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ABSTRACT

We previously showed that mRNAs synthesized

from three genes that naturally lack introns

contain a portion of their coding sequence, known

as a cytoplasmic accumulation region (CAR), which

is essential for stable accumulation of the intronless

mRNAs in the cytoplasm. The CAR in each mRNA is

unexpectedly large, ranging in size from �160 to

285nt. Here, we identified one or more copies of

a 10-nt consensus sequence in each CAR. To deter-

mine whether this element (designated CAR-E)

functions in cytoplasmic accumulation of intronless

mRNA, we multimerized the most conserved CAR-E

and inserted it upstream of b-globin cDNA, which

is normally retained/degraded in the nucleus.

Significantly, the tandem CAR-E, but not its anti-

sense counterpart, rescued cytoplasmic accumula-

tion of b-globin cDNA transcripts. Moreover,

dinucleotide mutations in the CAR-E abolished this

rescue. We show that the CAR-E, but not the mutant

CAR-E, associates with components of the TREX

mRNA export machinery, the Prp19 complex and

U2AF2. Moreover, knockdown of these factors

results in nuclear retention of the intronless

mRNAs. Together, these data suggest that the

CAR-E promotes export of intronless mRNA by

sequence-dependent recruitment of the mRNA

export machinery.

INTRODUCTION

Different steps in gene expression such as transcription,
RNA processing, mRNA export and mRNA surveillance
are carried out by specific machineries, which are exten-
sively coupled to one another both functionally and phys-
ically (1–4). For example, the conserved TREX mRNA
export complex associates with the spliceosome and is
recruited to mRNA during splicing (5,6). Consistent with

this splicing-dependent recruitment of TREX, spliced
mRNA typically accumulates in the cytoplasm more effi-
ciently than its cDNA counterpart (6,7). b-globin provides
a particularly striking example of this coupling, as the
cDNA is largely retained/degraded in the nucleus,
whereas the spliced mRNA is rapidly and efficiently
exported (8–11). The TREX complex, conserved from
yeast to human, contains the multi-subunit THO
complex and the proteins UAP56, Aly and CIP29 (6,7,
12,13). The human TREX complex is recruited to the
50-end of mRNAs during splicing via an interaction
between Aly and the cap-binding complex (14). In yeast,
the TREX complex is recruited to mRNA during transcrip-
tion and 30-end formation (15–17). Recently, studies in
both yeast and human revealed that the Prp19 complex is
also involved in a network of coupled interactions
involving transcription, splicing and mRNA export
(18–20). The Prp19 complex contains a number of
proteins conserved from yeast to human, including
Prp19, Cdc5l, Xab2 and Crnkl1 (21). The splicing factor
U2AF2 was recently found to associate with the Prp19
complex and function in coupling transcription to
splicing (19).
In contrast to splicing-dependent mRNA export, little is

known about how naturally intronless mRNAs in higher
eukaryotes are exported in the absence of splicing. Most of
the work has been done with naturally intronless viral
mRNAs, revealing that these mRNAs bind to specific
cellular or viral proteins that recruit the mRNA export ma-
chinery (22–26). In the case of naturally intronless cellular
mRNAs, histone H2A contains an element that binds to
SR proteins and recruits the mRNA export receptor Nxf1
(27–31). However, H2A mRNA is unique among cellular
mRNAs, lacking a polyA tail. In Drosophila, the homolog
of human U2AF2 associates with naturally intronless
mRNAs and functions in their export (32).
To further understand the mechanism for exporting

naturally intronless mRNAs, we previously examined
three of these mRNAs, HSPB3, IFNa1 and IFNb1 (10).
We found that the TREX complex associates with the
intronless mRNA and their export is blocked by
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knockdown of TREX components (UAP56 and Thoc2) or
Nxf1 (10). We also showed that a portion of the coding
region, which we named cytoplasmic accumulation
regions (CARs), is essential for stability/export of these
mRNAs. Insertion of the CARs upstream of b-globin
cDNA promotes the cytoplasmic accumulation of the
cDNA transcript, whereas the antisense of the CARs
does not (10). These data are consistent with a previous
study showing that a portion of the coding region of c-Jun
mRNA, which is also naturally intronless, has the same
function as the CARs that we identified (33). For the
purpose of this study, we refer to the c-Jun element as a
CAR. In all of the intronless mRNAs, the size of the CAR
is unexpectedly large, ranging from 162 to 402 nt. Further
work is required to understand how CARs function in
promoting cytoplasmic accumulation of naturally
intronless mRNAs.
Here, we report the identification of a 10-nt consensus

element C[CA]AG[ATC][TA][CG][CG]TG, designated
CAR-E (CAR Element) found in the CARs in HSPB3,
c-Jun, IFNa1 and IFNb1 mRNAs. We show that
tandem duplication of the CAR-E, but not the antisense
or a mutated counterpart, promotes cytoplasmic accumu-
lation of b-globin cDNA. Our data indicate that compo-
nents of the TREX complex, the Prp19 complex and
U2AF2 associate with the tandem CAR-E and function
in mRNA export. Together, our data suggest that natur-
ally intronless mRNAs bypass splicing-dependent export
via specific elements that recruit the mRNA export
machinery.

MATERIALS AND METHODS

Identification of the CAR-E

To identify sequences that function in export of naturally
intronless mRNAs, we used the MEME algorithm (34)
(http://meme.nbcr.net) to search for overrepresented
motifs in the four CARs. Using several different
approaches, we identified similar or overlapping motifs
that were specifically enriched in the CARs but not in
their antisense or in the sequences surrounding the
CARs. For example, in one approach, we looked for
13-nt motifs, searching for any number of elements in
the four CARs. In another approach, we looked for
10-nt motifs looking for any number of motifs using a
combination of sense and antisense of the four CARs.
The motifs generated via MEME were then further
analyzed using FIMO (35) to search for the motifs in
the antisense of the CARs or in size-matched sequences
surrounding each CAR. Using a P-value output threshold
set at 1� 10�4, the motif was not present in these negative
control sequences. For further analysis, we used the most
conserved motif (CCAGTTCCTG), which had the lowest
P-value (2.37� 10�6) in our MEME search.

Constructs and antibodies

Wild-type (WT) b-globin containing its natural introns
and b-globin cDNA plasmids were described (10). The
tandem CAR-E and CAR-EAS b-globin cDNA plasmids
were constructed by inserting a DNA sequence (50 CCAG

TTCCTG� 16 30) into the Hind III site upstream of the
cDNA. To generate the CAR-E mutant 1–5 constructs,
oligonucleotides containing each dinucleotide mutation
were synthesized and inserted into the HindIII site
upstream of the b-globin cDNA construct. To generate
the Slu7 and DDX3x plasmids, the cDNA and HA-tag
were first amplified from Slu7 or DDX3 cDNA plasmids
(36,37) by PCR with the following primers: Slu7-F-50-TTT
GGTACCATGTACCCATACGACGTCCCAGACTAC
GCTTCAGCCACAGTTGTAGATGCA; Slu7-R-50-AA
ACTCGAGCTACTGTCCAAGGAAAGAGGCCAT;
DDX3x-F-50-TTTGGTACCATGTACCCATACGACG
TCCCAGACTACGCTAGTCATGTGGCAGTGGAAA
AT; DDX3x-R-50-ATACTCGAGTCAGTTACCCCACC
AGTCAACCCCCTG. The PCR products were then
inserted into the pcDNA5/FRT/TO vector (Invitrogen)
at the KpnI and XhoI sites to generate the cDNA
versions of the constructs. The same PCR products were
also inserted into the KpnI and XhoI sites of pcDNA5/
FRT/TO vector containing the tandem CAR-E.
Constructs were verified by DNA sequencing. Polyclonal
antibodies against Xab2 (Proteintech, 1:800), U2AF2
(Santa Cruz, 1:800), AQR (Bethyl, 1:2000) and monoclo-
nal antibodies against the HA tag (Covance, 1:2000),
EGFP (Origene, 1:1000) and tubulin (Sigma, 1:10 000)
were used for western blots.

Cell culture, transfection and HeLa nuclear microinjection

HeLa cells were cultured in Dulbecco’s modified eagle
medium supplemented with 10% fetal bovine serum.
Transfection was carried out in MatTek plates using
1 mg of each plasmid and Lipofectamine 2000. For
siRNA transfection, 1.25ml of 40 mMsiRNAs
(Smartpool from Dharmacon) was added after mixing
with 1 ml lipofectamine 2000. To determine the knockdown
efficiency for CRNKL1 and ISY1, the following primers
were used for RT–PCR: CRNKL1-RT-F-50-TGAGGAC
GTCGATGAGAGTG, CRNKL1-RT-R-50-GCAGAGC
TGGGAAATGAACT and ISY1-RT-F-50-ACTGGTGC
GAAGGAAGAAAA, ISY1-RT-R-50-TCAAAATGGC
AGTGCAAGTC. For microinjection of CMV constructs,
a 10-ml mixture containing 2 ml 70-kDa Dextran
(Molecular Probes) and 50 ng/ml of each plasmid DNA
was microinjected into HeLa cell nuclei. For fluorescence
in situ hybridization (FISH), samples were rinsed once
with 1� phosphate buffered saline (PBS) and fixed with
4% paraformaldehyde in PBS for 15min, and then
permeabilized in PBS containing 0.1% Triton X-100.
After three rinses with 1�PBS, the samples were rinsed
twice with 1� SSC/50% formamide, fluorescent probe
was added and hybridization was performed overnight
at 37�C. The FISH probe was a 70-nt DNA oligonucleo-
tide complementary to the vector sequence downstream of
the multiple cloning site and pre-labeled at the 50-end with
Alexa Fluor 546 NHS ester and HPLC-purified. Probe
sequence: 50-AAGGCACGGGGGAGGGGCAAACAA
CAGATGGCTGGCAACTAGAAGGCACAGTCGAG
GCTGATCAGCGGGT. Images were taken with a
Nikon TE2000E Inverted Fluorescence Microscope.
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Purification of RNPs

Templates for in vitro transcription of the tandem CAR-E
or mutant tandem CAR-Em2 were amplified from the
b-globin CAR-E and CAR-Em2 cDNA plasmids using
the following primers: F-50-TGGAGGTCGCTGAGTA
GTGC and R-50-TTCCATGGTGGCGGCGGTACCAA
. For in vitro transcription, 1 mg of the PCR product was
transcribed with 50 units of T7 RNA polymerase (New
England Biolabs) for 90min in reaction mixtures contain-
ing 32P-UTP and biotin-16-UTP (Roche). For RNP
assembly, 2 mg of CAR-E or CAR-Em2 RNA was
incubated for 2 h at 30�C in a 2-ml reaction mixture
containing 600 ml of HeLa nuclear extract, 600 ml splicing
dilution buffer (20mMHEPES at pH 7.9, 100mMKCl),
3.2mMMgCl2, 20mM creatine phosphate di-Tris salt and
0.5mMATP (13). The mixtures were then loaded on
Sephacryl S-500 columns and the peak fractions contain-
ing the RNP were pooled and purified by binding to
streptavidin agarose (Thermo Scientific). Total proteins
were eluted from equivalent amounts of 32P-labeled
RNA from each mRNP and TCA precipitated. For
mass spectrometry, total proteins were subjected to
in-solution trypsin digestion overnight. Tryptic peptides
were analyzed by nanoscale-microcapillary reversed
phase liquid chromatography–tandem mass spectrometry
(LC–MS/MS) essentially as described (38). MS/MS
spectra were searched using the SEQUEST algorithm
(39) against a concatenated forward/reverse mouse IPI
(ver 3.60) database as described (40) with dynamic modi-
fication of methionine oxidation. All peptide matches were
filtered based on mass deviation, charge, XCorr and dCn
to a target peptide false discovery rate of 1% using Linear
Discriminant Analysis to distinguish between forward and
reverse hits as described previously (41). For Table 1 and
Supplementary Table S1, the proteins were categorized
based on their best-known function. We found similar
numbers of peptides for CBP20 and CBP80 in the
CAR-E versus CAR-Em2 mRNP and used these proteins
for peptide number comparisons with other proteins listed
in Table 1. Contaminants such as keratin, tubulin, ribo-
somal and translation-related proteins were omitted. In
addition, proteins >300 amino acids with total peptide
numbers �3 were omitted.

RESULTS

A consensus element in CARs promotes cytoplasmic
accumulation of RNA

To identify sequences that function in cytoplasmic accu-
mulation of naturally intronless mRNAs, we used a
variety of criteria to search for overrepresented motifs
within the four CARs using the MEME algorithm (34)
(see ‘Materials and Methods’ section). Our analysis led
to the identification of a 10-nt consensus element,
designated the CAR-E (CAR-Element) that is present in
one to four copies in each CAR (Figure 1A). The positions
of the CAR-E in each CAR are shown in Figure 1B. The
sequence of each CAR-E (colored nucleotide) and
non-conserved flanking regions are shown in Figure 1C.

We previously showed that the antisense of the CARs are
non-functional in export (10). Significantly, no CAR-Es
are present in the antisense of the CARs at the same
P-value output threshold (1� 10�4) as used to identify
the CAR-Es in the sense strand of the CARs. Moreover,
no CAR-Es were detected in size-matched regions outside
of the CARs in each naturally intronless mRNA at this
threshold. Based on these observations, we pursued the
CAR-E further.
To examine the role of the CAR-E in naturally

intronless mRNA export, we mutated either one or more
of the CAR-Es in HSPB3 mRNA. Although we made
complete substitutions of all of these elements, the muta-
tions had no apparent effect on cytoplasmic accumulation
of HSPB3 mRNA (data not shown). In addition, we made
a construct in which all three of the CAR-Es were mutated
and five additional sequences that resembled the CAR-Es
were mutated, but no effect of these mutations was
observed (see ‘Discussion’ section). Thus, as an alternative
approach to determine whether the CAR-E plays a role in
the cytoplasmic accumulation of intronless mRNAs, we
inserted 16 tandem copies of the most conserved CAR-E
(CCAGTTCCTG from c-Jun) or its antisense counterpart
(CAR-EAS) upstream of b-globin cDNA (Figure 2A).
These constructs were transfected into HeLa cells and
FISH was carried out to determine the nucleocytoplasmic
distribution of b-globin RNA. Constructs encoding
b-globin cDNA alone or WT b-globin containing its two
natural introns were analyzed as controls. Consistent with
previous work (8–11), WT b-globin mRNA, but not the
cDNA transcript, efficiently accumulated in the cytoplasm
(Figure 2B). Significantly, insertion of the tandem CAR-E

Table 1. Proteins present in tandem CAR-E and CAR-Em2 RNPs

CAR-E CAR-Em2 Mol
weight
(kDa)Unique Total Unique Total

TREX complex
THOC2 29 37 1 1 183
THOC5 13 16 79
THOC6 7 9 38
THOC3 5 5 39
THOC1 5 5 76
UAP56/URH49 13 15 49

Prp19 complex and U2AF
Xab2 9 12 1 1 100
AQR 10 13 2 2 171
CDC5L 4 4 1 1 92
Prp19 6 6 55
U2AF2 7 11 54

Cap-binding complex
NCBP1 18 28 7 24 92
NCBP2 3 3 3 6 18

Examples of proteins enriched in CAR-Em2 RNP
PTBP1 10 40 57
ADAR 9 11 17 59 136
DICER1 1 1 12 22 219
KHSRP 8 14 73
NOLC1 1 1 8 13 74

A subset of proteins detected by mass spectrometry in the tandem
CAR-E and CAR-Em2 RNPs is shown. The number of total and
unique peptides and molecular weight of the proteins are indicated.
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resulted in accumulation of b-globin cDNA transcripts in
the cytoplasm (Figure 2B). In contrast, b-globin cDNA
transcripts containing the CAR-EAS had a nucleo-
cytoplasmic distribution that was similar to b-globin
cDNA transcripts alone (Figure 2B). Specifically, as
readily seen in the low magnification fields, the
CAR-EAS cDNA and cDNA transcripts alone were
largely retained/degraded in the nucleus (Figure 2C). We
note that the low level of FISH signal observed from the
CAR-EAS cDNA and cDNA transcripts is not due to dif-
ferences in transfection efficiency, as shown by western
blot of the transfection control, EGFP (Figure 2D). In
addition, our previous work showed that the transcript
levels of different CMV constructs are the same at 5min
after microinjection, regardless of the transcribed
sequence (9,10).
Consistent with our results showing enhanced export of

b-globin cDNA containing the CAR-E, western analysis
1 or 2 days after transfection showed that high levels of
protein were expressed from both WT and the CAR-E
constructs, whereas little protein was detected from the
cDNA or CAR-EAS construct (Figure 2D). These results
indicate that the consensus element is functional in
promoting cytoplasmic accumulation of mRNA and

production of protein. We note that insertion of 6 or 10
copies of the CAR-E promoted expression of b-globin
cDNA, but the levels were significantly higher with
16 copies. Thus, we used the 16-copy CAR-E construct
for further studies. To determine whether the effect of
the tandem CAR-E element might be general, we
inserted it upstream of two other cDNAs, Slu7 and
DDX3x (Supplementary Figure S1). In both cases,
the CAR-E resulted in increased mRNA export
and greater levels of protein than observed with the
corresponding cDNA alone (Supplementary Figure S1),
suggesting that the function of the CAR-E may be
general.

To further analyze the tandem CAR-E, we introduced
dinucleotide mutations across each copy of the CAR-E
and inserted this sequence upstream of b-globin cDNA
(Figure 3A). These constructs were transfected into
HeLa cells and western analysis was used to assay the
levels of b-globin protein. After 1 day of transfection, no
protein was detected from CAR-E mutants m1-m4 and
less protein was detected from CAR-E mutant m5 versus
either WT b-globin or the CAR-E cDNA (Figure 3B).
Similar results were obtained 2 days after transfection
(Figure 3B). Consistent with these data, FISH analysis
showed that b-globin RNA containing the CAR-E
mutants 1–5 either did not accumulate (mutant 1–4) or
partially accumulated (mutant 5) in the cytoplasm,
whereas b-globin RNA containing the CAR-E was
mostly detected in the cytoplasm (Figure 3C). These
data indicate that the CAR-E promotes cytoplasmic accu-
mulation of RNA.

The tandem CAR-E RNA associates with mRNA
export factors

We next sought to identify proteins that associate with the
tandem CAR-E, using CAR-Em2 as a negative control.
To do this, we biotinylated the RNAs and isolated the
RNPs by binding to streptavidin agarose (42). Total
proteins from equivalent amounts of these RNPs were
then analyzed by mass spectrometry. Not unexpectedly,
both types of RNPs contained a large number of
RNA-related proteins, including those associated with
the spliceosome, the polyadenylation machinery as well
as hnRNP proteins (Supplementary Table S1). Of particu-
lar relevance to this study, we found that TREX com-
plex components, including THOC2, THOC5, THOC6,
THOC3, THOC1 and UAP56, were specifically enriched
in the CAR-E RNP compared with the CAR-Em2 RNP
(Table 1). Interestingly, we also observed a strong enrich-
ment in the CAR-E RNP for components of the Prp19
complex and U2AF2 (Table 1), both of which function in
mRNA export (18,32). Both the CAR-E and CAR-Em2

RNPs contained similar numbers of peptides derived
from the CAP-binding complex proteins (Table 1), con-
sistent with the presence of the cap on both the CAR-E
and CAR-Em2 RNAs. However, in contrast to the
CAR-E, the CAR-Em2 RNP was not enriched in mRNA
export factors, but was instead enriched in proteins
such as PTB, ADAR, KHSRP and other RNA-binding
proteins (Table 1 and Supplementary Table S1). Together,
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IFNα1  35 TTGATGGCAA CCAGTTCCAG AAGGCTCCAG

167 CCGAACTCTA CCAGCAGCTG AATGAC

113 TTCAGTGTCA GAAGCTCCTG TGGCAATTGA IFNβ1

Figure 1. CARs in naturally intronless mRNAs contain a conserved
motif. (A) The 10-nt consensus element (CAR-E) identified in the
CARs from HSPB3, c-Jun, IFNa1 or IFNb1 is shown. (B) The loca-
tions of the CAR-Es in each CAR are indicated by the boxes. The
height of box is proportional to �log(P-value), truncated at the
height for a motif with a P-value of 1� 10�10 (34). The numbering is
relative to the first nucleotide of each CAR sequence. (C) The se-
quences of each of the CAR-Es (colored bases) surrounded by
flanking sequence (black bases) are shown.
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these data suggested that the reason that the tandem
CAR-E, but not the tandem CAR-Em2, facilitates cyto-
plasmic accumulation of b-globin cDNA is because the
CAR-E recruits mRNA export factors.

Knockdown of Prp19 components or U2AF2 results in
nuclear retention of naturally intronless mRNAs

Previously, we showed that TREX components (UAP56
and THOC2) and the mRNA export receptor Nxf1 were
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Figure 2. Tandem CAR-E promotes cytoplasmic accumulation of b-globin cDNA and b-globin protein expression. (A) Schematic of CMV-b-globin
cDNA construct indicating the position where the CAR-E and CAR-EAS were inserted. The start codon (ATG), HA tag and BGH polyA signal (pA)
are indicated. The sizes of each of the exons (in nucleotides) are shown. (B) FISH was used to determine the nucleocytoplasmic distribution of the
indicated transcripts 24 h after transient transfection of the respective constructs into HeLa cells. DAPI staining was used to identify the nucleus.
Scale bar: 10 mm. (C) Low magnification of the data shown in panel B. (D) Western analysis at 24 h (Day 1) or 45 h (Day 2) after transient
transfection of the indicated constructs into HeLa cells. HA-b-globin, co-transfection control EGFP and tubulin (loading control) are indicated.
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required for cytoplasmic accumulation of HSPB3, IFNa1
and IFNb1 (10). On the basis of our mass spectrometry
data of the CAR-E RNP, we next sought to determine
whether Prp19 complex components or U2AF2 also

functioned in cytoplasmic accumulation of naturally
intronless mRNAs. We were especially interested in
these factors because we recently found that several of
the Prp19 complex components (e.g. XAB2, CRNKL1,
CDC5L and PPIE) specifically associate with UAP56
(13). Moreover, recent work in Saccharomyces cerevisiae
showed that the Prp19 complex is required for TREX oc-
cupancy at intronless genes and that components of this
complex interact both genetically and biochemically with
the TREX complex (12). Finally, it is known that U2AF2
associates with UAP56 (43) and functions in intronless
mRNA export in Drosophila (32). To determine whether
Prp19 components or U2AF2 function in cytoplasmic ac-
cumulation of naturally intronless mRNAs, we micro-
injected the IFNb1 construct driven by the CMV
promoter (Figure 4A) into the nuclei of cells knocked
down using siRNAs against the Prp19 components
Xab2, Aqr, Isy1, Crnkl1 (Figure 4B–I) or U2AF2
(Figure 4J and K). Cells transfected with non-targeting
siRNA were used as a negative control. We note that we
used microinjection rather than transfection of the CMV
constructs for this analysis because we were examining
knockdown cells. However, in a great deal of previous
work [e.g. (10,11)] and in our present study, we found
that expression of CMV constructs is the same for both
microinjection and transfection. Significantly, this analysis
revealed that IFNb1 was retained in the nucleus when
each of the Prp19 components or U2AF2 was knocked
down (Figure 4C, E, G, I and K). These data indicate
that Prp19 components and U2AF2 function in export
of IFNb1 mRNA. We obtained the same results
when HSPB3 or IFNa1 driven by the CMV promoter
were microinjected into the Prp19 component or U2AF2
knockdown cells (Supplementary Figure S2). Knockdown
of other Prp19 components, including Prp19 itself,
CCDC16, PPIE and PLRG1, resulted in partial or no
nuclear retention of intronless mRNA (data not shown).
However, the observation that knockdown of several
Prp19 complex components and U2AF2, which associates
with the Prp19 complex, results in nuclear retention of
each of the naturally intronless mRNAs that we tested
indicates a role for these factors in intronless mRNA
export.

DISCUSSION

In this study, we identified a 10-nt consensus sequence, the
CAR-E, which is common to the CARs that we previously
identified in three naturally intronless mRNAs (10) and is
also present in the CAR found in c-Jun mRNA (33). The
CAR-E is not present in sequences that do not promote
export, such as the antisense of the CARs or regions sur-
rounding the CARs. Evidence that the CAR-E is func-
tional was provided by the observation that insertion of
tandem copies of the CAR-E upstream of b-globin cDNA
rescued the cytoplasmic accumulation of this cDNA tran-
script, which is normally retained/degraded in the nucleus.
In contrast, the antisense of the tandem CAR-E was not
functional in this assay. In addition, several dinucleotide
mutations abolished the function of the tandem CAR-E,
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Figure 3. Tandem CAR-E containing dinucleotide substitutions is
non-functional in RNA export. (A) Schematic of CMV-b-globin
cDNA construct showing sequences of the CAR-E and each of the
mutants that were inserted into the cDNA. Mutated nucleotides are
shown in lower case. (B) Western analysis at 24 h (Day 1) or 45 h
(Day 2) after transient transfection of the indicated constructs into
HeLa cells. HA-b-globin and tubulin (loading control) are indicated.
(C) Nucleocytoplasmic distribution of CAR-Em1-5 transcripts was
determined by FISH. DAPI staining was used to identify the nucleus.
Scale bar: 10 mm.
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indicating that the effect we observed is not due to a
random sequence but is instead specific to the CAR-E
sequence. The tandem CAR-E is similar to CARs in
that they both promote cytoplasmic accumulation of

RNA. This effect is distinguished from elements that
enhance RNA stability, such as the ENE in the Kaposi’s
sarcoma-associated herpesvirus, which stabilizes the RNA
but does not affect RNA localization or protein produc-
tion (44,45).
Despite the functionality of the multimerized CAR-E in

promoting export of cDNA transcripts, we were unable to
observe an export defect when the elements were mutated
in their natural context in the CAR. However, our
previous work showed that the antisense of the CARs
have no activity in mRNA export (10). Thus, the sense
strand of the CARs must contain elements or structures
that promote cytoplasmic accumulation of the intronless
mRNAs. One of these elements may be the CAR-E that
we identified here, but additional sequences remain to be
identified. Recently, a new, curated resource called the
Intronless Gene Database was reported (46). It contains
687 human intronless genes, which represents �3% of the
genome (46,47). In a global in silico analysis of these
genes, we identified six 10-nt motifs that were present in
>90% of the intronless genes with one highly similar to
CAR-E. It is possible that one or more of these motifs
function in intronless mRNA export and/or that a struc-
ture(s) is involved. These possibilities require further
investigation.
Consistent with the possibility that the CAR-Es

function in intronless mRNA export, we found that the
tandem CAR-E, but not the mutant CAR-Em2, assembles
into an RNP that is enriched in the TREX mRNA export
machinery as well as Prp19 complex components and
U2AF2. Interestingly, both the Prp19 complex and
U2AF2 were previously found to function in the intronless
mRNA export pathway in yeast and Drosophila, respect-
ively (18,32). Moreover, knockdown of TREX compo-
nents, Prp19 complex components (Xab2, Aqr, Crnkl1
or Isy1), or U2AF2 resulted in nuclear retention of the nat-
urally intronless mRNAs [(10), this study]. Knockdown of
other Prp19 complex components, such as Prp19,
CCDC16, PPIE and PLRG1, had partial or no effect on
export of intronless mRNAs (data not shown). These
results may be explained by functional redundancy as
observed for UAP56 and URH49 (9,13,48); insufficient
knockdown to observe a robust phenotype or some of
the Prp19 components may form different complexes
with distinct functions.
In addition to the enrichment of TREX and Prp19

complex components, we observed that many other
proteins, including splicing factors, were enriched in the
CAR-E RNP (Supplementary Table S1). As splicing
promotes export of mRNAs generated by splicing, an
interesting possibility is that splicing factors also play a
role in export of naturally intronless mRNAs. This possi-
bility is supported by previous work showing a role for SR
proteins in histone mRNA export (49) and the studies
showing a role for UAP56 (43,50), U2AF2 (32) and the
Prp19 complex in intronless mRNA export (18). Another
possible explanation for the association of splicing factors
with the CAR-E mRNP is that these factors participate in
protein–protein interactions with export factors. We note
that the TREX components Aly and CIP29 were not
detected in the CAR-E mRNP. Extensive additional
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studies are needed to determine whether other factors
enriched in the CAR-E RNP are involved in export of
naturally intronless mRNAs.
Our data, together with previous work, suggest that the

mRNA export machinery can be recruited either in a
sequence-dependent manner (this study) or in a
splicing-dependent manner (7). Thus, the CAR-E may
have general utility for enhancing the expression of
cDNAs without the need for insertion of an intron.
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ACKNOWLEDGEMENTS

The authors thank Marlene Winkelbauer-Hurt, Eric
Folco, Yong Yu and Tomohiro Yamazaki for useful dis-
cussions and comments on the manuscript. They also
thank the Nikon Imaging Center at Harvard Medical
School for assistance with microscopy.

FUNDING

Funding for open access charge: The National Institutes
of Health [GM043375 to R.R.].

Conflict of interest statement. None declared.

REFERENCES

1. Cramer,P., Srebrow,A., Kadener,S., Werbajh,S., de la Mata,M.,
Melen,G., Nogues,G. and Kornblihtt,A.R. (2001) Coordination
between transcription and pre-mRNA processing. FEBS Lett.,
498, 179–182.

2. Maniatis,T. and Reed,R. (2002) An extensive network of coupling
among gene expression machines. Nature, 416, 499–506.

3. Moore,M.J. and Proudfoot,N.J. (2009) Pre-mRNA processing
reaches back to transcription and ahead to translation. Cell, 136,
688–700.

4. Perales,R. and Bentley,D. (2009) ‘‘Cotranscriptionality’’: the
transcription elongation complex as a nexus for nuclear
transactions. Mol. Cell, 36, 178–191.

5. Masuda,S., Das,R., Cheng,H., Hurt,E., Dorman,N. and Reed,R.
(2005) Recruitment of the human TREX complex to mRNA
during splicing. Genes Dev., 19, 1512–1517.

6. Reed,R. and Hurt,E. (2002) A conserved mRNA export
machinery coupled to pre-mRNA splicing. Cell, 108, 523–531.

7. Kohler,A. and Hurt,E. (2007) Exporting RNA from the nucleus
to the cytoplasm. Nat. Rev. Mol. Cell. Biol., 8, 761–773.

8. Lu,S. and Cullen,B.R. (2003) Analysis of the stimulatory effect of
splicing on mRNA production and utilization in mammalian
cells. RNA, 9, 618–630.

9. Dias,A.P., Dufu,K., Lei,H. and Reed,R. (2010) A role for TREX
components in the release of spliced mRNA from nuclear speckle
domains. Nat. Commun., 1, 97.

10. Lei,H., Dias,A.P. and Reed,R. (2011) Export and stability of
naturally intronless mRNAs require specific coding region
sequences and the TREX mRNA export complex. Proc. Natl
Acad. Sci. USA, 108, 17985–17990.

11. Valencia,P., Dias,A.P. and Reed,R. (2008) Splicing promotes
rapid and efficient mRNA export in mammalian cells. Proc. Natl
Acad. Sci. USA, 105, 3386–3391.

12. Strasser,K., Masuda,S., Mason,P., Pfannstiel,J., Oppizzi,M.,
Rodriguez-Navarro,S., Rondon,A.G., Aguilera,A., Struhl,K.,
Reed,R. et al. (2002) TREX is a conserved complex coupling
transcription with messenger RNA export. Nature, 28, 28.

13. Dufu,K., Livingstone,M.J., Seebacher,J., Gygi,S.P., Wilson,S.A.
and Reed,R. (2010) ATP is required for interactions between
UAP56 and two conserved mRNA export proteins, Aly and
CIP29, to assemble the TREX complex. Genes Dev., 24,
2043–2053.

14. Cheng,H., Dufu,K., Lee,C.-S., Hsu,J.L., Dias,A. and Reed,R.
(2006) Human mRNA export machinery recruited to the 5’ end
of mRNA. Cell, 127, 1389–1400.

15. Abruzzi,K.C., Lacadie,S. and Rosbash,M. (2004) Biochemical
analysis of TREX complex recruitment to intronless and
intron-containing yeast genes. EMBO J., 23, 2620–2631.

16. Johnson,S.A., Cubberley,G. and Bentley,D.L. (2009)
Cotranscriptional recruitment of the mRNA export factor Yra1
by direct interaction with the 3’ end processing factor Pcf11. Mol.
Cell, 33, 215–226.

17. Zenklusen,D., Vinciguerra,P., Wyss,J.C. and Stutz,F. (2002)
Stable mRNP formation and export require cotranscriptional
recruitment of the mRNA export factors Yra1p and Sub2p by
Hpr1p. Mol. Cell. Biol., 22, 8241–8253.

18. Chanarat,S., Seizl,M. and Straber,K. (2011) The Prp19 complex is
a novel transcription elongation factor required for TREX
occupancy at transcribed genes. Genes Dev., 25, 1147–1158.

19. David,C.J., Boyne,A.R., Millhouse,S.R. and Manley,J.L. (2011)
The RNA polymerase II C-terminal domain promotes splicing
activation through recruitment of a U2AF65-Prp19 complex.
Genes Dev., 25, 972–983.

20. Kuraoka,I., Ito,S., Wada,T., Hayashida,M., Lee,L., Saijo,M.,
Nakatsu,Y., Matsumoto,M., Matsunaga,T., Handa,H. et al.
(2008) Isolation of XAB2 complex involved in pre-mRNA
splicing, transcription, and transcription-coupled repair. J. Biol.
Chem., 283, 940–950.

21. Chan,S.P., Kao,D.I., Tsai,W.Y. and Cheng,S.C. (2003) The
Prp19p-associated complex in spliceosome activation. Science, 302,
279–282.

22. Boyne,J.R., Colgan,K.J. and Whitehouse,A. (2008) Herpesvirus
saimiri ORF57: a post-transcriptional regulatory protein. Front
Biosci., 13, 2928–2938.

23. Chen,I.H., Sciabica,K.S. and Sandri-Goldin,R.M. (2002) ICP27
interacts with the RNA export factor Aly/REF to direct herpes
simplex virus type 1 intronless mRNAs to the TAP export
pathway. J. Virol., 76, 12877–12889.

24. Guang,S., Felthauser,A.M. and Mertz,J.E. (2005) Binding of
hnRNP L to the pre-mRNA processing enhancer of the herpes
simplex virus thymidine kinase gene enhances both
polyadenylation and nucleocytoplasmic export of intronless
mRNAs. Mol. Cell. Biol., 25, 6303–6313.

25. Toth,Z. and Stamminger,T. (2008) The human cytomegalovirus
regulatory protein UL69 and its effect on mRNA export. Front
Biosci., 13, 2939–2949.

26. Wang,W., Cui,Z.Q., Han,H., Zhang,Z.P., Wei,H.P., Zhou,Y.F.,
Chen,Z. and Zhang,X.E. (2008) Imaging and characterizing
influenza A virus mRNA transport in living cells. Nucleic Acids
Res., 36, 4913–4928.

27. Huang,Y. and Carmichael,G.G. (1997) The mouse histone H2a
gene contains a small element that facilitates cytoplasmic
accumulation of intronless gene transcripts and of unspliced
HIV-1-related mRNAs. Proc. Natl Acad. Sci. USA, 94,
10104–10109.

28. Huang,Y., Wimler,K.M. and Carmichael,G.G. (1999) Intronless
mRNA transport elements may affect multiple steps of
pre-mRNA processing. EMBO J., 18, 1642–1652.

29. Huang,Y., Gattoni,R., Stevenin,J. and Steitz,J.A. (2003) SR
splicing factors serve as adapter proteins for TAP-dependent
mRNA export. Mol. Cell, 11, 837–843.

30. Gilbert,W. and Guthrie,C. (2004) The Glc7p nuclear phosphatase
promotes mRNA export by facilitating association of Mex67p
with mRNA. Mol. Cell, 13, 201–212.

31. Hargous,Y., Hautbergue,G.M., Tintaru,A.M., Skrisovska,L.,
Golovanov,A.P., Stevenin,J., Lian,L.Y., Wilson,S.A. and
Allain,F.H. (2006) Molecular basis of RNA recognition and TAP

2524 Nucleic Acids Research, 2013, Vol. 41, No. 4

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gks1314/-/DC1


binding by the SR proteins SRp20 and 9G8. EMBO J, 25,
5126–5137.

32. Blanchette,M., Labourier,E., Green,R.E., Brenner,S.E. and
Rio,D.C. (2004) Genome-wide analysis reveals an unexpected
function for the Drosophila splicing factor U2AF50 in the nuclear
export of intronless mRNAs. Mol. Cell, 14, 775–786.

33. Guang,S. and Mertz,J.E. (2005) Pre-mRNA processing enhancer
(PPE) elements from intronless genes play additional roles in
mRNA biogenesis than do ones from intron-containing genes.
Nucleic Acids Res., 33, 2215–2226.

34. Bailey,T.L., Boden,M., Buske,F.A., Frith,M., Grant,C.E.,
Clementi,L., Ren,J., Li,W.W. and Noble,W.S. (2009) MEME
SUITE: tools for motif discovery and searching. Nucleic Acids
Res., 37, W202–W208.

35. Grant,C.E., Bailey,T.L. and Noble,W.S. (2011) FIMO: scanning
for occurrences of a given motif. Bioinformatics, 27, 1017–1018.

36. Chua,K. and Reed,R. (1999) Human step II splicing factor hSlu7
functions in restructuring the spliceosome between the catalytic
steps of splicing. Genes Dev., 13, 841–850.

37. Lee,C.S., Dias,A.P., Jedrychowski,M., Patel,A.H., Hsu,J.L. and
Reed,R. (2008) Human DDX3 functions in translation and
interacts with the translation initiation factor eIF3. Nucleic Acids
Res., 36, 4708–4718.

38. Villen,J., Beausoleil,S.A. and Gygi,S.P. (2008) Evaluation of the
utility of neutral-loss-dependent MS3 strategies in large-scale
phosphorylation analysis. Proteomics, 8, 4444–4452.

39. Eng,J.K., McCormack,A.L. and Yates,J.R. (1994) An approach
to correlate tandem mass spectral data of peptides with amino
acid sequences in a protein database. J. Am. Soc.Mass Spectr., 5,
976–989.

40. Elias,J.E. and Gygi,S.P. (2007) Target-decoy search strategy for
increased confidence in large-scale protein identifications by mass
spectrometry. Nat. Methods, 4, 207–214.

41. Huttlin,E.L., Jedrychowski,M.P., Elias,J.E., Goswami,T., Rad,R.,
Beausoleil,S.A., Villen,J., Haas,W., Sowa,M.E. and Gygi,S.P.

(2010) A tissue-specific atlas of mouse protein phosphorylation
and expression. Cell, 143, 1174–1189.

42. Zhou,Z., Licklider,L.J., Gygi,S.P. and Reed,R. (2002)

Comprehensive proteomic analysis of the human spliceosome.
Nature, 419, 182–185.

43. Fleckner,J., Zhang,M., Valcarcel,J. and Green,M.R. (1997)
U2AF65 recruits a novel human DEAD box protein required for

the U2 snRNP-branchpoint interaction. Genes Dev., 11,
1864–1872.

44. Conrad,N.K., Mili,S., Marshall,E.L., Shu,M.D. and Steitz,J.A.

(2006) Identification of a rapid mammalian

deadenylation-dependent decay pathway and its inhibition by a
viral RNA element. Mol. Cell, 24, 943–953.

45. Conrad,N.K. and Steitz,J.A. (2005) A Kaposi’s sarcoma virus

RNA element that increases the nuclear abundance of intronless
transcripts. EMBO J, 24, 1831–1841.

46. Louhichi,A., Fourati,A. and Rebai,A. (2011) IGD: a resource for
intronless genes in the human genome. Gene, 488, 35–40.

47. Grzybowska,E.A. (2012) Human intronless genes: functional

groups, associated diseases, evolution, and mRNA processing in
absence of splicing. Biochem. Biophys. Res. Commun., 424, 1–6.

48. Pryor,A., Tung,L., Yang,Z., Kapadia,F., Chang,T.H. and

Johnson,L.F. (2004) Growth-regulated expression and G0-specific

turnover of the mRNA that encodes URH49, a mammalian
DExH/D box protein that is highly related to the mRNA export

protein UAP56. Nucleic Acids Res., 32, 1857–1865.
49. Huang,Y. and Steitz,J.A. (2001) Splicing factors SRp20 and 9G8

promote the nucleocytoplasmic export of mRNA. Mol. Cell, 7,

899–905.
50. Luo,M.J., Zhou,Z., Magni,K., Christoforides,C., Rappsilber,J.,

Mann,M. and Reed,R. (2001) Pre-mRNA splicing and mRNA
export linked by direct interactions between UAP56 and Aly.

Nature, 413, 644–647.

Nucleic Acids Research, 2013, Vol. 41, No. 4 2525


