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Evidence that the 5p12 Variant rs10941679 Confers
Susceptibility to Estrogen-Receptor-Positive
Breast Cancer through FGF10 and MRPS30 Regulation
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Javier Benitez,26,27 Anna González-Neira,26 M. Rosario Alonso,28 Guillermo Pita,28

Susan L. Neuhausen,29 Hoda Anton-Culver,30 Hermann Brenner,31,32,33 Volker Arndt,31 Alfons Meindl,34

Rita K. Schmutzler,35,36,37 Hiltrud Brauch,32,38,39 Ute Hamann,40 Daniel C. Tessier,41 Daniel Vincent,41
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Genome-wide association studies (GWASs) have revealed increased breast cancer risk associated with multiple genetic variants at 5p12.

Here, we report the fine mapping of this locus using data from 104,660 subjects from 50 case-control studies in the Breast Cancer

Association Consortium (BCAC). With data for 3,365 genotyped and imputed SNPs across a 1 Mb region (positions 44,394,495–

45,364,167; NCBI build 37), we found evidence for at least three independent signals: the strongest signal, consisting of a single SNP

rs10941679, was associated with risk of estrogen-receptor-positive (ERþ) breast cancer (per-g allele OR ERþ
¼ 1.15; 95% CI 1.13–1.18;

p ¼ 8.353 10�30). After adjustment for rs10941679, we detected signal 2, consisting of 38 SNPs more strongly associated with ER-nega-

tive (ER�) breast cancer (lead SNP rs6864776: per-a allele OR ER�
¼ 1.10; 95% CI 1.05–1.14; p conditional ¼ 1.44 3 10�12), and a single

signal 3 SNP (rs200229088: per-t allele OR ERþ
¼ 1.12; 95% CI 1.09–1.15; p conditional ¼ 1.12 3 10�05). Expression quantitative trait

locus analysis in normal breast tissues and breast tumors showed that the g (risk) allele of rs10941679 was associated with increased

expression of FGF10 and MRPS30. Functional assays demonstrated that SNP rs10941679 maps to an enhancer element that physically

interacts with the FGF10 and MRPS30 promoter regions in breast cancer cell lines. FGF10 is an oncogene that binds to FGFR2 and is

overexpressed in ~10% of human breast cancers, whereas MRPS30 plays a key role in apoptosis. These data suggest that the strongest

signal of association at 5p12 is mediated through coordinated activation of FGF10 and MRPS30, two candidate genes for breast cancer

pathogenesis.

Strong evidence for the existence of a breast cancer (MIM:

114480) susceptibility locus at 5p12 has been observed

through a GWAS in Iceland (SNP rs7703618),1 in the Breast

Cancer Association Consortium (BCAC; SNP rs981782,

371 Kb centromeric),2 and in the Cancer GEnetic Markers

of Susceptibility study (CGEMS; SNP rs4866929; 352 Kb
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centromeric; r2 ¼ 0.18).3 A subsequent study, using 22

SNPs in ~5,000 case subjects and ~33,000 control subjects

of European ancestry, reported that risk at this locus could

be explained by two SNPs: rs4415084 and rs10941679.4

More recently, a BCAC study confirmed that rs10941679

was associated with risk of lower-grade, progesterone

receptor (PGR [MIM: 607311])-positive breast cancer

tumors.5

Here, we report the comprehensive fine-scale mapping

of this locus in 104,660 subjects from 50 case-control

studies participating in BCAC, including 41 studies from

populations of European ancestry and nine of East Asian

ancestry, and we explore the functional mechanisms

underlying the associations in this region. Genotyping

was conducted with the COGS array, a custom array

comprising approximately 200,000 SNPs.6 After quality-

control exclusions, we analyzed data from 48,155 case sub-

jects and 43,612 control subjects of European ancestry and

6,269 case subjects and 6,624 control subjects of Asian

ancestry. Estrogen receptor (ESR1 [MIM: 133430]) status

of the primary tumor was available for 27,748 European

and 4,997 Asian case subjects; of these, 7,646 (22%) Euro-

pean and 1,623 (32%) Asian case subjects were ER�.

We examined a 1 Mb region (positions 44,394,495–

45,364,167; NCBI build 37 assembly) in which the 1000

Genomes Project cataloged 1,811 variants (March 2010

Pilot version 60 CEU project data). We aimed to genotype

all 628 SNPs with minor allele frequency (MAF) > 2% and

correlated with rs981782 and rs10941679 at r2 > 0.1 (n ¼

424), plus a set of SNPs designed to tag all remaining
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SNPs with r2 > 0.9 (n ¼ 184), but we managed to include

563 SNPs with a designability score (DS) > 0.9 and which

passed QC.6 IMPUTE v.2.0 was used to impute genotypes

of all known SNPs in the region using the 1000 Genome

Project data (March 2012 version) as a reference panel.

Case-control analyses were conducted on 3,365 SNPs

(563 genotyped and 2,776 imputed at r2 > 0.3). In Euro-

pean-ancestry women, 461 of these SNPs were associated

with overall breast cancer risk, 489 with ERþ and 38

with ER� breast cancer risk (p < 10�4; Table S1). SNP

rs10941679 showed the strongest overall association

(MAF ¼ 0.27, per-minor (g) allele: OR ¼ 1.12; 95% CI

1.10–1.14; p ¼ 2.55 3 10�26; Figure 1, Tables 1 and S1).

To identify additional association signals at this region,

we conducted a forward stepwise logistic regression exam-

ining SNPs with univariate p < 0.1 (n ¼ 1,040).6 The most

parsimonious model included three variants: SNP1

rs10941679 (signal 1), SNP2 rs6864776 (signal 2; condi-

tional p ¼ 6.22 3 10�11), and SNP3 rs200229088 (signal

3; conditional p¼ 1.123 10�5, borderline significance; Ta-

ble S2). SNP1 and SNP3 are weakly correlated (r2 ¼ 0.15)

but SNP2 was uncorrelated with the other two (r2 ¼ 0.07

and 0.05).

The top signal, SNP1 rs10941679, is markedly more sig-

nificant than any other SNP in the locus (likelihood ratio>

10,000:1). Hence, the most parsimonious explanation is

that this SNP is causally related to risk. The next most

strongly associated SNP, after adjustment for signal 1 SNP

rs10941679, was rs6864776, representing signal 2 (OR

per minor allele ¼ 1.04; 95% CI 1.02–1.06; p ¼ 7.84 3

10�4; conditional p ¼ 1.44 3 10�12). Within signal 2, a

further 37 SNPs correlated with rs6864776 at r2 > 0.6,

had likelihood ratios of <100:1 relative to rs6864776,

and hence could not be excluded from being causative

statistically (Table S2). After adjustment for both signal 1

SNP rs10941679 and signal 2 top SNP rs6864776, a single

SNP remained: rs200229088 (OR overall ¼ 1.09, 95%;

CI 1.07–1.12; p ¼ 2.28 3 10�12; conditional p ¼ 1.12 3

10�5). There are no other SNPs correlated with

rs200229088 that could explain this association. All other

SNPs were excluded from causality (likelihood ratio >

10,000:1; Table S2). Two of the excluded variants had

been previously postulated as likely causative variants4,7

and so we investigated these in more depth. We found

both SNPs to be partially correlated with all three signals

and consequently display initially inflated effects, which

are adjusted by the conditional analyses. Thus, SNP

rs44150844 (r2 with signal 1 SNP rs10941679 ¼ 0.51,

with signal 2 SNP rs6864776 ¼ 0.11, and with signal 3

SNP rs200229088 ¼ 0.37) has odds against causality >

10 million:1 versus signal 1 candidate rs10941679. Simi-

larly, SNP rs7716600, which is an eQTL for MRPS30

expression7 (r2 with SNP rs10941679 ¼ 0.77, with SNP

rs6864776 ¼ 0.05, and with SNP rs200229088 ¼ 0.12)

has odds against causality >160,000:1 versus signal 1

candidate rs10941679. These exclusions of former causal

candidates highlight the need for fine-mapping studies

before conducting functional analyses.

Haplotype analyses were conducted using the above

three signal-representative variants, which generated eight

haplotypes (Table 2). Haplotypes carrying the rare allele of

signal 3 SNP rs200229088 conferred higher risks than

corresponding haplotypes carrying the common allele,

consistent with this allele having an independent effect.

Haplotype G, carrying the minor alleles of both the signal

1 and 2 representative SNPs, is very rare and reveals

that their risk alleles are negatively correlated, which is

also consistent with our finding that signal 2 top SNP
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rs6864776 increases in significance after conditioning on

signal 1 SNP rs10941679 (Table 1).

We examined the associations of these three SNPs in the

Asian case-control studies within BCAC. SNP1 and SNP3

both replicated in the Asian studies and the relative risk

estimates with overall breast cancer were consistent with

those seen in the European population: per g-allele OR

(rs10941679)¼ 1.09; 95%CI 1.04–1.15; p¼ 0.0009, condi-

tional p¼ 0.0859 and per t-allele OR (rs200229088)¼ 1.09;

95% CI 1.02–1.15; p ¼ 0.0065, conditional p ¼ 0.9149 (Ta-

ble 1). SNP2 was not replicated in Asians (per a-allele OR ¼

0.94; 95%CI 0.89–1.00; p¼ 0.034, conditional p¼ 0.8901)

(Table 1).

We investigated the associations of these three sig-

nals with tumor subtypes based on ER status. SNP1

rs10941679 was largely associated with ERþ breast cancer

(OR ERþ
¼ 1.15; 95%CI 1.13–1.18; p¼ 8.353 10�30 versus

OR ER� disease ¼ 1.04; 95% CI 1.00–1.08; p ¼ 0.059;

Figure 1. Manhattan Plot of the 5p12 Breast Cancer Susceptibility Locus
SNPs are plotted according to their chromosomal position on the x axis and their overall p values (log10 values, likelihood ratio test)
from the European BCAC studies (48,155 case and 43,612 control subjects) on the y axis. The purple dotted line intersects the y axis
at p ¼ 10�8 and indicates genome-wide significance. Candidate SNPs in signal 1 (rs10941679), signal 2 (38 SNPs), and signal 3
(rs200229088) are shown as short vertical lines. The locations of annotated genes and putative lncRNA transcripts from GENCODE
and enhancers predicted in Corradin et al.13 and Hnisz et al.12 from breast cancer cell lines are shown in the bottom panels.

Table 1. Associations of the Top SNPs from Each Signal with Overall Breast Cancer Risk and Breast Cancer Stratified by ER Status

Sig SNP Com Min MAF*
OR Overall
95% CI p Overall

Conditional
p Value OR ER� p ER� OR ERþ p ERþ

Europeans

1 rs10941679 A G 0.27 1.12 (1.10–1.14) 2.55 3 10�26 6.55 3 10�24 1.04 (1–1.08) 0.059 1.15 (1.13–1.18) 8.35 3 10�30

2 rs6864776 G A 0.23 1.04 (1.02–1.06) 7.84 3 10�4 1.44 3 10�12 1.10 (1.05–1.14) 2.5 3

10�5
1.02 (0.99–1.05) 0.08

3 rs200229088 TTG T 0.31 1.09 (1.07–1.12) 2.28 3 10�12 1.12 3 10�5 1.03 (0.99–1.09) 0.11 1.12 (1.09–1.15) 7.51 3 10�14

Asians

1 rs10941679 A G 0.50 1.09 (1.04–1.15) 9.12 3 10�4 0.0859 1.03 (0.95–1.11) 0.53 1.11 (1.04–1.18) 1.32 3 10�3

2 rs6864776 G A 0.32 0.94 (0.89–1.00) 3.47 3 10�2 0.8901 0.95 (0.87–1.04) 0.28 0.94 (0.89–1.00) 6.24 3 10�2

3 rs200229088 TTG T 0.37 1.09 (1.02–1.15) 6.52 3 10�3 0.9149 1.04 (0.95–1.14) 0.43 1.08 (1.00–1.16) 3.65 3 10�2

Abbreviations are as follows: Com, common alleles; Min, minor alleles; MAF, minor allele frequency; OR, per-allele odds ratios (OR); 95% CI, 95% confidence
intervals and 1 degree of freedom; p, significance levels for overall breast cancer are indicated in European and Asian case-control studies, and separately for
ERþ and ER� disease.
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p heterogeneity ¼ 1.5 3 10�5; Table 1) as was SNP3

rs200229088 (OR ERþ
¼ 1.12; 95% CI 1.09–1.15; p ¼

7.51 3 10�14 versus OR ER�
¼ 1.03; 95% CI 0.99–1.09;

p ¼ 0.11, p heterogeneity ¼ 0.02). By contrast, SNP2

rs6864776 was moderately associated with ER� but not

ERþ tumors (OR ER�
¼ 1.10; 95% CI 1.05–1.14; p ¼

2.55 3 10�5 versus OR ERþ
¼ 1.02; 95% CI 0.99–1.05;

p ¼ 0.08; p heterogeneity ¼ 0.01; Table 1).

Candidate SNPs 1–3 span a 1.7 Mb region on 5p12 that

includes three annotated genes—FGF10 (MIM: 602115),

MRPS30 (MIM: 611991), and HCN1 (MIM: 602780)—and

several putative long noncoding RNAs (lncRNAs; Figure 1).

To identify potential target gene(s), we examined the asso-

ciations of the three lead SNPs with expression levels of

genes located within 1 Mb in three different studies: (1)

116 normal breast samples and 241 breast tumors from

the Norwegian Breast Cancer Study (NBCS),8 (2) 93 normal

and 765 breast cancer tissues from the TCGA study (germ-

line genotype data from Affymetrix SNP 6 array were

obtained from TCGA dbGAP data portal9), and (3) 183

normal breast samples from the Genotype-Tissue Expres-

sion (GTEx) project.10 The SNP1 rs10941679 risk-associ-

ated g-allele was moderately associated with increased

FGF10 mRNA expression in NBCS normal breast (p ¼

0.013, p corrected ¼ 0.39) and breast tumors (p ¼ 0.005,

p corrected ¼ 0.38) as well as in GTEx normal breast (p cor-

rected ¼ 0.02; Figures 2A and S1A). The effect in TCGAwas

in the same direction, though not significant (normal

breast p ¼ 0.353, p corrected ¼ 0.95 and breast tumors

p ¼ 0.057, p corrected ¼ 0.41; Figure S1B). The g-allele

was also associated with increased expression of MRPS30

in the NBCS normal (p ¼ 0.002, p corrected ¼ 0.36)

and breast tumors (p ¼ 0.049, p corrected ¼ 0.43), in

GTEx normal breast (p corrected ¼ 0.002), and in TCGA

(normal breast p ¼ 6.86 3 10�5, p corrected ¼ 5.31 3

10�3 and breast tumors p ¼ 7.21 3 10�6, p corrected ¼

9.35 3 10�4; Figures 2B, S1A, and S1C). No asso-

ciations were observed with SNP2 rs6864776 or SNP3

variant rs200229088. We also measured endogenous levels

of FGF10, MRPS30, and nearby lncRNAs FGF10-AS1,

BRCAT54, RP11-503D12.1, and RP11-473L15.3 mRNA in

breast cell lines homozygous (A/A or G/G) or heterozygous

(A/G) for the common allele of SNP1 (Table S3, Figures 2C,

2D, S2, and S3). Total RNA from cell lines was extracted

using Trizol and complementary DNA synthesized using

random primers as per manufacturers’ instructions. Quan-

titative PCR (qPCR) were performed using TaqMan assays

for FGF10 and MRPS30 normalized against beta-glucuron-

idase (GUSB [MIM: 611499]) or with SYTO9 for lncRNAs

normalized against TATA box-binding protein (TBP

[MIM: 600075]; primers are listed in Table S4). Although

the number of ERþ breast cell lines carrying the risk

allele was limited, FGF10 and MRPS30 mRNA levels were

significantly higher in the BT474 heterozygous cell line

(Figures 2C and 2D). BRCAT54was detected in themajority

of cell lines but its expression appears to be genotype inde-

pendent (Figure S3A). FGF10-AS1, RP11-503D12.1, and

RP11-473L15.3 transcripts were either expressed at very

low levels or not detected in the cell lines analyzed (Figures

S3B–S3D). Therefore, although we cannot rule out the pos-

sibility that the risk SNPs may influence local lncRNA

expression, the low or absent transcript levels precluded

any further evaluation.

Candidate causal SNPs were then explored using

publicly available datasets from ENCODE,11 which in-

cludes information such as the location of promoter and

enhancer histone marks, open chromatin, bound pro-

teins, and altered motifs for the MCF7 breast cancer cell

line, and from Hnisz et al.12 and Corradin et al.13 to iden-

tify the location of likely enhancers and their gene targets

in a cell-specific context. Analysis of cis enhancer-gene

interactions via PreSTIGE13 showed evidence of putative

regulatory elements (PREs) surrounding the top risk-asso-

ciated SNPs in MCF7 breast cancer cells, but no histone-

marked elements harboring a risk SNP in this cell line or

in a range of cell lines and tissues analyzed in Roadmap

(Figures 1 and S4). However, it is possible that certain

epigenetic marks may be detected only in a specific cell

subtype such as breast stem cells or in response to an

external stimulus.

Table 2. Haplotype Analysis across the BCAC Studies

Haplotypes
rs10941679
Signal 1

rs6864776
Signal 2

rs200229088
Signal 3

Haplotype
Frequency OR p Value

A 1 1 1 0.395440 – –

B 1 1 2 0.120099 1.06 (1.02–1.10) 1.49 3 10�3

C 1 2 1 0.199599 1.10 (1.06–1.13) 7.76 3 10�11

D 1 2 2 0.018665 1.15 (1.04–1.27) 5.03 3 10�3

E 2 1 1 0.098169 1.14 (1.09–1.19) 1.45 3 10�11

F 2 1 2 0.154525 1.20 (1.16–1.24) 2.72 3 10�30

G 2 2 1 0.004248 0.91 (0.72–1.15) 4.15 3 10�1

H 2 2 2 0.009253 1.28 (1.10–1.48) 1.14 3 10�3

Each haplotype was compared to the ancestral haplotype carrying the common alleles of signal 1 SNP rs10941679, signal 2 SNP rs6864776, and signal 3 SNP
rs200229088 (haplotype A).
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To identify target gene(s), we performed chromatin

conformation capture (3C) assays in ERþ MCF7, BT474,

and MDA-MB-361 and ER� MDA-MB-231 breast cancer

cell lines and Bre80 normal breast cells (Table S5).8 3C li-

braries were created by cross-linking the chromatin from

cell lines; DNA was then digested with EcoRI, which flanks

12 contiguous fragments that cover the PRE, and the

FGF10, MRPS30, and HCN1 promoters (Table S6); DNA

was religated and decrosslinked; and qPCR with primers

for the bait (gene promoters) and interactors (12 PRE frag-

ments) was performed to detect the presence of ligation

products, representing gene loops. BAC clones covering

the regions of interest were used to normalize for PCR effi-

ciency. These assays showed that the PRE containing SNP1

frequently interacted with the FGF10 and MRPS30 pro-

moter regions in MCF7 and BT474 breast cancer cell

lines, but only with MRPS30 in the MDA-MB-361, MDA-

MB-231, and Bre80 cell lines. This latter result was ex-

pected because FGF10 is not expressed or expressed at

very low levels in these cell lines (Figures 2C, 3A, S5, and

S6). Notably, both genes share a bidirectional promoter

with the lncRNAs FGF10-AS1 and BRCAT54, raising the

possibility that these transcripts are also targets of the

PRE (Figure 3A). No additional interactions were detected

between the PRE and other annotated genes within 1 Mb

of the PRE, including HCN1 (Figure S5). To assess the po-

tential impact of SNP1 on the identified chromatin inter-

actions, allele-specific 3C was performed in heterozygous

BT474 cell lines.8 However, the sequence profiles revealed

that SNP1 had no significant effect on chromatin looping

(Figure S7).

The regulatory capability of the PRE, combined with the

effect of SNP1, was further examined in reporter assays.

Promoter-driven luciferase reporter constructs were gener-

ated by the insertion of PCR-amplified fragments contain-

ing FGF10, FGF10-AS1, MRPS30, or BRCAT54 promoters

into pGL3-Basic.14 A 1,736-bp PRE fragment (containing

either the common or minor allele of rs10941679) was

then generated by PCR and cloned downstream of the

modified pGL3-promoter constructs (Table S7). MCF7

and BT474 breast cancer cell lines plus Bre80 normal breast

cells were transfected with the reporter plasmids and

luciferase activity was measured 24 hr after transfection.

To correct for any differences in transfection efficiency or

Figure 2. Association of rs10941679 with FGF10 andMRPS30 Expression in Normal Breast Tissues, Breast Tumors, and Breast Cancer
Cell Lines
(A and B) FGF10 (A) or MRPS30 (B) expression in normal breast (n ¼ 116) or breast tumors from NBCS dataset (n ¼ 241). SNP genotypes
are shown on the x axis and log2-normalized gene expression values on the y axis. p values are presented before and after correction for
multiple testing using FDR as implemented in p.adjust function in R. Each box plot shows the median rank normalized gene expression
(horizontal line), the first through third quartiles (box), and 1.53 the interquartile range (whiskers).
(C and D) Endogenous FGF10 (Hs00610298_m1) (C) or MRPS30 (Hs00169612_m1) (D) expression measured by qPCR in untreated
breast cell lines and normalized to GUSB (4326320E). Error bars denote SEM (n ¼ 3). p values were determined with a two-tailed
t test. **p < 0.01, ***p < 0.001.
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cell lysate preparation, Firefly luciferase activity was

normalized to Renilla. Notably, the ‘‘Ref PRE’’ acted as a

transcriptional enhancer, leading to a 2- to 3-fold increase

in FGF10, MRPS30, and BRCAT54 promoter activity, but

had no effect on the FGF10-AS1 promoter in MCF7 and

BT474 cells (Figures 3B and S8). The enhancer activity

was also observed for theMRPS30 and BRCAT54 promoters

in Bre80 cells (Figure S8). In all cell lines, inclusion of the

SNP1 risk (g) allele had no significant effect on the PRE

enhancer activity. Although this appears to rule out an ef-

fect of this SNP on transactivation, it is possible that SNP1

affects the recruitment of key proteins required for the

epigenetic modification of the enhancer, which would

not be observed in a reporter assay. Another possibility is

that the SNP effect may be observed only under certain

biological conditions such as growth factor stimulation.

To seek further evidence that SNP1 lies within an

enhancer element, we performed electrophoretic mobility

shift assays (EMSAs) for both the protective (a) and risk (g)

alleles.15 Nuclear lysates were prepared from ERþ BT474,

MCF7, and MDA-MB-361 or ER� MDA-MB-231 and

Hs578T cells using the NE-PER nuclear and cytoplasmic

extraction reagents. Biotinylated oligonucleotide duplexes

were prepared by combining sense and antisense oligonu-

cleotides, heat annealing, and slow cooling. Duplex-bound

complexes were transferred onto Zeta-Probe positively

charged nylon membranes by semi-dry transfer then

cross-linked onto the membranes. Membranes were pro-

cessed with the LightShift Chemiluminescent EMSA kit

as per the manufacturer’s instructions, and signals were

visualized with the C-DiGit blot scanner. For SNP1, we

observed allele-specific binding by nuclear proteins only

in the ERþ BT474, MCF7, and MDA-MB-361 extracts (Fig-

ures 3C and S9). The protein-DNA complexes were shown

to be specific, as demonstrated by increasing amounts of

cold self-competitor (Figures 3C and S9 and Table S8).
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Figure 3. Distal Regulation of FGF10 and MRPS30 at the 5p12 Risk Region
(A) 3C interaction profiles between the FGF10/FGF10AS-1 or MRPS30/BRCAT54 bidirectional promoters and the putative regulatory
element (PRE; gray bar) containing SNP rs10941679. Anchor points are set at the promoters. Graphs represent one of three independent
experiments (see Figure S5B). Error bars denote SD.
(B) Luciferase reporter assays after transient transfection of ERþ BT474 breast cancer cell lines. The PRE containing the major SNP allele
was cloned downstream of target gene promoter-driven luciferase constructs (Ref PRE). The risk g-allele was engineered into the con-
structs and designated by the rs ID. Primers are listed in Table S7. Error bars denote 95% confidence intervals from three independent
experiments. p values were determined by 2-way ANOVA followed by Dunnett’s multiple comparisons test (***p < 0.001).
(C) EMSA for oligonucleotides containing SNP rs1094617 with the A¼ common allele andG¼minor allele as indicated below the panel,
assayed using BT474 nuclear extracts. Primers are listed in Table S8. Labels above each lane indicate inclusion of competitor oligonucle-
otides at 30- and 100-fold molar excess, respectively: (-) no competitor and control denotes a non-specific competitor. A red arrowhead
shows a band of different mobility detected between the common and minor alleles.
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Further EMSAs using competitor DNA or antibody

supershifts against predicted transcription factors (TFs)

suggested four proteins bound to the SNP site including

FOXA1, FOXA2, CEBPB, and OCT1 (Figure S10 and Table

S9). To confirm TF binding in vivo, we performed chro-

matin immunoprecipitation (ChIP) in heterozygous

BT474 cells as previously described (Table S10).15 When

compared to an IgG control antibody, we observed a mod-

erate enrichment in FOXA1 and OCT1 binding to DNA

overlapping SNP rs10941679, but no difference between

alleles in this cell line (Figure S11). In addition, western

blot analysis indicated that FOXA1 protein expression

was restricted to the ERþ breast cancer cell lines analyzed,

whereas OCT1 was more widely expressed (Figure S12).

FOXA1 is a pioneer factor and master regulator of ER ac-

tivity due to its ability to open local chromatin and recruit

ER to target gene promoters.16 Notably, breast cancer-asso-

ciated SNPs are enriched for FOXA1 binding17 and several

studies have linked cooperative binding of FOXA1, ER, and

OCT1 to increased gene transcription.18,19Consistent with

our eQTL data, it is tempting to speculate that in specific

ERþ cell subtypes and/or conditions, rs10941679 alters

FOXA1 affinity and OCT1 recruitment leading to target

gene activation.

In conclusion, we have provided evidence for at least

three independent causal SNPs with effects on the risk of

breast cancer at this locus. The minor g-allele of signal 1

SNP rs10941679 conferred a 15% increased risk of ERþ

breast cancer and higher expression levels of the MRPS30

and FGF10 genes and was the most strongly associated

SNP with MRPS30 expression in this 1 Mb region.

MRPS30—also called PDCD9 (Programmed Cell Death

protein 9)—encodes a mitochondrial ribosomal protein

involved in apoptosis.20 Although the role of mitochon-

dria in apoptosis remains unclear, it is well established

that cytochrome c and other pro-apoptotic proteins

are released during cell death initiation.20 Clearly, further

investigation of the function of this protein is now

merited. By contrast, FGF10 is an extensively studied

gene with compelling data suggesting its involvement in

breast tumorigenesis. FGF10 is a member of the fibroblast

growth factor (FGF) family and encodes a glycoprotein

that specifically binds to FGFR2 (splice FGFR2IIIb) to con-

trol signaling pathways including cell differentiation,

proliferation, and apoptosis.21 Variants regulating FGFR2

(MIM: 176943) have the strongest association with ERþ

breast cancer susceptibility identified to date.22 FGF10 is

overexpressed in ~10% of human breast cancers23 and

increased levels of FGF10 are highly correlated with pro-

liferation rate of breast cancer cell lines and cancer cell

invasion.24,25 It signals through multiple downstream

pathways including MAPK and WNT and genes such as

FGFR2, CCND1 (MIM: 168461), and TGFB1 (MIM:

190180),21,24 all known to play key roles in breast cancer.

Therapeutic targeting of FGFs and their receptors (FGFRs)

is currently a major area of drug development research,

and the identification of a subgroup of individuals diag-

nosed with breast cancer with alterations in these path-

ways may open new avenues for personalized medicine

and pathway-targeted treatments.
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Sigova, A.A., Hoke, H.A., and Young, R.A. (2013). Super-en-

hancers in the control of cell identity and disease. Cell 155,

934–947.

13. Corradin, O., Saiakhova, A., Akhtar-Zaidi, B., Myeroff, L., Wil-

lis, J., Cowper-Sal lari, R., Lupien, M., Markowitz, S., and Sca-

cheri, P.C. (2014). Combinatorial effects of multiple enhancer

variants in linkage disequilibrium dictate levels of gene

expression to confer susceptibility to common traits. Genome

Res. 24, 1–13.

14. Glubb, D.M., Maranian, M.J., Michailidou, K., Pooley, K.A.,

Meyer, K.B., Kar, S., Carlebur, S., O’Reilly, M., Betts, J.A., Hill-

man, K.M., et al.; GENICA Network; kConFab Investigators;

Norwegian Breast Cancer Study (2015). Fine-scale mapping

of the 5q11.2 breast cancer locus reveals at least three inde-

pendent risk variants regulating MAP3K1. Am. J. Hum. Genet.

96, 5–20.

15. Dunning, A.M., Michailidou, K., Kuchenbaecker, K.B.,

Thompson, D., French, J.D., Beesley, J., Healey, C.S., Kar, S.,

Pooley, K.A., Lopez-Knowles, E., et al.; EMBRACE; GEMO

Study Collaborators; HEBON; kConFab Investigators (2016).

Breast cancer risk variants at 6q25 display different phenotype

associations and regulate ESR1, RMND1 and CCDC170. Nat.

Genet. 48, 374–386.

16. Hurtado, A., Holmes, K.A., Ross-Innes, C.S., Schmidt, D., and

Carroll, J.S. (2011). FOXA1 is a key determinant of estrogen re-

ceptor function and endocrine response. Nat. Genet. 43, 27–33.

17. Cowper-Sal lari, R., Zhang, X., Wright, J.B., Bailey, S.D., Cole,

M.D., Eeckhoute, J., Moore, J.H., and Lupien,M. (2012). Breast

cancer risk-associated SNPs modulate the affinity of chro-

matin for FOXA1 and alter gene expression. Nat. Genet. 44,

1191–1198.

18. Meyer, K.B., Maia, A.T., O’Reilly, M., Teschendorff, A.E., Chin,

S.F., Caldas, C., and Ponder, B.A. (2008). Allele-specific up-

regulation of FGFR2 increases susceptibility to breast cancer.

PLoS Biol. 6, e108.

19. Belikov, S., Astrand, C., andWrange, O. (2009). FoxA1 binding

directs chromatin structure and the functional response of a

glucocorticoid receptor-regulated promoter. Mol. Cell. Biol.

29, 5413–5425.

20. Cavdar Koc, E., Ranasinghe, A., Burkhart, W., Blackburn, K.,

Koc, H., Moseley, A., and Spremulli, L.L. (2001). A new face

on apoptosis: death-associated protein 3 and PDCD9 aremito-

chondrial ribosomal proteins. FEBS Lett. 492, 166–170.

21. Turner, N., and Grose, R. (2010). Fibroblast growth factor

signalling: from development to cancer. Nat. Rev. Cancer 10,

116–129.

22. Meyer, K.B., O’Reilly, M., Michailidou, K., Carlebur, S., Ed-

wards, S.L., French, J.D., Prathalingham, R., Dennis, J., Bolla,

M.K., Wang, Q., et al.; GENICA Network; kConFab Investiga-

tors; Australian Ovarian Cancer Study Group (2013). Fine-

scale mapping of the FGFR2 breast cancer risk locus: putative

functional variants differentially bind FOXA1 and E2F1. Am.

J. Hum. Genet. 93, 1046–1060.

23. Theodorou, V., Boer, M., Weigelt, B., Jonkers, J., van der Valk,

M., and Hilkens, J. (2004). Fgf10 is an oncogene activated by

MMTV insertional mutagenesis in mouse mammary tumors

and overexpressed in a subset of human breast carcinomas.

Oncogene 23, 6047–6055.

24. Abolhassani, A., Riazi, G.H., Azizi, E., Amanpour, S., Muham-

madnejad, S., Haddadi, M., Zekri, A., and Shirkoohi, R. (2014).

FGF10: type III epithelial mesenchymal transition and inva-

sion in breast cancer cell lines. J. Cancer 5, 537–547.

25. Chioni, A.M., and Grose, R. (2009). Negative regulation of

fibroblast growth factor 10 (FGF-10) by polyoma enhancer

activator 3 (PEA3). Eur. J. Cell Biol. 88, 371–384.

The American Journal of Human Genetics 99, 903–911, October 6, 2016 911

http://refhub.elsevier.com/S0002-9297(16)30291-9/sref6
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref6
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref6
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref6
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref6
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref7
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref7
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref7
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref7
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref7
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref8
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref8
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref8
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref8
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref8
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref8
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref9
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref9
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref9
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref9
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref10
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref10
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref11
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref11
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref11
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref11
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref11
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref11
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref11
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref11
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref11
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref11
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref12
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref12
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref12
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref12
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref13
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref13
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref13
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref13
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref13
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref13
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref14
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref14
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref14
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref14
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref14
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref14
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref14
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref15
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref15
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref15
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref15
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref15
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref15
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref15
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref16
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref16
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref16
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref17
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref17
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref17
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref17
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref17
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref18
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref18
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref18
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref18
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref19
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref19
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref19
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref19
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref20
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref20
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref20
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref20
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref21
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref21
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref21
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref22
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref22
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref22
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref22
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref22
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref22
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref22
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref23
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref23
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref23
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref23
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref23
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref24
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref24
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref24
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref24
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref25
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref25
http://refhub.elsevier.com/S0002-9297(16)30291-9/sref25

	Evidence that the 5p12 Variant rs10941679 Confers Susceptibility to Estrogen-Receptor-Positive Breast Cancer through FGF10  ...
	Supplemental Data
	Web Resources
	References


