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Abstract. We show that finding an efficiently computable injective homomorphism
from the XTR subgroup into the group of points over GF(p2) of a particular type of
supersingular elliptic curve is at least as hard as solving the Diffie–Hellman problem in
the XTR subgroup. This provides strong evidence for a negative answer to the question
posed by Vanstone and Menezes at the Crypto 2000 Rump Session on the possibility
of efficiently inverting the MOV embedding into the XTR subgroup. As a side result
we show that the Decision Diffie–Hellman problem in the group of points on this type
of supersingular elliptic curves is efficiently computable, which provides an example
of a group where the Decision Diffie–Hellman problem is simple, while the Diffie-
Hellman and discrete logarithm problems are presumably not. So-called distortion maps
on groups of points on elliptic curves that play an important role in our cryptanalysis
also lead to cryptographic applications of independent interest. These applications are an
improvement of Joux’s one round protocol for tripartite Diffie–Hellman key exchange
and a non-refutable digital signature scheme that supports escrowable encryption. We
also discuss the applicability of our methods to general elliptic curves defined over
finite fields which includes a classification of elliptic curve groups where distortion
maps exist.

Key words. XTR, Decision Diffie–Hellman problem, Supersingular elliptic curves,
Inverting MOV embedding, Tripartite Diffie–Hellman key exchange, Escrow.

1. Introduction

XTR is an efficient and compact method to work with order p2 − p + 1 subgroups of
the multiplicative group GF(p6)∗ of the finite field GF(p6). It was introduced in [11],
followed by several practical improvements in [12] and [13].

Throughout this paper we let p, l > 3 denote prime numbers fixed in their context,
unless explicitly stated differently. In the context of XTR we further demand that p ≡
2 mod 3 and that l divides p2 − p + 1. Let g be a generator of the order l subgroup
µl of GF(p6)∗. In [11] it is shown that elements of µl , the XTR subgroup, can be
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conveniently represented by their so-called trace over GF(p2), and it is shown in [11]
how this representation can be efficiently computed. Any familiar cryptosystem based
on the XTR subgroup (like Diffie–Hellman, ElGamal, DSA) can be easily transformed
using this representation, yielding both efficient and compact cryptosystems. Moreover,
it is shown in [11] that the security of these transformed systems is equivalent to the ones
started with, that is, the security of the discrete logarithm problem in the multiplicative
group of the finite field GF(p6)∗. We refer to the group of order p2− p+1 of GF(p6)∗ as
the XTR supergroup. It is widely believed that the Diffie–Hellman and discrete logarithm
problems in these XTR groups are hard.

At the Crypto 2000 Rump Session [17] the following comparison was presented,
suggesting that XTR is nothing other than an elliptic curve cryptosystem in disguise. As
is well known, the number of points over GF(p2) (including the point at infinity) on an
elliptic curve defined over GF(p2) takes the form p2 − t + 1 for some integer called
the Frobenius trace number t ∈ [−2p, 2p]. There exist elliptic curves over GF(p2) of
such order equal to p2− p+ 1. These curves are actually characterized in [15] as Class
Three supersingular elliptic curves over GF(p2)with Positive parameter t , namely t = p
(as opposed to t = −p). This is why we call these curves simply the CTP curves for
short. Moreover, there exist efficiently computable (i.e., in polynomial time and space in
length of input) injective homomorphisms of such curves onto the XTR supergroup. The
Menezes–Okamoto–Vanstone (MOV) embedding [16], provides an example of such a
homomorphism.

It seems like a plausible hypothesis (see [17]) that the inverses of such homomorphisms
might be efficiently computable too. Under this hypothesis the XTR (sub)group is just an
instance of an elliptic curve (sub)group and so an attack affecting the security of elliptic
curve cryptosystems would affect the security of the XTR cryptosystem. In other words,
under this hypothesis the security of XTR cryptosystems is not better than that of elliptic
curve cryptosystems.

In this paper, a final version of [21], we show that the hypothesis mentioned above
is unlikely to be correct, as we show that under this hypothesis, we can solve several
problems that are widely believed to be hard. The Diffie–Hellman problem in the XTR
subgroup is an example of such a problem. As a side result we show that the Decision
Diffie–Hellman problem in many supersingular elliptic curves is efficiently computable.
The results presented in this paper are specifically geared towards XTR, to counter the
suggestion that XTR is nothing other than an elliptic curve cryptosystem in disguise. We
did not yet succeed in fully generalizing them to other classes of (supersingular) elliptic
curves, although we expect they can be (see Section 4). The results in this paper should
therefore be interpreted in a broader context. Namely, they provide evidence that the
multiplicative group of a finite field provides essentially more, and in any case not less,
security than the group of points of a supersingular elliptic curve of comparable size.

The CTP curves take the form y2 = x3 + a where a ∈ GF(p2) is a square but not a
cube in GF(p2), see [10]. We denote the CTP curves by Ca . Actually, in the category of
elliptic curves over GF(p2) there are only two classes of such curves under efficiently
computable isomorphisms. See Lemma 1. The set of points over GF(p2) (including
the point at infinity) on Ca is denoted by Ca,p2 and the subgroup thereof of order l is
denoted by Ca,p2 [l]. It is important to consider the elliptic curve y2 = x3 + a over
the extension field GF(p6) as well, respectively subgroups of order l therein. These



XTR Is More Secure 279

are denoted respectively by Ca,p6 and Ca,p6 [l]. For further reference, we formulate the
hypothesis mentioned above as follows:

X2C There exists an efficiently computable element s ∈ GF(p2) and an efficiently
computable injective group homomorphism from the XTR subgroup into Cs,p2 [l].

We make some remarks on the hypothesis X2C. First, as formulated X2C refers to
specific prime numbers p, l satisfying certain conditions. So it is more correct to use
the notation X2C(p, l) instead of simply X2C. As we have stated above the prime
numbers p, l are considered fixed in its specific context, so we use the somewhat sloppy
notation X2C. Second, an injective group homomorphism h from the XTR subgroup
into Cs,p2 [l] is called efficiently computable if images under h of arbitrary elements in
the XTR subgroup can be efficiently computed. Note that as both the XTR subgroup
and its image under h are cyclic groups, any homomorphism can be given by mapping
a generator from the domain to a generator in the image. A homomorphism defined this
way is efficiently computable if the discrete logarithm problem in the XTR subgroup is
efficiently computable. This example also illustrates that “arbitrary” cannot be replaced
by “random” in the above definition. Finally, a problem similar to X2C is posed by Koblitz
on p.328 of [9]. Note that X2C seems weaker than only assuming that (a restriction of)
an MOV embedding is efficiently invertible. It turns out that that both statements are
equivalent. See Theorem 4.

Outline of the paper

In Section 2 we explore the structure of CTP curves. We introduce a so-called distortion
map on CTP curves which is of crucial importance for our results, and we prove a
more convenient formulation of the X2C hypothesis. In Section 3 we present and prove
our main results and in Section 4 we discuss some possible extensions of our results
also leading to some interesting questions for further research. In Section 5 we discuss
some practical applications of distortion maps, including a more computational and
communicational efficient variant of the one round protocol for tripartite Diffie–Hellman
key exchange described in [6] and a non-refutable digital signature scheme that supports
escrowable encryption. Finally, we summarize our results in Section 6.

2. Group Isomorphisms between CTP Curves

We recall that any isomorphism between two elliptic curves defined over a field K
induces a group isomorphism (isogeny) between the points on the elliptic curves over
the algebraic closure K̄ of K but not vice versa. See [15] and [19]. This distinction is
important in the following lemma. We also recall that any non-zero isogeny is surjective,
see Section 4 in Chapter III of [19], and that an isogeny of an elliptic curve to itself is
called an endomorphism.

Lemma 1. Let Ca and Cb be CTP curves (in particular, a, b are squares in GF(p2)

but not cubes), then the following hold:
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1. The map S: Ca → Ca p : (x, y)→ (x p, y p) is an injective, efficiently computable
isogeny that maps Ca,p2 to Ca p,p2 .

2. The equation u6 = b/a has its solutions in GF(p6) and for any such solution u,
the map Ru : Ca → Cb: (x, y) → (u2x, u3 y) is an isomorphism in the category
of elliptic curves over GF(p6) and induces in particular an injective, efficiently
computable group isogeny Ca,p6 → Cb,p6 .

3. The map Ru is an isomorphism in the category of elliptic curves over GF(p2) iff
b/a is a cube in GF(p2).

4. If b/a is not a cube in GF(p2), then b/a p is a cube in GF(p2). Also the equation
w6 = b/a p has its solutions in GF(p2) and for any such solution w the composite
map Rw ◦ S is an injective, efficiently computable isogeny that maps Ca,p2 to Cb,p2 .

Proof. The first part of the lemma is well known and easily verified. That the equation
mentioned in the second part of the lemma has a solution in GF(p6) follows as b/a is a
square in GF(p2). The remainder of the second part of the lemma follows for instance
from Theorem 2.2 of [15]. The third part also follows from this result combined with the
observation that u6 = b/a has all its solutions u in GF(p2) iff b/a is a cube in GF(p2).
For a proof of the fourth part, let α be a generator of the multiplicative group of GF(p2).
As p > 3 it follows that p2 − 1 ≡ 0 mod 3, so the element x = α j is a cube in
GF(p2)∗ iff j is divisible by three. Now write a = αk and b = αl . If b/a is not a
cube in GF(p2), then k mod 3 and l mod 3 are different. As k, l mod 3 are non-zero, it
follows from p ≡ 2 mod 3 that k · p mod 3 and l mod 3 are equal. That is, b/a p is a
cube in GF(p2). The remainder of the proof of the fourth part of the lemma now follows
from the first and third parts.

From Lemma 1 it follows that the CTP curves split into two equivalence classes under
the equivalence relation Ca � Cb iff b/a is a third power in GF(p2). From Theorem 3.2
of [15] it follows that there are exactly two isomorphism classes of supersingular elliptic
curves over GF(p2) of order p2 − p + 1. We conclude that the CTP curves provide a
complete representation of such curves.

From the previous result we immediately deduce the following.

Theorem 1. All CTP groups Ca,p2 are efficiently computable group isomorphic. More-
over, we can reformulate X2C as:

X2C For each CTP subgroup Ca,p2 [l] there exists an efficiently computable, injective
homomorphism from the XTR subgroup into Ca,p2 [l].

Let Ca be a CTP curve. We recall some facts on elliptic curves which can all be found
in [15]. For a divisor l of p2 − p + 1, the l-torsion group of Ca is the collection of all
points of order dividing l on the curve y2 = x3 + a over the algebraic closure of the
field GF(p2). The torsion group is isomorphic to Z/ lZ× Z/ lZ, which is a non-cyclic,
abelian group. In addition, as Ca is a so-called Class III supersingular curve, the l-torsion
group of Ca is just the collection of all points of order dividing l over GF(p6) (including
the point at infinity) on the curve y2 = x3+a. That is, the l-torsion group of Ca is equal
to Ca,p6 [l] and is hence a subset of the curve over GF(p6).
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Before formulating the theorem that is crucial to our results, we need a definition.

Definition 1. Let H be an abelian group, then two elements g1, g2 are called indepen-
dent, provided that g1 ∈ 〈g2〉 and g2 ∈ 〈g1〉.

This definition becomes particularly relevant when the group H is not cyclic itself,
which is typically the situation in elliptic curve torsion groups. Before coming to our
next result we remark that it is easily verified that the two points in Ca,p2 that have a zero
first coordinate, augmented with the point at infinity, that is {(0, w), (0,−w),O} with
w2 = a, constitutes a subgroup of order 3. We denote this group by G3.

Theorem 2. Let Ca be a CTP curve and let P = O be a point on Ca,p2 . Then, using
the notation from Lemma 1, the following hold:

1. The equation u6 = a/a p has its solutions u in GF(p6)\GF(p2) and for any such

solution u, the map D: Ca
S→ Ca p

Ru→ Ca is an injective endomorphism that maps
Ca,p6 onto itself and which takes the form (x, y)→ (u2x p, u3 y p).

2. 〈P〉∩〈D(P)〉 = O if the order of P is not divisible by three and 〈P〉∩〈D(P)〉 = G3

otherwise.
3. The point P is independent from its image under D(·) iff P has an order different

from 1 or 3.

Proof. For a proof of the first part of the theorem, it easily follows (see the proof of
Lemma 1) that a/a p is not a cube in GF(p2). Now the proof follows from the last part of
Lemma 1. For a proof of the second part of the theorem: the first coordinate of the value
(u2x p, u3 y p) under D(·) of a point Q = (x, y) is clearly not an element of GF(p2)when
x is non-zero. That is, apart from the point at infinity, the only points that can belong to
〈P〉 ∩ 〈D(P)〉 have a zero first coordinate. As 〈P〉 ∩ 〈D(P)〉 is a group it is either equal
to {O} or G3. In the latter case it follows that the order of P must be divisible by three.
For a proof of the last part, as D(·) is a group automorphism, the orders of P and D(P)
coincide. So if these points are dependent it follows from the second part that either P
or D(P) is an element of G3, i.e., of order 1 or 3.

For convenience we refer to the endomorphism D(·) introduced in Theorem 2 as the
distortion map. In Fig. 1 a few pages below we have depicted the property of D(·) with
K = GF(p2) and K ′ = GF(p6). Related to the l-torsion group of Ca , i.e., Ca,p6 [l], is
the Weil pairing, a function

el : Ca,p6 [l]× Ca,p6 [l]→ µl ,

whereµl is the subgroup of GF(p6)∗ of order l. Hence,µl is equal to the XTR subgroup.
In the setting of supersingular curves, the Weil pairing can be computed efficiently. The
Weil pairing satisfies the Identity Rule, i.e., el(P, P) = 1, and is bilinear. From the
latter property it follows that el(a ∗ P, b ∗Q) = el(P, Q)ab. This formula is particularly
useful when el(P, Q) is a generator ofµl , as the map 〈P〉 → µl : x → el(x, Q) is then a
group isomorphism. Actually, this is the MOV embedding mentioned in the Introduction.
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We finally mention that two points P, Q in the torsion group Ca,p6 [l] are dependent iff
el(P, Q) = 1, see p. 70 of [15].

The following corollary describes the order of a value of the Weil pairing.

Corollary 1. Let l dividing p2− p+ 1 be a power of a prime number r and let P be a
point on Ca,p2 of order l. Then, letting D(·) denote the distortion map from Theorem 2,
the following hold:

1. If r = 3, then the element el(P, D(P)) is of order l in GF(p6)∗.
2. If r = 3, then the element el(P, D(P)) is of order at least l/3 in GF(p6)∗.

Proof. First note that the point D(P) is of order l as D(·) is a group automorphism.
For a proof of the first statement, suppose to the contrary that el(P, D(P))l/r = 1. Then
it follows that el(P, l/r · D(P)) = 1, that is, P and l/r · D(P) are dependent. Hence
either, P ∈ 〈l/r · D(P)〉 or l/r · D(P) ∈ 〈P〉. The first option is ruled out as it implies
that the order of P is divisible by l/r . So,

l/r · D(P) ∈ 〈P〉 ∩ 〈D(P)〉 = {O},
where the last equality follows from Theorem 2. That is, l/r · D(P) = O contradicting
that the order of D(P) is equal to l. For a proof of the second statement, we may assume
without loss of generality that l ≥ 32. If we assume to the contrary that el(P, D(P))l/9 =
1 and reasoning in a similar way as in the proof of the first part, we conclude that

l/9 · D(P) ∈ 〈P〉 ∩ 〈D(P)〉 = G3,

where the last equality follows from Theorem 2. This contradicts that the order of
l/9 · D(P) is nine.

3. Hardness of the X2C Hypothesis

Before coming to our main results, we recall some general notions. Let G = 〈γ 〉 be any
cyclic, multiplicative group of order l, generated by an element γ . The security of the
Diffie–Hellman key agreement protocol with respect to γ lies in the Diffie–Hellman (DH)
problem of computing the values of the function DH(γ x , γ y) = γ xy . Two other problems
are related to the DH problem. The first one is the Decision Diffie–Hellman (DDH)
problem with respect to γ : given α, β, δ ∈ G decide whether δ = DH(α, β) or not. The
DH problem is at least as difficult as the DDH problem. The second related problem is
the discrete logarithm (DL) problem in G with respect to γ : given α = γ x ∈ G, with
0 ≤ x < l then find x = DL(α). The DL problem is at least as difficult as the DH
problem. Until recently the following assumption was widely considered true.

Assumption 1. If the DL problem in G is hard, then so are the DH and DDH problems
in G.

In [6] and [8], examples are provided of groups of points on supersingular elliptic
curves where the DL and DH problems are presumably hard, while the DDH problem is
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efficiently computable. These results indicate that Assumption 1 is incorrect for groups
of points on supersingular elliptic curves and we encounter an example of this kind
in Theorem 3. We emphasize however that the results in [6] and [8] are based on the
observation that the DDH type of problem in some extensions of supersingular elliptic
curves are often efficiently computable using the so-called Weil or Tate pairing (see
below).

The results in [6] and [8] do not provide any indication that the DL or DH problems are
efficiently computable in the context of supersingular elliptic curves. Moreover, pairings
are not known to exist in the context of multiplicative groups of finite fields. Therefore,
these results do not provide any indication that Assumption 1 is not true in the context
of multiplicative groups of finite fields. We base some of our security discussions on the
hypothesis that these assumptions remain valid in that context, see also the remark after
Theorem 4. That is, in this paper we use the following assumption that we consider (still)
widely accepted.

Assumption 2. If G is a multiplicative subgroup of a finite field, then the DH and DDH
problems in G are hard provided that the DL problem in G is hard.

We note that with respect to attacks publicly known today, the DL problem in a multi-
plicative subgroup G of a finite field can be attacked in two ways, see Section 5 of [11].
One can either attack the whole multiplicative group of the minimal finite field surround-
ing G using the Discrete Logarithm variant of the Number Field Sieve or one can attack
the subgroup using Birthday Paradox based methods. This implies that the difficulty of
the DL problem in G depends on the size of the minimal surrounding subfield of G and
on the size of the maximal prime number dividing the order of G. So both sizes can be
easily chosen so that the DL problem in G becomes practically impossible to solve and
indeed such choices are required for a secure implementation of XTR.

We use the reasoning in [6] to provide an example indicating that Assumption 1 is not
true in the context of CTP supersingular elliptic curves.

Theorem 3. The DDH problem in any supersingular elliptic curve over GF(p2) of
order p2 − p + 1 is efficiently computable.

Proof. We can restrict ourselves to curves of type Ca . Write p2− p+1 = t ·v where t
is a power of three and v is relatively prime with three. By virtue of the Pohlig–Hellman
algorithm [18], the DDH problem in Ca,p2 can be reduced to the DDH problem in the
subgroups of order t and v. As one can easily solve the DL problem related to the first
subgroup, one can efficiently solve the DDH problem for this subgroup too.

Now, let P be a generator of the subgroup Ca,p2 [v] and suppose that points X =
x ∗ P, Y = y ∗ P, Z = z ∗ P in Ca,p2 [v] are given. To solve the DDH problem in
Ca,p2 [v], we need to determine whether z ≡ x ∗ y mod v. By the Identity property of
the Weil pairing, its bilinearity and Corollary 1, the Weil pairing ev(P, D(P)) is a vth
root of unity of GF(p6). So, on the one hand, ev(X, D(Y )) = ev(P, D(P))xy and, on
the other hand, ev(P, D(Z)) = ev(P, D(P))z . That is z ≡ x ∗ y mod v iff ev(X, D(Y ))
is equal to ev(P, D(Z)), which is an efficiently computable condition.
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There are several cryptographic protocols whose security depends on the difficulty
of the DDH problem, like the publicly verifiable voting system in [2] and the Cramer–
Shoup [3] public key cryptosystem that is provably secure against adaptive chosen ci-
phertext attacks. Theorem 3 shows that these protocols should not be based on (CTP)
supersingular elliptic curves, even with the “appropriate” key sizes.

The following result shows that the X2C hypothesis contradicts Assumption 2 and
the remarks following it providing first evidence that this hypothesis is not valid.

Corollary 2. Under the X2C hypothesis, the DDH problem in the XTR subgroup is
efficiently computable.

Proof. This follows immediately from Theorem 3.

Next we show an even stronger consequence of the X2C hypothesis, namely that the
DH problem in the XTR subgroup is efficiently computable. It is convenient to refer to
the DH problem described at the beginning of Section 3 as the conventional DH problem
and to introduce three variants of this problem. To this end, again let G = 〈γ 〉 be any
cyclic, multiplicative group of (known) order l, generated by the (known) element γ .
Then the weak DH problem with respect to γ is the problem of finding any generator κ ,
such that for all 0 ≤ x, y < l determining κ xy can be efficiently done on the basis of γ x

and γ y . That is, κ is only dependent on γ and not on x, y. The strong DH problem with
respect to γ is the problem of efficiently determining ξ xy on the basis of γ x and γ y , for
all 0 ≤ x, y < l and any generator ξ of G. Finally, the DH problem with respect to the
group G is the problem of efficiently determining ξ xy on the basis of αx and αy for all
0 ≤ x, y < l and any generators α, ξ of G. Note that this notion is independent of the
choice of particular generators of G. For convenience we sometimes call generators of
type α input generators and those of type ξ output generators.

Lemma 2. In the above context, the weak, conventional and strong DH problem with
respect to γ and the DH problem with respect to G are equivalent.

Proof. We first show the equivalence of the first three problems. Clearly, if one can
solve the strong DH problem, one can solve the conventional DH problem. Moreover,
if one can solve the conventional DH problem, then by taking κ = γ one can solve the
weak DH problem. To show that these three problems are equivalent, it suffices to show
that if one can solve the weak DH problem, one can solve the strong DH problem. To
this end, let γ, κ be as described in the definition of the weak DH problem and let ξ be
any generator of G. Also, let the function WDH(·, ·) be defined by κ xy = WDH(γ x , γ y).
Then by hypothesis WDH(·, ·) is efficiently computable. We only prove the lemma in
the case that l is a prime number, which is important to us, and leave the general case to
the reader.

We can write κ = γ s and ξ = γ t for some 0 ≤ s, t < l, which are unknown. We first
claim that we can efficiently compute γ (s

n) for any n ≥ 1. To this end, for any i ≥ 1
define

T (i) = (γ (si−1), γ (s
i )).



XTR Is More Secure 285

Note that T (1) = (γ, κ) is efficiently computable. Also note that if T (i) = (A, B)
is given, then T (2i) = (WDH(A, A),WDH(A, B)) and T (2i + 1) = (WDH(A, B),
WDH(B, B)). This means that we can compute T (n) in 2 · log2(n) calls to the function
WDH(·, ·) using repeated squaring and multiplication (see Algorithm 2.3.7 of [11]).
That is, we can efficiently compute γ (s

n) for any n ≥ 1. In particular, we can efficiently
compute the element D = γ (sl−4).

We are now ready to prove that we can solve the strong DH problem with respect to γ .
To this end, let A = γ x and B = γ y be given. Then, first,

E = WDH(D,WDH(A, B)) = WDH(γ (s
l−4),WDH(γ x , γ y))

= WDH(γ (s
l−4), κ xy)

= WDH(γ (s
l−4), γ xys)

= κ(s
l−4xys) = κ(xysl−3)

= γ s(xysl−3) = γ (xysl−2)

= γ (xys−1).

Here we have used that sl−1 ≡ 1 mod l for any prime number l (i.e., Fermat’s little
theorem). Now,

WDH(E, ξ) = WDH(γ (xys−1), γ t ) = κ xys−1t = γ s(xyts−1) = γ xyt = ξ xy .

As we can efficiently compute E = WDH(D,WDH(A, B)) and WDH(E, ξ) we can
efficiently compute ξ xy on the basis of γ x and γ y . That is, we have solved the strong
DH problem with respect to γ .

We are left with showing the equivalence between the first three properties mentioned
in the lemma and the last one. This comprises of showing that the ability to solve the
strong DH problem with respect to γ implies the ability to solve the DH problem with
respect to G. To this end, let α, ξ be any generators of G and suppose that αx , αy are
given for some 0 ≤ x, y < l. Write α = γ a and ξ = γ t for some 0 ≤ a, t < l.
First, we can efficiently determine γ (a

2) from α, which is a conventional DH problem
with respect to γ . Secondly, from the latter result we can efficiently determine γ (a

−2)

by using the techniques described above. Finally, from the latter result and ξ , we can
efficiently determine δ = γ (a−2t) which is again a conventional DH problem with respect
to γ . Now, if we present αx , αy to the efficient algorithm solving the strong DH problem
with respect to γ and δ it returns δ(a

2xy) which is equal to γ (a
−2ta2xy) = γ t xy = ξ xy . We

conclude that we have solved the DH problem with respect to α and ξ .

Lemma 3. Let G, � be two finite isomorphic, cyclic groups and let i : G → � and
j : �→ G be two efficiently computable, injective homomorphisms. We assume that the
order l of G, � and a generator for either G or � are known. Then the following are
equivalent:

1. The DH problem is efficiently computable with respect to G.
2. The DH problem is efficiently computable with respect to �.

If these hold, then the inverses of i(·) and j (·) are efficiently computable too.
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Proof. It easily follows that if one can solve the DH problem in one of G or �, then
one can solve the weak DH problem in the other one. So the first part of the lemma
follows from Lemma 2. For a proof of the second part of the lemma, we show that i−1(·)
is efficiently computable by efficiently computing i−1(ω) for any element ω of �. To
this end, let g be a generator of G and let γ = i(g) and g2 = j (γ ). Write i−1(ω) = gx

and g2 = gb for (unknown) 0 ≤ b, x < l. As g is a generator of G it follows that
j (ω) = j ◦ i(i−1(ω)) = (i−1(ω))b = gx

2 . So by solving the DH problem for j (ω) and
g2 with respect to g2 (input generator) and g (output generator) we end up with gx , i.e.,
i−1(ω) as desired.

The following is one of our main results. It shows that the X2C hypothesis contradicts
Assumption 2 and the remarks following it providing evidence that this hypothesis is
not valid.

Theorem 4. Under the X2C hypothesis, the following problems are efficiently com-
putable:

1. The DH problem in the XTR subgroup of order l.
2. The DH problem in the group of points of order l on a supersingular elliptic curve

over GF(p2) of order p2 − p + 1.
3. Inverting any efficiently computable embedding (e.g., based on the MOV embed-

ding) from the group of points of order l on a supersingular elliptic curve over
GF(p2) of order p2 − p + 1 into the XTR subgroup.

Proof. Suppose that H(·) is an efficiently computable injective homomorphism from
the XTR subgroup into some Ca,p2 [l]. We first prove the first part of the theorem.
Consider any generator g of the XTR subgroup. We construct another generator h in
the XTR subgroup satisfying the definition of the weak DH problem. To this end, let
h = el(H(g), D(H(g))) where el(·, ·) denotes the Weil pairing on the l-torsion group
of Ca,p2 and D(·) denotes the distortion map from Theorem 2. It also follows from this
theorem that the order of h is equal to l.

To break the weak DH problem, with respect to g, h, suppose that X = gx , Y = gy

are given. Then

el(H(X), D(H(Y ))) = el(x ∗ H(g), y ∗ D(H(g))) = el(H(g), D(H(g)))xy = hxy .

That is, by computing el(H(X), D(H(Y ))), which can be done efficiently, we have
solved the weak DH problem with respect to g, h. The result now follows from
Lemma 2. The second and third parts of the theorem follow from the first part and
Lemma 3.

Note that a natural way to break the DDH problem in the XTR group would be by
transforming this problem to an isomorphic group of points on a supersingular elliptic
curve where the DDH problem is efficiently computable using an efficiently computable
embedding. Theorem 4 shows that then the DH problem in the XTR group is also
efficiently computable, for which, as said before, no indications exist. The last part of
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Theorem 4 states that to prove the validity of the X2C hypothesis, one can concentrate
on efficiently inverting any MOV embedding into the XTR subgroup.

4. Extensions

4.1. Other Extension-Field-Based Public Key Systems

Two other public key cryptosystems exist that are based on the DL problem in the
extension field GF(p6)∗, or actually subfields thereof. The LUC cryptosystem [20], [14] is
based on the order p+1 subgroup of GF(p2)∗. The variant by Gong and Harn [5] of LUC
is based on the p2+p+1 subgroup of GF(p3)∗, where as in the XTR setting p ≡ 2 mod 3.
For both subgroups one can find supersingular elliptic curves (see [15]) and efficiently
computable, isomorphisms from these curves onto these subgroups, based on the Weil
pairing. That is, for each of the two cryptosystems one can formulate a hypothesis
similar to X2C. We remark that there do not exist elliptic curves defined over GF(p2)

with p2 + p + 1 or p2 − p + 1 points over GF(p2) if p ≡ 1 mod 3, as the number of
isomorphism classes is equal to 1− (−3/p) (see Theorem 3.2 of [15]), which is equal
to zero if p ≡ 1 mod 3 and equal to two if p ≡ 2 mod 3.

With respect to the Gong and Harn variant of LUC, one could call the related curves
CTN curves: Class Three supersingular elliptic curves defined over GF(p2)with Negative
parameter t , namely t = −p (as opposed to t = p). Provided p ≡ 2 mod 3, it follows
that these elliptic curves take the form y2 = x3 + a where a ∈ GF(p2) is neither a
square nor a cube in GF(p2). This means that the difference with CTP curves lies in the
fact that a is a quadratic non-residue. However, it is easily seen that this property is not
of significance in the proofs in this paper and all results for CTP curves generalize to
CTN elliptic curves. More in particular, the map (x, y) → (u2x p, u3 y p) where u is a
solution of u6 = a/a p is an appropriate distortion map on these types of curves. As there
exists no point on such curves with first coordinates equal to zero, all points different
from the point at infinity on the curve over GF(p2) are mapped to points outside the
curve over GF(p2). It follows that the existence of any efficiently computable, injective
homomorphism from the Gong and Harn group in any supersingular elliptic curve over
GF(p2) of order p2 + p + 1 implies that we can solve the DH problem in the Gong
and Harn subgroup of GF(p3)∗ as well as in the related elliptic curve group of points.
Moreover, it follows that the DDH problem in these elliptic curve groups is always
efficiently computable, irrespective of additional hypotheses.

Our techniques do not completely generalize, at least not in a straightforward fashion,
to disprove this hypothesis for the LUC cryptosystem. This is partly due to the fact that
we are not aware of a full representation of all isomorphism classes of the corresponding
supersingular elliptic curves, i.e., curves over GF(p) of trace zero. However, our tech-
niques do generalize to two particular subclasses of such elliptic curves over GF(p), as
one can easily find the appropriate distortion maps. These classes of curves and distortion
maps are:

1. y2 = x3−bx with p ≡ 3 mod 4 and b any non-zero element in GF(p). Here an ap-
propriate distortion map is given by (x, y)→ (−x, i ·y)where i ∈ GF(p2)\GF(p)
satisfies i2 = −1.
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2. y2 = x3+a with p ≡ 2 mod 3 and a any non-zero element in GF(p). Here an ap-
propriate distortion map is given by (x, y)→ (x, w ·y)wherew ∈ GF(p2)\GF(p)
satisfies w3 = 1.

It follows that for these groups of points for which a distortion map exists and is effectively
computable that the DDH problem is efficiently computable. Joux and Nguyen [8] have
constructed examples of supersingular elliptic curves, of the type described above, that
have the additional property that the DH problem and the DL problem are equivalently
difficult.

4.2. Possible Generalizations

In this section we discuss generalizations of our techniques, including the applicability to
general elliptic curves, e.g., non-supersingular ones. To this end, let E : y2+a1xy+a3 y =
x3 + a2x2 + a4x + a6 be an elliptic curve defined over a finite field K = GF(pn) of
characteristic p and let P be a point on E over K of prime order l. As usual, we refer
to the points on the curve E over a field L (including the point at infinity) by E(L).
The endomorphism ring of E over K , denoted by EndK (E), denotes all endomorphisms
of E defined over K . As is customary we let the endomorphism ring of E refer to the
endomorphism ring of E over the algebraic closure K̄ of K and we denote this by simply
End(E).

A distortion map (defined over K ′) with respect to a cyclic subgroup 〈P〉 of order l is
an endomorphism (defined over K ′) of the curve that maps any non-zero point Q ∈ 〈P〉
to a point D(Q) independent from Q (see Fig. 1). As D(·) is a group homomorphism,
D(Q) is a non-trivial element of the l-torsion group E[l] of E and it follows that a
distortion can only exist if E[l] is non-cyclic. It is well known (see Corollary 6.4 of
[19]) that E[l] is non-cyclic if and only if l = p in which case E[l] is isomorphic to
Z/ lZ× Z/ lZ. So throughout this section we can assume l = p.

Let K ′ = GF(pnk) be the minimal extension K ′ of K such that the l-torsion group of
E lies in E(K ′) then EndK ′(E[l]) denotes the ring of all endomorphisms defined over K ′

restricted to the torsion group E[l]. In a similar fashion we use the notation End(E[l]).
Such rings can be seen as subgroups of all l-linear maps on GF(l)2 and distortion maps
correspond with linear maps in such rings that do not have P as an eigenvector. We
recall that the number k is the so-called MOV degree with respect to the group 〈P〉. A
sufficient condition for the MOV degree being strictly larger than one is that l2 does not
divide #(E(K )). It is shown by Koblitz in [10] that if l � pn − 1, then the MOV degree
is the smallest natural number k such that l | pnk − 1.

Fig. 1. Distortion maps.
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By the MOV degree of E (without reference to a subgroup of E(K )) we mean the
MOV degree of the group E(K ). For supersingular elliptic curves this degree is either
1, 2, 3, 4 or 6. For “ordinary”, i.e., non-supersingular elliptic curves the MOV degree is
typically large. It is known (see [15]) that for degrees k of size polynomial in log2(#(K ))
computing the Weil pairing El(·, ·) can be done in probabilistic polynomial time in
log2(#(K )) too. Under this condition the existence of a distortion map with respect to
P is cryptographically relevant from two perspectives. First, such existence is relevant
from a cryptanalytical perspective as it directly follows from the techniques employed
in Section 3 that the DDH problem in the group 〈P〉 is then efficiently computable.
Secondly, it is relevant from an applicative perspective as distortion maps can be used
as building blocks in applications. See Section 5.

So the following question arises: under what conditions can we expect that distortion
maps exist? In answering this question the Frobenius endomorphism with respect to K ,
F : (x, y) → (x (p

n), y(p
n)) plays an important role. The Frobenius endomorphism acts

as a GF(l)-linear mapping on E[l] (considered as a two-dimensional linear space over
GF(l)) and its characteristic equation (resp. in GF(l)) is λ2− tλ+ pn (resp. mod l), see
Section 7.1 of [15]). Here t ∈ Z is the trace of the Frobenius endomorphism. The elliptic
curve E is supersingular if and only if t ≡ 0 mod p [15, Chapter 2]. The trace t is also
related to #(E(K )) by Hasse’s theorem #(E(K )) = pn− t+1, see [15]. The eigenvalues
of F with respect to E[l] are one (with corresponding eigenspace 〈P〉) and t − 1 mod l.
It follows that for t ≡ 2 mod l the Frobenius endomorphism restricted to E[l] has two
different eigenvalues and eigenspaces. Note that the Frobenius endomorphism acts as a
distortion map on all cyclic subgroups of E[l] different from its eigenspaces.

The following result states that distortion maps always exist on groups of points on
supersingular elliptic curves.

Theorem 5. Let E be a supersingular elliptic curve over a finite field K = GF(pn)

with MOV degree k and let K ′ = GF(pnk). Let P be a point on E over K of prime order
l relatively prime to p, then EndK ′(E[l]) is isomorphic to the ring M2(Z/ lZ) of all 2×2
matrices over Z/ lZ. In particular there is an abundance of distortions maps (defined
over K ′) with respect to P .

Proof. The proof of this result is based on a rather deep structural result on Tate modules
on which we provide some background first, see [19]. The lth Tate module of the curve
E is the inverse limit

Tl(E) = lim←−n
E[ln],

where the inverse limit is taken with respect to the multiplication by l-maps [l]: E[ln+1]→
E[ln]. The Tate module is a module over the l-adic integers, Zl . Any endomorphism
ϕ ∈ EndK ′(E) naturally induces an homomorphism ϕ: E[ln]→ E[ln] for any natural
number n and so it induces a homomorphism ϕ: Tl(E) → Tl(E). One denotes all ho-
momorphisms of the l-adic module Tl(E) into itself by Hom(Tl(E)) and we conclude
we have a map T : EndK (E) → Hom(Tl(E)). Now Hom(Tl(E)) is an l-adic module
and in fact Hom(Tl(E)) is equal to the ring M2(Zl) of all 2 × 2 matrices over Zl (see
Proposition 7.1a of [19]).



290 E. R. Verheul

One can also consider EndK (E) as part of an l-adic module by considering the tensor
product EndK (E)⊗ Zl . Moreover, the map T (·) can be extended in a natural way to a
map T : EndK (E)⊗Zl → Hom(Tl(E)). This map is not only injective (see Theorem 7.4
of [19]) but one can also conveniently describe the image of this map. This consists of
the module HomK ′(Tl(E)) of all homomorphisms in Hom(Tl(E)) that commute with the
Frobenius endomorphism with respect to K ′ considered as an element of Hom(Tl(E)).
In other words, the map T : EndK (E) ⊗ Zl → HomK ′(Tl(E)) is an isomorphism of
l-adic rings. This is a theorem of Tate (see Theorem 7.7 of [19]).

In the situation of the lemma the curves are supersingular and so the Frobenius en-
domorphism with respect to K ′ is an integer. This is typical for supersingular ellip-
tic curves as the characteristic polynomial of that Frobenius endomorphism has inte-
ger solutions in that situation. As every element of Hom(Tl(E)) evidently commutes
with an integer it follows that HomK (Tl(E)) = Hom(Tl(E)) = M2(Zl) and hence
T : EndK (E)⊗Zl → M2(Zl) is an isomorphism. By restricting to the first index only it
follows in particular that the map T : EndK (E)× Z/ lZ→ M2(Z/ lZ): (ϕ, x)→ ϕ · x
is an isomorphism. It evidently follows that EndK (E[l]) is equal to M2(Z/ lZ) as
desired.

In the remarks following Theorem 7 we provide an alternative proof for the main result
of Theorem 5. The following two results precisely describe when a group of points on a
non-supersingular elliptic curve has a distortion.

Theorem 6. Let E be a non-supersingular elliptic curve over the finite field K =
GF(pn) and let P be a point on E over K of prime order l = p. If the MOV degree k
related to P is larger than one, then no distortion maps on 〈P〉 exist.

Proof. Assume that a distortion map D(·) on 〈P〉 exists. Then the following equality
holds:

D(FK (P)) = FK (D(P)) = D(P), (1)

where FK (·) denotes the Frobenius endomorphism with respect to K . The first equality
follows from the commutativity of End(E) due to the non-supersingularity of the curve
E and the second equality follows as P ∈ E(K ). As the MOV degree k related to P
is larger than one it follows that E[l] ∩ E(K ) = 〈P〉. This means that FK (·) maps a
point Q ∈ E[l]\〈P〉 to a point different from Q. This holds in particular for Q = D(P)
contradicting equality (1).

Theorem 7. Let E be a non-supersingular elliptic curve over the finite field K =
GF(pn) and let P be a point on E over K of prime order l = p. Let the MOV degree k
related to P be equal to one, let t be the trace of the Frobenius endomorphism FK (·)with
respect to K and let the endomorphism θ generate End(E) overZ (i.e., End(E) = Z[θ ]).
Then t mod l ≡ 2 and the following hold:

1. A distortion on 〈P〉 exists if and only if P is not an eigenvector of θ(·).
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2. The endomorphism θ(·) is not a scalar and has either one or two one-dimensional
eigenspaces. Consequently, all except at most two cyclic subgroups of E[l] have a
distortion map.

Proof. If t ≡ 2 mod l, then the Frobenius endomorphism has an eigenvalue t−1 mod l
on E[l] different from one which means that E[l] cannot be contained in E(K ),
implying that the MOV degree related to P must be larger than one. That a distortion
on 〈P〉 exists if and only if P is not an eigenvector of θ(·) is straightforward. For
a proof of the last part we show that #End(E[l]) = l2. As l is relatively prime to
p the map [l], i.e., multiplication with l, is separable (see Corollary 5.5 of [19]). It
follows from Corollary 4.11 of [19] that any endomorphism that vanishes on E[l] takes
the form λ ◦ [l] where λ(·) ∈ End(E). Consequently, the restriction map End(E) →
End(E[l]) has [l]End(E) as its kernel and so its image End(E[l]) is isomorphic to
End(E)/[l]End(E). As E is non-supersingular its endomorphism ring is a Z module of
rank 2 (see Theorem 3.1 of [19]) and so End(E)/[l]End(E) is of order l2 as desired.

We provide some remarks on Theorem 7. If there exists a subfield K0 of K such that E
is defined over K0 and the Frobenius endomorphism with respect to K0 has two different
eigenspaces on E[l], then these coincide with those of θ .

The idea of the proof of the third part of Theorem 7 can also be used to provide an
alternative proof of the result of Theorem 5 that End(E[l]) = M2(Zl) if the curve E is
supersingular. Indeed, in that situation End(E) is a Zmodule of rank 4 (see Theorem 3.1
of [19]), hence End(E[l]) = End(E)/[l]End(E) has l4 elements and is hence equal to
M2(Z/ lZ). Note that unlike Theorem 5 this proof does not provide information on the
degree of the extension K ′ of K such that EndK ′(E[l]) contains distortions which are
practically relevant.

A group of points on an elliptic curve that has an efficiently computable distortion map
and Weil pairing gives rise to applications, see Section 5. Supersingular elliptic curves
provide such groups, but according to Theorem 7 non-supersingular elliptic curves can
also provide such groups. As an example, consider curves of type E : Y 2 = X3 + X
over GF(p) such that p − 1 is a square and is divisible by a prime l ≡ 3 mod 4. It
follows that −1 is a quadratic residue modulo p (as p ≡ 1 mod 4) but not modulo l.
Moreover, #(E(GF(p))) = p − 1, i.e., the trace of the Frobenius endomorphism with
respect to GF(p) is equal to two. Let i ∈ GF(p) be such that i2 = −1 and let D(·)
be the endomorphism (x, y)→ (−x, i · y). It follows that D ◦ D = [−1] and so D(·)
cannot have eigenvalues on E[l]. As in these circumstances the discrete logarithm in any
subgroup of order l is reducible to the discrete logarithm in GF(l)∗ it follows that l should
be of size ≥ 1024 bits to provide minimal security, this means that p is of size ≥ 2048
bits. As E[l] ⊂ E(GF(p)), the Weil pairing on points of E[l] is efficiently computable.
A drawback of using such elliptic curves is that the number of bits required to represent
elements of 〈P〉 is at least twice as large as required in the situation of supersingular
elliptic curves. As an illustration we give an example of such p, l, i which we found
using the Magma computational algebra package:

p = 302 ∗ q2 + 1,

l = 17976931348623159077293051907890247336179769789423065727343008115\
77326758055009631327084773224075360211201138798713933576587897688\
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14416622492847430639474124377767893424865485276302219601246094119\
45308295208500576883815068234246288147391311054082723716335051068\
4586298239947245938479716304835356329624224149871,

i = 53930794045869477231879155723670742008539309368269197182029024347\
31980274165028893981254319672226080633603416396141800729763693064\
43249867478542291918422373133303680274596455828906658803738282358\
35924885625501730651445204702738864442173933162248171149005153205\
37588947198417378154391489145060689888726724496130.

Observe that the Frobenius endomorphism with respect to GF(p) on this curve is
the identity on E[l], i.e., it does not provide a distortion map for any element of E[l].
This behavior is not restricted to curves with Frobenius trace 2, but also occurs for
t mod l ≡ 2. To illustrate, the curve E ′: Y 2 = X3 + 5X over GF(73) has Frobenius
trace t = −16 (i.e., #E ′(GF(p)) = 90) and the map D′(·) defined similar to the map
D(·) described above does not have eigenvalues on E[3].

Although Theorems 5–7 precisely describe when groups of points on elliptic curves
have distortion maps, it seems like an interesting question to determine the complexity of
effectively calculating them. Recall from Section 3 that if a group of points on an elliptic
curve admits an efficiently computable distortion map and Weil pairing, then the DDH
problem is efficiently computable. Hence if efficiently computable distortion maps can
be efficiently calculated on all groups of points of prime order on supersingular elliptic
curves and non-supersingular elliptic curves of Frobenius trace t ≡ 2 mod l, then the
DDH problem is efficiently computable for all such groups, which would be an interesting
result from a cryptographic perspective.

5. Applications

Distortion maps on supersingular elliptic curves cannot only be used as cryptanalytical
tools, but also as building blocks in actual applications. Since the presentation of the
version of this paper [21] in 2001, several such applications have been found, the most
impressive of which is probably the identity-based encryption scheme by Boneh and
Franklin [1]. We refer to Joux’s survey paper [7] for more information. In the applications
below we use Weil pairing for ease of exposition, but it is more practical to use the Tate
pairing instead.

5.1. A One Round Protocol for Tripartite Diffie–Hellman Key Exchange

In [6] Joux proposes schemes for a three participants variation of the Diffie–Hellman
protocol. One of his schemes is based on a subgroup of prime order l of a supersingular
elliptic curve over a field GF(pn). Two points P, Q of order l are chosen, such that P is
an element of the elliptic curve over GF(pn) and Q is an element of the l-torsion group
that is independent from P . A simple way to establish this, is to choose the element Q
of order l so that it is not on the curve itself, but it is on the curve over the extension field
GF(pnk) of GF(pn). Here k is called the MOV degree, which is either 1, 2, 3, 4 or 6. It



XTR Is More Secure 293

follows in particular that the Weil pairing el(P, Q) is an lth root of unity in GF(pnk). It
is assumed that taking discrete logarithms in the groups 〈P〉 and 〈Q〉 is not practically
possible.

Now in the tripartite Diffie–Hellman protocol, three parties A, B, C want to establish
a shared key, whereby each party only exchanges one message with another party. That
is, at most six messages are exchanged. Joux proposes the following protocol. Each i th
participant (i = 1, 2, 3) generates a random 0 ≤ xi < l, forms (Ai , Bi ) = (xi · P, xi ·Q)
and sends this to the other participants. Now the shared key is the element el(P, Q)x1·x2·x3 .
To illustrate that each participant can compute the shared key, the first participant can
do so by determining

el(A2, B3)
x1 = el(x2 · P, x3 · Q)x1 = el(P, Q)x1·x2·x3 .

We now describe the possible application of distortion maps. To this end, let P be a
point on an elliptic curve E of order l such that taking discrete logarithms in 〈P〉 is not
practically possible and assume there exists a distortion map D(·) on the curve that maps
P to a point D(P) independent from P .

Now if, in our variant of the tripartite Diffie–Hellman protocol, three parties A, B, C
want to establish a shared key, then each i th participant (i = 1, 2, 3) generates a random
0 ≤ xi < l, forms the point xi · P and sends this to the other participants. The shared key
is the element el(P, D(P))x1·x2·x3 . It is a simple verification to see that each participant
can compute this key. Compared with the original tripartite Diffie–Hellman protocol in
the curve E , this variant only requires two-thirds of the number of exponentiations and
half the number of bits exchanged.

If one can solve the DH problem with respect to P or el(P, Q), then one can break
this protocol. We are not aware of reverse results.

5.2. Supporting Non-Repudiation and Escrowable Encryption with
Only One Public Key

To support the non-repudiation of digital signatures fully it is common practice not to
escrow the related private keys. To prevent loss of information resulting from loss of
private key material, or to comply with legal requirements, end-users will typically be
issued two (or even three) certificates: one for non-repudiation services and others for
different services.

The use of distortion mappings makes it possible to employ one public key (and
hence a certificate) for a non-repudiation service as well as for an encryption service, in
such a way that the private signing key is not escrowed, while the encryption service is
recoverable. To describe this scheme, once again let P be a point on an elliptic curve E
over a finite field GF(pn) such that taking discrete logarithms in 〈P〉 is not practically
possible. Assume there exists a distortion map D(·) on the curve that maps P to a point
D(P) independent from P in the l-torsion group contained in the elliptic curve over
the extension field GF(pnk). We assume that the Weil pairing is efficiently computable
on 〈P〉 × 〈D(P)〉. Denote the lth root of unity el(P, D(P)) in GF(pnk) by g.

In our scheme an end-user A chooses his private signing key 0 ≤ x < l randomly.
Its public key (for both the non-repudiation and the encryption service) is the element
y = gx in GF(pnk)∗. The user’s certificate is based on this public key and also references
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to (or contains) the system parameters, e.g., the elliptic curve E , the group order l, the
point P on it and the element g. To make the encryption service recoverable, the user
also forms the point Y = x · P and escrows this at a trusted third party. Now, the end-
user could employ any discrete-logarithm-based digital signature scheme, like Schnorr,
ElGamal or DSA, thereby using the g, y and the private key x . The encryption service
supported is the following variant of the ElGamal [4] encryption scheme:

1. The sender generates a random 0 ≤ k < l and symmetrically encrypts the infor-
mation for end-user A using yk as a session key.

2. The sender forms the point K = k · P on the curve E and sends both the encrypted
information and the point K to end-user A.

Now there are essentially two ways for the end-user A to decrypt information en-
crypted this way. The first way is first to calculate el(K , D(P)) = el(k · P, D(P)) =
el(P, D(P))k = gk and then secondly calculate (gk)x = yk which enables the end-user
to decrypt the symmetrically encrypted information. Note that no secret information is
required to determine gk , so this information could in fact be sent along by the sender,
avoiding that the end-user needs to calculate a Weil pairing. The second way to decrypt
this information is to calculate el(K , D(Y )) = el(k ·P, D(x ·P)) = el(k ·P, x ·D(P)) =
gkx = yk directly on the basis of Y . Note that this operation does not require the private
key x but that the escrowed value Y suffices. Hence, if the end-user retrieves a copy of
Y from his escrow agent, then he is able to decrypt his messages when he loses his pri-
vate x . However, the end-user is not able to make new digital signatures as determining
the private key x from Y = x · P requires one to solve a discrete logarithm problem in
the elliptic curve, which we assumed is not practically possible.

For an indication of security, suppose that an attacker can compute Y on the basis of
y, then as y is chosen randomly by the end-user, the attacker has found a computable
injective homomorphism from 〈g〉 to 〈P〉. It follows from the arguments in Section 3
that the attacker is then also able to solve the DH problem in both these groups. We are
not aware of more rigorous security proofs. We finally remark that there exists a more
general but less efficient variant of this scheme that does not require a distortion map
and whereby one uses two independent points P, Q. We leave the details, which are
straightforward, to the reader.

6. Conclusion

We have shown that the existence of any efficiently computable, injective homomorphism
from the XTR subgroup in the group of points over GF(p2) on a supersingular elliptic
curve over GF(p2) of order p2− p+1 implies that we can solve several problems that are
widely believed to be hard. The DH problem in the XTR subgroup is an example of such
a problem. We have also shown that the DDH problem in such elliptic curve groups is
efficiently computable and that our results can be extended to other supersingular elliptic
curve groups. The results in this paper therefore provide evidence that the multiplicative
group of a finite field provides essentially more, and in any case not less, security than the
group of points of a supersingular elliptic curve of comparable size. In addition to this, we
have discussed generalizations to tackle the DDH problem in groups of points on general
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elliptic curves over finite fields. Finally, we have shown that the tools we used in our
cryptanalysis (distortion maps) can also be used as building blocks in new cryptographic
applications. We have illustrated that with two examples: an improvement of Joux’s one
round protocol for tripartite Diffie–Hellman key exchange and a non-refutable digital
signature scheme that supports escrowable encryption. We have also classified elliptic
curve groups where distortion maps exist, which apart from (nearly) all supersingular
elliptic curve groups also include certain types (t = 2) of ordinary elliptic curve groups.
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