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Abstract

The evolute of a regular curve in the Euclidean plane is given by not only the caustics
of the regular curve, envelope of normal lines of the regular curve, but also the locus of
singular loci of parallel curves. In general, the evolute of a regular curve have singularities,
since such a point is corresponding to a vertex of the regular curve and there are at least
four vertices for simple closed curves. If we repeated an evolute, we cannot define the
evolute at a singular point. In this paper, we define an evolute of a front and give
properties of such evolute by using a moving frame of a front and the curvature of the
Legendre immersion. As applications, repeated evolutes can be well-defined and these are
useful to recognize the shape of curves.

1 Introduction

The evolute of a regular plane curve is classical object (cf. [5, 8, 9]). It is useful to recognize
the vertex of a regular plane curve as a singularity (generically, a 3/2 cusp singularity) of the
evolute. The caustics (evolutes) are related as general relativity theory, see for instance [6, 10].
The properties of evolutes discussed by using distance squared functions and the theories of
Lagrangian, Legendrian singularity (cf. [1, 2, 3, 13, 14, 17, 20]). Moreover, the singular loci of
parallel curves of the regular curve swept out the evolute. By using this property, we can define
an evolute of a front in §2. In order to consider properties of an evolute of a front, we introduce
a moving frame of a front (a Legendre immersion) (cf. [7]). In [7], we give an existence and
uniqueness for a Legendre curve in the unit tangent bundle like as regular plane curves. It
is quite useful to analyse a Legendre curve (or, a frontal) in the unit tangent bundle. In §3,
we give another representation for the evolute of a front by using the moving frame and the
curvature of the Legendre immersion (Theorem 3.3). By the representation, we give properties
for an evolute of a front, for example, the evolute of a front is also a front. It follows that we
can consider the repeated evolute, namely, the evolute of an evolute of a front, see Theorem
4.1 in §4. Moreover, we extend the notion of the vertex for a front (or, a Legendre immersion)
and give a kind of four vertices theorem for a front, see Proposition 3.11. Furthermore, the
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evolute of a front is also given by envelope of normal lines of the front. The singular point of
the evolute of an evolute of a regular curve measure to the contact of an involute of a circle.
In the appendix, we give the condition of contact between regular curves. We give the n-th
evolute of a front in §5. In §6, we give examples of the evolutes of fronts.

All maps and manifolds considered here are differential of class C∞.

Acknowledgement. The second author was supported by a Grant-in-Aid for Young Scientists
(B) No. 23740041.

2 Definitions and basic concepts

Let I be an interval or R. Suppose that γ : I → R2 is a regular plane curve, that is, γ̇(t) ̸= 0
for any t ∈ I. If s is the arc-length parameter of γ, we denote t(s) by the unite tangent vector
t(s) = γ′(s) = dγ/ds(s) and n(s) by the unite normal vector n(s) = J(t(s)) of γ(s), where J
is the anticlockwise rotation of π/2. Then we have the Frenet formula as follows:(

t′(s)
n′(s)

)
=

(
0 κ(s)

−κ(s) 0

)(
t(s)
n(s)

)
,

where κ(s) = t′(s) · n(s) is the curvature of γ and · is the inner product on R2.

Even if t is not the arc-length parameter, we have the unite tangent vector t(t) = γ̇(t)/|γ̇(t)|,
the unite normal vector n(t) = J(t(t)) and the Frenet formula(

ṫ(t)
ṅ(t)

)
=

(
0 |γ̇(t)|κ(t)

−|γ̇(t)|κ(t) 0

)(
t(t)
n(t)

)
,

where γ̇(t) = dγ/dt(t), |γ̇(t)| =
√

γ̇(t) · γ̇(t) and κ(t) = det(γ̇(t), γ̈(t))/|γ̇(t)|3 = ṫ(t)·n(t)/|γ̇(t)|.
Note that κ(t) is independent on the choice of a parametrisation.

In this paper, we consider evolutes of plane curves. The evolute Ev(γ) : I → R2 of a regular
plane curve γ is given by

Ev(γ)(t) = γ(t) +
1

κ(t)
n(t),

away from the point κ(t) = 0 (cf. [5, 8, 9]).

If γ is not a regular curve, then we can not define the evolute as above, since the curvature
may be divergence at a singular point. However, we define an evolute of a front in the Euclidean
plane, see Definition 2.9 and Theorem 3.3. It is a generalisation of the evolute of regular plane
curves.

We say that γ : I → R2 is a front (or, a wave front) in the Euclidean plane, if there exists
a smooth map ν : I → S1 such that the pair (γ, ν) : I → R2 × S1 is a Legendre immersion,
namely, (γ̇(t), ν̇(t)) ̸= (0, 0) and (γ(t), ν(t))∗θ = 0 for each t ∈ I. Here θ is a canonical contact
structure on T1R2 = R2 ×S1. Remark that the second condition is equivalent to γ̇(t) · ν(t) = 0
for each t ∈ I (cf. [1, 2, 3]).

Throughout the paper, we assume that the pair (γ, ν) is co-orientable, the singular points
of γ are finite and γ has no inflection points. First and second conditions can be removed see
Remarks 3.4 and 3.5, however, we add these conditions for the sake of simplicity.

We give examples of fronts, other examples see in [1, 4, 11] etc.
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Example 2.1 One of the typical example of a front is a regular plane curve. Let γ : I → R2

be a regular plane curve. In this case, we may take ν : I → S1 by ν(t) = n(t). Then it is easy
to check that (γ, ν) is a Legendre immersion.

Example 2.2 Let γ : R → R2 be a 3/2 cusp (A2-singularity) given by γ(t) = (t2, t3). In this
case, 0 is a singular point of γ. If we take ν : R → S1 by ν(t) = (1/

√
9t2 + 4)(−3t, 2), then

we can show that (γ, ν) is a Legendre immersion. Hence the 3/2 cusp is an example of a front.
The 3/2 cusp is the generic singularity of fronts and also evolutes in the Euclidean plane.

Example 2.3 Let γ : R → R2 be a 4/3 cusp (E6-singularity) given by γ(t) = (t3, t4). In this
case, 0 is also a singular point of γ. If we take ν : R → S1 by ν(t) = (1/

√
16t2 + 9)(−4t, 3),

then we can show that (γ, ν) is a Legendre immersion. Hence the 4/3 cusp is also an example
of a front, see Example 6.3.

Example 2.4 Let γ : R → R2 be a 5/2 cusp (A4-singularity) given by γ(t) = (t2, t5). In this
case, 0 is also a singular point of γ. However, the 5/2 cusp is not a front. By the condition
γ̇(t) · ν(t) = 0, we take ν : R → S1 by ν(t) = ±(1/

√
25t6 + 4)(−5t3, 2). Then (γ, ν) is not an

immersion at t = 0 and hence γ is not a front (but γ is a frontal, see [7]).

Remark 2.5 By the definition of the Legendre immersion, if (γ, ν) is a Legendre immersion,
then (γ,−ν) is also.

Let (γ, ν) : I → R2 × S1 be a Legendre immersion. We define a parallel curve γλ : I → R2

of γ by γλ(t) = γ(t) + λν(t) for each λ ∈ R. Then we have following results.

Proposition 2.6 For a Legendre immersion (γ, ν) : I → R2×S1, the parallel curve γλ : I → R2

is a front for each λ ∈ R.

Proof. We take νλ : I → S1 by νλ(t) = ν(t). Since γλ(t) = γ(t) + λν(t), γ̇λ(t) = γ̇(t) + λν̇(t).
If γ̇λ(t0) = 0 at a point t0 ∈ I, then we have γ̇(t0) + λν̇(t0) = 0. If ν̇λ(t0) = ν̇(t0) = 0, then
γ̇(t0) = 0. It is contradict from the fact that (γ, ν) is an immersion and hence (γλ, νλ) is an
immersion. By ν(t) · ν(t) = 1, we have ν̇(t) · ν(t) = 0. Then

γ̇λ(t) · νλ(t) = (γ̇(t) + λν̇(t)) · ν(t) = γ̇(t) · ν(t) + λν̇(t) · ν(t) = 0.

It follows that (γλ, νλ) is a Legendre immersion and hence γλ is a front. 2

We denote the curvature of the parallel curve γλ(t) by κλ(t), when γλ is a regular curve.

Proposition 2.7 Let (γ, ν) be a Legendre immersion. If γ is a regular curve and λ ̸= 1/κ(t),
then a parallel curve γλ is also a regular and Ev(γλ)(t) is consistent with Ev(γ)(t).

Proof. Since γλ(t) = γ(t)+λn(t), γ̇λ(t) = |γ̇(t)|(1−λκ(t))t(t). By the assumption λ ̸= 1/κ(t),
γλ is a regular curve. By a direct calculation, we have

κλ(t) =
κ(t)

|1− λκ(t)|
, nλ(t) =

1− λκ(t)

|1− λκ(t)|
n(t).

Hence

Ev(γλ)(t) = γλ(t) +
1

κλ(t)
nλ(t) = γ(t) + λn(t) +

|1− λκ(t)|
κ(t)

1− λκ(t)

|1− λκ(t)|
n(t)

= γ(t) +
1

κ(t)
n(t) = Ev(γ)(t)
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Remark 2.8 Let (γ, ν) be a Legendre immersion. If t0 is a singular point of the front γ, then
limt→t0 |κ(t)| = ∞. By the equality κλ(t) = κ(t)/|1−λκ(t)|, we have limt→t0 κλ(t) ̸= 0, see also
Remark 3.2.

We now define an evolute of a front in the Euclidean plane.

Definition 2.9 Let (γ, ν) : I → R2 × S1 be a Legendre immersion. We define an evolute
Ev(γ) : I → R2 of the front γ as follows:

Ev(γ)(t) =

{
γ(t) + 1

κ(t)
n(t) if t is a regular point,

γλ(t) +
1

κλ(t)
nλ(t) if t ∈ (t0 − δ, t0 + δ), t0 is a singular point of γ,

where δ is a sufficiently small positive real number and λ ∈ R is satisfied the condition λ ̸=
1/κ(t).

Remark 2.10 By the assumption of the finiteness of singularities of a front, there exists λ ∈ R
with the condition λ ̸= 1/κ(t). Moreover, by Proposition 2.7, we can glue on the regular interval
of γ and γλ. Then the evolute of a front is well-defined. Furthermore, by definition, the evolute
of a front Ev(γ) is a C∞ mapping.

In order to consider properties of the evolute of a front, we need a moving frame of a front
(or, a Legendre immersion) (cf. [7]). Let (γ, ν) : I → R2 × S1 be a Legendre immersion. If γ
is a regular curve around a point t0, then we have the Frenet formula of γ in §2. On the other
hand, if γ is singular at a point t0, then we don’t define such a frame. However, ν is always
defined even if t is a singular point of γ. Therefore, we have the Frenet formula of a front as
follows. We put on µ(t) = J(ν(t)). We call the pair {ν(t),µ(t)} is a moving frame of a front
γ(t) in R2 and we have the Frenet formula of a front which is given by(

ν̇(t)
µ̇(t)

)
=

(
0 ℓ(t)

−ℓ(t) 0

)(
ν(t)
µ(t)

)
, (1)

where ℓ(t) = ν̇(t) · µ(t). Moreover, if γ̇(t) = α(t)ν(t) + β(t)µ(t) for some smooth functions
α(t), β(t), then α(t) = 0 follows from the condition γ̇(t) ·ν(t) = 0. Hence, there exists a smooth
function β(t) such that

γ̇(t) = β(t)µ(t). (2)

Since (γ, ν) is an immersion, we have (ℓ(t), β(t)) ̸= (0, 0) for each t ∈ I. The pair (ℓ, β) is
an important invariant of Legendre curves (or, frontals) in the unit tangent bundle like as the
curvature of a regular plane curve, for more detail see in [7]. We call the pair (ℓ, β) the curvature
of the Legendre curve in [7]. In this paper, we always assume that (γ, ν) is a Legendre immersion,
so that we call (ℓ, β) the curvature of the Legendre immersion. The related properties see in
[15, 16].
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3 Properties of the evolute of fronts

In this section, we consider properties of the evolute of fronts. Let (γ, ν) : I → R2 × S1 be a
Legendre immersion with the curvature of the Legendre immersion (ℓ, β).

First we give a relationship between the curvature of the Legendre immersion (ℓ(t), β(t))
and the curvature κ(t) if γ is a regular curve.

Lemma 3.1 (1) If γ is a regular curve, then ℓ(t) = |β(t)|κ(t).
(2) If γλ is a regular curve, then ℓ(t) = |β(t) + λℓ(t)|κλ(t).

Proof. (1) By a direct calculation, γ̇(t) = β(t)µ(t), γ̈(t) = β̇(t)µ(t)− β(t)ℓ(t)ν(t) and

κ(t) =
det (γ̇(t), γ̈(t))

|γ̇(t)|3
=

det
(
β(t)µ(t), β̇(t)µ(t)− β(t)ℓ(t)ν(t)

)
|β(t)|3

=
β(t)2ℓ(t)

|β(t)|3
=

ℓ(t)

|β(t)|
.

Therefore we have ℓ(t) = |β(t)|κ(t).
(2) We can also prove by the same calculations of (1). 2

Remark 3.2 Since (ℓ(t), β(t)) ̸= (0, 0), if t0 is a singular point of γ, then γλ is a regular curve.
By Lemma 3.1 (2), ℓ(t0) = |λℓ(t0)|κλ(t0). It follows from λℓ(t0) ̸= 0 that κλ(t0) ̸= 0.

We give another representation of the evolute of a front by using the moving frame of a
front {ν(t),µ(t)} and the curvature of the Legendre immersion (ℓ(t), β(t)).

Theorem 3.3 Under the above notations, the evolute of a front Ev(γ)(t) is represented by

Ev(γ)(t) = γ(t)− β(t)

ℓ(t)
ν(t), (3)

and Ev(γ) is a front.

Proof. First suppose that γ is a regular curve. Since γ̇(t) = β(t)µ(t), we have |β(t)| ̸= 0 and

t(t) =
β(t)

|β(t)|
µ(t), n(t) = − β(t)

|β(t)|
ν(t).

By Lemma 3.1 (1), κ(t) = ℓ(t)/|β(t)| and ℓ(t) ̸= 0. Then

Ev(γ)(t) = γ(t) +
1

κ(t)
n(t) = γ(t) +

|β(t)|
ℓ(t)

(
− β(t)

|β(t)|

)
ν(t) = γ(t)− β(t)

ℓ(t)
ν(t).

Second suppose that t0 is a singular point of γ and γλ is a regular curve with λ ̸= 1/κ(t). Since
γ̇λ(t) = (β(t) + λℓ(t))µ(t), we have |β(t) + λℓ(t)| ̸= 0 and

tλ =
β(t) + λℓ(t)

|β(t) + λℓ(t)|
µ(t), nλ = − β(t) + λℓ(t)

|β(t) + λℓ(t)|
ν(t).

By Lemma 3.1 (2), κλ(t) = ℓ(t)/|β(t) + λℓ(t)| and ℓ(t) ̸= 0. Then

Ev(γλ)(t) = γλ(t) +
1

κλ(t)
nλ(t) = γ(t) + λν(t) +

|β(t) + λℓ(t)|
ℓ(t)

(
− β(t) + λℓ(t)

|β(t) + λℓ(t)|

)
ν(t)

= γ(t)− β(t)

ℓ(t)
ν(t).
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If we take ν̃(t) = J(ν(t)) = µ(t), then (Ev(γ)(t), ν̃(t)) is a Legendre immersion. In fact,
˙̃ν(t) = −ℓ(t)ν(t) ̸= 0 and by the form of

Ėv(γ)(t) = − β̇(t)ℓ(t)− β(t)ℓ̇(t)

ℓ(t)2
ν(t), (4)

we have Ėv(γ)(t) · ν̃(t) = 0. It follows that Ev(γ) is a front. This completes the proof of the
Theorem. 2

Remark 3.4 By the representation (3), we may define the evolute of a front even if γ have
non-isolated singularities, under the condition ℓ(t) ̸= 0.

By Lemma 3.1 and Remark 3.4, for a Legendre immersion (γ, ν) with the curvature of the
Legendre immersion (ℓ, β), we say that t0 is an inflection point of the front γ (or, the Legendre
immersion (γ, ν)) if ℓ(t0) = 0. Since β(t0) ̸= 0 and Proposition 3.1, ℓ(t0) = 0 is equivalent to
the condition κ(t0) = 0.

Remark 3.5 Let (γ, ν) be a Legendre immersion, then (γ,−ν) is also (Remark 2.5). However,
Ev(t) does not change. It follows that we can define an evolute of a non co-orientable front, by
taking double covering of γ.

Remark 3.6 By Definition 2.9, the evolute of a front is independent on the parametrisation
of (γ, ν). The curvature of the Legendre immersion (ℓ, β) is depended on the parametrisation
of (γ, ν), see [7]. If s = s(t) is a parameter changing on I to I, then ℓ(t) = ℓ(s(t))ṡ(t) and
β(t) = β(s(t))ṡ(t). It also follows from the representation (3) that the evolute of a front is
independent on the parametrisation of (γ, ν).

If t0 is a singular point of γ, then β(t0) = 0. As a corollary of Theorem 3.3, we have
following.

Corollary 3.7 If t0 is a singular point of γ, then Ev(γ)(t0) = γ(t0).

Proposition 3.8 Suppose that t0 is a singular point of γ.

(1) t0 is a regular point of Ev(γ)(t) if and only if γ is diffeomorphic to the 3/2 cusp at t0.

(2) t0 is a singular point of Ev(γ)(t) if and only if γ̈(t0) = 0.

Proof. (1) Let t0 be a regular point of Ev(γ)(t). Since β(t0) = 0 and ℓ(t0) ̸= 0, β̇(t0) ̸= 0. By
the differentiate of γ̇(t) = β(t)µ(t), we have

γ̈(t) = β̇(t)µ(t)− β(t)ℓ(t)ν(t),
...
γ (t) = (β̈(t)− β(t)ℓ(t)2)µ(t)− (2β̇(t)ℓ(t) + β(t)ℓ̇(t))ν(t).

It follows that γ̇(t0) = 0, γ̈(t0) = β̇(t0)µ(t0),
...
γ (t0) = β̈(t0)µ(t0)− 2β̇(t0)ℓ(t0)ν(t0) and hence

det (γ̈(t0),
...
γ (t0)) = 2β̇(t0)

2ℓ(t0) ̸= 0.

This condition follows that γ is diffeomorphic to the 3/2 cusp at t0. The converse is also holded
by the reversing arguments.

(2) By the proof of (1), β̇(t0) = 0 if and only if γ̈(t0) = 0. 2

By Proposition 3.8, we can recognize the 3/2 cusp of original curve by the regularity of the
evolute of a front, see Examples 6.2 and 6.3.

The most degenerate case of the evolute of a front, we have classified as follows:
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Proposition 3.9 If Ėv(γ)(t) ≡ 0, then γ is a part of a circle or a point.

Proof. By the condition Ėv(γ)(t) ≡ 0, there exists a constant c ∈ R such that β(t)/ℓ(t) ≡ c,
if and only if β(t) = cℓ(t). If c = 0, then γ̇(t) = β(t)µ(t) = 0. It follows that γ is a point.
Suppose that c ̸= 0. By the uniqueness and existence of a front in [7], we take

ν(t) =

(
cos

(∫
ℓ(t)dt

)
, sin

(∫
ℓ(t)dt

))
, µ(t) =

(
− sin

(∫
ℓ(t)dt

)
, cos

(∫
ℓ(t)dt

))
.

By γ̇(t) = β(t)µ(t), we have

γ(t) =

(
−c

∫
ℓ(t) sin

(∫
ℓ(t)dt

)
dt+ a, c

∫
ℓ(t) cos

(∫
ℓ(t)dt

)
dt+ b

)
=

(
c cos

(∫
ℓ(t)dt

)
+ a, c sin

(∫
ℓ(t)dt

)
+ b

)
for some constants a, b ∈ R. Therefore γ is a part of a circle. 2

As a well-known result, a singular point of Ev(γ) of a regular plane curve γ is corresponding
to a vertex of γ, namely κ̇(t) = 0 (cf. [5, 8, 18, 19]).

We extend the notion of vertex. For a Legendre immersion (γ, ν) with the curvature of
the Legendre immersion (ℓ, β), t0 is a vertex of the front γ (or a Legendre immersion (γ, ν))
if (d/dt)(β/ℓ)(t0) = 0, namely, (d/dt)Ev(t0) = 0. Note that if t0 is a regular point of γ, the
definition of the vertex coincides with usual vertex for regular curves. Therefore, this is a
generalisation of the notion of the vertex of a regular plane curve.

Remark 3.10 Let (γ, ν) be a Legendre immersion. If t0 is a singular point of γ which degen-
erate more than 3/2 cusp, then t0 is a vertex of a front γ. In fact,

d

dt

(
β

ℓ

)
(t0) =

β̇(t0)ℓ(t0)− β(t0)ℓ̇(t0)

ℓ(t0)2
= 0,

since β(t0) = β̇(t0) = 0 by Proposition 3.8.

Proposition 3.11 Let (γ, ν) : [0, 2π] → R2×S1 be a (co-orientable) closed Legendre immersion
without inflection points.

(1) If γ has at least two singular points which degenerate more than 3/2 cusp, then γ has at
least four vertices.

(2) If γ has at least four singular points, then γ has at least four vertices.

Proof. (1) Let ti be a singular point of γ for each i ∈ {1, . . . , n}. Suppose that at least two of
them are degenerate more than 3/2 cusp. By Remark 3.10, these singularities are vertices of γ,
therefore it is sufficient to show that there is at least one vertex between two adjacent singular
points. Since γ has no inflection points, the sign of the curvature of γ on regular points is
constant. Therefore, either limt→ti κ(t) = ∞ for all i ∈ {1, . . . , n} or limt→ti κ(t) = −∞
for all i ∈ {1, . . . , n}. This concludes there exist t ∈ (ti, ti+1) such that κ̇(t) = 0 for all
i ∈ {1, . . . , n − 1}. Moreover, since γ is closed, there exists a point t ∈ [0, t1) ∪ (tn, 2π) such
that κ̇(t) = 0. Therefore, γ has at least four vertices.

(2) We can also prove by the same method of (1). 2
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Finally, in this section, we consider the evolute of a front as a (wave) front of a Legendre
immersion by using a family of functions.

We define a family of functions
F : I × R2 → R

by F (t, x, y) = (γ(t)− (x, y)) · µ(t).

Proposition 3.12 Let (γ, ν) : I → R2×S1 be a Legendre immersion with the curvature of the
Legendre immersion (ℓ, β). Then

(1) F (t, x, y) = 0 if and only if there exists real number λ such that (x, y) = γ(t)− λν(t).

(2) F (t, x, y) = (∂F/∂t)(t, x, y) = 0 if and only if ℓ(t) ̸= 0 and (x, y) = γ(t)−(β(t)/ℓ(t))ν(t).

Proof. (1) (γ(t)−(x, y))·µ(t) = 0 if and only if there exists λ ∈ R such that γ(t)−(x, y) = λν(t).

(2) (∂F/∂t)(t, x, y) = γ̇(t) · µ(t) + (γ(t) − (x, y)) · µ̇(t) = β(t) − λℓ(t). If ℓ(t) = 0, then
β(t) = 0. This is a contradiction for (ℓ(t), β(t)) ̸= (0, 0). If follows that λ = β(t)/ℓ(t). The
converse is also holded. 2

One can show that F is a Morse family, in the sense of Legendrian (cf. [1, 14, 20]), namely,
(F, ∂F/∂t) : I × R2 → R× R is a submersion at (t, x, y) ∈ Σ(F ), where

Σ(F ) = {(t, x, y) | F (t, x, y) = (∂F/∂t)(t, x, y) = 0}.

It also follows that the evolute of a front Ev(γ) is a (wave) front of a Legendre immersion and
is given by envelope of normal lines of the front.

4 Evolutes of the evolutes of fronts

By Theorem 3.3, the evolute of a front is also a front. We consider a repeated evolute of an
evolute of a front and give properties of a singular point of it.

Theorem 4.1 Let (γ, ν) be a Legendre immersion with the curvature of the Legendre immersion
(ℓ, β). The evolute of an evolute of a front is given by

Ev(Ev(γ))(t) = Ev(γ)(t)− β̇(t)ℓ(t)− β(t)ℓ̇(t)

ℓ(t)3
µ(t). (5)

Proof. At this proof, we denote γ̃(t) = Ev(γ)(t). By the proof of Theorem 3.3, (γ̃(t), ν̃(t)) =
(Ev(γ)(t),µ(t)) is a Legendre immersion. Since µ̃(t) = J(ν̃(t)) = −ν(t) and the derivative of
the evolute of the front (4), we have

β̃(t) =
β̇(t)ℓ(t)− β(t)ℓ̇(t)

ℓ(t)2
,

where ˙̃γ(t) = β̃(t)µ̃(t). Moreover ℓ̃(t) = ℓ(t) by the Frenet formula of a front (1). It follows
that

Ev(Ev(γ))(t) = Ev(γ̃)(t) = γ̃(t)− β̃(t)

ℓ̃(t)
ν̃(t) = Ev(γ)(t)− β̇(t)ℓ(t)− β(t)ℓ̇(t)

ℓ(t)3
µ(t).
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2

We can also prove above theorem by a direct calculation of the definition of the evolute of
a front (Definition 2.9). We need to divide into four cases, that is, γ is a regular or a singular,
and Ev(γ) is a regular or a singular. All cases coincide with (5). We also call Ev(Ev(γ)) the
second evolute of a front.

Now consider a geometric meaning of a singular point of Ev(Ev(γ))(t).

Lemma 4.2 Suppose that γ and Ev(γ) are regular curves. If Ėv(Ev(γ))(t) ≡ 0, then γ is an
involute of a circle.

Proof. We may assume that t is the arc-length parameter of γ. It follows that |β(t)| = 1
and hence ℓ(t) = κ(t) by Lemma 3.1. Moreover, we have β(t)2 = 1 and β̇(t) = 0. Since
t(t) = β(t)µ(t),n(t) = −β(t)ν(t), we have µ(t) = β(t)t(t) and ν(t) = −β(t)n(t). Then

Ev(γ)(t) = γ(t)− β(t)

ℓ(t)
ν(t) = γ(t)− β(t)

κ(t)
(−β(t)n(t)) = γ(t) +

1

κ(t)
n(t)

and

Ev(Ev(γ))(t) = Ev(γ)(t) + β(t)κ̇(t)

κ(t)3
β(t)t(t) = Ev(γ)(t) + κ̇(t)

κ(t)3
t(t).

It follows that

Ėv(γ)(t) = − κ̇(t)

κ(t)2
n(t), Ėv(Ev(γ))(t) = κ̈(t)κ(t)− 3κ̇(t)2

κ(t)4
t(t).

By the assumptions, κ(t) ̸= 0, κ̇(t) ̸= 0 and κ̈(t)κ(t)− 3κ̇(t)2 ≡ 0. It follows that

d

dt

(
κ̇(t)

κ(t)

)
= 2

(
κ̇(t)

κ(t)

)2

.

Solving the differential equation, there exist constants C1, C2 ∈ R with C2 ̸= 0 such that

κ(t) = C2
1√

2t+ C1

.

A curve with the curvature 1/
√
2ct for a constant c ∈ R is an involute of circle with radius c.

By the existence and uniqueness theorem of regular plane curves, see for example [8, 9], γ is
an involute of a circle (cf. [9, P.138]). 2

Let γ : I → R2 be a regular curve and t0 ∈ I. The involute of a regular curve is defined by
Inv(γ, t0) : I → R2;

Inv(γ, t0)(t) = γ(t)−
(∫ t

t0

|γ̇(t)| dt
)
t(t).

Note that Ev(Inv(γ, t0))(t) = γ(t), for more detail see [5, 8, 9].

Theorem 4.3 Suppose that γ and Ev(γ) are regular curves. If t0 is a singular point of
Ev(Ev(γ)), then γ is at least 4-th order contact to an involute of a circle at the point t = t0 up
to congruent.
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Proof. We may assume that t is the arc-length parameter of γ. By the same arguments in
the proof of Lemma 4.2, we have κ(t0) ̸= 0, κ̇(t0) ̸= 0 and κ̈(t0)κ(t0)− 3κ̇(t0)

2 = 0. We put on
κ(t0) = a and κ̇(t0) = b. Then we define a curve γ̃(t) whose curvature is given by

κ̃(t) = a

√
a

b

1√
−2t+ 2t0 +

a
b

,

(
respectively, κ̃(t) = a

√
−a

b

1√
2t− 2t0 − a

b

)

if ab > 0 (respectively, ab < 0). Then κ(t0) = κ̃(t0) = a and κ̇(t0) = ˙̃κ(t0) = b. Since
κ̈(t0)κ(t0)− 3κ̇(t0)

2 = 0 and ¨̃κ(t)κ̃(t)− 3 ˙̃κ(t)2 ≡ 0, we have κ̈(t0) = ¨̃κ(t0). By the Theorem A.1
in the appendix, γ and γ̃ are at least 4-th order contact at the point t = t0 up to congruent. It
follows that γ and an involute of a circle are at least 4-th order contact at the point t = t0 up
to congruent.

This completes the proof of Theorem. 2

Remark 4.4 Suppose that γ is a regular curve. If t0 is a singular point of Ev(γ)(t) and
Ev(Ev(γ))(t), then κ̇(t0) = κ̈(t0) = 0 by the same calculations of the proof of Lemma 4.2. It
follows that γ and the osculating circle are at least 4-th order contact at the point t = t0.

Proposition 4.5 Suppose that t0 is a singular point of both γ and Ev(γ).
(1) t0 is a regular point of Ev(Ev(γ)) if and only if γ is diffeomorphic to the 4/3 cusp at t0.

(2) t0 is a singular point of Ev(Ev(γ)) if and only if
...
γ (t0) = 0.

Proof. (1) Let t0 be a regular point of Ev(Ev(γ)). By Proposition 3.8, β(t0) = β̇(t0) = 0 and
ℓ(t0) ̸= 0. Then γ̇(t0) = γ̈(t0) = 0. Since

d

dt
Ev(Ev(γ))(t) = − β̈(t)ℓ(t)2 − β(t)ℓ(t)ℓ̈(t)− 3β̇(t)ℓ(t)ℓ̇(t) + 3β(t)ℓ̇(t)2

ℓ(t)4
,

(d/dt)Ev(Ev(γ))(t0) = −β̈(t0)ℓ(t0)
−2 ̸= 0, if and only if β̈(t0) ̸= 0. By the differentiate of

γ̇(t) = β(t)µ(t), we have
...
γ (t) = (β̈(t)− β(t)ℓ(t)2)µ(t)− (2β̇(t)ℓ(t) + β(t)ℓ̇(t))ν(t),

γ(4)(t) = (
...
β (t)− 3β̇(t)ℓ(t)2 − 3β(t)ℓ(t)ℓ̇(t))µ(t)

− (3β̈(t)ℓ(t)− β(t)ℓ(t)3 + 3β̇(t)ℓ̇(t) + β(t)ℓ̈(t))ν(t).

It follows that
...
γ (t0) = β̈(t0)µ(t0), γ

(4)(t0) =
...
β (t0)µ(t0)− 3β̈(t0)ℓ(t0)ν(t0) and hence

det
(...
γ (t0), γ

(4)(t0)
)
= 3β̈(t0)

2ℓ(t0) ̸= 0.

This condition follows that γ is diffeomorphic to the 4/3 cusp at t0 (cf. [4, 11, 12]). The
converse is also holded by the reversing arguments.

(2) By the proof of (1), β̈(t0) = 0 if and only if
...
γ (t0) = 0. 2

5 The n-th evolutes of fronts

We give the form of the n-th evolute of a front, where n is a natural number. We denote
Ev0(γ)(t) = γ(t) for convenience, Ev1(γ)(t) = Ev(γ)(t) and Evn(γ)(t) = Ev(Evn−1(γ))(t) in-
ductively. We define β0(t) = β(t)/ℓ(t) and βn(t) = β̇n−1(t)/ℓ(t) inductively.
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Theorem 5.1 Let (γ, ν) : I → R2 × S1 be a Legendre immersion with the curvature of the
Legendre immersion (ℓ, β). The n-th evolute of a front is given by

Evn(γ)(t) = Evn−1(γ)(t)− βn−1(t)J
n−1(ν(t)),

where Jn−1 is (n− 1)-times of J .

Proof. Let n = 1 and n = 2, then

Ev1(γ)(t) = Ev0(γ)(t)− β0(t)J
0(ν(t)) = γ(t)− β(t)

ℓ(t)
ν(t)

and

Ev2(γ)(t) = Ev1(γ)(t)− β1(t)J
1(ν(t)) = Ev(γ)(t)− d

dt

(
β(t)

ℓ(t)

)
1

ℓ(t)
J(ν(t))

= Ev(γ)(t)− β̇(t)ℓ(t)− β(t)ℓ̇(t)

ℓ(t)3
µ(t).

These are nothing but the evolute of a front (3) and the second evolute of a front (5).

Next suppose that 1 ≤ j ≤ k is holded, namely,

Evj(γ)(t) = Evj−1(γ)(t)− βj−1(t)J
j−1(ν(t))

for 1 ≤ j ≤ k. We consider Ev(Evk(γ))(t). Since (Evk(γ)(t), Jk(ν(t))) is a Legendre immersion,

d

dt
Evk(γ)(t) = −β̇k−2(t)J

k−2(ν(t))− β̇k−1(t)J
k−1(ν(t))− βk−1(t)J

k−1(ν̇(t))

= −β̇k−2(t)J
k−2(ν(t))− β̇k−1(t)J

k−1(ν(t))− β̇k−2(t)J
k(ν(t))

= −β̇k−1(t)J
k−1(ν(t))

= β̇k−1(t)J
k+1(ν(t)).

Then, by Theorem 3.3, we have (k + 1)-th evolute of the front

Evk+1(γ)(t) = Evk(γ)(t)− β̇k−1(t)

ℓ(t)
Jk(ν(t)) = Evk(γ)(t)− βk(t)J

k(ν(t)).

By the induction, this completes the proof of Theorem. 2

As a generalisation of Propositions 3.8 (2) and 4.5 (2), we have the following result:

Proposition 5.2 Let (γ, ν) : I → R2 × S1 be a Legendre immersion with the curvature of the
Legendre immersion (ℓ, β). Suppose that t0 is a singular point of γ. Then the following are
equivalent:

(1) t0 is a singular point of Evi(γ)(t) for i = 1, . . . , n.

(2) (diβ/dti)(t0) = 0 for i = 1, . . . , n.

(3) (diγ/dti)(t0) = 0 for i = 2, . . . , n+ 1.
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Proof. First, we show that βi(t) is given by the form β(i)(t) and lower terms of β(i)(t), namely,

βi(t) =
β(i)(t)

ℓ(t)i+1
+ L(β(t), . . . , β(i−1)(t)) (6)

for some smooth function L which contain ℓ(t) and derivatives of ℓ(t).

Since β1(t) = β̇0(t)/ℓ(t) = β(1)(t)/ℓ(t)2 + (β(t)/ℓ(t))(d/dt)(1/ℓ(t)), the case of i = 1 is
holded. Suppose that i = k is holded, namely, there exists a smooth function L such that

βk(t) =
β(k)(t)

ℓ(t)k+1
+ L(β(t), . . . , β(k−1)(t)).

Then

βk+1(t) =
β̇k(t)

ℓ(t)
=

β(k+1)(t)

ℓ(t)k+2
+ L̃(β(t), . . . , β(k)(t)),

for some smooth function L̃. By the induction, we conclude the assertion.

Second, assume that t0 is a singular point of Evi(γ)(t) for i = 1, . . . , n. By Theorem 5.1,
(d/dt)Evi(γ)(t0) = 0 if and only if βi(t0) = 0. Since (6) and β(t0) = 0, βi(t0) = 0 for i = 1, . . . , n
if and only if β(i)(t0) = 0 for i = 1, . . . , n. It follows that (1) implies (2). By the reversing
arguments, the converse (1) follows from (2).

Finally, since γ̇(t) = β(t)µ(t), we can show that (2) is equivalent to (3) by using the
induction. 2

6 Examples

We give examples to understand the phenomena for evolutes of fronts.

Example 6.1 Let γ(t) = (a cos t, b sin t), a ̸= b be an ellipse. Since

ν(t) =
1√

a2 sin2 t+ b2 cos2 t
(−b cos t, a sin t), µ(t) =

1√
a2 sin2 t+ b2 cos2 t

(−a sin t,−b cos t),

we have

ℓ(t) =
ab

a2 sin2 t+ b2 cos2 t
, β(t) = −

√
a2 sin2 t+ b2 cos2 t.

The evolute, the second evolute and the third evolute of the ellipse are given by

Ev(γ)(t) =

(
a2 − b2

a
cos3 t,−a2 − b2

b
sin3 t

)
,

Ev(Ev(γ))(t) =
(a2 − b2

ab2
cos t(b2 cos4 t+ 3a2 sin4 t+ b2 sin2 2t),

− a2 − b2

a2b
sin t(a2 sin4 t+ 3b2cos4t+ a2 sin2 2t

)
,

and Ev3(γ)(t) =(a2 − b2

8a3b2
cos3 t

(
45a4 − 10a2b2 − 3b4 + 12(−5a4 + 4a2b2 + b4) cos 2t+ 15(a2 − b2)2 cos 4t

)
,

a2 − b2

8a2b3
sin3 t

(
3a4 + 10a2b2 − 45b4 + 12(a4 + 4a2b2 − 5b4) cos 2t− 15(a2 − b2)2 cos 4t

))
.
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The ellipse and its evolute (red curve), see Figures 1 left and 2 centre. Moreover, the second
evolute (yellow curve), see Figure 1 centre, and the third evolute (green curve), see Figures 1
right and 2 right.

The evolute is useful to recognize the difference of the sharp of curves. In figure 2, the
left is a circle and the centre is an ellipse and its evolute. We can observe the evolute of the
ellipse, however, it is very small (red curve). If we consider the repeated evolute, we can easy
to observe it. The right in figure 2 is the second and the third evolute of the ellipse.
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Figure 1. The ellipse and evolutes.
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Figure 2.

Example 6.2 Let γ(t) = (3 cos t − cos 3t, 3 sin t − sin 3t) = (6 cos t − 4 cos3 t, 4 sin3 t) be the
nephroid, see Figure 3 left. Since ν(t) = (− sin 2t, cos 2t), µ(t) = (− cos 2t, sin 2t), we have
ℓ(t) = 2, β(t) = −6 sin t. The evolute and the second evolute of the nephroid are as follows,
see Figure 3 centre and right:

Ev(γ)(t) =
(
2 cos3 t, 3 sin t− 2 sin2 t

)
,

Ev(Ev(γ))(t) =

(
3

2
cos t− cos3 t, sin3 t

)
.

We can observe that γ(t)/4 = Ev(Ev(γ))(t).
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Figure 3. The nephroid and evolutes.

Example 6.3 Let γ(t) = (t3, t4) be the 4/3-cusp, Figure 4 left. Since ν(t) = (1/
√
16t2 + 9)(−4t, 3),

µ(t) = (1/
√
16t2 + 9)(−3,−4t), we have ℓ(t) = 12/(16t2+9), β(t) = −t2

√
16t2 + 9. The evolute

and the second evolute of the 4/3-cusp are as follows, see Figure 4 centre and right:

Ev(γ)(t) =

(
−2t3 − 16

3
t5,

9

4
t2 + 5t4

)
,

Ev(Ev(γ))(t) =

(
−27

8
t− 23t3 − 32t5,−9

4
t2 − 23t4 − 320

9
t6
)
.
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Figure 4. The 4/3-cusp and evolutes.

A Contact between curves

In this appendix, we discuss contact between regular curves. Let γ : I → R2; t 7→ γ(t) and

γ̃ : Ĩ → R2;u 7→ γ̃(u) be regular plane curves, respectively. We say that γ and γ̃ are k-th order
contact at t = t0, u = u0 if

γ(t0) = γ̃(u0),
dγ

dt
(t0) =

dγ̃

du
(u0), · · · , dkγ

dtk
(t0) =

dkγ̃

duk
(u0),

dk+1γ

dtk+1
(t0) ̸=

dk+1γ̃

duk+1
(u0).

Moreover, we say that γ and γ̃ are at least k-th order contact at t = t0, u = u0 if

γ(t0) = γ̃(u0),
dγ

dt
(t0) =

dγ̃

du
(u0), · · · , dkγ

dtk
(t0) =

dkγ̃

duk
(u0).
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Let γ1, γ2 : I → R2 be regular plane curves. We say that γ1 and γ2 are congruent if there
exists a congruence C such that γ2(t) = C(γ1(t)) for all t ∈ I. A congruence is given by
composition of a rotation and a translation.

Let γ : I → R2; t 7→ γ(t) and γ̃ : Ĩ → R2;u 7→ γ̃(u) be regular plane curves. We take the
arc-length parameter for γ(t) and γ̃(u), respectively. In general, we may assume that γ(t) and
γ̃(u) are at least first order contact at any point t = t0, u = u0 up to congruent. We denote the
curvatures κ(t) of γ(t) and κ̃(u) of γ̃(u), respectively.

Theorem A.1 Let γ : I → R2 and γ̃ : Ĩ → R2 be regular plane curves. If γ(t) and γ̃(u) are at
least (k + 2)-th order contact at t = t0, u = u0 then

κ(t0) = κ̃(u0),
dκ

dt
(t0) =

dκ̃

du
(u0), · · · , dkκ

dtk
(t0) =

dkκ̃

duk
(u0). (7)

Conversely, if t and u are the arc-length parameter of γ and γ̃ respectively, and the condition
(7) holds, then γ and γ̃ are at least (k + 2)-th order contact at t = t0, u = u0 up to congruent.

Proof. We may assume that t and u are the arc-length parameter of γ and γ̃ respectively.
Suppose that γ and γ̃ are at least third order contact. Since the Frenet formula, we have
dγ/dt(t) = t(t), d2γ/dt2(t) = κ(t)n(t) and dγ̃/du(u) = t̃(u), d2γ̃/du2(u) = κ̃(u)ñ(u). It follows
that t(t0) = t̃(u0),n(t0) = ñ(u0) and κ(t0) = κ̃(u0). Hence, the case of k = 1 holds.

Suppose that γ and γ̃ are at least (k + 2)-th order contact and

κ(t0) = κ̃(u0),
dκ

dt
(t0) =

dκ̃

du
(u0), · · · ,

dk−1κ

dtk−1
(t0) =

dk−1κ̃

duk−1
(u0)

hold. Since (d3γ/dt3)(t) = (dκ/dt)(t)n(t)− κ(t)2t(t), the form of (dk+1γ/dtk+1)(t) is given by

dk−1κ

dtk−1
(t)n(t) + f

(
κ(t), · · · , d

k−2κ

dtk−2
(t)

)
t(t) + g

(
κ(t), · · · , d

k−2κ

dtk−2
(t)

)
n(t),

for some smooth functions f and g. Then

dk+2γ

dtk+2
(t) =

dkκ

dtk
(t)n(t) + F

(
κ(t), · · · , d

k−1κ

dtk−1
(t)

)
t(t) +G

(
κ(t), · · · , d

k−1κ

dtk−1
(t)

)
n(t)

for some smooth functions F and G. By the same calculations, we have

dk+2γ̃

duk+2
(u) =

dkκ̃

duk
(u)ñ(u) + F

(
κ̃(u), · · · , d

k−1κ̃

duk−1
(u)

)
t̃(u) +G

(
κ̃(u), · · · , d

k−1κ̃

duk−1
(u)

)
ñ(u).

It follows that (dkκ/dtk)(t0) = (dkκ̃/duk)(u0). By the induction, we have the first assertion.

By the reversing arguments, we can prove the converse assertion up to congruent. 2
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