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Abstract—The effect of Kerr nonlinearity on a Lorentz beam is
investigated by using the nonlinear Schrödinger (NLS) equation. Based
on the variational method, the evolution of a Lorentz beam in a Kerr
medium is demonstrated and the critical collapse powers of the Lorentz
beam are derived. Numerical simulations of the propagation of a
Lorentz beam in a Kerr medium show that the beam becomes quasi-
circular in a very short distance. Although the beam width of the
Lorentz beam broadens, the central part of the beam give rise to a
partial collapse.

1. INTRODUCTION

Recently, there has been growing interest in the Lorentz beam since it
was introduced by Gawhary and Severini [1]. The beam is appropriate
for describing certain laser sources, e.g., in double-heterojunction
Ga1−xAlxAs lasers [2, 3]. Recent investigations confirmed the
importance of beam propagation properties in linear region [1–
5]. The radiation force of highly focused Lorentz-Gauss beams
on a dielectric sphere has been studied in the Rayleigh scattering
regime [6]. An interesting aspect of beam propagation in nonlinear
medium is the emergence of solitons, recently being studied in optical
fibers using Ginzburg-Landau equation [7], nonlinear microring and
nanostructures [8], left-handed structures [9] and system with parabolic
nonlinearity [10].

In this work, we study, analytically and numerically, the effect of
Kerr nonlinearity on the Lorentz beam using nonlinear Schrödinger
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Figure 1. (Color online) Collapse and narrowing of a Lorentz beam
width in a nonlinear Kerr medium. The beam would diverge in free
space due to diffraction.

(NLS) equation, as depicted in Fig. 1. The Kerr medium has an
intensity-dependent refractive index, n = n0 + n2|E|2 that is due to
third order nonlinear response of the polarization to electric field of
the beam or laser light. Recent works have studied the propagation
of elliptic Gaussian beam [11] and beams with unequal transverse
widths [12] in Kerr medium, as well as soliton propagation in Kerr [13]
and non-Kerr law media [14]. We compute the spatial distribution
of the Lorentz beam as it propagates through the nonlinear Kerr
medium, including the critical power and collapse. It is important for
understanding the effects of beam divergence due to diffraction and
focusing due to the Kerr nonlinearity on the propagation and spatial
distribution of the Lorentz beam.

This work is beneficial for various applications in optics. The
study of Lorentz beam propagation and focusing can be extended
to novel chiral waveguides [15, 16], optical fiber filled with liquid
crystals [17], turbulent environment [18] as well as medium with
exotic electrodynamics [19]. Further analysis on scattering of the
Lorentz beam by metallic spheres [20] and negative refractive index
materials [21] would be useful for developing plasmonic devices with
subwavelength optical resolution.

The propagation of pulses in nonlinear Kerr medium has
been studied using various methods, including nonstationary time
domain techniques involving the Green’s function [22], multiple scale
analysis [23] and quasi-particle theory for colliding solitons [24].
Variational technique has been applied to waveguides with effective
refractive index method [25] and the study of optical solitons with
higher order dispersions [26].
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We apply the variational approach [27–31] to obtain important
information about the nonlinear dynamics on the spatial distributions
of the Lorentz beam in the Kerr medium. We obtain the critical
power [32–42] of the Lorentz beam with uniform wavefront, which
is required to collapse the beams, as a function of different beam
parameters, particularly the waists w0x and w0y. Numerical
simulations illustrate in more details the nonlinear dynamics of the
beams in the Kerr medium. The simulations of the propagation of
the Lorentz beam in Kerr media show that the symmetrical Lorentz
beam (w0y = w0x) becomes quasi-circular in a very short distance z.
For an asymmetrical Lorentz beam, the central part of the beam also
become quasi-circular in a certain distance. Although the beam width
of the Lorentz beam broadens as predicted by the variational approach,
the central part of the beams give rise to radial compression during
propagation in Kerr medium, the beams will give rise to a partial
collapse when the input power reaches a certain threshold below the
critical power.

2. PROPAGATION OF A LORENTZ BEAM IN A KERR
MEDIUM

The propagation of a light beam in a Kerr medium, under the paraxial
approximation, can be described by the NLS equation:
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where k is the linear wavevector, x and y are the transverse coordinates,
z is the longitudinal coordinate, n2 is the third order nonlinear
coefficient and n0 is the linear refractive index of the medium.

We can reformulate Eq. (1) as a variational problem [27–29] using
the appropriate Lagrangian,
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where * indicates the complex conjugation. We use the Lorentz field
distribution as a trial solution for the procedure of the variational
approach:

E (x, y, z) =
A(z) exp

[
iθ(z) + iS1(z)x2 + iS2(z)y2

]

wxwy [1 + (x/wx)2] [1 + (y/wy)2]
, (3)

where A(z) and θ(z) are the amplitude and phase of the complex
amplitude E(x, y, z), wx and wy are the parameters which are
associated to beam widths of a Lorentz beam in the x- and y-directions,
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respectively. S1(z) and S2(z) are the beam normalized inverse of
curvature. Note that a quadratic phase approximation (QPA) [30–34]
has been introduced here. Substitution of the trial function Eq. (3) into
Eq. (2), and integration with respect to x and y yield 〈L〉 =

∫
Ldxdy

the effective Lagrangian
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From the reduced variational principle, δ
∫ 〈L〉 dz = 0 and Eq. (4), we

obtain a set of coupled ordinary differential equations that describes
the evolution of the Lorentz beam in the Kerr medium:
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where β = 25A(z)2n2k2

64n0wxwy
= 25A2

0n2k2

64n0w0xw0y
. The w0x and w0y are the

parameters wx and wy at the waist plane (z = 0).
The above equations are supplemented by an equation for phase,
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Eq. (5) implies the conservation of energy of the Lorentz beam.
Eq. (6) shows transverse phase variation is generated by its deformation
(change of the beam width). Eqs. (7) and (8) describe the evolutions
of the beam widths of the Lorentz beam in the x- and y-directions,
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respectively. The equations can be solved analytically to obtain
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where S1(0) and S2(0) are not zero except for uniform wavefront.
Eq. (10) describes the variation of the average width of the Lorentz
beam in a Kerr medium. If the field is weak (small β) the width
increases with z. For sufficiently strong field, such that β > 1

2(w0y

w0x
+

w0x
w0y

), self-focusing reduces the average width.

The critical power Pcr =
∫∫

s |Ecr(x, y)|2 dxdy of the Lorentz beam
which is required to collapse the beam to a uniform wavefront [32–34],
i.e., S1(z = 0) = 0 and S2(z = 0) = 0, can be found by setting the
width of the Lorentz beam invariant over z, i.e., β = 1
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8π2n0

25n2k2
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)
(12)

where µ = w0y/w0x represents the asymmetry of the Lorentz beam.
Eq. (12) implies that the critical collapse power of a Lorentz beam
depends on the beam profile of the transverse distribution w0x, w0y

and the nonlinear parameter n2 of the medium. The power increases
with the increasing asymmetry. When w0x = w0y, the critical collapse
power is minimum Pmin

cr = 16π2n0
25n2k2 , corresponding to a symmetrical

Lorentz beam. The critical collapse power of a symmetrical Lorentz
beam only depends on the nonlinear parameter of the medium, and
is almost equal to that of the Gaussian beam PGS

cr = 2πn0
n2k2 [38–42].

The ratio of the critical power of a symmetrical Lorentz beam to that
of a Gaussian beam is 8π/25. Obviously, the critical collapse power
described by Eq. (12) is the upper bound for Lorentz beam. The critical
power overestimates the actual threshold power for collapse [35–42].

If only diffraction effect and the self-focusing due to the Kerr effect
are considered, the theoretical analysis indicates that when the initial
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power exceeds the critical power, the beam width goes to zero in a
finite propagation distance. Since Pin = 1

4
π2A(z)

2

wxwy
, the bracket term in

the first line of Eq. (10) is 16πn0
25n2k2w0xw0y

(Pcr − Pin). So, the variational
approach predicts that when Pin > Pcr the beam width of a Lorentz
beam goes to zero in a finite propagation distance. Although this is
unrealistic, the approach provides a qualitative picture. In fact, when
the initial power becomes too high, other nonlinear effects that give
modulation instability like higher order nonlinearity, self steepening
and self-phase modulation should be considered, and higher-order
processes such as plasma generation halt the collapse [42]. Also, for
ultrashort laser pulse, the numerical calculation of the NLS in the Kerr
medium must go beyond the paraxial approximation.

3. NUMERICAL RESULTS AND DISCUSSION

In order to investigate further the effect of Kerr nonlinearity [23–36]
on the Lorentz beam, we need to solve the NLS equation numerically.
Numerical simulations were done using the parameters of wavelength
λ = 0.53 µm, n0 = 1, n2 = 0.5 × 10−4 cm2/GW, w0x = 10 µm
and z0 = kw2

0x/2 = 0.6mm, respectively. As demonstrated above,
the variational approach has shown that a non-diffracting situation
is possible to obtain by balancing linear diffraction and nonlinear
focusing. When the initial power exceeds the critical power, the beam
width goes to zero in a finite propagation distance, a global collapse
occurs. By using numerical simulations with the Lorentz beam for
varying degrees of incident powers, the peak intensity as a function

(b)(a)

Figure 2. (Color online) The peak intensity of Lorentz beam as
a function of the propagation distance with different initial powers.
Numerical results for (a) w0y = w0x; (b) 4w0y = w0x.
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of the propagation distance with different initial powers are shown in
Fig. 2 for the cases: (a) w0x = w0y; (b) w0x = 4w0y. The figures
have been normalized to their initial peak intensities. For the sake of
intuition, the initial powers have been specified not only in terms of Pcr,
but also in terms of P0 = πn0/(n2k

2). The simulations show that as the
initial power reaches a certain threshold, the intensity at the center part
of the beam will dominate [35–42] and the peak intensity increases with
distance z. This threshold is lower for asymmetric beam (see Fig. 2). It
indicates that when the initial power reach a certain threshold but is
less than the critical power, the central part of the beam undergoes
compression and gives rise to a partial collapse. The phenomena
have be studied extensively, for example, by Fibich and Ilan [41].
Fig. 2 shows the results of numerical computation. By comparing
the numerical simulation results and the analytical predictions by the
variational approach, also as shown in Figs. 3 and 4 asymmetric, it
is found that when the initial power is high and comparable to the
critical power, there is a substantial discrepancy between the analytical
predictions by the variational method and the numerical simulation
results. It can be explained as the analytical predictions is based on
the trial solution Eq. (3), but the actual evolution of the Lorentz beam
in Kerr medium is difficult to be described by an analytical expression,
especially in the region of collapse. Under the condition that the

Figure 3. (Color online) Contour maps of the power distributions
of the Lorentz beam with w0x = w0y at several propagation distances
with initial power Pin = 0.8Pcr = 1.6P0 where P0 = πn0/(n2k

2). The
maximum scale (red) in the colorcode corresponds to the power Pin.
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Figure 4. (Color online) The contour maps for the power distributions
of the asymmetric Lorentz beam with w0x = 4w0y and initial power
Pin = 0.8Pcr = 3.43P0.

initial power is much lower than the critical power, the evolution
of the Lorentz beam in Kerr media can be approximately described
by the trial solution Eq. (3), then the analytical predictions would
agree well with the actual numerical results. Numerical calculations
show that the critical power of a symmetrical Lorentz beam is PLs

cr =
1.95πn0/(n2k

2) which is less than that predicted by the variational
approach in Eq. (12), but slightly more than that of a Gaussian beam
PG

cr = 1.89πn0/(n2k
2) as demonstrated by Fibich et al. in [41, 42].

We also consider the critical power of asymmetrical Lorentz
beam. The collapse dynamics of elliptical beams have been extensively
studied [22, 24]. These studies pointed out significant differences
between quantitative predictions of the aberrationless approximation
and actual results obtained from NLS equation simulations [24–41].
From our numerical calculations, we find a simple empirical expression
for the critical power of asymmetrical Lorentz beam by fitting the
results of the numerical calculation

Pcr(µ) = 1.95 [0.64 + 0.18 (µ+1/µ)]
πn0

n2k2
. (13)

This empirical formula is in agreement with exact numerical results
within 1.5% for 1/4 < µ < 4. The impact of asymmetry on the critical
power of a Lorentz beam is less than the ellipticity on a Gaussian beam
as demonstrated in [41, 42]. This phenomenon can be explained as the
particular profile of the Lorentz beam that is bell-shaped curve and
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long tail, and noncircular symmetrical. With the spatial extension
being the same, the angular spreading of a Lorentz distribution is
higher than that of a Gaussian description.

The contour plots of the intensity distributions as a function of
the propagation distance are shown in Figs. 3 and 4 with different
initial widths: w0x = w0y and w0x = 4w0y. Again, the plots have
been normalized to their initial peak intensities. Careful analysis of
the simulation of the propagation of the Lorentz beam in the Kerr
media shows that a symmetrical Lorentz beam (w0x = w0y) becomes
quasi-circular in a very short distance as shown in Fig. 3.

For a asymmetrical Lorentz beam, the numerical simulations

P         Pin cr^

P         Pin cr

^

(a) (b)

(c) (d)

Figure 5. (Color online) The intensity distributions obtained
from numerical solutions of NLS equation showing narrowing of the
asymmetric Lorentz beam with w0x = 4w0y and initial power Pin =
0.8Pcr = 3.43P0 at propagation distances. (a) z = 12z0. (b) z = 13z0,
and with initial power Pin = 1.8Pcr = 7.72P0 in propagation distances.
(c) z = 2.5z0. (d) z = 3z0. Note that the scale in (d) is about five
times smaller.
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indicate that when the beam undergoes moderate focusing, the central
part of the beam becomes quasi-circular at a certain distance, changing
from elliptic to a circular Townes profile, as shown in Fig. 4. This
is somewhat similar to that of the elliptic Gaussian beam [41]. As
the propagation length increases, the high intensity (central) part of
the beam is compressed to a smaller size (as can be seen from the
right panel of Fig. 4) and eventually leads to the collapse. Numerical
calculations show that the partial collapse occurs at the propagation
distance z = 14z0 in the asymmetric case, i.e., w0x = 4w0y with
Pin = 0.8Pcr = 3.43P0.

Figures 5(a) and (b) show the results of the intensity distribution
at propagation distances z = 12z0 and z = 13z0 when the initial power
reaches a certain threshold power which is below the critical power for
a global collapse predicted by variational method. When Pin > Pcr,
the beam collapses at a much shorter propagation length, as shown in
Figs. 5(c) and (d).

4. CONCLUSION

The propagation of a Lorentz beam in a Kerr medium has been studied
by using the NLS equation. The evolution of the beam parameters is
analyzed by variational approach. The critical power of the Lorentz
beam with a uniform wavefront is derived. By using numerical
simulations, the dynamic interaction between nonlinear focusing and
linear diffraction has been demonstrated. Numerical simulations of the
propagations of the asymmetric Lorentz beam in a Kerr medium show
that the beams become quasi-circular within a very short distance.
Although the beam width increases as predicted by the variational
method when the incident power is smaller than the critical power, the
partial collapse can still occur at the center parts of the Lorentz beam.
At low intensity, the variational results can approximately predict the
numerical results. However, when the input power and the asymmetry
of a Lorentz beam are increased, the variational results significantly
deviate from the numerical results.
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