion of influential 
observations. Outliers were deleted if they met all four of 
the Belsley-Kuh-Welsch 23. criteria. Results after deleting 
the outliers are reported in Table 4. The linearity 
assumption is rejected in seven of the 11 datasets at the 5 % 
level, eight of the 11 datasets at the 10% level, including 
all of the cases identified above. Therefore, the deletion of 
outliers improves, rather than reduces, the fit in most cases. 
The R 2 increases from 46.13 % to 80.54 % for the Belady- 
Lehman dataset when two outliers are deleted, and the 
absolute t-statistic for the 72 = 0 test increases from 1.757 
to 5.098 (significant at the 1% level). 

All the above tests were also conducted for six subsets of 
data obtained by partitioning the two largest datasets in this 
study. The COCOMO and the MERMAID-1 are the only 
two datasets out of the 11 that have more than 35 
observations and afford statistical power for smaller 
subsamples. The three COCOMO modes, Organic, Semi- 
detached, and Embedded, proposed by Boehm to 
distinguish among three contexts, also serve to divide the 
dataset more or less on the basis of the size of the project. 
As a result, productivity differences between the modes are 
confounded with productivity differences for different 
project sizes due to scale economies. Only the Embedded 
subsample rejects the null hypothesis of 3'2 = 0, but when 
the outliers in the dataset are eliminated the null hypothesis 
is rejected for the Organic and Semi-detached subsamples. 
All three subsamples (El,  E2, E3) for the MERMAID-1 
dataset fail to reject the null hypothesis, consistent with the 
results for the full MERMAID-1 sample. 

Results using the White adjustment for heteroscedasticity 
and after the removal of outliers are similar, with the linearity 
assumption being rejected in seven of 11 cases at the 5 % 

* Only the t-statistics (p-values) are aggregated for Fischer's exact chi- 
square test. Each model is estimated separately by dataset (i.e., the data 
are not aggregated across data sites to esimate the production 
correspondence). 

* These are implemented as the INFLUENCE option in the SAS statistical 
package. See SAS manual, Chapter 31, pp 676--678, or Belsey, D A, 
Kuh, E and Welsch, R E, Regression diagnostics, John Wiley (1980). 

Table 4. Summary of quadratic models with outliers removed 

Data set N 70 7~ 72 R2 
(%) 

Behrens 21 1094.218 - 13.152 0.093 66.83 
(1.530) ( - 1.206) (2.674') 

Bailey-Basili 19 - 10.802 3.233 -0 .019  88.58 
( -  1.359) (6.068") ( -3 .070)  

Yourdon 17 1.505 1.629 - 0.005 42.84 
(0.072) (1.739) ( -0 .808)  

COCOMO 58 29.980 6.888 0.0038 62.96 
(0.475) (2.962") (0.384) 

Albrecht-Gaffney 23 7.844 - 0 . 0 1 0  3.08E-05 94.00 
(1.939) ( -0 .922)  (5.462 a) 

Belady -Lehman 31 - 39.799 9.755 - 0.009 80.54 
( - 0.556) (7.844 a) ( - 5.098 a) 

Wingfield 15 510.165 0.082 0.023 71.44 
(0.623) (0.010) (1.307) 

Kemerer 17 26267.622 -58 .620  0.048 81.77 
(1.945) ( - 2 . 3 4 9  ~) (4.605") 

MERMAID-I 80 - 1125.089 27.386 -0 .016  44.57 
( - 0.926) (3.428") ( - 1.501 ) 

MERMAID-2 29 3502.969 - 6.692 0.049 58.73 
(1.511) ( -0 .372)  (2.176 a) 

Kitchenham-Taylor 33 -33 .336  0.012 -2 .71E-07 35.10 
( -  1.484) (3.696") (-3.073") 

t-statistics in parentheses: " indicates significant at 5% 
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level and one more at the 10% level. Therefore, the conclu- 
sion from this sensitivity analysis is that the main results are 
strengthened, not weakened, by the exclusion of data outliers. 

Non-parametric DEA model 

The above parametric tests are conditioned on the maintained 
assumptions being true. Its estimates and statistical tests thus 
depend critically on the validity of specific assumptions about 
the structure of the model and the probability distribution 
function for the error term. As such, in the case of the 
minority of datasets where the null hypothesis of linearity 
cannot be rejected, it does not necessarily mean that the true 
model is linear. It only means that linearity does not seem 
to be an unreasonable approximation to the true unknown 
model given the maintained assumptions about the model 
specification. Similarly, rejection of the null hypothesis for 
the majority of the datasets means that linearity is not a 
reasonable approximation given the maintained assumptions 
about the model specification. 

Non-parametric methods are employed in statistics to 
lessen the problem with the unknown structural assumptions 
maintained when using a parametric specification. Therefore, 
some recent developments in Data Envelopment Analysis 
(DEA) methodology are employed here to examine the 
linearity hypothesis, DEA employs a non-parametric speci- 
fication to estimate the production function (the function 
relating inputs to outputs) from observed data. Since the DEA 
methodology maintains relatively few and natural assump- 
tions for the production function, its estimates and test results 
are likely to be more robust than those obtained from para- 
metric models that postulate a specific structure like a log- 
linear or quadratic form for the production function 26'27. 
The analysis reported below employs the new DEA-based 
tests of Banker and Chang 28. Two semi-parametric statis- 
tical tests are available, depending on whether the deviations 
of observed data from estimated production function are pos- 
tulated to be distributed as exponential or half-normal. These 

Table 5. DEA Model F-tests of  null hypothesis of constant returns to 
scale under two different inefficiency distribution specifications 

Exponentai Half-normal 
Data set F-stat P > F F-stat P > F 

Behrens 1.833 0.024 ~ 3.234 0.005 a 
Bailey-Basili 1.910 0.024 ~ 2.690 0.018 ~ 
Yourdon 1.796 0.046 a 2.500 0.033 a 
COCOMO 1.883 0.001 a 2.939 0 .00P 
Albrecht-Gaffney 4.138 0.00(P 8.214 0.000 ~ 
Belady-Lehman 1.111 0.334 1.149 0.346 
Wingfield 1.725 0.070 2.375 0.052 
Kemerer 1.858 0.037 a 3.053 0.013 ~ 
MERMAID-1 1.284 0.057 1.492 0.037 ~ 
MERMAID-2 1.557 0.044 a 2.154 0.019 a 
Kitchenham-Taylor 2.006 0.003 a 2.420 0.007 ~ 

indicates significant at 5% 

tests are described in greater detail in the appendix. The 
DEA test results for returns to scale are shown in Table 5. 

As shown in Table 5, with the exception for the Belady- 
Lehman and Wingfield datasets, the null hypothesis of 
constant returns to scale is rejected at the 5 % significance 
level under one or both of two alternative statistical test 
procedures for all the datasets. Clearly, the results support 
a non-linear relationship between project size and effort. 

The DEA test results reported in Table 5 indicate that 
non-linearity characterizes the datasets and the assumption 
of constant returns to scale is not sustained. New statistical 
tests in DEA are also employed to examine whether the data 
can be described well with just an increasing returns to 
scale model or with just a decreasing returns to scale 
model, rather than a model that allows for the presence of 
both increasing and decreasing returns to scale in different 
data ranges 28. The results are reported in Table 6. 

The COCOMO and Albrecht-Gaffney datasets deviate 
from the general model (that permits both increasing and 
decreasing returns to scale), because of the presence only 
of decreasing returns to scale. In contrast, the MERMAID-2, 
Kitchenham and Taylor, and Yourdon datasets deviate from 

Table 6. Summary of data envelopment analysis models 

Null hypothesis Non-decreasing N o n - i n c h i n g  
Dataset Exponential Half-normal Exponential Half-normal 

Behrens 1.327 1.343 1.262 1.771 
(0.175) (0.247) (0.221) (0.093) 

Bailey -Basili 1.322 1.482 I. 303 I. 434 
(0.196) (0.199) (0.208) (0.219) 

Yourdon 1.070 1.059 1.606 2.193 
(0.421) (0.453) (0.086) (0.057) 

COCOMO 1.563 2.258 1.122 1.114 
(0.006 a) (0.001a) (0.259) (0.334) 

AIbrecht-Gaffney 4.138 8.298 1.000 1.000 
(0.000 ~) (0.000 ~) (0.500) (o.500) 

Belady-Lehman 1.101 1.131 1.018 1.014 
(0.348) (0.362) (0.485) (0.483) 

Wing field 1.300 1.353 1.234 1.466 
(0.237) (0.282) (0.284) (0.233) 

Kemerer 1.294 1.686 1.306 1.361 
(0.227) (0.145) (0.219) (0.265) 

MERMAID- 1 1.074 1.133 1.179 1.269 
(0.324) (0.287) (0.147) (0.142) 

MERMAID-2 1.000 1.000 1.557 2.154 
(0.500) (0.50O) (0.044 a) (0.019") 

Kitchenham-Taylor 1.011 1.002 1.960 2.407 
(0.481) (0.497) (0.003 a) (0.006 a) 

p-values in parentheses:" indicates significant at 5% 
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the general model because of the presence of increasing 
returns to scale. For the remaining six datasets, the rejection 
of the linearity assumption is attributable to the presence of 
both increasing and decreasing returns to scale in the 

observed data. 
As the loglinear specification in Equation (1) does not allow 

the possibility of increasing returns for some projects and 
decreasing for others in the same dataset, it is an inadequate 
formulation for software development production process 

modelling. 

C o n c l u d i n g  r e m a r k s  

The evidence from the above analysis indicates that both 
economies and diseconomies of scale prevail in new software 
development. This evidence is found to be robust, despite 
some recent claims to the contrary. The implications for 
research are that simple linear models are likely to be 
inadequate representations of the complexity of the software 
production process. The implications for practice are, as ex- 
pressed in an earlier paper 1°, that project managers should 

actively seek to use the scale size of future projects as a pro- 
ductivity control tool. When past project data are available, 
managers may choose to determine the project sizes where 
their organization has tended to perform most productively. 
Project requests that are greater than this size should be 
divided into several smaller projects, with the system being 
delivered in phases so as to maximize developer productivity. 
Project requests that are smaller than this size (e.g. main- 
tenance requests), should be considered as candidates for later 
inclusion in a combined batch of requests which will allow 
project managers to take advantage of economies of scale. 

It is likely that many managers already do this somewhat 
intuitively, and the model presented here simply provides 
a tool to help these managers to accomplish this with a greater 
degree of accuracy. For managers who are not actively using 
project size as a productivity lever, the models provide evi- 
dence on why they should consider this approach as a 
potentially useful tool. 

This research was made possible through the analysis of 
secondary data generated, in the main, by other researchers. 

The analysis presented here is representative of the type of 
value that can be obtained through the wider dissemination 
of previously collected data. Given the great cost and 
delays in collecting such real world data, it is imperative 
that researchers in this area continue to make such data 
widely available: and given this availability it can be 
expected that further progress may be made in identifying 
factors that aid software development productivity. 
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Appendix: Data Envelopment Analysis (DEA) 
This appendix summarizes the tests of returns to scale J 
described in Banker and Chang 2s. It also provides a brief ~ 3,~Y~ -Yo/O <_ 0 
overview of the Data Envelopment Analysis (DEA) j = 1 
methodology. (Note that a thorough introduction to DEA is 

J 
beyond the scope of this appendix. Interested readers are r~ 3,~ -> x0 
referred to Charnes, Cooper and R h o d e s  29 and Banker, 
Charnes and Cooper 3° for detailed explanations.) DEA is j = 1 
used to estimate the production function, the function J 
relating the inputs consumed to the outputs produced. It is E 3,j = 1 
also used to estimate the efficiency exhibited by actual j = 1 
observations, such as in consuming more inputs than the 

0 and 3 j̀___ 0 
minimum required to produce outputs. There are several 
different DEA models used in practice. The model of 
Charnes, Cooper and Rhodes (CCR29), enables the esti- 
mation of the aggregate technical and scale inefficiencies in 
production, and the Banker, Charnes and Cooper (BCC3°), 
model allows the estimation of the technical inefficiency of 
an observation at the given scale of operation. 

Let Y and X represent input and output vectors. The 
production possibility set can be represented as: 

T = {(Y,X) I X _> 0 can be produced from Y _> 0}. (4) 

The inefficiency is measured radially by the reciprocal of 
Shephard's distance function 3~. Thus, the inefficiency of 
an observation (Y0, X0) ¢ T is given by the following 
function: 

O (Yo, Xo) = sup{O I (Yo/O, Xo) E T} (5) 

Banker specifies the following structure for production 
set T and the probability density function f(0) for the 
inefficiency variable 032: 

POSTULATE 1: CONVEXITY 
If (Yj, X0 • T and (Y2, X2) E T then (X~Y1 + 3`2Y2, X~Xj 
+ 3`2X2) E T for all 3`~, 3̀ 2 -> 0 such that 3̀~ + 3, 2 = 1. 

POSTULATE 2: MONOTONICITY 
If (Y~, X1) ~ T~ II2 -> Y~ and X2 -< Xt then (Y2, X2) E T. 

POSTULATE 3: ENVELOPMENT 
If 0 > 1 then riO) = 0. 

POSTULATE 4: LIKELIHOOD OF EFFICIENT 
PERFORMANCE 

i 
I+~ 

If 6 > 0 then ri0)d0 > 0. 
i 

Let (Yj, Xj), j = 1 . . . .  J, be the observed output-input 
vectors for J observations. To estimate the pure technical 
efficiency e Bcc = 1/0(Y0, X0) of an observation (Y0, X0), the 
following DEA model of Banker, Charnes and Cooper 3° 
(BCC hereafter) is employed: 

O(Yo, Xo) = Max 0 (6.0) 
s u b j e c t  to  

(6.1) 

(6.2) 

(6.3) 

(6.4) 

This model is solved as a linear program in the variables 
e = 1/0 and 3`j. Banker 32 shows that the DEA estimator of 
0 using the BCC model described in Equation (6) is statist- 
ically consistent and the asymptotic empirical distribution 
of the DEA estimates retrieves the true distribution of 0 under 
the maintained assumptions embodied in the four postulates. 
These postulates are logically consistent with both increasing 
and decreasing returns to scale; they do not impose constant 
returns to scale. Such an inefficiency measure estimated 
using the BCC model is referred to as 0 B. 

If an additional condition that the production set exhibits 
constant returns to scale is imposed, then the so-called CCR 
efficiency estimates e ccR = 1/0 are obtained by solving the 
above linear program, except that the objective function in 
Equation (6.0) is maximized subject only to constraints in 
Equations (6.1) (6.2) and (6.4), the constraint in Equation 
(6.3) is deleted. The maintained assumptions now also 
include the following postulate: 

POSTULATE 5: CONSTANT RETURNS TO SCALE 

If (Y, X) ~ T then (kY, kX) ~ T for any k > 0 .  

The CCR estimator is also statistically consistent under 
the maintained assumptions reflected in postulate 1, 2, 3, 4, 
and 5. The CCR inefficiency estimate is referred to as 0 c. 

As the DEA estimator is statistically consistent, under the 
null hypothesis of constant returns to scale the asymptotic 
empirical distributions of DEA estimates of 0 B and of 0 c 
are identical, each recovering the true distribution of 0. The 
asymptotic correspondence between the empirical distri- 
butions of 0 B and 0 c under the null hypothesis of constant 
returns to scale motivates the following two semi- 
parametric statistical tests2S: 

(I) If the inefficiency variable 0 follows the exponential 
distribution over the range of values from one to infinity 
with a parameter a, then asymptotically both the sums 

J J 

2(0~ - 1)/a and ~ 2(8 c - 1)/a 
jffil jffil 

follow the chi-square distribution with 2N degrees of 
freedom. Therefore, the test statistic for the null hypothesis 
of constant returns to scale is given by 
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J J 

( 0 ~ -  1)/ ~ (0 7 - 1), 
j= i  j f i  

which asymptotically obeys the F-distribution with (2N, 
2N) degrees of freedom. 

(II) If the inefficiency variable is distributed half- 
normally as [N(1,o2)l then both 

J J 

(0~ - 1)2/o 2 and ~ (0 c - 1)2/o ~ 
j = l  j = l  

follow the chi-square distribution with N degrees of 

freedom. Therefore, the test statistic for the null hypothesis 
of constant returns to scale is given by 

J J 

(0f - 1)2/ ~ (07 - 1) 2 
j = i  j f i  

which follows the F-distribution with (N, N) degrees of 
freedom. 

See Banker and Chang 2s for an additional Smirnov-type 
non-parametric test of constant returns to scale. Semi- 
parametric and non-parametric tests resembling those 
described here are also presented by Banker and Chang to 
test for increasing or decreasing returns to scale. 
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