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Abstract: EvoloPy is an open source and cross-platform Python framework that implements a wide range of classical

and recent nature-inspired metaheuristic algorithms. The goal of this framework is to facilitate the use of

metaheuristic algorithms by non-specialists coming from different domains. With a simple interface and

minimal dependencies, it is easier for researchers and practitioners to utilize EvoloPy for optimizing and

benchmarking their own defined problems using the most powerful metaheuristic optimizers in the literature.

This framework facilitates designing new algorithms or improving, hybridizing and analyzing the current ones.

The source code of EvoloPy is publicly available at GitHub (https://github.com/7ossam81/EvoloPy).

1 INTRODUCTION

In general, nature-inspired algorithms are population-

based metaheuristics which are inspired by different

phenomena in nature. Due to their stochastic and non-

deterministic nature, there has been a growing interest

in investigating their applications for solving complex

problems when the search space is extremely large

and when it is impossible to solve them with conven-

tional search methods (Yang, 2013).

In general, nature-inspired algorithms can fall into

two main categories: Swarm Intelligence and Evolu-

tionary Algorithms. Swarm intelligence algorithms

simulate the natural swarms such as flocks of birds,

ant colonies, and schools of fishes. Popular algo-

rithms that fall in this category are Particle Swarm

Optimization (PSO) (Kennedy and Eberhart, 1995),

and Ant Colony Optimization (ACO) (Korošec and

Šilc, 2009). More recent Swarm intelligence algo-

rithms include Cuckoo Search (CS) (Yang and Deb,

2009), Grey Wolf Optimizer (GWO) (Mirjalili et al.,

2014), Multi-Verse Optimizer (MVO) (Mirjalili et al.,

2016), Moth-flame optimization (MFO) (Mirjalili,

2015), Whale Optimization Algorithm (WOA) (Mir-

jalili and Lewis, 2016), Bat Algorithm (BAT) (Yang,

2010b), Firefly Algorithm (FFA) (Yang, 2010a), and

many others. Most of Swarm intelligence algorithms

reach the best solution by exchanging the information

between the swarm’s individuals.

On the other hand, evolutionary-based algorithms

are inspired by some concepts from the Darwinian

theory about evolution and natural selection. Such

algorithms include Genetic algorithm (GA) (Hol-

land, 1992), Genetic Programming (GP)(Koza, 1992),

and Evolution Strategy (ES) (Beyer and Schwefel,

2002). These algorithms maintain different strategies

to evolve and find good solutions for difficult prob-

lems based on evolutionary operators like mutation,

crossover and elitism.

An important twist in the research field was made

when the No Free Lunch Theorem (NFL) was re-

leased (Wolpert and Macready, 1997; Ho and Pepyne,

2002). NFL states that no algorithm is superior to

all other algorithms when considering all optimiza-

tion problems. This means that if an algorithm A out-

performs another algorithm B on some type of opti-

mization problems then algorithm B outperforms A

in another types of problems. Since the release of

NFL, researchers and practitioners have developed

a wide range of metaheuristic algorithms and inves-

tigated their applications in different types of chal-

lenging optimization problems. In the last decade,

most of the researchers implemented and shared their

proposed optimizers in Matlab (Yang, 2010a; Yang,

2010b; Mirjalili et al., 2014; Mirjalili, 2015). This is

due to its simplicity and ease of use. However, Matlab
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is a commercial and expensive software and portabil-

ity is a big issue.

In this paper, we introduce EvoloPy which is

a framework written in Python that provides well-

regarded and recent nature-inspired optimizers. The

goal of the framework is to take the advantage of

the rapidly growing scientific community of Python

and provide a set of robust optimizers as free and

open source software. We believe that implementing

such algorithms in Python will increase their popular-

ity and portability among researchers. Moreover, the

powerful libraries and packages available in Python

will make it more feasible to apply metaheuristic al-

gorithms for solving complex problems on a much

higher scale.

2 RELATED WORK

Today, many different nature-inspired optimization li-

braries and frameworks are available. Some of them

are developed for special type of nature-inspired op-

timization like GEATbx (Hartmut Pohlheim, 2006),

which is a framework that contains many variants

of the Genetic Algorithms, and Genetic Program-

ming. GEATbx is implemented in MATLAB envi-

ronment and provides many global optimization ca-

pabilities. The authors in (Matthew Wall, 1996) de-

veloped GAlib library, which contains a set of C++

genetic algorithm tools and operators for different op-

timization problems. In addtion, GAlib is built on

UNIX platforms and is implemented to support dis-

tributed/parallel environments.

In (Fortin et al., 2012), the authors developed a

novel evolutionary computation Python framework

called DEAP to simplify the execution of many op-

timization ideas with parallelization features. The

DEAP Framework includes many nature-inspired al-

gorithms with different variations such as: GA, GP,

ES, PSO, Differential Evolution (DE), and multi-

objective optimization. In addition, DEAP includes

Benchmarks modules containing many test functions

for evaluations. In (Wagner and Affenzeller, 2004),

the authors present a generic optimization environ-

ment named HeuristicLab, which is implemented

using C# language. HeuristicLab is a framework

for heuristic, evolutionary algorithms, and machine

learning. HeuristicLab includes many algorithms

such as: Genetic Programming, Age-layered Popu-

lation, Structure (ALPS), Evolution Strategy, Genetic

Algorithm, Island Genetic Algorithm, Particle Swarm

Optimization, Relevant Alleles Preserving GA, and

many others.

In (Durillo and Nebro, 2011), jMetal is devel-

oped, which is a framework that contains many meta-

heuristic algorithms implemented in Java language.

The authors employ the object-oriented architecture

to develop the framework. jMetal includes many

features such as: multi-objective algorithms, paral-

lel algorithms, constrained problems, and different

representations of the problem variables. In (Ca-

hon et al., 2004; Humeau et al., 2013), the authors

present a white-box object-oriented framework called

ParadisEO. ParadisEO is developed by integrating

Evolving Objects (EO) - which is an C++ evolution-

ary computation framework - and many distributed

metaheuristics including local searches (LS), and hy-

bridization mechanisms.

Most of the existing optimization and metaheuris-

tic based frameworks include classical evolutionary

and nature-inspired algorithms such as: GA, GP, PSO

and ES. However few of them implement recent meta-

heuristic algorithms. In contrast to previous frame-

works, we propose our framework as an initiative to

keep an implementation of the recent nature-inspired

metaheuristics as well as the classical and well re-

garded ones in a single open source framework. To

the best of our knowledge, EvoloPy framework is the

first tool that implements most of these algorithms in

Python language. EvoloPy is designed in an efficient

way to solve computationally expensive optimization

functions with very high dimensions.

Our own research group has been involved on the

development of many metaheuristic libraries, from

EO (Merelo-Guervós et al., 2000) to, lately, Algo-

rithm::Evolutionary (Merelo-Guervs et al., 2010) and

NodEO (Merelo Guervós, 2014). These libraries have

been mainly focused on evolutionary algorithms. The

library we present in this paper has a wider breadth

and, besides explores the possibilities of a new lan-

guage, Python. We will explain this election next.

3 WHY PYTHON?

Python is a general purpose scripting language which

has a clear and simple syntax. With the rapid de-

velopment of mature, advanced and open source sci-

entific computing libraries and packages, Python be-

came as one of the most popular and powerful lan-

guages for scientific computing. Moreover, Python

has cross-platform runability, which works with dif-

ferent operating systems, and has ability to access li-

braries written in different programming languages

and computing environments. Python also can sup-

port small-form devices, embedded systems, and mi-

crocontrollers. In addition, Python needs very mini-

mal setup procedure to start with. Python uses modu-
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lar and object based programming, which is a popular

methodology to organize classes, functions, and pro-

cedures into hierarchical namespaces. All these rea-

sons have turned Python to be a popular language in

a huge community of scientists.

4 FRAMEWORK OVERVIEW

EvoloPy provides a set of classical and recent nature-

inspired metaheuristic optimizers with an easy-to-use

interface. The framework incorporates four main

components which are described as follows:

• The Optimizer: this is the main interface of the

framework in which the users can select a list of

optimizers to run in their experiment. Using this

interface, the user can configure common parame-

ters for the algorithms like the maximum number

of iterations for each run, the size of the popula-

tion and the number of runs. In addition, a list of

benchmark problems can be selected.

• The metaheuristic algorithms: simply this part in-

cludes the list of implemented optimizers in the

framework. At the time of writing this paper,

the following eight algorithms have been imple-

mented:

– Particle Swarm Optimization (PSO)

– Firefly Algorithm (FFA) (Yang, 2010a)

– Gray Wolf Optimizer (GWO)(Mirjalili et al.,

2014)

– Whale Optimization Algorithm (WOA) (Mir-

jalili and Lewis, 2016)

– Multi-Verse Optimizer (MVO) (Mirjalili et al.,

2016)

– Moth Flame Optimizer (MFO) (Mirjalili, 2015)

– Bat Algorithm (BAT) (Yang, 2010b)

– Cuckoo Search Algorithm (CS) (Yang and Deb,

2009)

• Benchmark functions and problem definitions:

This part includes a set of benchmark problems

commonly used in the literature for the purpose

of comparing different metaheuristic algorithms.

Any new user-defined cost function could be

added to this list.

• Results management: this component is responsi-

ble for exporting the results and storing them in

one common CSV file.

5 DESIGN ISSUES

Most of nature-inspired metaheuristics are

population-based algorithms. These algorithms

start by randomly initializing a set of individuals

each of which represents a candidate solution.

Conventionally, in most of state-of-art evolutionary

algorithms frameworks, populations are implemented

as 2-dimensional arrays while individuals are im-

plemented as 1-dimensional arrays. For example an

individual I and a population P can be represented as

given in equations 1 and 2.

Ii = [ x1
i x2

i ... xd
i ] (1)

P =











x1
1 x2

1 ... xd
1

x1
2 x2

2 ... xd
2

...
...

...
...

x1
n x2

n ... xd
n











(2)

In EvoloPy, Numpy is chosen to define and repre-

sent the populations and individuals in the optimizers.

Numpy is an open-source extension to Python that pro-

vides common scientific computing and mathematical

routines as pre-compiled and fast functions. NumPy

also supports large multidimensional arrays and ma-

trices and it offers a varied range of functions to han-

dle and perform common operations on these arrays.

Numpy has many things in common with Matlab. This

makes it easier for researchers who are familiar with

Matlab to use EvoloPy.

The core data structure ndarray (abbreviation for

N-dimensional array) in Numpy is used to define 1-

dimensional and 2-dimensional arrays that represent

individuals and populations, respectively. For exam-

ple, to define a randomly generated initial population

with 50 individuals and 100 dimensions the following

python line of code can be used

initialPop = np.random.rand(50,100)

Moreover, with Numpy it is possible to perform

vector operations in simple and compact syntax. For

example, one of the common operations used in many

metaheuristic algorithms is to check the boundaries of

the elements of the individuals after updating them.

This can be performed all at once with Numpy as fol-

lows:

newPop=numpy.clip(oldPop, lb, ub)

Where lb and ub are the upper and lower bounds

respectively.

To demonstrate the main components of EvoloPy

framework we use the UML representation. A class

diagram illustrating the EvoloPy components and

their relationships is presented in Figure 1. The

EvoloPy framework consists of eleven classes, three
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Figure 1: Class diagram of the EvoloPy framework.

of them for coordinating and simplifying the opti-

mization process, namely; optimizer, benchmarks,

and solution. On the other hand, the other eight

classes represent the actual nature-inspired optimiz-

ers. The core flow of EvoloPy relies in that an op-

timizer solves a benchmark using one or more opti-

mizers to find global solutions. We have used generic

classes names in the framework in order to make it

very easy to flow and general enough to be modified

and usable.

6 COMPARISON WITH MATLAB

In this section we compare the metaheuristic algo-

rithms implemented so far in EvoloPy with their peers

in Matlab based on their running time. The idea

here is to measure the running time of the main loop

of each algorithm in EvoloPy and Matlab with an

equal number of function evaluations. The experi-

ments were performed on a personal machine with

an Intel(R) Core(TM) i5-2400 CPU at 3.10Ghz and

a memory of 4 GB running Windows 7 professional

32bit operating system. In all experiments, the popu-

lation size and the number of iterations were set to 50,

and 100, respectively for all algorithms. In order to

study the effect of the size of the problem on the run-

ning time of the algorithms, all optimizer were exe-

cuted using different dimension lengths ranging from

a small number of 50 elements reaching up to 20,000

in both implementations, Matlab and EvoloPy. Note

that the dimension length here indicates the number

of elements in a single individual or in another words,

the number of variables in the objective function. All

optimizers were applied to minimize the unimodal

function given in Equation 3.

f (x) =
n−1

∑
i=0

(
i−1

∑
j=0

x j)
2 (3)

The results of EvoloPy and Matlab implementa-

tions are shown in Figure 2. It can be noticed that

with small dimension sizes there is no significant dif-

ference in the running time between the two imple-

mentations. In most of the optimizers and up to a di-

mension size of 500 the running time was less than

250 second. However, for higher sizes, the difference

in the running time remarkably increases. On a di-

mension length of 20,000 the ratio is around 1:2 for

most of the optimizers.

The efficient running time of EvoloPy compared

to Matlab implementation when applied for solving

problems with large number of variables can be ex-

ECTA 2016 - 8th International Conference on Evolutionary Computation Theory and Applications

174



50 100 500 1000 5000 10000 20000

Dimension

0

500

1000

1500

2000

2500
T
im

e
 (

s)
Matlab

EvoloPy

(a) BAT

50 100 500 1000 5000 10000 20000

Dimension

0

1000

2000

3000

4000

5000

T
im

e
 (

s)

Matlab

EvoloPy

(b) CS

50 100 500 1000 5000 10000 20000

Dimension

0

500

1000

1500

2000

2500

3000

T
im

e
 (

s)

Matlab

EvoloPy

(c) FFA

50 100 500 1000 5000 10000 20000

Dimension

0

500

1000

1500

2000

2500

T
im

e
 (

s)

Matlab

EvoloPy

(d) GWO

50 100 500 1000 5000 10000 20000

Dimension

0

500

1000

1500

2000

2500

3000

T
im

e
 (

s)

Matlab

EvoloPy

(e) MFO

50 100 500 1000 5000 10000 20000

Dimension

0

500

1000

1500

2000

2500

3000

T
im

e
 (

s)

Matlab

EvoloPy

(f) MVO

50 100 500 1000 5000 10000 20000

Dimension

0

500

1000

1500

2000

2500

T
im

e
 (

s)

Matlab

EvoloPy

(g) PSO

50 100 500 1000 5000 10000 20000

Dimension

0

500

1000

1500

2000

2500

3000

3500

T
im

e
 (

s)

Matlab

EvoloPy

(h) WOA

Figure 2: Comparison of running time between the metaheuristic optimizers in EvoloPy and Matlab based on the running
time of the main iteration.

plained due to the use of the powerful N-dimensional

array object NumPY to represent individuals and popu-

lations.

7 CONCLUSIONS AND FUTURE

WORK

EvoloPy is a framework written in Python that pro-

vides and maintains classical and recent nature-
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inspired metaheuristic algorithms. Being coded in

Python with its NumPy extension, the implemented

algorithms are boosted by the powerful and efficient

multi-dimensional objects. In comparison with Mat-

lab, EvoloPy shows more efficiency in terms of run-

ning time for problems with high dimension and large

number of variables. This proves that the open source

tool Python should be considered over and preferably

other proprietary tools for carrying out experiments in

metaheuristics, and, for that matter, scientific comput-

ing in general, because besides being free and gratis,

it offers better efficiency and, inherently to its open

source nature, reproducibility.

The first steps after this paper will be to carry out

a profiling of the tool to identify inefficiencies and

make it run faster. After that, more recent and robust

metaheuristic algorithms are planned to be added to

the framework. It is also interesting to expand the

experiments presented in this paper to include a com-

parison with Matlab or other implementations based

on more challenging and sophisticated optimization

functions rather than simple ones.
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