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Evoked Electromyography-Based Closed-Loop

Torque Control in Functional Electrical Stimulation
Qin Zhang, Member, IEEE, Mitsuhiro Hayashibe∗, Member, IEEE, Christine Azevedo-Coste, Member, IEEE

Abstract—This work proposed a closed-loop torque control
strategy of functional electrical stimulation (FES) with the aim
of obtaining an accurate, safe and robust FES system. Generally,
FES control systems are faced with the challenge of how to
deal with time-variant muscle dynamics due to physiological and
biochemical factors (such as fatigue). The degraded muscle force
needs to be compensated in order to ensure the accuracy of
the motion restored by FES. Another challenge concerns the
fact that implantable sensors are unavailable to feedback torque
information for FES in humans. As FES-evoked electromyo-
graphy (EMG) represents the activity of stimulated muscles,
and also enables joint torque prediction as presented in our
previous studies, here we propose an EMG-feedback predictive
controller of FES to control joint torque adaptively. EMG feed-
back contributes to taking the activated muscle state in the FES
torque control system into account. The nature of the predictive
controller facilitates prediction of the muscle mechanical response
and the system can therefore control joint torque from EMG
feedback and also respond to time-variant muscle state changes.
The control performance, fatigue compensation and aggressive
control suppression capabilities of the proposed controller were
evaluated and discussed through experimental and simulation
studies.

Index Terms—Joint torque control, evoked electromyography,
EMG-feedback predictive control, functional electrical stimula-
tion (FES).

I. INTRODUCTION

S
Ince functional electrical stimulation (FES) was proposed

for motor function restoration in spinal cord injured (SCI)

patients, open-loop control has been predominantly used in

FES systems, where the stimulation pattern is predefined.

The control performance in such systems tends to degrade

over time due to various uncertainties in the muscle response.

Closed-loop control has been investigated in the laboratory

environment but has not yet been widely applied in practice.

Regarding lower limb FES control, it is more important in

Manuscript received July 18, 2012; first revised October 11, 2012; last
revised February 13, 2013; accepted March 12, 2013. This work was supported
in part by China Scholarship Council (CSC) and French National ANR
SoHuSim project. Asterisk indicates the corresponding author.

Q. Zhang is with the State Key Lab of Digital Manufacturing Equipment
and Technology, Huazhong University of Science and Technology, Wuhan
430074, China. She was previously with the DEMAR Project, INRIA Sophia-
Antipolis and LIRMM, CNRS University of Montpellier, 161 Rue Ada -
34095 Montpellier Cedex 5, France (email: qin.zhang@hust.edu.cn).

∗M. Hayashibe and C. Azevedo-Coste are with the DEMAR Project,
INRIA Sophia-Antipolis and LIRMM, CNRS University of Montpellier, 161
Rue Ada - 34095 Montpellier Cedex 5, France (email: hayashibe@lirmm.fr,
azevedo@lirmm.fr).

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

terms of safety and stability comparing with upper limb FES

control [1]. In some previous studies, the stimulation onset

was modulated adapting to the walking speed, ground surface

or the user’s intentions through physical sensors such as foot-

switches [2], accelerometers and gyroscopes [3], through a

built-in algorithm [4] or electromyography (EMG) [5]. In these

studies, the sensor information was only used to trigger the

stimulation, while the stimulation patterns were predefined

empirically or through a trial-and-error process. Such control

strategies are not able to compensate for the degraded muscle

force/torque caused by muscle state changes and not able

to provide a reliable stimulation pattern for desired complex

movements (such as stepping up/down stairs with different

stair heights, or various sports/exercise movements).

Most other studies regarding FES closed-loop control focus

on joint angle feedback to achieve the desired joint angle

by adaptively adjusting the stimulation pattern. For example,

in [6], a model-based approach was proposed to achieve

an efficient and robust FES system, with a nonlinear and

physiologically based model describing the dynamic behavior

of the knee joint and muscles. An artificial neural network

system was proposed to map evoked EMG signal to FES-

induced knee joint angle in a knee angle maintaining task

[7]. In [8], a sliding model closed-loop control method was

proposed to control the knee joint angle. However, the finite-

time convergence of the sliding variable could not be guar-

anteed, and this study did not specifically investigate the per-

formance of the controller facing muscle-state changes. Other

studies [9] [10] and [11] led to the development of several

adaptive controllers in order to improve joint angle tracking

performance in FES. In these studies, the proposed control

methods range from neural sliding-mode control to adaptive

fuzzy sliding-mode control with joint angle feedback. FES-

restored motion always originates from active joint torques

and the interaction with environment. Joint angle feedback

approaches cannot distinguish the resultant motion elicited by

stimulation and that by external forces. Thus, joint torque

control is considered to be superior to joint angle control

as in humanoid development [12]. The compliance provided

by torque control is an important factor especially in the

presence of environmental interactions, which is also required

for humans in daily activities. In FES, internal joint torque

is produced through stimulus-induced muscle contractions. In

addition, controlling the variable which is directly affected by

FES is straightforward. Therefore, it is important to explicitly

control the joint torque elicited by muscle contraction for

advanced FES systems. This study is thus aimed at developing

a novel FES torque control scheme as an alternative of the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TBME.2013.2253777

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 2

classical FES closed-loop system. It can also bring adaptive

function to muscle time-variant responses.

A torque sensor is required as feedback to achieve closed-

loop joint torque control in FES, but existing torque sensors are

unsuitable for use in patients’ daily lives. Although joint torque

control has been studied with respect to unsupported standing

[13] [14], torque recording on a specially designed apparatus

cannot be applied out of the lab. Therefore, we were motivated

to control joint torque from other sensor feedback. A number

of methods have been proposed to estimate muscle force or

joint torque from EMG signal, and some of them succeeded in

tracking muscle fatigue [15] while assuming a time-invariant

FES system. In our previous studies, an EMG-based torque

prediction method was proposed and validated for time-variant

muscle fatigue tracking in SCI patients with surface FES [16]

and implanted FES [17]. In addition, this method accounts for

actual muscle activities, which can guarantee the stimulation

safety and feasibility of FES control. Based on the good

performance of torque prediction rendered by EMG signals

in [16] and [17], this study was aimed at developing an

EMG-feedback closed-loop torque control method so as to

achieve the desired FES-induced joint torque. A predictive

control strategy was used for our control purpose because

of several benefits. For instance, feed-forward prediction and

feedback correction are applied to ensure the optimization

in predictive control strategies. This is similar to the neural

control process, which involves both feed-forward and feed-

back strategies to control muscle contraction for a specific task.

In the control law of predictive controller, both the control

input and output can be easily constrained to avoid both

aggressive stimulation and over-stimulation in FES. Moreover,

fewer predictive controller parameters need to be adjusted

in comparison to other closed-loop control methods, which

facilitate hands-on implementation in practice.

This study was aimed at evaluating the feasibility of joint

torque control based on EMG feedback in FES context. In

section II, the muscle excitation/contraction model and the

corresponding state-space representation are introduced. Next,

a strategy for FES torque control is proposed in section

III. Experimental data from two able-bodied subjects were

collected and used to validate the control scheme in section

IV. A discussion on this control strategy is given in section V.

Finally, section VI concludes the paper.

II. MUSCLE EXCITATION AND CONTRACTION MODEL

An FES system delivers electrical impulses to excitable

motor neurons, in order to contract a target muscle and produce

joint torque and then joint movement. The muscle response

can be controlled by adjusting the stimulation parameters,

i.e. frequency, amplitude or pulse width (PW), depending

on subject’s intended tasks. However, the muscle response

involves time-variant characteristics like muscle fatigue and

reflex, which complicate the control problem in FES.

In a previous work [16], we developed a torque prediction

method to provide an accurate torque estimate from EMG

signals under isometric conditions. A polynomial Hammer-

stein model (PHM) was used to represent muscle contraction

dynamics, with identification obtained by the Kalman filter

(KF) with a forgetting factor. This model structure is able to

represent a time-variant nonlinear process and has been used

in some biomechanical system identification studies [15].

Contraction

process

Excitation

process

Identification

algorithm
Identification

algorithm

Stimulus EMG Torque

Predicted EMG Predicted torque

Muscle plant

Fig. 1. Model structure of stimulated muscle for model identification. The
contraction dynamics model relates EMG to torque. The excitation dynamics
model relates stimulation to EMG.

In this study, in order to control FES-induced joint torque

based on EMG signals, two PHM cascades were applied to

represent the muscle excitation and contraction dynamics, as

shown in Fig. 1. EMG served as the output of the excitation

model with stimulation as input, as well as the input of the

contraction model with joint torque as output. The two PHM

models have the same structure, so a generic PHM model

structure is recalled and its state-space form is reformulated to

decouple the identification process of the linear and nonlinear

terms. This decoupling treatment is different from what we did

in [16], as it is useful when employing a predictive controller

without approximating the nonlinear term.

A PHM model consists of a linear block and a nonlinear

block. The linear block of a PHM is modeled by an autore-

gressive structure with exogenous input (ARX):

A(z)y(k) = B(z)h(k) + w(k) (1)

where y(k) is the model output, h(k) is the intermediate

variable and w(k) is the zero mean and Gaussian white noise.

A(z) and B(z) are polynomials in the backward shift operator,

z−1, given by:

A(z) = 1 + a1z
−1 + a2z

−2 + · · ·+ alz
−l

B(z) = b1z
−1 + b2z

−2 + · · ·+ bmz−m (2)

In the nonlinear block, h(k) is modeled by a polynomial

basis function:

h(k) = g(u(k)) =
n∑

i=0

γiu(k)
i (3)

where u(k) is the model input.

Then we get a PHM (l, m, n) model at a given time k as:

y(k) =
l∑

i=1

aiy(k − i) +
m∑

i=1

n∑

j=0

biγj [u(k − i)]j + w(k) (4)

The state-space form of the generic PHM (l,m,n) model is

described as follows:

x(k) = A(k)x(k − 1) +B(k)Ψu(k − 1) +w(k)
︸ ︷︷ ︸

(5)

f(x(k − 1),u(k − 1),w(k))
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where u(k − 1) contains the previous model input as below:

u(k − 1) =
[
u(k − 1) u(k − 1)2 · · · u(k − 1)n

]T

In (5), the w(k) is Gaussian white noise vector of

the system model. The current state vector x(k) =
[
x1(k) x2(k) · · · xq(k)

]T
, q = max(l,m). Matrix

A(k) ∈ R
q×q transforms the previous states x(k − 1) into

the current states x(k). Vectors B(k) ∈ R
m×1 and Ψ(k) ∈

R
1×(n+1) respectively contain linear and nonlinear coefficients

of u(k− 1). Thus, the linear and nonlinear parameter vectors

at current time k can be written as:

θl(k) =
[
a1(k) · · · al(k) b1(k) · · · bm(k)

]T
(6)

θn(k) =
[
γ0(k) γ1(k) · · · γn(k)

]
(7)

With the same model structure representing the muscle

excitation and contraction dynamics, the identifications of

both models were processed in the same way. The delivered

stimulus, the collected EMG and torque signals were provided

to identify both the excitation and contraction models. All

time-variant states in x(k) and parameters in θl(k) and θn(k)
were identified concurrently by KF with a forgetting factor, as

proposed in [16].

III. FES TORQUE CONTROLLER DESIGN

This study was aimed at developing an EMG feedback

closed-loop torque control strategy which enables adaptive

modulation of the stimulation pattern to achieve a desired

torque trajectory. A predictive controller was applied and

its control performance can be enhanced by the EMG-based

torque estimation method we developed in [16].

In general, the predictive control scheme was developed

on the basis of two internal PHM models described above.

Accordingly, the controller consisted of two nonlinear general-

ized predictive controllers (NGPC) in series, as shown in Fig.

2. The control target was generating an optimal stimulation

signal us to produce the desired joint torque yd. The main

idea was to use the EMG signal for a dual purpose resulting

in EMG-feedback predictive control (EFPC), which involved

an activation controller and a stimulation controller. The

activation controller takes EMG as the control signal md to

drive the predicted torque, close to the desired torque trajectory

yd, based on the contraction dynamics model. The stimulation

controller takes md obtained from the activation controller as

the desired EMG trajectory, so the control signal, stimulation

PW us, was computed to drive the predicted EMG (based on

the muscle excitation model) close to the EMG reference md.

In both the activation controller and stimulation controller,

the same model structure–a generic PHM model–was used

for process prediction and optimization in NGPC. Therefore,

the overall control problem was reduced to resolve two s-

ingle NGPC problems. The link between these two NGPC

controllers is that, at each sample time, the control sequence

of the activation controller was used as input reference for the

stimulation controller. First, the control solution for a single

NGPC is discussed, and then an overall control strategy for

torque control is presented.

A. Nonlinear Generalized Predictive Control

As a whole, a single NGPC control problem is resolved in

two steps, i.e. finding linear and nonlinear solutions, based

on a single PHM model [see equation (1) ∼ (4)]. The control

problem of the linear part was first resolved by the generalized

predictive control (GPC) algorithm, which has been described

in a number of publications such as [18] and [19]. Although

different methods can be used to obtain the GPC control law,

the general idea is to minimize a multistage cost function given

by:

J =

Np∑

j=1

ξ[ŷ(k + j|k)− v(k + j)]2 +

Nu∑

j=1

δ[∆h(k + j − 1)]
2

(8)

where ŷ(k+ j|k) is an optimum j-step ahead prediction of the

controlled variable using data up to time k, v(k + j) is the

future reference trajectory, and ∆h(k+ j−1) = h(k+ j|k)−
h(k) is the increment of control action. Then we get:

h(k + j|k) = h(k) + ∆h(k + j − 1) (9)

In (8), the weighting coefficients ξ, δ respectively penalize the

tracking performance regarding ŷ(k+ j|k)− v(k+ j) and the

smoothness of the control signal regarding ∆h(k + j − 1).
Np is known as the prediction horizon and Nu is the control

horizon; 1 ≤ Nu ≤ Np implies that all increments of the

control action are assumed to be zero for j > Nu.

In this study, a simple GPC formulation was applied to

resolve the linear control problem, instead of solving recur-

sive Diophantine equations [20]. In short, the optimization

problem was computed online in terms of the control se-

quence [h(k|k), h(k + 1|k), · · · , h(k + Nu − 1|k)], so that

the predicted controlled variable sequence [ŷ(k + 1|k), ŷ(k +
2|k), · · · , ŷ(k+Np|k)] followed a desired reference trajectory

[v(k + 1), v(k + 2), · · · , v(k + Np)]. The GPC-computed

control sequence was a solution of the linear predictive control

problem at step k, which was applied to the linear part of the

system and used to solve the nonlinear solution of the NGPC.

After we obtained the linear solution h(i|k), i = k ∼ k +
Nu − 1, the nonlinear solution–the plant input u(i|k)–can be

resolved from h(i|k) on the basis of function (3). At each

time step, the signal sequence h(i|k) was obtained by GPC,

the nonlinear model coefficients γ0, · · · , γn were known by

model identification, so the NGPC control problem was to

find the control input signal u(i|k), i = k ∼ k+Nu−1. This

can be resolved by finding the zeros of the following function:

p(u(i|k)) =γ0 + γ1u(i|k) + · · ·+ γnu(i|k)
n − h(i|k) (10)

We calculated u(i|k) by finding eigenvalues using the Frobe-

nius companion matrix [21]. Until now, the control problem

of a single NGPC has been solved in two steps, first a linear

solution and then a nonlinear solution.

In this way, an NGPC has four tuning parameters: Np, Nu,

ξ and δ. The tuning processes of these parameters are not

independent of one another but are interactive. Usually, the

selection of prediction horizon Np relies on the sampling time.

The selection of control horizon Nu depends on a trade-off

between reducing the amount of computation and achieving
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Fig. 2. Diagram illustrating the EMG-Feedback Predictive Control (EFPC) strategy. The control signal obtained from the activation controller was used as
the desired reference of the stimulation controller. In each controller, an NGPC algorithm was applied based on a PHM model. The torque measurement yt
and EMG measurement ym were used for model identification process, as shown by the grey lines. When the torque was suspended for the controller, torque
control was achieved only based on EMG feedback, as shown with the grey dashed line.

global optimization [22]. A large Nu may avoid a violation

of constraints before they are reached, but it may also result

in a substantial amount of computation [18]. The effect of

δ is related to suppressing aggressive control actions, while

ξ allows the assignment of weight to reduce the trajectory

tracking error. The tuning of δ and ξ can be simplified by

setting one of them as a constant and tuning the other one.

B. Closed-Loop Implementation of the Dual Predictive Con-

troller

As described above, the proposed EFPC control scheme

consists of two NGPC controllers, as illustrated in Fig.

2. Each NGPC works as described in section III-A. Note

that, in this EFPC control scheme, the control sequence

md(k|k), md(k + 1|k), · · · ,md(k + Nu − 1|k) obtained in

the activation controller is treated as the reference trajectory

for the stimulation controller. After the stimulation controller

calculation, only the first element of the control sequence

us(k|k), us(k + 1|k), · · · , us(k + Nu − 1|k) is actually sent

to the stimulator during time interval [k,k+1], that is, us(k) =
us(k|k). The procedure is repeated at the next sampling time.

The closed-loop EFPC implementation consists of the fol-

lowing steps periodically, as shown in Table I. Note that, in

step 6, the torque measurement can be suspended for the

muscle contraction model update. Instead, the EMG-based

torque estimate is used in the activation controller as long

as the muscle contraction model is preidentified using some

initial experimental data.

IV. CONTROL PERFORMANCE EVALUATION

In order to assess the performance of the proposed EFPC,

preliminary experiments were conducted on two able-bodied

subjects with informed consent. The experimental data were

used to verify the control performance and to build virtual

subjects for simulation studies.

Surface stimulation was transmitted to induce isometric

ankle dorsiflexion in sitting position. The cathode electrode

was placed over the common peroneal nerve and the anode

one was placed over the proximal Tibialis Anterior (TA)

muscle to the knee joint. The stimulus was delivered by a

computer-controlled stimulator (ProStim, MXM, France) with

TABLE I
ALGORITHM DESCRIPTION

Algorithm Closed-Loop Implementation of the EMG-feedback Pre-
dictive Controller

1. k ← 0

2. Initialize the KF, and the control parameters for the activa-
tion and stimulation controllers: prediction horizon, control
horizon, and weighting factors.

3 while system is running do

4. k ← k + 1

5. Collect the EMG and torque signals (at current time k)

6. Update the model parameter estimates by KF for both the
muscle excitation model and contraction model. Note that,
both the linear parameters in θl (6) and the nonlinear param-
eters in θn (7) are simultaneously identified

// running activation controller (step 7-8)

7. Calculate the linear solution sequence by GPC (8, 9)

8. Calculate the control signal sequence md in Fig. 2 using (10),
and then it is used as reference for the stimulation controller

// running stimulation controller (step 9-10)

9. Calculate the linear solution sequence by GPC (8, 9)

10. The control signal us in Fig. 2 is calculated using (10)

11. Apply us to the stimulator

12. end

PW modulation (PWmax=450 us) at a constant amplitude and

frequency (40 Hz). Each subject participated in nine test ses-

sions including three different stimulation patterns. In each test

session, a sequence consisting of a trapezoidal envelope train

(0.4-s ramp-up, 1.2-s plateau, 0.4-s ramp-down) and a 2-s rest

were applied for 48 s. Three stimulation patterns—gradual,

random and constant patterns—were applied alternatively and

repeated three times. The plateau stimulation PW in a gradual

session was gradually increased from 20% to 100% of the

PWmax, while it was randomly determined within 20 ∼ 100%

of the PWmax in a random session, and set at 80% of the

PWmax in a constant session. Evoked EMG signals from TA

muscles were collected and amplified (gain 1000) by a bipolar

differential amplifier (Biopac MP100, CA, USA) and sampled

at 4 kHz. Isometric ankle dorsiflexion torque was measured
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using the dynamometer (Biodex 3, Biodex Medical Systems,

Inc., Shirley, NY), sampled at 2 kHz, and interfaced with the

acquisition system (Biopac MP100). Prior to the experiment,

the optimal positions of the stimulation electrodes and EMG

recording electrodes were manually determined. The suitable

stimulation amplitudes were found to be 26 mA and 35 mA

for subjects S1 and S2, respectively.

After the same signal processing as in [16], the relationship

between stimulation PW, Mean-Absolute-Value (MAV) of

EMG and ankle torque in a gradual test session is plotted

in Fig. 3. The amplitudes of these three variables indicate

that they are not linear with respect to each other, but they

are clearly closely correlated. From the phase viewpoint, the

muscle electrical response occurred around 300 ms earlier

than the muscle mechanical response, which enabled torque

prediction from the EMG signal. The lag between the electrical

response and the stimulation event was relatively small (around

3 ms).
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Fig. 3. Relationships between stimulation, muscle electrical response (EMG)
and mechanical response (torque). Only part of data were plotted here from
a 45-s gradual test. All variables were normalized by their maximum value.

To evaluate the controller performance, the control input sig-

nal, torque and MAV of EMG reproduced from the controller

were respectively compared with the real stimulation PW, the

desired torque and real MAV of EMG. The root mean square

(RMS) error and variance accounted for (VAF) were used to

determine the control accuracy, where the VAF took the signal

variance into account. They were defined as follows:

RMS(k) =

√
√
√
√ 1

N

N∑

k=1

(yr(k)− y(k))2 × 100%

V AF (k) = (1−
var(yr(k)− y(k))

var(yr(k))
)× 100%

where N is the number of samples, yr represents the exper-

imentally measured variable, and y is the variable obtained

from the EFPC controller (i.e. the resolved stimulation PW,

reproduced MAV of EMG and reproduced torque by the

controller).

In the model identification process, model order (3,4,3)

was chosen for both the excitation and contraction models as

in [16]. The model parameters for both model identification

processes are initialized as a1 ∼ a3 = 0.2, b1 ∼ b4 =
0.1, γ0 = 0.01, γ1 ∼ γ3 = 1.0. Both the KF forgetting factors

were set at 0.999 as the FES-induced muscle fatigue rate is rel-

atively low in able-bodied subjects. The control sampling time

was 0.025 s, i.e. in line with a 40-Hz stimulation frequency.

The control signal us was constrained within [0,PWmax] for

each subject, respectively representing non-fiber recruitment

and maximal fiber recruitment. For convenience, in each

NGPC, the weighting coefficient of the controlled variables

was set at ξ = 1, while the weighting coefficient of the

control signal was adjustable. Therefore, the tuning problem

was reduced to tuning the weighting parameter δ1 in the

activation controller and the δ2 in the stimulation controller.

When choosing these two weighting parameters, a tradeoff

between the torque tracking accuracy and stimulation PW

smoothness should be considered. In order to determine the

optimal controller weighting factors, seven weighting factor

options with δ1 and δ2 within the [0.001,1] range were

tested using two test sessions per subject. The RMS errors

of both torque tracking and PW matching were calculated.

We found that when both of the weighting factors (δ1, δ2)
were smaller, both the torque tracking and PW matching

performance got better. In addition, the controller performance

tended to be steady when δ1 = 1.5, δ2 = 0.01. Therefore

weighting factors δ1 = 1.5, δ2 = 0.01 were finally chosen

for all of the control problems in this work. The predictive

horizon and control horizon in the activation controller and

stimulation controller were (40, 30) and (20, 10), respectively,

guaranteeing sufficient tracking accuracy as well as efficient

computation capacity.

A. Torque tracking performance validation using experimental

data

In this section, we verified the EFPC control performance

offline with seven experimental test sessions in each subject.

The experimentally recorded torque was considered as track-

ing reference and the control signal was computed by the

EFPC controller to track the torque reference. In order to

evaluate the control performance of the EFPC controller, we

compared the torque reference with the torque calculated by

the EFPC, as well as the real PW and the PW calculated

by the EFPC. If both of them match well, this indicates

that the model identification and control algorithm in EFPC

worked correctly to achieve the desired torque trajectory.

In the model identification process, the stimulation signal

and recorded EMG are always available for model updates

throughout the whole test session, as in Fig. 2. Regarding the

torque measurement update, we have two phases where one

phase named ”ON” corresponds to the identification phase for

the muscle contraction model with torque update, while the

other phase named ’OFF’ corresponds to the EMG-feedback

torque control phase without torque information. These phases

can be switched at an arbitrary time t (t = 10 s in this study).

That is, the torque estimate in the activation controller was

computed only from the EMG and identified contraction model

for the ’OFF’ period. This process was illustrated by the grey

dashed line in Fig. 2.

Fig. 4 shows the control performance of the proposed EFPC

method to track a random torque trajectory in subject S1. The

EFPC controller generated control signal and solved muscle

activation (dashed line in the bottom and middle plots) to

drive the joint torque (dashed line in the top plot) to track the

desired torque trajectory (solid line in the top plot). Comparing
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the control performance between ’ON’ and ’OFF’ phase, the

torque tracking is accurate (RMS = 3.34%) and the control

signal also well matches the real experimental stimulation PW

(RMS = 7.28%) in the ’OFF’ phase, where the torque control

was performed only with EMG feedback.
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Fig. 4. Evaluation of the proposed EFPC control performance to obtain a
randomly changed torque trajectory in subject S1. ’ON’: All the stimulation
signals, EMG and torque recordings were used for muscle excitation and
contraction model identification. ’OFF’: The EFPC controller performed
torque control only with EMG feedback without using torque measurement.
The reproduced torque tracks the desired reference well (top).

Another result in a constant stimulation protocol in subject

S2 is shown in Fig. 5. We can clearly find the effect of muscle

fatigue in this test session. The same stimulation pattern

was repeatedly delivered for 45 s, the joint torque gradually

declined indicating the development of muscle fatigue. The

reproduced joint torque from the EFPC controller tracks the

torque reference well while keeping certain accuracy of the

resolved stimulation solution compared with the actual input

PW. The small error between the control signal and the real

stimulation PW probably comes from the model error, as we

did not use the torque measurement for the muscle contraction

model update during ’OFF’.

In the same way, the control performance of seven test ses-

sions in two subjects is summarized in Table II. The RMS error

and VAF value of the controlled torque, intermediate activation

state–MAV of EMG and the control signal–stimulation PW

were averaged in seven test sessions (3 gradual, 2 random and

2 constant sessions) in each subject. When the identification

with torque update was switched off (’OFF’ column), the

torque tracking control was still excellent (< 4.5%), both the

EMG and stimulation mismatch errors were less than 10.5%

against the real values. In addition, all the VAF values were

above 90% in ’OFF’, indicating close similarity between the

values solved by the proposed controller and the real experi-

mental values. These results indicate that the proposed method

enables FES torque control while taking the subject-specific

time-variant muscle properties into account. Considering the

fact that torque is controlled only based on EMG signals in

the period of ’OFF’ while it is not controllable in any current
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Fig. 5. Evaluation of the EFPC control performance in a constant stimulation
test in subject S2. Although the effect of muscle fatigue is quite clear from
15 s, the torque tracking is still good, and the control solution also keeps
consistent with the real stimulation PW.

FES systems, this accuracy level is satisfactory.

We may expect that the control errors during ’ON’ should be

lower than those during ’OFF’. But the results are sometimes

opposite, just because the estimator took little time to converge

at the beginning resulting in the higher averaged error in ’ON’

period. However, the convergence time was actually short

(less than 5 s). It is usually supposed to get higher control

accuracy when more experimental data contribute to the model

identification process. In practice, even we used only 10-s data

for model identification, the EFPC controller could produce

the desired torque sequence purely using EMG feedback. The

reproduced muscle activation and control solution provided

by the EFPC also represent the consistency with the actual

transitions in the experiment. In addition, the ability to follow

the random reference pattern demonstrates the capability of

the proposed control strategy to be used for online torque

trajectory tracking. Such adaptivity is very important for

a practical FES system. The muscle fatigue resulted from

repetitive stimulation and the effect of withdrawal reflex in

this stimulation protocol were unavoidable, so the control

performance also indicates the ability of this control strategy

to compensate to some extent for both the muscle fatigue and

reflex effect.

B. Simulation Study on Predictive Control Performance

In the previous section, the torque control performance for

tracking different torque sequences was demonstrated with

experimental data. Here, we try to further investigate the

properties of the proposed EFPC controller in simulation

studies.

All the simulation studies were conducted based on ’virtual

subjects’, which were constructed with the models identified

by experimental data. That is, the muscle excitation and

contraction models were first identified by the experimental

data and then used for the following simulation studies of
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TABLE II
QUANTIFICATION OF THE CONTROL PERFORMANCE USING TORQUE

MEASUREMENT (’ON’) AND WITHOUT TORQUE MEASUREMENT (’OFF’)
(NUMBER OF TESTS = 7*)

Subject Variable
Averaged RMS error (%) Averaged VAF (%)
ON OFF ON OFF

S1
Torque 5.76 3.81 96.94 98.84
EMG 6.92 10.52 92.60 91.04
PW 8.52 10.28 88.45 90.19

S2
Torque 6.66 4.40 96.68 98.64
EMG 10.22 9.29 89.11 93.80
PW 9.56 9.55 86.41 91.13

* The seven tests include 3 gradual, 2 random and 2 constant test sessions
in each subject. ’ON’: Torque update was used to identify the muscle
contraction model. ’OFF’: EMG-feedback torque control without using torque
measurement.

the EFPC controller. The effects of the weighting factor in

suppressing aggressive control actions were assessed first.

Such simulation study allows us to see the effect of different

control parameters keeping the same computational condition

and reflecting actual muscle properties. Next, the versatility of

the proposed EFPC was evaluated in terms of muscle fatigue

compensation and stimulation pattern generation for a given

tracking profile.

Suppressing aggressive control actions

A torque reference was prepared as a sequence consisting

of a square train and a trapezoidal train. The tracking perfor-

mance of the desired torque is shown in Fig. 6. Two sets of

weighting coefficients were tested, respectively referred to as

EFPC1 (δ1 = 0.1, δ2 = 0.01), EFPC2 (δ1 = 30, δ2 = 0.01).

Different weighting coefficients lead to different converging

speeds to reach the desired torque, so the controller can be

designed to avoid aggressive control actions. Since muscles

have physiological limitations in reacting to fast stimulation

input variations, and aggressive control action can increase the

rate of muscle fatigue [23], it is important for the stimulation

controller to provide feasible smooth solutions in FES systems.

When comparing these two torque profiles, the trapezoidal

ramp-up period is important to reduce spasticities resulting

from sudden step stimulation impulses, while the ramp-down

period is important to avoid foot-flap or foot-slap [24]. Hence,

the trapezoidal profile is more realistic than the square profile

for muscles to follow in practice. Fig. 6 shows that, the tran-

sient control actions are smooth when tracking the trapezoidal

reference. For the square profile, even it is an inappropriate

reference for muscles to follow, if suitable weighting factors

are selected, the controller can also provide realistic solutions

as in EFPC2. The weighting factor δ in (8) contributes to the

function of suppressing aggressive control actions. This result

shows that the EFPC can provide physiologically feasible so-

lution even if the unrealistic profile like step torque trajectory

is given by mistake.

Complex stimulation pattern generation

It is not trivial to prepare suitable stimulation patterns

for complex muscle activation profiles especially considering

subject-specific muscle properties in FES. The proposed EFPC

is able to generate stimulation pattern which is required to

achieve arbitrary torque trajectories for complex tasks. In
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Fig. 6. Two controllers with different weighting factor sets, EFPC1 (red)
and EFPC2 (blue), were tested in aggressive control action suppression to
track the torque reference (black dashed). The solid lines indicate the solution
provided by each controller. Note that the left square profile is an inappropriate
reference as the muscle cannot follow due to physiological limitation. The
EFPC2 controller provides realistic solutions benefitting from the suitable
weighting factor in the predictive control strategy.

[25], the classical trapezoidal stimulation envelop proved to be

unsuitable for generating natural gait motion. We have verified

if the EFPC strategy allows us to generate the stimulation

pattern, resulting in the muscle activity recorded during human

natural gait as shown in [25]. A reference trajectory of the

ankle joint torque as in Fig. 7 was given to the proposed

controller. The EFPC framework could systematically generate

the stimulation PW to track the desired trajectory. It is impor-

tant and convenient to design the required stimulation pattern

for any complex intended trajectories, which is superior to

the predefined symmetrical stimulation pattern conventionally

used in the current FES systems.

5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

T
o

rq
u

e 
(N

m
)

 

Reference Reproduced

5 6 7 8 9 10 11 12 13 14 15
0

100

200

300

400

Time (s)

P
u

ls
ew

id
th

 (
u

s)

Fig. 7. Natural stimulation pattern generation. The top plot traces the torque
trajectory (black) and the reproduced torque from the controller (blue dot).
The bottom plot traces the stimulation pattern generated by the EFPC for the
joint torque profile.

Muscle fatigue compensation

Another goal of this study was to assess the ability of the

EFPC to compensate for fatigue effects. A constant torque

trajectory was designed for tracking under muscle fatigue. The

EFPC works to generate suitable stimulation PW to maintain

the torque level as shown in Fig. 8. The stimulation input

was automatically generated and the provided input solution
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gradually increases to compensate for the torque decrease due

to muscle fatigue. The average torque tracking RMS error

was approximately 2.18 Nm. Even though this result was

obtained by simulation, the muscle models were identified with

experimental data representing the actual muscle states. Thus,

this result is significant for advanced FES control allowing

torque control with adaptive muscle fatigue compensation.
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Fig. 8. Muscle fatigue compensation. The reference torque (black solid) was
designed to maintain a constant maximum level. The PW required to obtain
this torque trajectory was computed by the proposed EFPC and represents the
fatigue compensation effect.

V. DISCUSSION

In this study, we newly proposed an EFPC strategy for

FES control involving closed-loop torque control rather than

classical position feedback control. The EMG signal recorded

from stimulated muscle was used to feedback the actual

muscle activity to achieve torque control, which has never

been investigated in the FES context. Since an appropriate

torque sensor is not yet available for humans to use in daily

life, torque control based on EMG feedback is meaningful to

improve the FES performance in terms of accuracy, safety and

adaptability to time-variant muscle state. As muscle mechani-

cal behavior is associated with muscle electrical behavior with

an electromechanical lag, EMG could be used to predict torque

generation and to control the torque adaptively corresponding

to the time-variant muscle response. In addition, the feed-

forward property of the predictive controller enables smooth

input transitions by taking the physiological muscle activation

limitation into account.

This EFPC strategy has the potential to enhance the FES

system in several ways. First, it is able to achieve joint torque

control based on EMG feedback, which is feasible to be used

in daily life, as long as a wireless EMG measurement is

used for torque prediction. Second, an appropriate and safe

stimulation pattern can be easily generated to produce the

desired complex torque also for open-loop use. This is useful

when muscle fatigue is not significant or tracking accuracy is

not strictly required. Third, the control signal can be explicitly

constrained in this control strategy to guarantee stimulation

safety. Aggressive input variation can also be systematically

avoided. Finally, this control strategy is capable of muscle

fatigue compensation benefiting from EMG feedback. The

solution of the EFPC mainly consists of a two-step solution

with a simple NGPC structure. Consequently, the calculation

of each control update takes less than 15 ms in the Matlab

environment, which is sufficient for real-time implementation

in FES. It also means that the EFPC controller can be driven

to tack a torque trajectory given online. The typical drawback

of predictive control is that the model inaccuracy may affect

the control performance. This issue is covered by KF with

a forgetting factor for time-variant and subject-specific model

identification, as in [16]. Note that the muscle excitation model

(stimulation-to-EMG) can always be updated to overcome

time-variances in the muscle excitation process.

The proposed controller was validated using experimental

data on two able-bodied individuals, where ankle dorsiflexion

was elicited through surface FES under isometric conditions.

The EMG signal and ankle torque were recorded for model

identification and control performance evaluation. The pro-

posed EFPC enables the generation of a stimulation PW profile

to obtain desired torque trajectory reflecting subject-specific

muscle properties. The controller performance was evaluated

in the torque tracking task based only on EMG signals in the

absence of torque measurement updates, as shown in Fig. 4,

Fig. 5 and Table II. This result indicates that it is feasible to use

the proposed control strategy to control joint torque without a

torque sensor in FES. In this preliminary study, we focused on

isometric conditions so as to compare the reproduced torque

from EFPC with the directly measured torque in order to first

validate the control strategy under simple conditions.

VI. CONCLUSIONS

This study was aimed at achieving joint torque control from

EMG feedback for use in FES. As implantable torque sensors

are unavailable yet for torque feedback on human, and EMG

was validated for torque prediction in our previous study [16],

an EFPC strategy was developed to resolve the torque control

problem in FES. EMG signal was used to feedback actual

muscle states to track desired joint torque while considering

the time-variant muscle dynamics. The EFPC control prob-

lem was resolved as a solution of two NGPC problems in

series corresponding to activation and stimulation controller,

respectively. In practical applications, once the torque deviates

from the desired trajectory due to the effects of variations in

muscle states or unexpected disturbances, the controller tries

to recompute the appropriate stimulation pattern adaptively to

achieve the desired torque as long as it does not conflict with

the stimulation constraints. This control framework provided

satisfactory control accuracy and remarkable torque control

performance based only on EMG signals under our experimen-

tal and simulation conditions. In addition, the controller was

able to generate a suitable stimulation pattern systematically

for an arbitrary torque trajectory, which is superior to the

conventionally predetermined stimulation pattern. Even when

an unrealistic reference was given, the proposed controller

could generate the solution which was realistic suppressing

aggressive input actions. This model-based torque control

framework would be used for various FES applications when

considering actual muscle activation through portable noninva-

sive EMG recordings. In the future, this work will be extended
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to dynamic motion control in FES, and an appropriate joint

dynamics model could be introduced along with the proposed

muscle contraction modeling to inversely calculate joint torque

from motions as in [6]. Hybrid control of joint torque and joint

position would be ideal to meet both kinematic and dynamic

requirements.
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