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Abstract: Antimicrobial mouthwash improves supragingival biofilm control when used in conjunc-
tion with mechanical removal as part of an oral hygiene routine. Mouthwash is intended to suppress
bacterial adhesion during biofilm formation processes and is not aimed at mature biofilms. The most
common evidence-based effects of mouthwash on the subgingival biofilm include the inhibition of
biofilm accumulation and its anti-gingivitis property, followed by its cariostatic activities. There has
been no significant change in the strength of the evidence over the last decade. A strategy for biofilm
control that relies on the elimination of bacteria may cause a variety of side effects. The exposure of
mature oral biofilms to mouthwash is associated with several possible adverse reactions, such as the
emergence of resistant strains, the effects of the residual structure, enhanced pathogenicity following
retarded penetration, and ecological changes to the microbiota. These concerns require further
elucidation. This review aims to reconfirm the intended effects of mouthwash on oral biofilm control
by summarizing systematic reviews from the last decade and to discuss the limitations of mouthwash
and potential adverse reactions to its use. In the future, the strategy for oral biofilm control may
shift to reducing the biofilm by detaching it or modulating its quality, rather than eliminating it, to
preserve the benefits of the normal resident oral microflora.

Keywords: mouthwash; dental biofilm; gingivitis; cariostatic property; bacterial adhesion; microbiota;
adverse reaction

1. Introduction

More than 700 bacterial species or phylotypes, of which over 50% have not yet been
cultivated, inhabit the biofilm that forms on the teeth, gingiva, tongue, oral mucosa, tonsil,
palate, and dental materials [1,2]. A dental biofilm is a community of microorganisms
found on the tooth surface (Figure 1) [3]. It is the primary etiology of oral infections and
related disorders, such as dental caries [4,5], periodontal diseases [6,7], and root canal
infections [8,9]. Dental biofilms have unique properties relative to the biofilms found in
other parts of the human body. First, numerous and diverse microorganisms reside in the
oral environment and coexist with the host. The relationship between the host and the
biofilm formed by commensal bacteria is antagonistic, symbiotic, and mutualistic [10,11].
The commensal bacteria contribute to optimal tissue structure and function, as well as
protecting the host from exogenous microorganisms by saturating niches [10]. Recent
co-culture studies using a 3D organotypic reconstructed human gingiva model and a multi-
species biofilm revealed that the commensal oral biofilm contributes to maintaining the
homeostasis of human gingival barrier functions [12,13]. Thus, strategies to control the oral
biofilm should involve preserving the benefits of the normal resident microflora.

Second, most biofilms can be removed using mechanical instruments, without requir-
ing surgical intervention [14]. After removing the biofilm, the biological tissue will heal
without saturing the wound site. The mechanical approach is therefore fundamental to the
control of the oral biofilm.
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Figure 1. Oral biofilm and its niches.

The control of the supragingival biofilm is important for the prevention of periodontal
diseases, as well as dental caries. The mechanical disruption and elimination of the dental
biofilm can be effectively accomplished with the use of mechanical instruments, such as
toothbrushes and dental floss [15]. However, it has been reported that mechanical control
alone may be inadequate to prevent periodontal diseases due to limited time, limited use of
interdental aids, inadequate patient skill, poor motivation, and lack of compliance [16,17].
In addition, the adequate cleaning of hard-to-reach areas and the gingival margin is difficult
for older adults with physical or mental limitations, malpositioned or isolated teeth, fixed
prostheses, or orthodontic appliances [18]. Furthermore, daily brushing is difficult for
pregnant women and those with a strong vomiting reflex.

Various antimicrobial agents have been formulated into oral care products to sup-
plement the effects of mechanical elimination [19–21]. Among them, mouthwash has
demonstrated adjunctive efficacy with a high level of evidence. The American Dental Asso-
ciation (ADA)’s Council on Scientific Affairs has adopted specific guidelines to approve
these chemotherapeutic agents [22]. The guidelines demand proof of plaque inhibitory
and antiplaque activities based on double-blind randomized clinical trials for a minimum
duration of 6 months. The most widely investigated antimicrobial mouthwashes are
those containing chlorhexidine gluconate (CHG) [23–25], essential oils (EOs) [23–26], and
cetylpyridinium chloride (CPC) [27]. The efficacies of mouthwashes containing povidone-
iodine [28], delmopinol [29], hexetidine [30], polyhexanide [31], chlorine dioxide [31],
sodium hypochlorite [32], chlorine dioxide [33], natural compounds [34], and hydrogen
peroxide [35] have also been reported. Most mouthwashes reduce biofilm accumulation and
gingival inflammation; however, the strength of the evidence supporting their effects varies.

The coronavirus disease pandemic has provided dental professionals with an oppor-
tunity to reconsider infection control during treatment. Mouthwash has been reconsidered
for infection control in dental offices. The use of preprocedural mouth rinsing to reduce
the contamination of the aerosols produced during dental procedures has been reported
for the past 50 years [36]. Preprocedural mouth rinsing is a simple and effective way of
reducing the number of microorganisms in dental aerosols [37].
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This review aims to reconfirm the effects of mouthwash on biofilm control by sum-
marizing systematic reviews within the last decade and discuss its limitations and po-
tential adverse reactions, especially in relation to biofilm control strategies relying on
bacterial elimination.

2. The Process of Biofilm Formation and Anti-Biofilm Strategy

The process of biofilm formation can be summarized into the following five major
stages: (i) adherence to tooth surface, (ii) coaggregation and matrix production, (iii) quorum
sensing, (iv) maturation, (v) spreading and dispersal (Figure 2) [38]. Bacteria that settle
on the adhesion interface (i) secrete extracellular polymeric substances that hold the cell
aggregates together (ii). Cells grow through bacterial intercellular communication and
initiate the formation of biofilm communities (iii). Within a mature biofilm population, cells
express genetic and physiological heterogeneity in adapting to the local environmental
conditions (iv). Some bacteria disperse and colonize other locations (v). This is the lifecycle
of biofilms, and each stage proceeds in response to the surrounding environment [39,40].
Therefore, the therapeutic target for the control of biofilm changes with the development of
the biofilm.
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Figure 2. Biofilm formation and the therapeutic target for its control at each stage. The brown arrows
indicate the channels that allow the transport of nutrients, waste products, and signaling molecules
within the biofilm. The image is based on the process described by Costerton and Stewart in 2001 [38].

An anti-biofilm strategy involves a natural or induced process that leads to a reduction
in the bacterial biomass through the alteration of the biofilm formation, integrity, and/or
quality [41]. The currently available approaches to modulating biofilm formation include
the inhibition of bacterial surface attachment and destabilization and/or the disruption
of irreversibly attached mature biofilms. If an anti-biofilm agent is bactericidal, the agent
should be very specifically targeted, otherwise its use could affect the composition of an
established ecosystem and damage beneficial microbiota [41].

Currently, the onset and progress of dental caries and periodontitis are considered
to be related to imbalanced microecology, also called dysbiosis [42,43]. Although the oral
microbial community maintains a symbiotic relationship, external stimuli and accompa-
nying environmental changes within the biofilm due to dietary sucrose uptake, poor oral
hygiene, and salivary dysfunction cause the overgrowth of acidogenic and aciduric bacteria,
resulting in an imbalance between the bacteria and, subsequently, the demineralization of
teeth [42]. Periodontitis is considered to be caused by a multispecies community under the
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influence of keystone organisms with specific functions under environmental conditions
that can disrupt homeostasis and cause dysbiosis and destructive inflammation [44]. Thus,
it would make sense to control biofilms without altering the bacterial flora.

3. Intended Effects of Mouthwash on Biofilm Control
3.1. Study Selection and Data Collection

To reconfirm the intended effects of mouthwash on biofilm control, systematic reviews
from the last decade were summarized. MEDLINE was searched for systematic reviews
of randomized clinical trials (RCTs) and meta-analyses related to mouthwash published
from 2012 to 20 March 2022. The search terms and results are summarized in Table 1. The
titles and abstracts of the retrieved articles were reviewed and categorized according to the
issues explored in this review.

Table 1. A summary of search terms and results in this study.

Sequence No. Terms and Strategy (Publication Dates from 2012 to 2022) Hits

#1

(“mouthwashes” [Pharmacological Action] OR “mouthwashes” [MeSH Terms] OR “mouthwashes”
[All Fields] OR “mouthwash” [All Fields] OR “mouthwashing” [All Fields] OR “mouthwashings”

[All Fields]) AND (“systematic review” [Publication Type] OR “systematic reviews as topic” [MeSH
Terms] OR “systematic review” [All Fields])

300

#2

(“mouthwashes” [Pharmacological Action] OR “mouthwashes” [MeSH Terms] OR “mouthwashes”
[All Fields] OR “mouthwash” [All Fields] OR “mouthwashing” [All Fields] OR “mouthwashings”

[All Fields]) AND (“meta analysis” [Publication Type] OR “meta analysis as topic” [MeSH Terms] OR
“meta analysis” [All Fields])

246

#3
(“mouthrinse” [All Fields] OR “mouthrinsed” [All Fields] OR “mouthrinses” [All Fields] OR

“mouthrinsing” [All Fields] OR “mouthrinsings” [All Fields]) AND (“systematic review” [Publication
Type] OR “systematic reviews as topic” [MeSH Terms] OR “systematic review” [All Fields])

57

#4
(“mouthrinse” [All Fields] OR “mouthrinsed” [All Fields] OR “mouthrinses” [All Fields] OR

“mouthrinsing” [All Fields] OR “mouthrinsings” [All Fields]) AND (“meta analysis” [Publication
Type] OR “meta analysis as topic” [MeSH Terms] OR “meta analysis” [All Fields])

40

The inclusion criteria for the articles were as follows: (a) systematic review or meta-
analysis of RCTs; (b) anti-biofilm effect; and (c) self-care use. Investigations funded by
mouthwash manufacturers were not included. Single RCTs or meta-analyses using data
from the same study group were also excluded. The flow diagram of the screening and
selection process is provided in Figure 3.

3.2. Current Evidence on the Effects of Mouthwash

Twenty-eight systematic reviews and 18 meta-analyses that investigated the anti-
biofilm effects of various types of mouthwash were analyzed. All the articles indicated
the inhibitory effects of mouthwash using plaque indices (PI) and gingivitis indices (GI).
The most commonly studied active agents were CHG and EO, followed by CPC, with a
significant number of six-month RCTs on anti-dental biofilm and the anti-gingivitis effects
of mouthwash. There was a consensus, which is supported by established guidelines [22].

Mouthwash is used to suppress bacterial adhesion and is not targeted at mature
biofilms. Most of the clinical studies evaluated biofilm accumulation using a plaque index
and gingivitis using a gingival index following professional mechanical tooth cleaning.

3.2.1. CHG

CHG is a cationic bisbiguanide with a broad spectrum of antibacterial activity. CHG
binds to almost every site in the mouth, including the teeth, mucosa, pellicle, and saliva,
and exhibits antibacterial activity for up to 5 h [45]. Its mechanism of action is thought to be
membrane disruption [45]. All the reviews had similar inclusion criteria, such as RCTs with
at least four weeks of follow-up of daily use [16,46–50]. All the RCTs estimated the inhibition
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rate of the mouthwash used in conjunction with daily toothbrushing. A toothbrush and
toothpaste were provided to all the participants to eliminate the effects of the dentifrice
used. Five meta-analyses reported a reduction in PI and GI scores. The reduction rate
calculated across the different reviews varied due to the different concentrations of CHG;
despite the differences in the PI scores used and the follow-up periods, all the mouthwashes
showed significant effects relative to the placebo rinse, even after 6 months without any
professional care (Tables 2 and 3). All the authors concluded that there was strong evidence
in support of the efficacy of CHG as an anti-dental biofilm and anti-gingivitis agent. For
example, the reduction in dental biofilm with a CHG mouthwash more than four weeks
after the study period was 33% compared to the control [49]. Regarding gingivitis, an
inhibition effect of up to 26% can be expected [49].
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3.2.2. EO

The EOs in the Listerine antiseptic were used to determine their long-term effects
for more than 4 weeks. EO (Listerine) is an over-the-counter mouthwash containing a
fixed formula of 0.064% thymol, 0.092% eucalyptol, 0.042% menthol, and 0.060% methyl
salicylate. The mechanism of action of EO is membrane disruption at high concentrations
and the inactivation of essential enzymes at lower concentrations [26]. Five meta-analyses
reported reductions in PI [16,47,48,51,52], and five meta-analyses reported reductions in
GI scores [16,48,50–52]. The PI reductions by EO after a follow-up of 6 months were similar
among the different meta-analyses, unlike CHG, due to a fixed EO formula (Table 2). EO also
significantly improved the PI and GI scores at six months with high reliability (Tables 2 and 3).
For example, there were weighted mean percentage reductions of 27% for PI and 18.2% for
GI compared with the placebo group [53].

There was no consensus on the superiority of the EO and CHG mouthwashes for
dental biofilm inhibition among the studies. Escribano et al. conducted mixed comparisons
of the products and found no statistically significant difference between the CHG and EO
mouthwashes (weighted mean difference (WMD) = −0.09, p = 0.58) [47]. By contrast, Van
Leeuwen et al. reported that CHG had significantly better dental biofilm control effects
than EO (WMD = 0.19, p = 0.0009) [25]. Boyle et al. reported that their reduction rates were
significantly different, at 31.6% for CHG and 24% for EO, after three months, and quite
similar, at 36% for CHG and 35% for EO, after six months [48].

Figuero et al. conducted a network meta-analysis and reported that non-alcoholic
EO had the greatest effect on the GI scores from CHG (standard mean difference = 2.49,
p < 0.05) and other active agents (2.25 to 3.38, p < 0.05) [50]. By contrast, van Leeuwen et al.
reported, in a previous review, that no significant difference was found between EO and
CHG in terms of the reduction in gingival inflammation [25]. Taken together, it seems more
reasonable to choose a product that the patient can use rather than debate over which has
the superior bactericidal activity.

3.2.3. CPC

CPC is a cationic surface-active agent and has a broad antimicrobial spectrum. Its
mechanism of antimicrobial activity involves the disruption of membrane function, fol-
lowed by the leakage of cytoplasmic material and the collapse of the intra-cellular equilib-
rium [27]. Four meta-analyses reported reductions in PI scores [16,47,48,54], and four other
meta-analyses reported reductions in GI scores [16,48,50,54]. CPC showed inconsistent
results, especially at concentrations of less than 0.05% (Tables 2 and 3). The most recent
meta-analysis of the effect of CPC, as an adjunct to toothbrushing, on interproximal plaque
and gingival inflammation was conducted by Langa et al. [54]. Studies with a minimum
of 6 weeks of follow-up were included. Following an initial screening of 2,635 studies, 8
were selected. The CPC-based solutions used in all the studies significantly reduced the
interproximal plaque scores. The authors concluded that CPC mouthwashes may be good
alternatives for interproximal plaque removal, improving interproximal gingivitis.

A comparison of the PI reductions between CHG and CPC, and EO and CPC after
6 months, performed by Escribano et al., yielded WMDs of −0.37 (p = 0.03) and −0.46
(p = 0.00), respectively [47]. Similarly, Haps et al. conducted a systematic review to
determine the efficacy of CPC mouthwashes and concluded that CPC provided a small,
but significant, benefit for the control of dental biofilm [27]. Boyle et al. reported that CPC
trials did not suggest a meaningful anti-gingivitis effect, and the relative reduction rates
of CPC at three months and six months were 11.2% (95% confidence interval (Cl): −35.5
to +13.1) and 13.4% (95% Cl: −43.3 to +16.5), respectively [48]. CPC appeared to be less
effective for the inhibition of dental biofilm and gingivitis than CHG and EO.

3.2.4. Other Chemical Compounds

Some meta-analyses demonstrated the effects of mouthwashes including delmo-
pinol [16,47,48,50], amine fluoride (AmF)/stannous fluoride (SnF) [16,31,50], alexidine [47,50],
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and triclosan [47,50]. The results were inconsistent, and their effects were not significantly
different from those of placebo rinse, except for triclosan (Tables 2 and 3). It is not possible,
at this time, to conclude as to the effectiveness of these mouthwashes for the control of
subgingival biofilms.

3.2.5. Natural Products

CHG mouthwashes have superior antibiofilm properties; however, their long-term
use causes undesirable effects, including altered taste perception, the staining of teeth and
tongue, and burning sensations [55,56]. The interest in natural compounds is therefore
inceasing, as they are considered safe for living organisms [34]. The natural compounds
used in mouthwashes include Azadirachta indica (neem), Camellia sinensis, Calendula offic-
inalis, Elettaria cardamomum (ela), Ixora coccinea Linn., Leptospermum scoparium, Melaleuca
alternifolia, Rosmarinus Officinalis L., Sesamum indicum, and Zingiber officinale [57–63]. The
biofilm reduction rates of natural compounds have been compared with those of placebo
and the CHG mouthwash. Most meta-analyses have demonstrated that natural compounds
and the CHG mouthwash have comparable efficacy in reducing dental biofilm and gin-
gival inflammation (Tables 2 and 3). However, most of these meta-analyses had serious
limitations, such as small samples, ununified durations, and moderate (I2 = 40–80%) or
considerable (>80%) heterogeneity, resulting in moderate-to-low quality of evidence. Thus,
no conclusions can be reached, at this time, as to the effectiveness of natural products.

Table 2. Summary of the reductions in plaque indices.

Solutions n Weighted Mean Difference
(95% Cl) Index Compared

Control
Follow-up

Periods Reference

CHG

12 −1.45 (−1.00 to −1.90) QHI Baseline 4 to 6 weeks [46]

4 −0.78 (−1.07 to −0.49) TQHI Placebo 6 months [47]

3 −0.640 (−0.756 to −0.524) TQHI Placebo 6 months [16]

2 −0.208 (−0.351 to −0.065) PI Placebo 6 months [16]

17 −0.362 (−0.571 to −0.153) † QHI or TQHI Baseline ≥ 4 weeks [48]

5 −0.39 (−0.70 to −0.08) PI Baseline 6w or 6m [49]

10 −0.67 (−0.82 to −0.52) QHI Baseline 4w to 6m [49]

EO

9 −0.86 (−1.05 to −0.68) TQHI Placebo 6 months [47]

9 −0.827 (−1.053 to −0.600) TQHI Placebo 6 months [16]

16 −0.265 (−0.405 to −0.124) † QHI or TQHI Baseline ≥ 4 weeks [48]

14 −0.86 (−1.05 to −0.66) QHI Placebo 6 months [51]

4 −0.39 (−0.3 to −0.47) QHI 21.6 or 26.9%
hydro-alcohol 6 months [52]

CPC (>0.05%)

6 −0.41 (−0.65 to −0.17) TQHI Placebo 6 months [47]

3 −0.465 (−0.631 to −0.299) TQHI Placebo 6 months [16]

8 −0.112 (−0.273 to 0.029) *,† TQHI Baseline ≥ 4 weeks [48]

9 −0.70 (−0.83 to −0.57) PI, TQHI, MPI Placebo ≥ 6 weeks [54]

CPC (<0.05%) 3 −0.26 (0.07 to −0.55) * TQHI Placebo 6 months [47]

Del

2 −0.24 (−0.67 to 0.19) * TQHI Placebo 6 months [47]

3 −0.144 (−0.231 to −0.058) TQHI Placebo 6 months [16]

4 −0.173 (−0.853 to 0.507) *,† TQHI Baseline 4 weeks [48]
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Table 2. Cont.

Solutions n Weighted Mean Difference
(95% Cl) Index Compared

Control
Follow-up

Periods Reference

AmF/SnF
2 −0.079 (−0.260 to 0.101) * TQHI Placebo 6 months [31]

2 −0.195 (−0.335 to −0.054) PI Placebo 6 months [31]

Alexi 2 −0.18 (−0.60 to 0.24) * TQHI Placebo 6 months [47]

Tric 3 −0.67 (−1.05 to −0.30) TQHI Placebo 6 months [47]

Herb

6 −2.93 (−6.43 to 0.58) * PI or TQHI CHG 4 weeks [57]

6 2.61 (4.42 to 0.9) PI or TQHI CHG or Placebo 12 weeks [57]

11 0.22 (0.20 to 0.24) PI or QHI or TQHI CHG [58]

5 −0.61 (−0.80 to −0.42) QHI Placebo 2w to 3 M [59]

5 0.08 (−0.19 to 0.34) * PI CHG 10d to 3w [59]

5 0.00 (−0.04 to 0.04) * TQHI CHG 2 or 4w [59]

Curcumin 6 0.27 (−0.53 to 1.07) * PI or TQHI CHG 21 or
28 days [60]

Propolis 3 −1.24 (−2.51 to 0.04) * PI Placebo 3 or 5 days [61]

Salvadora persica 12 −0.46 (−0.29 to −0.63) PI or TQHI Placebo 4d to 2m [62]

Salvadora persica 18 0.19 (0.01 to 0.37) * PI or TQHI CHG 4d to 2m [62]

Green Tea 5 −0.14(−1.80 to 1.43) * PI CHG 2 to 4w [63]

ClO2 5 −0.720 (−0.487 to −0.952) PI Placebo 7 days to 5w [33]

n: number of studies, CHG: chlorhexidine gluconate mouthwash, EO: essential-oil-containing mouthwash
(Listerine antiseptic), CPC: cetylpyridinium chloride mouthwash, Del: delmopinol mouthwash, AmF: amine
fluoride mouthwash, SnF: stannous fluoride mouthwash, Alexi: alexidine, Tric: triclosan, PI: plaque index (Loe
and Silness), QHI: Quigley-Hein plaque index, TQHI: Turesky modification of the Quigley-Hein plaque index,
MPI: modified proximal index. † Expressed as the summary relative difference meaning a percentage change
from the baseline. * No significant difference (p > 0.05).

Table 3. Summary for the reduction of gingival indices.

Solutions n Weighted Mean Difference
(95% Cl) Index Compared

Control
Follow-up

Periods Reference

CHG

3 −1.20 (−0.23 to −2.16) GI or MGI Placebo 6 months [50]

10 −0.21 (−0.11 to −0.31) GI Baseline 4 to 6 weeks [46]

4 −0.185 (−0.285 to −0.086) GI Placebo 6 months [16]

19 −0.223 (−0.412 to −0.034) † GI or MGI Baseline ≥ 4 weeks [48]

8 −0.32 (−0.42 to −0.23) GI Baseline 6w, 3m, 6m [49]

EO

9 −1.44 (−0.82 to −2.06) GI or MGI Placebo 6 months [50]

2 −0.133 (−0.194 to −0.072) GI Placebo 6 months [16]

8 −0.537 (−0.764 to −0.311) MGI Placebo 6 months [16]

16 −0.203 (−0.312 to −0.093) † GI or MGI Baseline ≥ 4 weeks [48]

2 −0.36 (−0.26 to −0.62) GI 21.6 or 26.9%
hydro-alcohol 6 months [52]

11 −0.52 (−0.67 to −0.37) MGI Placebo 6 months [51]

3 −0.24 (−0.46 to −0.01) GI Placebo 6 months [51]
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Table 3. Cont.

Solutions n Weighted Mean Difference
(95% Cl) Index Compared

Control
Follow-up

Periods Reference

CPC (>0.05%)

2 −1.04 (0.06 to −2.14) * GI or MGI Placebo 6 months [50]

5 −0.70 (−0.83 to −0.57) GI Placebo ≥ 6 weeks [54]

3 −0.344 (−0.627 to −0.062) GI Placebo 6 months [16]

2 −0.357 (−0.483 to −0.231) MGI Placebo 6 months [16]

8 −0.126 (−0.312 to 0.059) *,† GI or MGI Baseline ≥ 4 weeks [48]

CPC (≤0.05%) 3 −0.31 (0.76 to −1.38) * GI or MGI Placebo 6 months [50]

Del

1 −0.06 (1.86 to −1.98) * GI or MGI Placebo 6 months [50]

2 −0.038 (−0.145 to −0.069) * MGI Placebo 6 months [16]

3 −0.014 (−2.337 to 2.308) †,* GI or MGI Baseline ≥ 4 weeks [48]

AmF/SnF
AmF/SnF

1 −0.76 (0.72 to −2.25) * GI or MGI Placebo 6 months [50]

2 −0.248 (−0.427 to −0.069) GI Placebo 6 months [16]

Alexi 1 −0.16 (1.77 to −2.09) * GI or MGI Placebo 6 months [50]

Tric 3 −1.50 (−0.36 to −2.62) GI or MGI Placebo 6 months [50]

Herb

6 −0.15 (−0.32 to 0.01) * GI CHG 4 weeks [57]

5 −0.09 (−0.25 to 0.08) * GI CHG 12 weeks [57]

3 −0.28 (−0.51 to −0.06) GI Placebo 3 w or 3 m [59]

3 −0.59 (−1.08 to −0.11) MGI Placebo 2 to 4 weeks [59]

5 −0.07 (−0.22 to 0.07) * GI CHG 2 to 4 w [59]

Curcumin 6 −0.13 (−0.35 to 0.09) * GI CHG 21 or 28 days [60]

Green Tea 5 0.43(−0.63 to 1.49) * GI CHG 2 to 4 w [63]

ClO2 4 −0.712 (−0.457 to −0.967) GI Placebo 7 to 21 days [33]

n: number of studies, CHG: chlorhexidine gluconate, EO: essential oils (Listerine antiseptic), CPC: cetylpyridinium
chloride. Del: delmopinol, AmF/SnF: amine fluoride/stannous fluoride, Alexi: alexidine, Tric: triclosan, GI:
gingival index (Löe and Silness), MGI: modified gingival index. † Expressed as the summary relative difference,
meaning a percentage change from the baseline. * There was no significant difference (p > 0.05).

For example, curcumin is a yellow polyphenolic pigment from the Curcuma longa L.
(turmeric) rhizome that has been used for culinary and food-coloring purposes [64]. It has
been reported that curcumin exhibits several biological activities, including antioxidant,
antimicrobial, anti-inflammatory, hepatoprotective, cardioprotective, antirheumatic, neu-
roprotective, and anticancer properties [64]. Al-Maweri et al. reported a meta-analysis
comparing the anti-dental biofilm and anti-gingival inflammation effects of curcumin and
CHX [60]. Of 210 articles, 6 publications met the criteria for inclusion. The efficacies of the
curcumin and CHG mouthwashes were found to be comparable (Tables 2 and 3). How-
ever, the authors also suggested that further multicenter clinical trials with standardized
methodologies and an adequate evaluation period were needed, because five out of the six
studies were performed in India and the samples of three out of the six studies included
only ten participants.

More recently, Aljameel et al. reported a systematic review and meta-analysis of
the effects of Triphala mouthwashes on plaque and gingival reductions [65]. Triphala
comprises a distinct combination of fruits from three medicinal trees, namely Amalaki
(Embalica officinalis), Vibhitaki (Terminalia belerica), and Haritaki (Terminalia chebula) [66].
Seven RCTs were included in the analysis, and the efficacy of Triphala was compared with
that of 0.1–0.2% CHG. The results showed that the Triphala mouthwashes improved the
clinical gingival inflammatory parameters of plaque-induced gingivitis with equal clinical
efficacy to CHG mouthwash. However, the durations of the follow-ups of the studies
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varied from 2 weeks to 63 weeks, and it seems that more tests within the same period are
needed. Altogether, mouthwashes containing natural compounds may be recommended
as substitutes for more conventional over-the-counter oral hygiene products; however, the
quality of evidence in support of their use appears to be low at this time.

3.2.6. Sodium Hypochlorite (NaOCl)

NaOCl is an excellent non-specific proteolytic and antimicrobial agent. Its solution has
been used as the gold standard for disinfecting entire root-canal systems [67]. Hussain et al.
conducted a systematic review of the effect of a sodium hypochlorite mouthwash on biofilm
reduction and periodontic parameters [32]. NaOCl at concentrations between 0.05 and
0.25% was used. After a review of 833 titles, 7 eligible papers were retrieved. The authors
did not conduct a meta-analysis because the studies showed considerable heterogeneity
in terms of their methodological and clinical features. In addition, NaOCl had some non-
negligible side effects, including the unpleasant taste of bleach, altered taste, extrinsic
brown tooth stains, redness of the tongue, and a burning sensation [32].

3.2.7. Chlorine Dioxide (ClO2)

One meta-analysis and one systematic review assessed the efficacy of ClO2 [33]. ClO2
is an oxidizing biocide with a powerful bactericidal property, which kills microorganisms
by disrupting the transport of nutrients across the cell wall [68]. Kerémi et al. conducted
a systematic review and meta-analysis of the effects of ClO2 on oral hygiene [33]. Only
5 out of 364 articles were eligible. The results showed that ClO2 reduced both plaque
and gingivitis indices and bacterial counts in the oral cavity in a similar way to routinely
used oral rinses, including CHG and herbal mouthwashes. However, the authors stated
that the evidence supporting the outcome was very limited because of the varied study
durations and designs. Santos et al. used a systematic review to determine the antimicrobial
effects of ClO2 mouthwashes [31]. Five articles compared the efficacies of ClO2 and CHG.
The antimicrobial effects of ClO2 were even greater than those of CHG. However, the
concentrations of the solutions used in the studies were different. Furthermore, the authors
highlighted the heterogeneity of the studies as one of the limitations, and no meta-analysis
was conducted.

3.2.8. Cariostatic Property: Children and Adolescents

The benefits of fluoride for carie prevention and arrest are generally accepted by
dentists, and fluoride has been widely used in various applications, including water fluori-
dation, toothpaste, gel, varnish, and rinse, depending on the setting, such as public places,
dental offices, and homes [4]. Fluoride mouth rinses have been used under supervision in
school-based programs to prevent tooth decay [69]. Mouth rinses are also recommended,
especially for patients who have a high risk of caries due to radiation exposure, hypos-
alivation, xerostomia, the presence of difficult brushing sites, such as interproximal root
surfaces, and orthodontic treatment [70]. Although extensive epidemiological studies have
shown the effectiveness of fluoride mouthrinses, especially for children, systematic reviews
and meta-analyses have not been conducted in recent years.

There are two systematic reviews on this issue. Marinho et al. conducted one of these
systematic reviews to evaluate the efficacy of fluoride mouthrinses in preventing dental
caries in children and adolescents up to 16 years of age [69]. Studies lasting for at least
one year were included. The main outcome was the worsening of caries, as indicated by
changes in the decayed, missing, and filled tooth surfaces (DMFS) of permanent teeth. TIn
total, 35 trials, involving 15,305 children and adolescents, met the inclusion criteria. The
effects of fluoride mouthwash alone without any intervention with caries-preventive agents,
such as fluoridated dentifrice, CHG, sealants, and xylitol chewing gum, were analyzed. The
results showed that the regular and supervised use of fluoride mouthrinse was associated
with a remarkable slowing-down of caries progression, showing a 27% decrease in the
DMFS index (95% Cl: 23–30%) and a 23% decrease in the decayed, missing, and filled-teeth
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(DMFT) index (95% Cl: 18–29%). No acute adverse symptoms were reported in any of
the trials.

Although most people use a high-concentration fluoridated dentifrice [70], it is not
clear whether combining a fluoride dentifrice with a mouthrinse has an additional effect.
In another systematic review conducted by Marinho et al., the size of the effect of a fluoride
mouthrinse combined with a fluoride toothpaste was compared to that of toothpaste
alone [71]. The fraction pooled estimate of the random-effects meta-analysis of five trials
(n = 2738) on the preventive effects on DMFS was only 0.07 (95% Cl: 0.0–0.13), with no
significant difference (p = 0.06). Another systematic review, by Twetman et al., concluded
that a sodium fluoride mouthrinse may have an anti-caries effect in children with limited
fluoride exposure, while its additional effect in children when combined with the daily use
of fluoride toothpaste is questionable [72].

Fluoride mouthwashes with various active ingredients, such as sodium fluoride,
stannous (Sn) fluoride, and sodium monofluorophosphate, are available [73]. In terms
of the additional effect, it was not possible to conclude as to which of the components of
fluoride mouthrinses had the best preventive effects. More recently, Zanatta et al. conducted
a systematic review and meta-analysis to evaluate the effects of different fluoride types
and vehicles on the prevention of enamel erosion and erosive tooth-wear progression [74].
Of 318 articles, 13 were selected to compare the ingredients of different mouthrinses.
Under erosive/abrasive challenges, the fluoride solutions had different inhibitory effects
on enamel loss. The Sn formulations were the most effective (−11,49; 95% Cl: −16.62 to
−6.37); however, sodium fluoride (NaF) showed no significant effect (−2.83; 95% Cl: −8.04
to 2.38). These results indicated that the stannous-enriched fluoride offered the highest
protection against enamel erosion and erosive wear.

3.2.9. Cariostatic Property: Root Caries

Two systematic reviews investigated the preventive effects of mouthwash against
dental-root caries.

Zhang et al. evaluated the effects of topical fluoride on the prevention of dental-root
caries using a network meta-analysis [75]. Clinical visual and tactile assessments were used
for the diagnosis of root caries in this review. The results showed that the daily use of a
0.2% sodium fluoride (NaF) mouthrinse was more effective than placebo (mean difference
(MD) = −1.90, 95% CI= −3.48 to −0.32). Moreover, the use of a 0.2% NaF mouthrinse
was significantly more effective at reducing root caries than a 0.05% fluoride mouthrinse
(MD = −1.78, 95% CI = −3.37 to −0.20). The evidence for the preventive effect of a 0.05%
fluoride mouthrinse relative to placebo was unclear (MD = −0.12, 95% CI = −0.29 to
0.06). The authors concluded that a 0.2% NaF mouthrinse is likely to be the most effective,
followed by a combination of 1100–1500-parts-per-million fluoride toothpaste with a 0.05%
NaF mouthrinse, and a 1100–1500-part-per-million fluoride toothpaste only. However, the
level of evidence was considered low due to the small number of studies included, the risk
of bias, and imprecision. Moreover, the possible confounding factors were not considered.
The authors mentioned the necessity of further studies for people at high risk.

Wierichs et al. reviewed the clinical studies investigating chemical agents for the
prevention or inactivation of root caries [76]. The outcomes were evaluated using the
root caries index (RCI) and decayed, missing, filled-root surfaces (DMFRS)/DFRS. The
mouthrinses containing 225–900 ppm of fluoride showed a more significant reduction
in DMFRS/DFRS than a placebo rinse (MD = −0.18, 95% CI = −0.35 to −0.01). How-
ever, the inhibition effect was much lower than that of 38% silver diamine fluoride (SDF)
(MD = −0.33; 95% Cl = −0.39 to −0.28). The authors concluded that these results should
be interpreted carefully due to the low number of clinical trials, high risk of bias within the
studies, and limited grade of evidence.

Schwendicke et al. performed a simulation based on recent data from randomized
controlled trials and systematic reviews to determine cost-effective management strategies
for root carie lesions [77]. In their study, patients were simulated over 10 years using a
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Markov model, and the following four treatments were evaluated: no treatment, daily
225–800-parts-per-million fluoride rinses, chlorhexidine varnish, and silver diamine flu-
oride varnish. The results of this simulation study indicated that fluoride rinses were
accepted for their cost-effectiveness if the willingness-to-pay threshold increased, but this
acceptability never exceeded 40%. The authors concluded that fluoride rinses are not cost-
effective for populations with more teeth and high tooth-level risks, and the application
of SDF was recommended as a cost-saving treatment for the prevention of root caries in
patients with a high risk of developing root caries.

4. Side Effects and Potential Adverse Reactions to Mouthwashes

Although the current evidence, based on systematic reviews, supports the efficacy of
various active ingredients in therapeutic mouthwashes for preventing biofilm accumula-
tion and gingivitis, the various side effects of these mouthwashes should be considered.
Furthermore, some potential adverse reactions to biofilm control through mouthwashes
have recently been reported.

4.1. Side Effects (Patients’ Complaints)

The long-term use, for more than 4 weeks, of CHG mouthwash causes a large increase
in extrinsic tooth staining [46]. Various other side effects of CHG mouthwash have also been
reported, including the following: taste disturbances/alterations; effects on the oral mucosa,
including soreness, irritation, mild desquamation, and mucosal ulceration/erosions; a
general burning sensation, or a burning tongue; and the promotion of calculus [46,62,63].
A loss of taste and numbness were significantly more frequent with 0.12 and 0.2% CHG
than with 0.06% CHG [78]. CHG is therefore restricted to short-term or moderate-term use
and to special clinical situations [53].

Poor taste [79], tooth staining, calculus, taste alteration, and burning sensation at the
oral mucosa, tongue-tip, and gingiva have been reported by some RCTs as common side
effects of mouthwashes containing EO and alcohol as solvent [80,81]. Althouth EO without
alcohol is now commercially available, its effects on taste perception have not significantly
improved [82,83]. The acceptability of EO mouthwashes depends on patients because, in
some other studies, no or few patients reported side effects [84,85].

CPC mouthwash can cause similar side effects, including staining, burning, taste alter-
ations, mouth ulcers, dysgeusia, and glossodynia [81]. Although herb-based mouthwashes
revealed better effectiveness with fewer side effects, no conclusions can be reached as
to the effectiveness of their anti-biofilm property at this time [86]. As mouthwashes are
effective when used daily, patients’ impressions of mouthwash products after trying them
are very important.

4.2. Cytotoxic Effects on Human Cells

There are some in vitro studies demonstrating that mouthwashes, including CHG [87–90],
hydrogen peroxide [87,89], CPC [87,88], ClO2 [87], EO [87,89,90], and povidone-iodine [87,89],
have concentration-dependent cytotoxic effects on human gingival epithelial cells. All these
studies showed that all the above rinses were highly toxic when used undiluted. CHG
should be diluted to at least 6.3% [90] and EO to 10% [87] to attain non-toxic concentrations.

4.3. Antimicrobial Resistance

One emerging issue with strategies that rely on eradication is antimicrobial resistance,
whereby microorganisms reduce the effectiveness of mouthwashes [91]. This phenomenon
is likely to occur, but it has not been focused on thus far. Recent investigations raised an
alarm regarding the long-term use of CHG due to the risk of the emergence of antimicrobial-
resistant bacteria through increased efflux pump activity and cell membrane change [92,93].
Muehler et al. investigated the transcriptomic stress response in S. mutans after treatment
with CHG using RNA sequencing. An analysis of differential gene expression following a
pathway analysis revealed a considerable number of genes and pathways significantly up-
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or downregulated after sublethal treatment with CHG, showing the involvement of gene
regulation in purine nucleotide synthesis, biofilm formation, transport systems, and stress
responses [94]. However, it remains unclear whether persister cells in oral biofilms, which
have frequently been treated with CHG, and resistant strains contribute to the development
of cross-resistance in oral biofilms in vivo.

4.4. Residual Structure

Mouthwash is effective in suppressing the adhesion of oral bacteria, but it is less
effevtive against mature biofilms. It has been reported that almost all mouthwashes failed
to remove biofilms even if the constituent microorganisms were completely eliminated.
Studies have shown that little or no biofilm was removed when in vitro oral biofilms were
treated with ethanol [95,96], CHG [95–98], nisin [96,99], glutaraldehyde [99], a quaternary
ammonium compound [99], sodium lauryl sulfate [96], triclosan [96], CPC [96,97], and
EO [95]. Using bacterial vibration spectroscopy and attenuated-total-reflectance–Fourier-
transform infrared spectroscopy, Song et al. demonstrated that oral bacteria adhering to
salivary conditioning films became more difficult to remove after exposure to mouthwashes
containing CHG, CPC, and AmF due to the strengthening of the polysaccharide bond [100].

The residual structure may serve as a scaffold for biofilm re-development [101]. In
an in vitro study using a rotating disc reactor and the confocal laser-scanning microscopic
observation of longitudinal cryosectioned biofilms, Ohsumi et al. demonstrated that a dis-
infected Streptococcus mutans biofilm structure favored secondary bacterial adhesion. The
structure may also act as a source of antigens, which induce host inflammatory reactions be-
cause extracellular polymeric substances contain carbohydrates, proteins, polysaccharides,
lipids, and nucleic acids [102]. For example, the lipid A moiety of lipopolysaccharides
initiates innate immune responses by interacting with Toll-like receptor 4 [103].

In addition, the residual biofilm structure absorbs calcium and phosphate from saliva
and/or crevicular fluid, resulting in calculus formation. Although the calculus surface may
not, in itself, induce inflammation in the adjacent periodontal tissue, it is known to cause
plaque retention [104].

4.5. Retarded Penetration into Biofilm and Promotion of Biofilm Development

It has been demonstrated that the penetration of antimicrobial compounds in biofilms
is low, as is that of mouthwashes, especially during short-term exposure. Direct time-lapse
microscopy revealed that the penetration of an oral biofilm model by 0.12% CHG was criti-
cally restricted, indicating that the average penetration velocity was only 4.1 µm/min [95].
Wakamatsu et al. reported the kinetics of the penetration of in vitro S. mutans biofilms by
mouthwashes using direct time-lapse microscopy [97]. All the mouthwashes demonstrated
retarded penetration, with penetration velocities ranging from 4.2 to 30.1 µm/min.

The retarded penetration of mouthwash can cause the exposure of the microorganisms
inside the biofilm to sub-minimum inhibitory concentrations (sub-MICs) of active ingredi-
ents, and this antimicrobial stress may upregulate pathogenic genes and facilitate horizontal
gene transfer [105]. Kaplan et al. demonstrated that the biofilm formation of Staphylococ-
cus aureus significantly increased in the presence of four different β-lactam antibiotics at
sub-MIC [106]. The amount of biofilm induction was 10-fold at its maximum, and sub-MIC
β-lactam antibiotics induced autolysin-dependent extracellular DNA release. Furhtermore,
for oral biofilms, there are some studies reporting that the sub-MICs of antimicrobial agents
upregulated the genes related to pathogenicity. Suzuki et al. investigated the effects of sub-
MIC CHG on the development of in vitro multi-species biofilms [107]. The results indicated
that CHG at a specific sub-MIC enhanced gene transcription related to biofilm formation
and promoted the development of a multi-species biofilm. Representative expmeriments
demonstrating the upregulation of pathogenic genes at the sub-MIC are summarized in
Table 4 [108–110]. However, since these experiments were performed in vitro, it is not clear
whether the enhanced biofilm formation observed is clinically significant.
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Table 4. A summary of representative experiments demonstrating that sub-minimum inhibitory
concentration of antimicrobial agents upregulated pathogenic genes.

Biocide Concentration Species
Condition

of
Bacteria

Incubation
Time Upregulated Genes Reference

NaF, CHG,
Tea polyphenol 1/2 MIC S. mutans Planktonic 24 h gtfB, gtfC, luxS, comD, comE [108]

NaF, CHG,
Tea polyphenol 1/2 MIC S. mutans Biofilm 24 h gtfB, gtfC, luxS, comD, comE [108]

Triclosan 1/2 and
1/4 MIC S. mutans Planktonic 2 h atlA, gtfB, gtfC, comD, luxS [109]

MTAD,
MTADN,
MTAN

1/4 MIC Porphyromonas
gingivalis Planktonic 1 h

clpC, clpP (MTAD,
MTADN, MTAN),

sprE (MTAD, MTADN),
ace, clpX, cylB, efaA, gelE

(MTAN)

[110]

CHG 1/10 MIC
S. mutans,

Streptococcus oralis,
Actinomyces naeslundii

Biofilm 48 h gtfB, gtfC, gtfD, comD, luxS [107]

MTAD: 3% doxycycline, 4.5% citric acid, and 0.5% polysorbate 80 detergent. MTADN: nisin combined with
MTAD. MTAN: nisin in place of doxycycline in MTAD.

4.6. Ecological Changes in the Oral Biofilm Microbiota

Oral diseases, such as dental caries and periodontitis, develop when there is an
imbalance in the oral microbiome. It has been suggested that wide-spectrum antimicrobials,
such as CHG and EO mouthwashes, kill all bacteria non-selectively and do not change
the bacterial flora. However, the appearance of resistant bacteria and decrease in drug
sensitivity can cause dysbiosis, contribute to oral infection, and exert potential adverse
effects on systemic conditions.

Since there are mixed findings on the effect of mouthwash on the biofilm bacterial
composition in the biofilm [111–114], no consensus has yet been established. However, re-
cent studies analyzing the biofilm microbiome through amplicon sequencing have reported
interesting findings.

Bescos et al. investigated the effect of the seven-day use of CHG mouthwash on the
salivary microbiome, as well as on several saliva and plasma biomarkers, in 36 healthy
individuals. The results showed that the CHG mouthwash significantly increased the
Firmicute and Proteobacteria levels, leading to more acidic conditions and lower nitrite
availability in the healthy individuals [115]. Mostajo et al. investigated the influence
of three different mouthwashes on the bacterial composition and metabolic activity of
oral biofilms in vitro [111]. All the studied mouthwashes affected the in vitro biofilm
differently. The microbial diversity was reduced following treatment with 0.12% CHG
mouthwash. The oxygenating agent treatment caused significant changes in the bacterial
composition, with lower proportions of Veillonella and higher proportions of non-mutans,
compared to the control. Chatzigiannidou et al. reported that 0.12% CHG treatment
induced profound shifts in microbiota composition and metabolic activity using two types
of oral biofilm model [112]. The authors concluded that there is a need for alternative
treatments that selectively target the disease-associated bacteria in the biofilm without
targeting commensal microorganisms. It remains unclear whether these ecological changes
to the microbiota caused by mouthwash have clinically significant adverse effects. Further
in vivo experiments are required to elucidate whether mouthwashes cause dysbiosis, which
adversely affects oral health.

5. Conclusions

Mouthwash is used for rinsing and can reduce the bacterial load of the entire mouth.
It is intended to suppress bacterial adhesion during biofilm formation processes and is not
targeted at mature biofilms. The most common evidence-based effects of mouthwash on
subgingival biofilms include the inhibition of biofilm accumulation and their anti-gingivitis
effect. There has been no significant change in the strength of the evidence over the last
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decade. There is strong evidence for the effects of CHG and EO mouthwash. Fluoride
mouthwash contributes to caries prevention and arrest, with high-quality evidence for
its effectiveness in children and limited evidence for its role in root-caries management
(Figure 4).
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Figure 4. Schematic diagram of the clinical effects of mouthwashes against supragingival dental
biofilm with strong evidence. The anti-biofilm property (1) has been proven to be effective, followed
by the anti-gingivitis property (2), and their cariostatic actions are aimed at children and adolescents
(3). There are no conclusive findings regarding the preventive effect of fluoride mouthwash alone on
root caries.

The exposure of mature oral biofilms to mouthwash is associated with several possible
adverse reactions, such as the emergence of resistant strains, the effects of the residual
structure, enhanced pathogenicity following retarded penetration, and ecological changes
to the microbiota (Figure 5). These concerns require further elucidation. In future, the
strategy for oral biofilm control may shift to reducing the biofilm through detachment or
by modulating its quality, rather than eliminating it, to preserve the benefits of the normal
resident oral microflora.
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Figure 5. Posible adverse reactions inside the mature oral biofilm. Exposure of a mature oral biofilm to
mouthwash is associated with several possible adverse reactions, such as the emergence of a resistant
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strain, effects of the residual structure, enhanced pathogenicity following retarded penetration, and
ecological changes to the microbiota.
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