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Abstract—Latent fingerprints are routinely recovered from
crime scenes and are compared with available databases of known
fingerprints for identifying criminals. However, current proce-
dures to compare latent fingerprints to large databases of full
(rolled or plain) fingerprints are prone to errors. This suggests
caution in making conclusions about a suspect’s identity based on
a latent fingerprint comparison. A number of attempts have thus
been made to measure the utility of a fingerprint comparison in
making a correct accept/reject decision or its evidential value.
These approaches, however, either do not represent the state-
of-the-art in fingerprint matching due to unrealistic modeling
assumptions or they lack simple interpretation. We argue that the
posterior probability of two fingerprints belonging to different
fingers given their match score, referred to as the Non-match
probability (NMP), effectively captures any implicating evidence
of the comparison. NMP is computed using state-of-the-art
matchers and is easy to interpret. To incorporate the effect of
image quality, number of minutiae, and size of the latent on NMP
value, we compute the NMP vs. match score plots separately
for image pairs (latent and full fingerprints) with different
characteristics. Given the paucity of latent fingerprint databases
in public domain, we simulate latent fingerprints using two full
fingerprint databases (NIST SD-14 and Michigan State Police)
by cropping regions of three different sizes. We appropriately
validate this simulation using four latent databases (NIST SD-27
and three proprietary latent databases) and two state-of-the-art
fingerprint matchers to compute their respective match scores.
We also describe the way a latent fingerprint examiner would
use the proposed framework to compute the evidential value of
a latent-full print pair comparison in practice.

Index Terms—Fingerprint matching, latent fingerprint com-
parison, individuality, evidential value, Non-match probability,
genuine match distribution, impostor match distribution

I. INTRODUCTION

Latent fingerprints are extensively used as forensic evidence

in criminal prosecution. This is mainly because i) fingerprint

patterns are highly discriminative, and ii) they are routinely

found at most crime scenes due to inadvertent contact of the

perpetrator’s finger tips with various objects in the crime scene.

In order to use them as evidence in a court of law, the latent

fingerprints are “lifted” from the crime scene and matched

either to full (rolled or plain) fingerprints that are captured

from the suspect or to reference prints in law enforcement

databases. See Figure 1 for a sample latent fingerprint image

and its corresponding (mated) full fingerprint.

Typically, latent fingerprint images have significantly poor

quality compared to full fingerprints. While full print to
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Fig. 1. Example of a latent and the corresponding rolled fingerprint. Based on
NIST SD27, latent fingerprints, on average, have around 20 minutiae whereas
a rolled fingerprint, on average, has around 150 minutiae.

full print matching can be done effectively in a lights out

mode (fully automatic) by Automatic Fingerprint Identification

System (AFIS) (unless the image quality is very poor) [39],

latent to full print matching still requires extensive image

preprocessing and, in many instances, a manual matching by

a latent examiner following a procedure referred to as the

ACE-V protocol [15]. Usually, an AFIS is used to filter a

large database of reference full prints to a small number of

potential mates (typically 50) for further manual examination

by latent experts. Despite the ACE-V protocol available for

latent matching, there have been a number of cases where an

incorrectly identified latent fingerprint resulted in a wrongful

conviction [20]. A prominent case in this regard is that of

Brandon Mayfield, who was incarcerated for the 2004 Madrid

train bombing based on an erroneous latent fingerprint match.

The Federal Bureau of Investigation (FBI) later reviewed this

case [13] and noted that the reasons for the misidentification

included examiner bias due to influence of the knowledge of

Mayfield’s fingerprint while marking features on the latent

fingerprint, and inadequate consideration of fingerprint image

quality. Some other cases have also been brought to light by

the Innocence Project [40] where the erroneous convictions

made based on latent fingerprint matches were later overturned

as a result of DNA evidence. The acquitted individuals,

however, had already spent many years in the prison.

In light of such misidentifications, it is crucial to measure

the accuracy or error rate of a fingerprint comparison and thus

the confidence with which the outcome of a fingerprint com-

parison can be accepted. The latter is usually quantified as the

evidential value of a fingerprint comparison. The importance

of this evidential value was also established by the Daubert

standard set by the United States Supreme Court in Daubert

v. Merrell Dow Pharmaceuticals, 1993 [1]. The Daubert
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standard requires that the error rate of the forensic analysis

be available before the related evidence can be admitted in a

court proceeding. An urgent need to properly evaluate the error

rates of latent matching was also expressed in an extensive

study of forensic techniques prevalent in the United States

conducted by the National Research Council (NRC) [32]. The

report highlighted that

“In most forensic science disciplines, no studies have been

conducted on large populations to determine the uniqueness

of marks or features. Yet, despite the lack of a statistical

foundation, examiners make probabilistic claims based on

their experience. A statistical framework that allows quantifi-

cation of these claims is greatly needed. These disciplines also

critically need to standardize and clarify the terminology used

in reporting and testifying about the results and in providing

more information.”

The NRC study essentially recommends that every forensic

science method should undergo substantial research to validate

basic premises and techniques, assess limitations, and discern

the sources and magnitude of error.

The need to estimate the evidential value of latent fingerprint

comparison based on its error rate is urgent, lest undue

challenges to fingerprint evidence in court cases affect timely

deliverance of justice. The use of fingerprints as evidence was

first challenged in 1999 in the case of U.S. v. Byron C. Mitchell

[2] and since then numerous other court cases have seen calls

for motion to exclude fingerprints as evidence. See for example

U.S. v. Llera Plaza [3], [4], in 2002, U.S. v. Crisp [5] in 2003,

State of Maryland v. Bryan Rose [6] in 2007, and U.S. v.

Hamza Keita [7] in 2009.

Numerous studies have been undertaken to date to evaluate

the evidential value of a fingerprint comparison. See Section

II for a discussion on the past studies. These studies can

be broadly classified as feature modeling and empirical ap-

proaches.1 The feature modeling approaches aim to statisti-

cally model the correspondence between certain features of

the two fingerprint images being compared. This statistical

model can thus be used to estimate the probability that the

correspondences are just due to random chance. The empirical

approaches, on the other hand, aim at conducting large-scale

experiments for estimating the error rates under different

circumstances. In this paper, we mainly explore the empirical

approach. Note that it is difficult to accurately model various

fingerprint features, as attempted in a number of published

studies, that are typically used by state-of-the-art fingerprint

matchers as well as identified by latent examiners during

fingerprint comparison.

A fingerprint comparison, as required in an empirical study

1A categorization of approaches that quantify the evidential value of
a forensic evidence has also been proposed in [48]. In [48] the existing
approaches are categorized into generative and discriminative classes, where
a generative approach involves a statistical model of the biometric features
while a discriminative approach does not. However, the term generative is
typically used to describe a classification approach where the distributions of
two classes being distinguished is modeled, whereas a discriminative approach
usually only models the decision boundary [37]. In our context, the two classes
being distinguished are the genuine and impostor match score distributions,
whereas in [48] the generative class encompasses approaches irrespective of
whether the corresponding match scores are statistically modeled or not. For
this reason, we have proposed a new categorization.

assessing the evidential value of a fingerprint comparison, can

be performed either using an automatic matcher or manually

by a latent expert. Both these methods of comparing finger-

prints have their own implications on the accuracy of the

comparison as well as on the evaluation of its evidential value:

1) AFIS-based fingerprint comparison: With the ad-

vancements in fingerprint matching technology, it is

now possible to compare latents with full fingerprints

effectively and automatically. The National Institute of

Standards and Technology (NIST) conducted an evalua-

tion of available automatic latent fingerprint techniques

and reported a rank-1 accuracy of 97.2% on good quality

latent fingerprints when matched with a background

database of 100, 000 full fingerprints (see [41]) and an

accuracy of 62% while matching poor quality latents

with a background of 1 million full fingerprints (see

[28]). In [41], the manually marked features on latent

images were used to search the database and the images

with successful retrievals were then used in the fully

automatic testing. Further, the throughput requirement

in [28] was more restricted compared to [41]. This

explains the high matching accuracy reported in [41].

Nevertheless, these promising results from automatic

latent matching experiments support the use of AFIS

in forensic matching of latent fingerprints. The issue of

limited availability of the database for training purposes

is also being addressed. See e.g. [21].

2) Manual fingerprint comparison: Latent fingerprint ex-

aminers typically follow the ACE-V protocol for match-

ing latent fingerprints. While this protocol is considered

to be reasonable, it is difficult to conduct large-scale

experiments with latent examiners in order to evaluate

the error rates associated with the protocol and thus

the evidential value of a manual latent fingerprint com-

parison. In a recent study involving manual fingerprint

matching conducted by Ulery et al. [50], 169 latent

examiners were asked to match latent-full print pairs

from a pool of 744 (520 mated and 224 non-mate) pairs.

Still, Ulery et al. concede that, despite the extensive

nature, their experiment is not representative of all the

latent print examiners and actual casework of latent

matching. Further, a proper design of experiments would

require that fingerprint images are partitioned based on

the image characteristics, but this would further reduce

the already small number of image pairs used in their

experiment. Evaluation of error rates of the ACE-V

protocol is also difficult due to inconsistencies among

its different implementations that arise mainly due to its

imprecise specification [26]. In a study performed by

Dror et. al. [22], the accuracy of latent examiners has

also been shown to be affected by extensive use of AFIS

to select a list of candidate matches before a manual

matching is performed.

Our study mainly focuses on the use of automatic fingerprint

matchers because of the difficulty in conducting large-scale

experiments with latent fingerprint examiners. We use the Non-

Match Probability (NMP) [19] as the quantity that captures
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Fig. 2. A typical NMP-curve. An ideal NMP-curve is shown as the dotted
blue line. Note that the ideal curve can completely separate mated (having an
NMP value 0) and non-mated (having an NMP value 1) fingerprint pairs.

any implicating evidence of a fingerprint comparison. Since

the accuracy of AFIS and thus the relationship between the

NMP and the match score is dependent upon the characteristics

of the fingerprint images, we divide the available fingerprint

database into various partitions, each associated with a dif-

ferent covariate, say, a specific range of number of minutiae,

image quality and the size (area) of the associated fingerprints.

Different NMP vs. match score plots, called the NMP-curves

(see Figure 2), are computed based on these database partitions

and their relationship with the characteristics of the database

is studied. We also compute the significance of evidence

associated with an NMP value, which is referred to as the

conclusiveness of an NMP value. Finally, due to paucity of

public domain latent databases, we utilize and validate the

use of partial fingerprints as a substitute for latent fingerprints

in estimating the NMP-curves.

The main contributions of this paper are as follows:

1) Quantification of the evidential value of a latent finger-

print comparison in terms of conclusiveness of an NMP

value.

2) An analysis of the evidential value of latent fingerprint

comparison as a function of number of minutiae, quality,

and latent area or size.

3) Validation of simulation of latent fingerprints using

partial prints by comparing the associated NMP-curves.

4) A step-by-step procedure that can be followed by a latent

examiner in order to estimate the evidential value of a

latent fingerprint comparison.

5) Extensive experiments using two different Commercial

Off the Shelf (COTS) fingerprint matchers and four

different latent databases.

The rest of the paper is organized as follows. Section

II presents a summary of previous approaches to estimate

fingerprint evidential value. Section III presents the proposed

framework for analyzing the evidential value based on NMP.

Section IV presents experimental results. A summary of our

work is presented in Section V. A preliminary version of this

paper appeared in [19].

II. BACKGROUND

The various approaches available in literature for formally

assessing the identifying information in fingerprints can be

broadly divided into two main categories: feature-modeling-

based approaches and empirical approaches.

A. Feature-modeling-based Approaches

The first attempt to estimate the evidential value of fin-

gerprints by statistically modeling the fingerprint features

was made by Galton [25]. His model required partitioning

a fingerprint into 24 non-overlapping square regions whose

width was equal to six times the inter ridge distance. He argued

that each of these square regions can be correctly reconstructed

with a probability of 1

2
if the information regarding the

surrounding ridges is known. This leads to a probability of
(

1

2

)24
that the complete fingerprint can be reconstructed,

given the ridge structure in the region surrounding the square

regions. Galton further noted that the probability that the

correct number of ridges enter and exit the 24 squares is 1

256

and that the probability of occurrence of a specific type of

finger (e.g. whorl, loop, arch, etc.) is 1

16
. This assumption

leads to a probability of 1

16
× 1

256
×
(

1

2

)24
= 1.45 × 10−11

for correctly reconstructing a full fingerprint. This measure of

fingerprint individuality has been referred to as the Probability

of Fingerprint Configuration (PFC) [25]. In later studies, e.g.

in [42], the PFC values were characterized by the amount of

discriminating information in a fingerprint such as the number

of minutiae, fingerprint quality, etc. The PFC value was also

viewed as the Probability of False Association (PFA) (See e.g.

[14], [30]) which essentially measures the probability that a

given fingerprint configuration will perfectly match one of the

k available fingerprints. Mathematically,

PFA = 1− [1− PFC]k. (1)

Note that most of the above approaches involved manual

analysis of fingerprints. Champod and Margot [16] were,

however, the first to use automatically extracted minutiae

for computing PFA. A thorough discussion of other similar

approaches is provided in [44].

One of the limitations of the PFC (and PFA) is that it does

not take into account the characteristics of a fingerprint com-

parison e.g. the number of matching minutiae, size of overlap

between the two fingerprints being matched, number of non-

matching minutiae in the overlapping region, etc. Pankanti

et al. [38] first incorporated these match characteristics in

quantifying the individuality of fingerprints using the so called

Probability of Random Correspondence (PRC). Given a query

fingerprint containing n minutiae, they computed the PRC that

an arbitrary template fingerprint containing m minutiae will

have exactly s mated minutiae with the query. Thus the PRC

value is computed as

PRC(s) = P (s|I,m, n) (2)

where I refers to the impostor pair of fingerprints, i.e. the two

fingerprints being compared belong to different fingers.

Pankanti et al. assumed a uniform distribution to model

the location and direction of each minutia in a fingerprint
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Study Model description Database

Pankanti et al. (2002)
Modeled minutiae location and orientation using uniform

distribution
668 fingers, 4 impressions per finger

Chen and Moon (2007)
Extended Pankanti et al.’s model by using von-Mises

distribution to model the minutiae direction
383 fingers, 1149 fingerprints

Zhu et al. (2007)
Extended Pankanti et al.’s model by using finite mixture

models for minutiae location and direction
NIST SD4 (2, 000 fingerprints), FVC2002 DB1 (800

fingerprints) and FVC2002 DB2 (800 fingerprints)

Fang et al. (2007) Extended Zhu et al.’s model by including fingerprint ridges FVC2002 DB1 (800 fingerprints)

Su et al. (2009)
Extended Zhu et al.’s model by including ridge flow and

ridge points
NIST SD4 (2, 000 fingers, 2 impressions per finger)

Chen and Jain (2009) Extended Zhu et al.’s model by including ridges and pores NIST SD4 (2, 000 fingers, 2 impressions per finger)

Su et al. (2010) Used Bayesian networks to obtain minutiae correspondence
NIST SD4 (2, 000 fingers, 2 impressions per finger), NIST

SD27 (258 latents and mated full fingerprints)

TABLE I
TECHNIQUES FOR ASSESSING THE EVIDENTIAL VALUE OF FINGERPRINTS BASED ON PRC VALUES.

independently to calculate the PRC value. One limitation of the

uniform distribution model is its relatively poor fit to the true

minutiae distribution in fingerprints. To address this issue, a

number of subsequent studies attempted to improve the model

of Pankanti et al. Chen and Moon [17] extended Pankanti

et al.’s model by using von-Mises distribution for minutiae

direction. Based on the observation that the minutiae tend to

form clusters [45], Zhu et al. [51] used finite mixture models

for modeling the minutiae distribution. For each fingerprint,

a Gaussian distribution was fit to the minutiae locations and

a Von-Mises distribution was used for the minutia directions

in each component of the mixture. Fang et al. [24] and Su et

al. [46] extended this framework by incorporating information

regarding the fingerprint ridges. Chen and Jain [18] modeled

three different levels of fingerprint features: level 1 (pattern

type), level 2 (ridges and minutiae) and level 3 (pores). Su et

al. [47] incorporated dependence between neighboring minu-

tiae using Bayesian networks. Despite these developments,

there are two main limitations of these model-based studies:

i) the matching criteria used, e.g. the number of matching

minutiae, is very rudimentary and does not represent the

matching criteria of state-of-the-art algorithms, and ii) intra-

class variations in fingerprints (see Figure 3), a major source

of matching errors, is not explicitly considered in computation

of the PRC value.

B. Empirical Approaches

A number of empirical approaches for computing the evi-

dential value have been reported in the literature. Meagher et

al. [31] were the first to utilize the FBI’s Automated Finger-

print Identification System (AFIS) to compute the evidential

value of fingerprints in response to the first legal challenge

against fingerprint evidence in the courts, namely U.S. v.

Byron C. Mitchell. They simulated latent images by partial

prints obtained by cropping 50,000 different rolled finger-

prints. These partial fingerprint images were compared with

the original rolled images to obtain the genuine and impostor

match scores. Assuming that the genuine and impostor scores

follow a Gaussian distribution, Meagher et al. computed the

probability of finding a pair of two unrelated fingerprints,

whose match score is greater than the smallest of the genuine

match scores observed, as 10−97. One major shortcoming of

Fig. 3. Two fingerprints belonging to the same finger that appear to have
different characteristics due to skin distortion during image acquisition. This
illustrates the intra-class variability in fingerprints, a major obstacle in defining
quantitative measures of evidential value. Note that placing a simple bounding
box around each minutia during comparison is not sufficient to account for
the intra-class variation.

this study is that the intra-class variation (see Figure 3) was

not accounted for since only one image per finger was utilized.

Neumann et al. [33], [34], [35] developed a fingerprint

matching procedure based on matching a local neighborhood

of a small number of minutiae and then converting the

resulting similarity value s into a likelihood ratio (LR),

LR(s) =
P (s|G)

P (s|I)
, (3)

where I refers to impostor fingerprint pairs (non-mated pairs)

and G refers to genuine fingerprint pairs (mated pairs). This

likelihood value was proposed as a measure of the evidence

captured by a fingerprint comparison. In order to obtain

multiple samples of the same minutiae configuration from a

fingerprint, which is required in estimating the within class

distribution, Neumann et al. artificially applied random non-

linear distortion to the minutiae configuration.

In Egli et al.’s approach [23], the corresponding minutiae

are manually identified between the given latent and full

fingerprint. These corresponding minutiae are then matched

using an automatic matcher and the resulting match score

is used to compute the likelihood ratio. The genuine score

distribution, P (s|G), is obtained by matching the correspond-

ing minutiae from multiple impressions of the fingerprint of

interest, whereas P (s|I) is obtained by matching the minutiae

selected from the latent with those obtained from non-mate

fingerprints. Similar to the techniques developed by Neumann
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Study Features Database Matcher
Distribution

model

Measure
of

evidence
Limitations

Meagher et al.
(1999)

Cropped fingerprint
images

50K distinct fingerprints AFIS Gaussian PRC
Genuine match computed

by matching the same
fingerprints

Neumann et al.
(2006)

Manually matched
minutiae triplets

4 fingers, 54 impressions each for
intra-class and 818 subjects for

inter-class variability

In house
matcher

Kernel LR
Requires large # of

impressions per finger

Neumann et al.
(2007)

Manually matched
configurations of

3-12 minutiae

4 fingers, 54 impressions each for
intra-class and 890 fingerprints

for inter-class variability

In house
matcher

Mixture of
Gaussians

LR
Requires large # of

impressions per finger

Egli et al. (2007)
Manually matched

configurations
using AFIS

66 livescans, 88 pseudo-marks of
a thumb and 15 tenprint cards of

the same donor for intra-class,
and 100k background fingerprints

for inter-class variability

AFIS

Weibull
(genuine),
log-normal
(impostor)

LR
Experiments conducted

on a single finger

Proposed
approach

Fingerprint images

NIST SD14 (27, 000 fingers, 2
impressions each), MSP Database
(144, 186 fingers, 2 impressions

each), Latent databases (1041
latent images with mates)

Two
different
COTS
match-

ers

Kernel NMP

Requires large sample
size for database

categorization w.r.t.
quality, area and no. of

minutiae

TABLE II
EMPIRICAL TECHNIQUES FOR ASSESSING THE EVIDENTIAL VALUE OF FINGERPRINTS.

et al., this approach also assumes availability of a multiple

samples of the fingerprint of interest in order to compute the

genuine match score distribution. Note that very few latent

fingerprints from the same finger are available at the crime

scenes and legacy fingerprint databases also have only few

sample images per finger. In a recent publication, Neumann et

al. [36] further developed a framework for incorporating the

finger digit information (index, middle, ring, little, or thumb)

in estimating the evidential value based on the likelihood ratio.

A notable difference among the various LR approaches

published is the method used for estimating the genuine and

impostor densities. In [34], a kernel approach was used to

estimate the genuine and impostor score densities whereas, in

[33], a mixture of Gaussians was used. In [35], a combination

of exponential and beta functions of the score values was

used to compute the likelihood ratio. Egli et al. [23] used

Weibull model for genuine score distribution to accommodate

the limited availability of multiple samples from the same

finger. For the impostor score distribution, they used the log-

normal model.

Tables I and II summarize the different techniques proposed

to evaluate the evidential value of fingerprints based on feature

modeling and empirical approaches, respectively.

III. NMP: THE EVIDENCE OF A FINGERPRINT

COMPARISON

Non-match probability (NMP) is an intuitive quantity that

captures the evidence associated with a fingerprint comparison.

Given a pair of fingerprints, or their match score, NMP

measures the probability that a non-mate decision made for

the pair is correct. Mathematically, NMP for a match score s

between two fingerprints is given by

NMP (s) = P (I|s) = 1− P (G|s) (4)

where I and G correspond to impostor and genuine pair class,

respectively. Note that NMP follows a colloquial use of prob-

ability. An NMP value of 10−6 implies a chance of one in a

million that the given pair of prints does not belong to the same

finger. Further, the range of valid values for NMP is bounded

by the unit interval [0, 1] with a probabilistic interpretation.

An NMP value of 0 indicates that the fingerprint pair, i.e., a

latent and rolled pair under consideration is definitely a mate

whereas a value of 1 indicates that the pair is definitely a

non-mate. The relationship between the match score s and

its associated NMP value can be graphically represented by a

plot, called the NMP-curve (see Figure 2).

Equation (4) provides a compact mathematical representa-

tion of the NMP, but a direct computation of NMP using this

equation is not feasible due to the large number of distinct

possible match score values. However, applying the Bayes

theorem makes the computation of NMP tractable:

NMP (s) = P (I|s) =
P (s|I)P (I)

P (s|I)P (I) + P (s|G)P (G)
. (5)

The procedure for computing P (s|G) and P (s|I) is detailed

in Section IV-A. Note that in eq. (4) the prior probabilities for

genuine and impostor classes were implicit in the definition of

P (I|s) and P (G|s), but in eq. (5), the two prior probabilities,

namely P (G) and P (I), are explicit and reflect any additional

evidence that may be available for specific matching scenarios

[49]. This is one of the strengths of the NMP measure

compared to LR and PRC measures. Further, it is easy to

incorporate prior information into an NMP value that has been

computed with equal priors using the following equation:

NMPp =
NMP × P (I)

NMP × P (I) + (1−NMP )× P (G)
(6)

where NMPp is the NMP value with priors incorporated.

The importance of incorporating prior information can be

illustrated by a situation where two latent fingerprints are

captured from a crime scene with one fingerprint on the

weapon used in the crime and the other on a stray object.

If the fingerprint on a stray object matches with the suspect,
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it is more likely that the fingerprint on the weapon will match

the suspect. This information can be incorporated as prior

probability while computing the NMP value associated with

this comparison. Note that one of the factors determining this

prior probability would be the probability that the multiple

latent fingerprints belong to the same person. See [43] for an

analysis of latent to latent capabilities of available fingerprint

matchers.

It is important to note that NMP can be computed from the

match score output by any fingerprint matcher. Furthermore,

the following equations can be used to compute the NMP

values given LR and PRC values:

NMP (s) =
PRC(s)× P (I)

PRC(s)× P (I) + P (s|G)P (G)
(7)

NMP (s) =
P (I)

P (I) + LR(s)P (G)
. (8)

The above expressions require estimates of densities P (G),
P (I), and P (s|G) i.e. the prior values and the genuine score

distribution. Note that the computation of NMP from LR (and

vice-versa) does not require any density estimation. In fact,

computation of LR can be considered as an intermediate step

in computation of the more intuitive NMP value.

A. The Extended NMP

The image characteristics play a major role in determining

the evidential value of a fingerprint comparison. Consider

two different pairs of non-mate fingerprints both with the

same match score, but with fingerprints in one pair having

significantly poor image quality compared to fingerprints in

the other pair. While one may be able to decide with certainty

that the good quality pair belongs to the impostor class, similar

confidence may not be present in making a decision for the

poor quality pair. It is thus natural to assign different NMP

values to these two fingerprint pairs. A similar effect may

also be observed when considering other fingerprint image

characteristics such as the number of minutiae and size of the

fingerprint. We thus extend the definition of NMP to take these

characteristics into account. The mathematical expression of

the extended NMP is given by:

NMP (Φf1,f2) = P (I|Φf1,f2) (9)

where f1 and f2 represent the two fingerprints being compared

and Φf1,f2 is the set of covariates that can be computed

from f1 and f2 such as image quality, number of minutiae,

their match score, etc. Based on eq. (9), an NMP-curve can

be obtained by computing the values of NMP(Φf1,f2 ) for

different values of match score s while keeping the remaining

elements of Φf1,f2 fixed based on a specified criteria. Note

that a very restricted criteria is equivalent to estimation of

the multivariate NMP function in eq. (9) at a finer resolution.

However, it is important to maintain a sufficient number of

training fingerprint pairs satisfying the given criteria for a

reliable estimation of the NMP values. Section IV-B details

the various experiments illustrating the effect of different

fingerprint characteristics on the resulting NMP values.

B. Conclusiveness: The Significance of NMP-based Evidence

It is important to quantify the significance of a forensic

evidence for its proper acceptance in a court of law. We

measure the significance of an NMP value using a quantitative

measure, called the conclusiveness. The conclusiveness of a

given NMP value measures the extent to which it deviates

from a completely equivocal value of 0.5. The conclusiveness

(γ) for a given NMP value is computed as:

γ = |NMP − 0.5| (10)

The concept of conclusiveness can also be extended to a

training database of match scores used to generate an NMP-

curve. Conclusiveness of a database measures the aggregate

discriminative information provided by the associated match

scores. It also indicates the closeness of the shape of NMP-

curve to a step function. The conclusiveness of an NMP-curve

is defined as:

C =
2

|S|

∑

s∈S

|0.5−NMP (s)| (11)

where S is the set of match scores used to construct the NMP-

curve. Note that the value of conclusiveness is in the range

[0, 1] and is invariant to any translation/scaling of the match

scores.

C. Simulation of Latent Fingerprints

Databases of latent prints are scarce and seldom large

compared to the available full fingerprint databases. The only

latent-full fingerprint database available for public use, that

we are aware of, is the NIST Special Database-27 which

contains only 258 latent-full print pairs. On the other hand,

databases containing thousands of full-full print pairs are

available; e.g. the NIST Special Database-14 contains 27, 000
full fingerprint pairs. Due to this paucity of latent-full print

databases, we simulate latent fingerprints by cropping small

regions from the full fingerprints. In order to validate the use

of cropped fingerprints as a substitute for latent fingerprints,

we compare the associated NMP-curves generated using a

coarsely quantized set of match score values. The resulting

NMP-curve is expected to be more reliable due to relatively

larger number of samples used to compute each point on the

curve. See Section IV-D for more details.

D. The Complete Framework

We present a step-by-step procedure that can be followed

by a latent examiner to estimate the NMP value of a given

latent-full print pair as follows.

• Simulate a large number of latent fingerprints using any

available full fingerprint database by cropping regions

of different sizes, quality, and number of minutiae. If

sufficiently large number of latent fingerprints and their

known mates are available such that the required NMP

values can be reliably estimated, this step can be avoided.

• Partition the available set of (simulated) latent-full print

pairs based on various fingerprint image characteristics

(e.g., image quality and size); compute NMP-curves for
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Fig. 4. A schematic diagram for computing the NMP value for a latent-
full print pair of interest based on the NMP-curve obtained from a training
database of (simulated) latent-full print pairs.

each partition. An effective partitioning of the database

ensures that a number of critical covariates are considered

and each partition has a sufficient number of latent-full

print pairs. Note that the partitions may not be exclusive.

The goodness of a partition can be computed based on

conclusiveness.

• Given a latent-full print pair of interest, select an ap-

propriate NMP-curve based on the covariates used to

partition the database.

• Use the match score for the given latent-full print pair

to select the NMP value from the associated NMP-curve.

The variance of the NMP value is obtained using the

procedure detailed in Section IV-A.

Figure 4 shows a schematic diagram for computing the

NMP value for a latent-full print pair of interest based on the

NMP-curve obtained from a training database of simulated

latents. Note that the size of training database and the thus

the amount of computation required depends on the precision

of the NMP value required in a trial. Further, no manual

intervention is required in the above procedure.

IV. EXPERIMENTS

We use two full (rolled or plain) fingerprint databases

(NIST Special Database-14 [10] and the Michigan State Police

database [8]) and four latent fingerprint databases (NIST

Database Type Size

NIST SD 14 full-full pairs
Two rolled impressions for

27, 000 fingers

MSP DB full-full pairs
Plain and rolled impressions for

144, 186 fingers

NIST SD 27 latent-full pairs
Latent and rolled impressions for

258 fingers

WVU DB latent-full pairs
Latent and rolled impressions for

449 fingers

CMC DB latent-full pairs
Latent and rolled impressions for

134 fingers

RS&A DB latent-full pairs
Latent and rolled impressions for

200 fingers

TABLE III
DETAILS OF THE TWO FULL FINGERPRINT AND FOUR LATENT

FINGERPRINT DATABASES USED IN OUR EXPERIMENTS.

Special Database-27 [10], the West Virginia University (WVU)

latent database [9], the CMC latent database [11], and the

RS&A latent database [12]) in our experiments. The NIST

Special Database-14 contains two rolled impressions for each

of the 27, 000 different fingers whereas the Michigan State

Police database contains one plain and the corresponding

rolled impression for each of the 144, 186 different fingers.

The NIST Special Database-27, the WVU latent database, the

CMC latent database, and the RS&A latent database contain

258, 449, 134, and 200 latent fingerprints, respectively, along

with their mated full prints. Table III lists the characteristics

of the different databases we have used and Figure 5 shows

sample fingerprint images from these five different databases.

(a) (b) (c) (d)

Fig. 6. Cropped regions of size (b) 400 × 400, (c) 300 × 300, and (d)
200× 200 from a full fingerprint (a).

In order to simulate partial fingerprints from full fingerprint

images, we cropped subimages of different sizes (400× 400,

300×300, and 200×200) from the full fingerprint images (see

Figure 6). For cropping purposes, we first calculate the region

of interest (ROI) of the full fingerprint [27] and then randomly

select four points inside the ROI to be used as the centers of

the cropping window. We crop four partial images of three

different sizes from each full fingerprint. Figure 6 shows a

full fingerprint and its cropped images of three different sizes.

These partial fingerprints were matched to the full finger-

prints (not used in cropping) to obtain a set of 684, 744 genuine

scores for each of the three different sized cropped prints.

To limit the number of impostor scores in our analysis, we

randomly selected 2, 000 cropped images and compared them

with randomly selected non-mate full fingerprints to obtain
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Sample latent-full print pairs from the two full fingerprint and four latent databases: (a) NIST SD-14 (two rolled impressions from the same finger),
(b) Michigan State Police database (a rolled and a plain impression of the same finger), (c) NIST SD-27 (latent and its rolled mate), (d) WVU latent database
(latent and its rolled mate), (e) CMC latent database (latent and its rolled mate), and (f) RS&A latent database (latent and its rolled mate).

2 million impostor scores. Fingerprint feature extraction and

matching were performed using two different matchers (COTS

1 and COTS 2). COTS 1 outputs match scores in the range

[0, 1765] whereas COTS 2 outputs match score in the range

[0, 21083].

A. Density Estimation

We follow three main approaches to estimate the likelihoods

P (s|G) and P (s|I): Histogram, kernel density estimation, and

parametric density estimation. In the case of the histogram-

based technique, the genuine and impostor score histograms

are separately normalized prior to their use as probability

densities. In the case of kernel density estimation, a Gaussian

kernel with bandwidths of 2.0 and 1.5, respectively, was used

to estimate the genuine and impostor distributions for the

COTS 1 matcher (using the ksdensity function in MATLAB).

For the COTS 2 matcher, a bandwidth of 2.0 was used to

estimate both the genuine and impostor densities. These pa-

rameters used in density estimation were empirically selected

so that the density estimates are as close to the corresponding

match score histograms as possible. In the case of parametric

density estimation, Weibull distribution was used to model the

genuine match scores and log-normal distribution was used

to model the impostor match scores. The choice of these

parametric distributions follows [23].

We compute the bias and variance of the NMP-curves as

a means of comparison between various density estimation

methods. The variance of an NMP-curve can be computed as

Σ =
1

|S|

∑

s∈S

(

1

B

B
∑

b=1

(NMPb(s)−NMP (s))2

)

(12)

where NMPb corresponds to the NMP-curve associated with

the bth bootstrap sample, NMP corresponds to the mean

NMP-curve obtained by averaging the NMP-curves corre-

sponding to B bootstrap samples and S is the set of match

scores used to construct the NMP-curve. In this experiment,

100 bootstrap samples (B = 100) and partial prints of size

400× 400 were used. The variances of the NMP-curves asso-

ciated with the three density estimation methods are essentially

the same with values of 0.0016, 0.0011, and 0.0008, for his-

togram, kernel density, and parametric estimates, respectively.

The bias of the kth method of density estimation is com-

puted as

µk =
1

|S|

∑

s∈S

|NMPk(s)−NMPh(s)| (13)

where NMPk corresponds to the NMP-curve obtained using

the kth method for density estimation and NMPh is the NMP-

curve obtained using the histogram-based density estimate.

S is, again, the set of scores used to construct the NMP-

curve. The bias for parametric-density-based NMP estimates

and kernel-density-based estimates are 0.0161 and 0.0003,

respectively (see Figure 7). Due to this large difference in the

bias, we use the kernel-density-method-based NMP estimates

in further experiments.

B. Analysis of Extended NMP

Here, we study the effect of different fingerprint covariates

on the associated NMP-curves.

1) Effect of image size: It is expected that larger partial

fingerprints are more discriminative than smaller partial fin-

gerprints. We verified this by obtaining three different NMP-

curves, one for each partial print size. Figure 8 shows the

NMP-cuves for partial prints of size 200 × 200, 300 × 300,

and 400× 400. There is a direct correlation between the size

of the partial print and the conclusiveness of the associated

NMP-curve.

2) Effect of number of minutiae: It is expected that if

there are fewer minutiae in the partial fingerprint, the match

score will be less conclusive. To verify this hypothesis, we
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Fig. 7. A comparison of NMP-curves obtained using three different density
estimation methods. The NMP-curve obtained using the parametric density
estimates deviates largely from that obtained using histogram-based density
estimates. These results are based on 400 × 400 partial prints using COTS
1 matcher. Unless specified otherwise, the results in this paper are obtained
using COTS 1 matcher.

Fig. 8. NMP-curves for various sizes of partial prints. The conclusiveness

values for 200 × 200, 300 × 300, and 400 × 400 partial prints are 0.988,
0.991, and 0.994, respectively. As expected, the conclusiveness values are
directly proportional to the size of the partial prints.

divided the partial prints obtained from the two databases

(NIST SD 14 and MSP DB) into three groups, each having

small, medium, and large number of minutiae. The range of

minutiae used for partitioning the database into small, medium,

or large number of minutiae category are database specific.

This ensures that there are essentially the same number of

genuine pairs among different partitions. The conclusiveness

associated with different partitions based on the number of

minutiae are shown in Table IV. As expected, for a given

partial print size, the conclusiveness of the evidential value

is higher for larger number of minutiae. Figure 9 shows the

corresponding NMP-curves for partial prints of size 200×200.

3) Effect of image quality: Image quality is a well known

covariate of fingerprint matching accuracy [39]. To investigate

the effect of image quality on NMP, we partitioned the genuine

and impostor match scores into two categories: Good and bad.

The good category corresponds to those fingerprint pairs where

both the constituent fingerprints are at least of good quality

according to the NIST Fingerprint Image Quality (NFIQ)

(NFIQ ≤ 3). The remaining fingerprint pairs are assigned to

the bad category. Table V lists the number of genuine and

impostor pairs used in the analysis. Note that NFIQ assigns

one of five quality levels (excellent (1), very good (2), good

Partial
print size

No. of minutiae
# Genuine

scores
# Impostor

scores
Conclu-
siveness

200×200 small: [0, 11] 215,113 656,000 0.978

200×200 medium: [12, 16] 209,288 613,000 0.977

200×200 large: [17, 58] 260,343 731,000 0.990

200×200 all: [0, 58] 684,744 2 million 0.988

300×300 small: [0, 24] 213,758 615,000 0.987

300×300 medium: [25, 35] 240,696 746,000 0.992

300×300 large: [36, 115] 230,290 639,000 0.994

300×300 all: [0, 115] 684,744 2 million 0.991

400×400 small: [0, 40] 223,500 561,000 0.992

400×400 medium: [41, 54] 223,745 600,000 0.995

400×400 large: [55, 162] 237,499 839,000 0.996

400×400 all: [0, 162] 684,744 2 million 0.994

TABLE IV
CONCLUSIVENESS OF THE NMP-CURVES BASED ON IMAGE SIZE AND

NUMBER OF MINUTIAE.

Fig. 9. NMP-curves for 200 × 200 partial prints with small (0-11),
medium (12-16), and large (17-58) number of minutiae. The corresponding
conclusiveness values are shown in Table IV.

(3), fair (4), and bad (5)) to a partial or full fingerprint.

The quality-based NMP-curves are shown in Figure 10.

As expected, the good quality fingerprint pairs provide more

conclusive NMP values than bad quality fingerprint pairs. For

the low match score values, the NMP value for the good

quality fingerprint pairs is higher than those corresponding to

poor quality fingerprints. This is because if the quality is poor,

it is more likely that genuine pairs could lead to low match

scores thereby reducing the NMP values corresponding to low

match scores.

C. Effect of Prior Information

The prior values, P (G) and P (I), of the genuine and

impostor classes also significantly affect the NMP estimates

as can be inferred from eq. (6). Figure 11 depicts the rela-

tionship between an NMP-curve and the associated values

of P (I). Prior values favoring impostor distribution (higher

P (I) values) increase the NMP values whereas those favoring

genuine distribution (lower P (I) values) decrease the NMP

values. Note that prior values allow us to take into account

additional information not available in the scores in making a

match/non-match decision.
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Partial print size # Genuine scores # Impostor scores

Good Bad Good Bad

200× 200 594, 793 89, 951 1, 591, 577 408, 423
300× 300 592, 468 92, 276 1, 585, 496 414, 504
400× 400 580, 214 104, 530 1, 563, 917 436, 083

TABLE V
NUMBER OF GENUINE AND IMPOSTOR PAIRS USED TO CONSTRUCT THE

NMP-CURVES ACCORDING TO DIFFERENT IMAGE QUALITY AND IMAGE

SIZES.

Fig. 10. NMP-curves for the good and bad quality fingerprint pairs for
200 × 200 partial prints. The conclusiveness of NMP curves corresponding
to good and bad quality pairs is 0.9894 and 0.9854, respectively.

D. NMP Values for Latent Fingerprints

In practice, the need for estimating the evidential value

of a fingerprint comparison usually arises during a forensic

examination of a latent fingerprint. It is thus important to

validate the proposed technique for real latent fingerprints.

Given a latent-full print pair, a database of partial-full print

pairs is assigned to it from which the associated NMP value

can be reliably obtained. The NMP-curve obtained from this

partial-full print database is required to be very similar to

the NMP-curve possibly obtained from a database of latent-

full pairs that have similar characteristics as the latent-full

fingerprint of interest. In this experiment we used the four

latent databases: NIST SD-27, WVU latent database, CMC

latent database, and RS&A latent database. In addition to the

mated full fingerprints available in the four latent databases,

the NIST SD-14 was also used as a background database.

In our experiments, all the latent fingerprints were manually

marked for minutiae whereas minutiae were automatically

extracted from the full fingerprint images. Given this data

we obtained a set of 1041 genuine and 2 million impostor

scores using the two COTS matchers: COTS 1 and COTS 2.

A fusion of the match scores obtained by these two matchers

using a sum rule based on min-max normalization [29] was

also used. See Figure 13 for a comparison of the NMP-curves

obtained using the two individual matchers and their score

fusion. As expected, the conclusiveness of the NMP-curve

using fusion of the two COTS is higher than the individual

COTS, demonstrating the benefit of fusion.

Note that the number of genuine scores (1041) in this

experiment is much smaller compared to the number of

genuine scores (684, 744) obtained using the partial-full print

matching experiment. Thus, to obtain a reliable estimate of the

Fig. 11. Effect of impostor prior values, P (I), on NMP-curves for 200×200
partial prints. As P (I) increases, the NMP value also increases monotonically.

Fig. 12. Comparison between the NMP-curves obtained based on real latents
and simulated latents with different number of minutiae.

NMP, we divided the match score values into only three bins

such that each bin has an equal number of genuine scores.

The genuine and impostor probabilities were then computed

for these bins in order to obtain an NMP-curve. The NMP-

curve for the partial-full print pairs was also obtained using

three bins for a fair comparison. Figure 12 shows a comparison

of the NMP-curves associated with real latents to the NMP-

curves associated with partial fingerprints with different ranges

of the number of minutiae. It can be observed that the NMP-

curves for the real latents that have large number of minutiae

closely follow the NMP-curve for the partial prints of size

200 × 200 having large number of minutiae for the middle

range of match scores i.e. [25, 82]. The difference between

the corresponding NMP values is only 0.016. For the match

scores in the range [0, 24], the NMP values for the partial-full

print pairs are, however, higher than the NMP values for the

latent-full print pairs. This is probably due to the generally

lower match scores for the latent-full print pairs. In light of

these promising results, it is expected that with a more careful

partitioning of the partial-full and latent-full print databases,

it may be possible to obtain even more similar NMP-curves

for these two scenarios.

Figure 14 shows mated latent-full print pairs from the four

latent databases used in our experiments. The corresponding

values for sum-fusion-rule-based match scores, the NMP, PRC,

and LR values are provided in Table VI. Note that the LR

values that range in [0.029, 9.9× 106] are difficult to interpret
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Image pair Match score # matched minutiae NMP value LR value PRC value

(a) 0.023 5 0.945± 1.02× 10−3 0.029± 0.002 0.187
(b) 0.162 16 2.5× 10−5 ± 2.8× 10−5 2× 104 ± 2.4× 103 1.82× 10−15

(c) 0.029 2 0.921± 1.2× 10−3 0.043± 0.004 0.231
(d) 0.169 11 1.1× 10−5 ± 2.2× 10−5 4.5× 104 ± 6.8× 103 2.92× 10−9

(e) 0.046 3 0.850± 2.4× 10−3 0.088± 0.006 0.106
(f) 0.188 12 7.2× 10−7 ± 3.6× 10−8 6.9× 105 ± 2.2× 105 4.74× 10−10

(g) 0.051 6 0.832± 2.7× 10−3 0.101± 0.006 0.092
(h) 0.235 13 5.0× 10−8 ± 2.8× 10−9 9.9× 106 ± 6.3× 105 7.94× 10−10

TABLE VI
MATCH SCORES (SUM FUSION OF COTS 1 AND COTS 2 MATCH SCORES), NUMBER OF MATCHED MINUTIAE, NMP AND LR VALUES ALONG WITH 95

PERCENTILE CONFIDENCE INTERVAL, AND THE PRC VALUES COMPUTED FOLLOWING THE MODEL PROPOSED IN [38] CORRESPONDING TO THE SIX

LATENT-FULL PRINT PAIRS SHOWN IN FIGURE 14. THESE VALUES ARE BASED ON THE PARTIAL-FULL PRINT DATABASE WITH PARTIAL PRINTS OF SIZE

200× 200. NOTE THAT SINCE THE NMP AND LR VALUES NOTED IN THIS TABLE ARE MEAN VALUES BASED ON 100 BOOTSTRAP SAMPLES, THEY DO

NOT EXACTLY FOLLOW THE TRANSFORMATION NOTED IN EQ. (8).

Fig. 13. NMP-curves for two different matchers (COTS 1 and COTS 2) and
their fused score for 200× 200 partial prints. The conclusiveness values for
COTS 1, COTS 2 and their min-max-normalization-based sum score-fusion
are 0.988, 0.989, an 0.991, respectively. In order to plot the three NMP curves
on the same plot, the corresponding impostor match scores are normalized to
the same minimum and maximum values.

here. Further, a PRC value of 1.8 × 10−15, as noted in

Table VI, can not be validated since it would require at least

1015 impostor matches. NMP values, on the other hand, are

empirically obtained and confidence in these values can be

easily computed.

We also computed the histogram of NMP values cor-

responding to the genuine matches from the four latent

databases using the two COTS matchers and their min-max-

normalization-based sum score fusion. The NMP values are

measured using the partial fingerprints of size 200× 200. See

Figure 15. Note that most of the NMP values are close to

0, indicating that these values correspond to genuine pairs.

Further, note that the sum fusion rule in general leads to greater

concentration of NMP values towards 0 and the concentration

of NMP values at the completely equivocal value of 0.5 is

reduced especially compared to the COTS 1 matcher. The

noticable concentration around 0.8 corresponds to the poor

quality latent that generated very low matching score.

E. NMP Values for Top-k Retrievals

Note that the analysis of evidential value performed till this

point corresponds to the scenario when a latent fingerprint

is directly compared with a full fingerprint. However, in

practice, a latent fingerprint obtained from a crime scene is first

automatically matched with a large database of full fingerprints

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 14. Mated latent-full print pairs from the four latent databases. (a) & (b)
latent-full pairs from NIST SD27, (c) & (d) latent-full pairs from the WVU
latent database, (e) & (f) latent-full pairs from the CMC latent database, and
(g) & (h) latent-full pairs from RS&A latent database. The corresponding
match scores, LR, PRC and NMP values for these fingerprint pairs are shown
in Table VI.

and only the top-k retrieved full fingerprints are considered for

further matching. We simulated this scenario while estimating

the evidential value of latent-full fingerprint comparison. For

this experiment, we matched randomly selected 10, 000 query

partial fingerprints of size 200 × 200 with the same number

of full fingerprint templates. For each query, only the top 100
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(a) (b)

(c) (d)

Fig. 15. Comparison of histograms of NMP values corresponding to match scores of true mates obtained using the sum score fusion of two COTS matchers
for (a) NIST SD-27, (b) WVU latent database, (c) CMC latent database, and (d) RS&A latent database. COTS 2 failed to generate templates for 7 latent
images from NIST SD-27 and 29 images from the WVU latent database. The NMP values are based on partial-full print training database with partial prints
of size 200× 200.

best matches were used in estimating the NMP-curve. The

corresponding NMP-curve along with the NMP-curve obtained

under direct comparison with all the full prints is shown in

Figure 16. Note that the top-k NMP-curve is shifted to the

right compared to the NMP curve with direct comparison

score. This is because the match score corresponding to the

top-100 retrievals are, in general, expected to be higher than

the original distribution of match scores. Further, the top-100
retrieved fingerprints are in general of good quality leading to

improved conclusiveness. We also estimated the NMP-cuve in

a similar manner for the real latent fingerprints as well. The

corresponding curve is shown in Figure 17.

V. SUMMARY

In light of the empirically demonstrated non-zero error rates

of latent fingerprint matching, and instances of critical errors

leading to undue incarceration of innocent individuals, it is

crucial to establish the evidential value of a latent fingerprint

comparison. We present a framework to capture the evidence

of a given fingerprint match score in terms of non-match

probability (NMP), namely, the posterior probability that the

pair of fingerprints being compared are non-mates. We also

studied the variation of NMP values associated with fingerprint

databases having specific fingerprint characteristics (image

quality, size, and number of minutiae). The NMP values

obtained from different partitions of a fingerprint database

were compared using a measure, called the conclusiveness

that estimates the significance of evidence associated with an

NMP value. Due to paucity of a large training set of latents, we

resort to partial prints obtained by cropping full fingerprints to

Fig. 16. The NMP-curves for the top-100 retrieved templates. The blue
NMP-curve is constructed based on the top 100 retrieved templates when
200 × 200 partial fingerprints are matched against a database of 10, 000
full fingerprints. The red curve corresponds to the direct-comparison-based
NMP-curve obtained using 200× 200 partial fingerprints.

simulate latents and demonstrate the effectiveness of this sim-

ulation. Two full fingerprint databases, four latent databases

and two state-of-the-art fingerprint matchers were used in the

experiments. We believe the proposed measures of evidential

value will allow forensic examiners to present evidence based

on latent comparisons in courts of law on a firm footing.

Due to the generic nature of the proposed framework, a

number of future studies can be conducted. Below we list

some of these directions.

1) We plan to automatically determine the latent image

characteristics so that database can be appropriately
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Fig. 17. The NMP-curves for top-100 retrieved templates using latent
fingerprints. The green curve is the NMP-curve obtained based on the top-100
retrieved templates when 200×200 partial fingerprints are matched against a
database of 10, 000 full fingerprints. The red curve corresponds to the NMP-
curve obtained based on the top-100 retrieved templates when the real latent
fingerprints were matched against a database of 10, 000 full fingerprints.

partitioned to arrive at the most conclusive estimates of

NMP values. Note that these characteristics also severely

affect the discriminative capacity of the matching score.

Such information can potentially allow design of better

ways to combine the outputs of multiple fingerprint

matchers leading to higher matching performance. It

may also be verified whether by conditioning on these

characteristics, the genuine and impostor match score

distributions will follow a simple probabilistic model.

2) There is a need to develop an NMP based evaluation

technique for matchers and compare it with the tradi-

tional Receiver Operating Characteristic (ROC).

3) As one of the major underpinnings of the proposed

framework is the empirical validation of an analytical

model e.g. the kernel density estimation technique for

estimating genuine and impostor match score distri-

butions. We plan to conduct a thorough review and

proper selection among available empirical validation

procedures.

4) In eq. 7 we show that NMP values can be computed

based on the PRC values obtained using a feature mod-

eling approach. We plan to conduct thorough evaluation

of the existing feature modeling based approaches under

the proposed NMP framework.

5) We would also like to explore the avenue of reliably

simulating latent fingerprints for better estimates of

NMP.

6) We also plan to consider additional matching scenarios

similar to the one described in [21], where the difference

between the match scores corresponding to the best

retrieval and the average match scores of the top 2 to

10 retrievals is used as the new match score.

7) We would also like to explore the possibility of combin-

ing evidence from multiple latent fingerprints captured

from a crime scene under the proposed framework.

We are also making attempts to obtain a large database of

latents and mated rolled prints to form a larger and diverse

training set. Availability of a larger database will significantly

improve our ability to perform a more thorough empirical

validation.
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