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In plants and animals, nucleotide-binding domain and leucine-rich repeats (NLR)-containing

proteins play pivotal roles in innate immunity. Despite their similar biological functions and

protein architecture, comparative genome-wide analyses of NLRs and genes encoding

NLR-like proteins suggest that plant and animal NLRs have independently arisen in evolu-

tion. Furthermore, the demonstration of interfamily transfer of plant NLR functions from

their original species to phylogenetically distant species implies evolutionary conservation

of the underlying immune principle across plant taxonomy. In this review we discuss plant

NLR evolution and summarize recent insights into plant NLR-signaling mechanisms, which

might constitute evolutionarily conserved NLR-mediated immune mechanisms.
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INTRODUCTION

Plants rely entirely on innate immunity to fight pathogens (1), as

they do not have an adaptive immune system, including special-

ized immune cells, like higher animals. To achieve a specialized

and targeted immune response, plants possess several lines of

defense against pathogens. Plasma membrane localized pattern-

recognition receptors recognize conserved pathogen molecules,

such as flagellin and chitin and provide broad-spectrum pathogen

resistance (2). However, host-adapted pathogens suppress this

immune response by delivering effector molecules inside host cells

(3, 4). As a counter mechanism, plants deploy the nucleotide-

binding domain and leucine-rich repeats (NLR) family of intra-

cellular receptors to detect the presence of effectors, triggering

potent innate immune responses (5, 6). The former class of immu-

nity is called “pattern-triggered immunity” (PTI), whereas the

latter is called “effector-triggered immunity” (ETI), which is often

associated with genetically programed host cell death (1).

The mechanism of effector recognition by plant NLRs has been

well established. Plant NLRs utilize two major modes of effector

recognition: a direct and an indirect recognition mode (5–8). In

both cases, plant NLRs are kept in an inactive form by either intra-

or inter-molecular interactions in the absence of cognate effectors

(9). The difference lies within the mode of effector recognition: in

case of the direct recognition, an effector is detected by direct phys-

ical interaction with its cognate NLR, whereas during the indirect

recognition, a NLR senses modifications of host proteins caused by

the cognate effector action. Experimental evidence supports that

the indirect recognition enables a single NLR to recognize multi-

ple effectors irrespective of effector structures when effectors target

the same host protein (5, 6). However, detection of multiple effec-

tors by a single NLR is not exclusive to the indirect recognition

mode. Recently it was demonstrated that a single NLR can detect

at least two sequence-unrelated effectors by direct binding (10).

Knowledge on signal initiation and transduction mediated

by plant NLRs is rather sparse compared to the effector detec-

tion mechanism. However, through recent progress in plant NLR

biology, the mechanisms of signal initiation and signaling relay

are gradually being revealed. Furthermore, the demonstration

of interfamily transfer of NLR functions across plant lineages

implies evolutionary conservation of the underlying immune

mechanisms. On the following pages, we will discuss plant NLR

evolution and summarize recent insights into plant NLR-signaling

mechanisms, which might hint at yet unidentified, evolutionarily

conserved NLR-mediated immune signaling mechanisms. Fur-

thermore, comparative genome-wide analyses of genes encoding

NLRs and NLR-like proteins among various plant lineages give

insights into the presumed history of plant NLR evolution and

consequently important clues to elucidate NLR functions in innate

immunity and possibly functions beyond innate immunity.

SURVEY OF NLR GENES IN LAND PLANTS: TOWARD A

MODEL OF PLANT NLR EVOLUTIONARY HISTORY

EXPANDED NLR REPERTOIRES ACROSS PLANT LINEAGES

Similar to animal NLRs, plant NLRs are modular proteins that gen-

erally consist of three building blocks: a N-terminal domain, the

central NB-ARC domain (named after Nucleotide-Binding adap-

tor shared with APAF-1, plant resistance proteins, and CED-4),

and a C-terminal LRR (leucine-rich repeats) domain (11). The

central domain of animal NLRs is also known as the NACHT

domain (named after NAIP, CIITA, HET-E, and TP1) (12) which

is structurally similar to the plant NB-ARC domain but dis-

tinctive of animal NLRs (13, 14). The utilization of either a

TOLL/interleukin 1 receptor (TIR) domain or a coiled-coil (CC)

domain at the N-terminus is a plant-NLR-specific feature and

defines two major types of plant NLRs termed the TIR-type NLRs

(TNLs) and the CC-type NLRs (CNLs), respectively. However, it
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Jacob et al. Plant NLR functions and evolution

is often challenging to specify structures of N-terminal domains

for a significant proportion of plant NLRs due to their structural

diversity and lack of significant homology to validated protein

structures. Thus, NLRs containing an N-terminus other than the

TIR domain are sometimes designated as non-TIR-type NLRs

(nTNLs) as a distinction to TNLs.

The NLR family has massively expanded in several plant species.

The massive expansions render the NLR family one of the largest

and most variable plant protein families (15, 16). This contrasts

with the vertebrate NLR repertoires, typically comprising ca. 20

members (17–20). Detailed genome-wide surveys, database min-

ing, and degenerate PCR approaches for the species whose genome

sequences are currently not available contribute to refine an

overview of the NLR repertoires in various plant species (Table 1).

Most of the plant genomes surveyed so far have a large NLR

repertoire with up to 459 genes in wine grape (Table 1). Inter-

estingly, the bryophyte Physcomitrella patens and the lycophyte

Selaginella moellendorffii which represent the ancestral land plant

lineages seem to have a relatively small NLR repertoire of ∼25

and ∼2 NLRs respectively, suggesting that the gene expansion

has occurred mainly in flowering plants (Table 1; Figure 1). It

was recently shown that numerous microRNAs target nucleotide

sequences encoding conserved motifs of NLRs (e.g., P-loop) in

many flowering plants (21). Thus it is hypothesized that such

a bulk control of NLR transcripts may allow a plant species to

maintain large NLR repertoires without depletion of functional

NLR loci (22, 23), since microRNA-mediated transcriptional sup-

pression of NLR transcripts could compensate for the fitness costs

related to maintenance of NLRs (21, 24).

The number of NLR genes in flowering plants is largely variable

without any clear correlation to the phylogeny, suggesting species-

specific mechanisms in NLR genes expansion and/or contraction

(Table 1). This variability can be exemplified by three species in

the brassicaceae family: Arabidopsis thaliana, Arabidopsis lyrata,

and Brassica rapa, which have 151, 138, and 80 full-length NLRs,

respectively (Table 1). Expansion of NLR genes has also occurred

in several metazoans such as sea urchin (Strongylocentrotus pur-

puratus) and sea squirt (Ciona intestinalis), which possess 206 and

203 NLRs, respectively (20, 43, 44). In contrast, the genomes of

fruit fly (Drosophila melanogaster) and nematode (Caenorhabditis

elegans) apparently lack NLRs, suggesting that NLRs have been lost

in these invertebrate species (17).

ORIGIN OF NLR BUILDING BLOCKS

Comparison of NLR repertoires from higher plants to ancestral

taxa common for plants and animals could hint at the time and

mechanism which led to the assembly of NLR building blocks

into a single multi-domain receptor. Yue et al. (25) conducted

a full genome-wide comparison of NLR repertoires among 38

model organisms encompassing all the major taxa (6 eubacte-

ria, 6 archaebacteria, 6 protists, 6 fungi, 7 plants, and 7 meta-

zoans). This dataset was further enriched with the genomic and

transcriptomic data available for 5,126 species of nine major

early plant lineages (chlorokybales, klebsormidiales, zygnematales,

coleochaetales, charales, liverworts, bryophytes, hornworts, and

lycophytes). The results of this large-scale data mining imply that

the core building blocks of NLRs, such as NB-ARC, NACHT,

TIR, and LRR, already existed before eukaryotes and prokaryotes

Table 1 | Plant NLR gene repertoires identified by genome-wide analyses.

Species Common name Genome size (Mbp) NLRs TNLs CNLs XNLs Reference

Arabidopsis thaliana Thale cress 125 151 94 55 0 Meyers et al. (18)

Arabidopsis lyrata Lyre-leaved rock-cress 230 138 103 21 NA Guo et al. (33)

Brachypodium distachyon Brachypodium 355 212 0 145 60 Li et al. (34)

Brassica rapa Mustard 100–145a (529) 80 52 28 NA Mun et al. (35)

Carica papaya Papaya 372 34 6 4 1 Porter et al. (36)

Chlamydomonas reinhardtii Chlamydomonas 120 0 0 0 0 Yue et al. (25)

Cucumis sativus Cucumber 367 53 11 17 2 Wan et al. (37)

Glycine max Soybean 1115 319 116 20 NA Kang et al. (38)

Medicago truncatula Barrel medic 186a (500) 270 118 152 0 Ameline-Torregrosa

et al. (39)

Oryza sativa Rice 466 458 0 274 182 Li et al. (34)

Physcomitrella patens Moss 511 25 8 9 8 Xue et al. (28)

Populus trichocarpa Poplar 550 317 91 119 34 Kohler et al. (40)

Sorghum bicolor Sorghum 760 184 0 130 52 Li et al. (34)

Solanum tuberosum Potato 840 371 55 316 NA Jupe et al. (41)

Selaginella moellendorffii Spike moss 100 2 0 NA NA Yue et al. (25)

Vitis vinifera Wine grape 487 459 97 215 147 Yang et al. (42)

Zea mays Maize 2400 95 0 71 23 Li et al. (34)

The table represents NLR and NLR-like gene numbers corresponding to NB-ARC-LRR-encoding genes. The numbers for TNLs, CNLs, and XNLs correspond to genes

encoding either full-length TNLs, CNLs, XNLs, or the NB-ARC-LRR-containing proteins if these can be clearly assigned to one of the NLR types based on their motif

composition at the NB-ARC domain. X refers to any N-terminal domain other than TIR or CC. aAnalyses based on partial genome sequence; the respective complete

genome sizes are indicated in brackets.
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Jacob et al. Plant NLR functions and evolution

FIGURE 1 | Phylogenetic distribution of the NLR family. The distribution

of the individual domains constitutive of NLRs (NB-ARC, NACHT, and LRR)

and the different groups of NLRs are mapped on a simplified phylogenetic

tree. The fusion events between either the NB-ARC or the NACHT domain

and the LRR domain presumably occurred as indicated on the phylogenetic

tree. The structural properties of the N-termini of plant NLRs in the non-TIR

group are indicated if the information is available (CC, coiled-coil; BED,

BED-DNA-binding zinc finger; H, α/β-hydrolase; PK, protein kinase; for

more detail, see Atypical Domains Found in the NLR Structure). This figure

is adapted from Yue et al. (25), combined with data as indicated below. The

divergence dates are adapted from Ref. (26) and (27). Species

representative of some taxa are indicated on the right. Ma, million years;

Ga, billion years. The question mark (?) indicates that the presence of NLRs

is not clearly resolved in given taxa due to lack of data. (a) Xue et al. (28),

(b) Kim et al. (29), (c) Heller et al. (30), (d) Tarr and Alexander (31), (e) Faris

et al. (32).

diverged, since these constitutive domains are also found in the

genomes of eubacteria and archaebacteria surveyed (Figure 1).

INDEPENDENT FUSION EVENTS IN THE EARLY HISTORY OF ANIMAL

AND PLANT NLRs

The aforementioned study implies that the fusion events between

an ancestral NACHT domain and an LRR domain, and between

an ancestral NB-ARC domain and an LRR domain occurred

independently in the early history of metazoans and plants [Ref.

(25); Figure 1]. Therefore this further supports the previously

proposed idea that plant and animal NLRs are the consequence

of a convergent evolution (45–47). Analysis of the phylogeny and

motif combinations of the NACHT/NB-ARC domains revealed

clear differences between the NACHT and the NB-ARC domains,

suggesting either an ancient divergence, or an independent ori-

gin of these two domains, which happened before the divergence

of eukaryotes, eubacteria, and archaebacteria (25). With the cur-

rent data, both fusion events could be dated back to a period
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coinciding with the appearance of multicellularity (25). In this per-

spective, plant and animal NLRs provide an interesting example

of structural and functional convergence, with a shared ability to

discriminate self from non-self and to induce immune responses.

DISTINCT AND ANCIENT EVOLUTIONARY TRACKS FOR TNLs AND nTNLs

Extending the work by Meyers et al. (48), Yue et al. (25) identified

the ten most conserved motifs in NACHT and plant NB-ARC

domains. This analysis revealed contrasting motif frequencies

between animal NLRs and plant NLRs and further discriminates

TNLs from nTNLs. This is consistent with the phylogeny based on

the NB-ARC domain where plant TNLs and plant nTNLs segre-

gate in two monophyletic clades. This result is also supported with

intron phase and position analysis (18). Based on these analyses,

both studies revealed a greater diversity in the nTNLs compared

to the TNLs. The observed greater diversity could account for an

older origin of the nTNL type compared to the TNLs, as proposed

previously by Cannon et al. (49) and Meyers et al. (18). Neverthe-

less, the co-occurrence of TNLs and nTNLs in the bryophyte P.

patens (25, 28), a representative of one of the most ancient land

plant lineages, suggests that both NLR groups appeared in the very

early history of land plants (Figure 1).

ABSENCE OF TNLs IN SEVERAL PLANT SPECIES

Although the origins of TNLs and nTNLs seems to date back to

very early land plant lineages, TNLs are known to be absent from

monocots [Ref. (25, 50); Table 1]. To examine whether the other

plant lineages also lack TNLs, Tarr and Alexander (31) retrieved

NB-ARC sequences by using degenerate PCR combined with pub-

lished datasets from diverse plant lineages, since sequences of a

motif within the NB-ARC domain can be used to discriminate

TNLs and nTNLs (25, 48). This study suggested the presence

of TNLs in basal angiosperms and gymnosperms, whereas TNLs

seem to be rare in magnoliids (Figure 1). In agreement with previ-

ous studies, no typical TNLs have been found in monocot species

representing three monocot orders (31), supporting the idea that

this type of NLR was lost in monocots.

TNLs are also absent from several basal eudicot families/species,

such as the Lamiales, the Ranunculacea Aquilegia coerulea (51),

and the core eudicot Beta vulgaris (52). Interestingly, NRG1 (N

Requirement Gene 1) genes encoding members of an atypical CNL

group also appear to be absent from the plant species lacking TNLs

(51). This intriguing correlation suggests a functional link between

NRG1 family and TNLs (51). NRG1 was originally identified with

a functional screening of immune components required for the

function of N, a TNL (53). It was shown that the ADR1 (Activated

Disease Resistance Gene 1) family, a very close homolog of NRG1

family, potentiates salicylic acid signaling pathway (54, 55). Since

immunity mediated by many TNLs is conditioned by salicylic acid

signaling (56), it is possible that NRG1 has evolved as a regulator

of salicylic acid signaling especially for TNL-mediated immunity.

TRACING BACK NLR FUNCTION(S) IN LAND PLANT EVOLUTIONARY

HISTORY

When did plant NLRs become immune regulators?

Most of the characterized plant NLRs display a classical resistance

(R) gene function consisting of mediating isolate-specific effector

recognition and initiating resistance responses. To date all NLRs

classified as resistance genes belong to the angiosperms (flower-

ing plants), summarized in Plant Resistance Gene Wiki [Ref. (57);

http://prgdb.crg.eu], whereas there is no functional data available

for the NLRs of other land plant taxa including gymnosperms,

ferns, and bryophytes. This might be due to the lack of appropriate

pathosystems that allow testing NLR functions in non-angiosperm

plants. However, a few studies suggest a link between NLRs and

biotic stresses in non-angiosperm plants. For example, a NB-ARC-

containing gene of P. patens is upregulated upon abscisic acid

treatment (58). In higher land plant species, this phytohormone

acts in both abiotic and biotic stresses (59). It was also reported

that some gymnosperm NLRs are differentially regulated upon

interaction with microorganisms (30, 60, 61). Although these data

are indicative of relatively early occurrence of NLR function in dis-

ease resistance in plant lineages, it is necessary to validate immune

functions of those genes with appropriate host/pathogen systems.

“Atypical” NLR functions

Recent studies have revealed a role for NLRs apart from the classical

R gene function. These “atypical” functions include the condi-

tioning of broad-spectrum resistance, regulatory roles in abiotic

stresses, or the role as “helper” NLR for other NLRs.

Among the NLRs conferring broad-spectrum resistance, Rice

Panicle blast 1 (Pb1) represents a well-characterized example. Pb1

encodes a CNL (62). Pb1 confers resistance to a broad range

of Magnaporthe grisea isolates, which contrasts with the isolate-

specific resistance mediated by R genes described before. Due

to its degenerate domain structure and isolate unspecific resis-

tance phenotype, the immune mechanism mediated by Pb1 is

thought to differ from the other “canonical” NLRs (62). It was

recently demonstrated that Pb1 physically associates with a tran-

scription factor, OsWRKY45, which is an essential component

of the response against M. grisea and a prominent regulator of

signaling of an important defense phytohormone, salicylic acid,

in rice (63, 64). Interestingly, this physical association elevates

OsWRKY45 protein amount presumably by preventing the pro-

tein degradation from an ubiquitin proteasome system (63). In

addition, the successful transfer from maize to rice of Rxo1, a NLR

conferring broad-spectrum resistance, suggests that the under-

lying resistance mechanism seems to be shared among distantly

related monocotyledonous species (65).

Arabidopsis ADR1 family (ADR1, ADR1-like1, ADR1-like2)

belongs to the RPW8-type of CNLs and is exceptionally con-

served among various plant species including monocotyledonous

and eudicotyledonous plant species (51). Because of such a high

degree of conservation, much attention has been paid to this fam-

ily, which might represent a conserved and potentially ancestral

function. Constitutive expression of ADR1 in Arabidopsis con-

fers drought tolerance (66, 67), indicative of its complex function

beyond innate immunity.

Several NLRs are required for the functions of other NLRs.

ADR1 family members are also required for PTI and ETI medi-

ated by a distinct set of NLRs, which are dependent on salicylic

acid signaling for full immune response (54). Consistent with the

immune responses conferred by those NLRs, the ADR1 family

is involved in a feedback amplification loop of salicylic acid sig-

naling and its biosynthesis, cooperating with EDS1, an important

immune regulator (54, 55). Another example for a helper function
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of NLRs is tomato NRC1. NRC1 is required for the immunity

conferred by Cf-4, a non-NLR R protein. Silencing of NRC1 in

N. benthamiana impairs the hypersensitive response mediated by

several other R proteins including two NLRs, Rx, and Mi (68).

Because such “helper” NLRs are required for the functions of

other NLRs, they might be involved in relaying the signal down-

stream of the respective innate immune sensors besides a role in

defense-phytohormone pathways.

NLR GENE ORGANIZATION AND DYNAMICS IN THE GENOME

NLR repertoires are qualitatively and quantitatively varied among

plant species (Table 1). This reflects a rapid evolution of the NLR

family. Here we summarize insights into genomic organization

and diversification of plant NLRs.

NLRs MAINLY OCCUR IN CLUSTERS

NLRs are distributed unevenly in the genome and show a clear

tendency for clustering (18, 19, 39, 41, 69). The size of clusters is

rather variable, and the largest clusters contain over 10 NLRs in

some species (19, 39). In japonica rice, the chromosome 11 alone

encodes about a quarter (133 NLRs) of total NLRs (19). Overall

in the rice genome, 51% of the NLRs reside in 44 clusters. The

proportion of singletons of rice NLRs (24.1%) is close to that of A.

thaliana (26.8%) (18). A similar tendency was observed in M. trun-

catula in which 49.5% of NLRs belong to clusters, each comprising

of at least 3 NLRs, and 39% of NLRs belong to two pseudo-clusters

on chromosome 3 and 6 if clustering criteria are somewhat relaxed

(39). As a comparison, the human genome possesses 22–25 NLRs

and more than 50% belong to a cluster (70). For example, 14 NLRs

forming the NLRP (Nucleotide-binding oligomerization domain,

leucine-rich Repeat, and Pyrin domain containing) family are

present on two clusters on chromosome 11 and 19 (71). NLRP

clusters were also found in mouse (Mus musculus), dog (Canis

familiaris), and cattle (Bos taurus) genomes (72, 73). Therefore,

clustering is a feature shared by both plant and mammalian NLRs.

NLR clusters can be divided into two types depending on

the contents of NLRs: (i) homogenous clusters usually contain

NLRs from the same type (TNL or CNL) (ii) heterogenous clus-

ters contain a mixture of diverse NLRs. The former type of

cluster is generated by tandem duplication, whereas the latter

cluster type is derived from ectopic duplications, transpositions,

and/or large-scale segmental duplications with subsequent local

rearrangements (74). From an evolutionary perspective, cluster-

ing is considered as a reservoir of genetic variation (75). The size of

the NLR clusters seems to positively correlate with the density of

transposable elements on the same chromosome (34, 39). There-

fore transposable elements might be involved in NLR evolution,

possibly by increasing the genomic instability and the probability

of recombination.

NLR GENES UNDERGO A FAST EVOLUTIONARY DIVERSIFICATION

DRIVEN BY COMBINED GENOMIC REARRANGEMENTS AND POSITIVE

DIVERSIFYING SELECTION

The NLR gene family has evolved by the conjunction of dupli-

cation, unequal crossing over, ectopic recombination, or gene

conversion (19, 33, 34, 39, 42, 76, 77). In addition, evidence of

positive diversifying selection, an evolutionary force that favors

the accumulation of mutations, is often found in NLRs. These

processes contributed to make the NLR family one of the most

variable gene families in the plant genomes (15, 16). Here, we

further describe NLR evolutionary dynamics at three different

scales: (i) at a genome-wide level, (ii) at a NLR subfamily level,

and (iii) at an intragenic level.

(i) Local- and large-scale duplication events are responsible

for expansion of NLR repertoire, but this process is par-

tially compensated by gene contraction mechanisms (75,

78–80). As an example, A. thaliana has experienced two to

three times whole genome duplication events, whilst NLR-

encoding genes are highly underrepresented (78). These

processes result in a high gene turnover, which can con-

tinuously refresh NLR repertoires while limiting the total

number of NLR genes, and are together referred to as the

“birth and death” process (75). Limiting NLR number seems

to be biologically relevant, since products of NLR genes

can come at a fitness cost (24), whereas diversity and nov-

elty of NLRs can generate and maintain a broad range of

resistance specificities.

(ii) The analysis of a NLR subfamily containing multiple NLR

homologs revealed distinct evolutionary patterns within fam-

ily members (81). This shows that evolution can shape dif-

ferent homologous NLRs in different ways. This aspect is dis-

cussed further at the section “Distinct Evolutionary Patterns

in NLR Genes.”

(iii) Different selection mechanisms can be detected at the

intragenic level, namely at regions encoding distinct NLR

domains. The NB-ARC domain is generally under purifying

selection, which disfavors accumulation of non-synonymous

mutations, whereas positive diversifying selection is often

found at region encoding the LRR domain and sometimes

at the other parts of NLR (76, 77, 80, 82).

These mechanisms of evolution at various levels contribute to a

high degree of inter- and intragenic variation of NLRs and account

for highly species-specific NLR repertoires (25, 34, 76).

SPECIES-SPECIFIC EVOLUTIONARY TRAITS AND POTENTIAL LINKS TO

PLANT LIFESTYLES

There are some species-specific features in NLRs evolution. For

example, a higher NLR loss rate has been reported in maize com-

pared to other monocot species (34), a higher degree of NLR

clustering has been observed in M. truncatula (39), and a higher

duplication and recombination frequency was found in two peren-

nial woody species, wine grape and poplar (42). The latter result

suggests that an increased frequency in duplication and recom-

bination might compensate for the slower evolution rate due

to a longer life cycle in some perennial species (42). In a simi-

lar manner, NLRs in the self-fertilizing species A. thaliana tend

to evolve faster than in its outcrossing close relative A. lyrata

(33, 76). Incompatible NLR gene interactions in offspring of

crosses between particular plant individuals sometimes trigger an

autoimmune-like response designated as hybrid necrosis (83). As

the occurrence of hybrid necrosis is potentially greater in outcross-

ing species than in self-fertilizing species, hybrid necrosis might
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strongly influence NLR evolution in outcrossing species. Taken

together, it is tempting to speculate that some factors like life

style or reproductive fashion might influence NLR evolutionary

processes.

DISTINCT EVOLUTIONARY PATTERNS IN NLR GENES

The analysis of the RGC2 NLR family in diverse lettuce subspecies

(Lactuca spp.) provided an interesting insight into the evolution

of individual NLR genes (81). This study identified two distinct

evolutionary patterns for Lactuca NLRs: “type I” is characterized

by a “rapid innovative” mode of evolution consisting of frequent

sequence exchanges with other NLR loci and diversifying selection,

in contrast to “type II” characterized by a “conservative” mode

with infrequent sequence exchange and purifying selection. This

observation was also confirmed in other species, suggesting that

these two mechanisms drive the evolution of a majority of plant

NLRs. Comparison of A. thaliana NLR repertoire with the one of

its close relatives A. lyrata revealed again these two types of evo-

lutionary patterns, with the type II found in a minority of NLRs

(<30%) present as singletons or with low copy number varia-

tion and the type I found in NLRs from multigenic families or

clusters (33, 76). Indeed, there is a positive correlation between

gene copy number and sequence exchange frequency, and simi-

larly between cluster size and sequence exchange frequency (33,

76). This partially explains why genes in multigenic families or in

clusters are more prone to diversification and why singletons are

likely to remain as singletons.

Additionally, some differences might exist in the evolution-

ary pattern depending on the NLR type considered (TNLs or

CNLs) although these do not show clear common trends (42,

76). For example, TNLs are characterized by a higher number

of introns while CNLs are often encoded by single exons (18).

Introns might give more flexibility in the recombination events.

TNLs are therefore more prone to structure diversification via

domain reshuffling.

STRUCTURAL DIVERSITY OF PLANT NLRs: AN IMPLICATION

FOR THEIR DIVERSIFIED FUNCTIONS?

Beside NLRs with the conventional structure like CNL or TNL,

plant genomes encode a significant number of NLRs and NLR-like

proteins displaying unconventional domain composition and/or

atypical domain arrangements (18, 25, 28, 39, 42). In the follow-

ing paragraphs we will review the structural diversity of NLRs and

NLR-like proteins in various plant species.

The “Rosetta Stone Hypothesis” proposes that when two pro-

teins that are separate in some species are fused in another species,

their fusion likely reflects a previously hidden interaction between

the two seemingly non-related proteins (84). Arabidopsis RRS1 is

a TNL which contains an additional WRKY domain (85). Con-

sistent with the “Rosetta Stone Hypothesis,” a functional and

physical interaction between a NLR and a WRKY transcription

factor has been demonstrated in barley (86). Furthermore co-

expression of individual NLR domains (i.e., N-terminal, NB-ARC,

and LRR domains) can often reconstitute the full-length pro-

tein function (87–89). This suggests that the domains found in

NLRs were originally separated and have then been assembled

into a single multi-domain receptor during evolution. Based on

the “Rosetta Stone Hypothesis,” comparison of domain structures

among NLRs and NLR-relatives in various land plants and their

ancestral taxa might help to detect hidden (immune) components

and mechanisms constructing NLR functions.

TANDEM ASSEMBLY OF NLR DOMAINS

In contrast to the “typical” domain arrangements such as TNL and

CNL [TIR (T), CC (C), NB-ARC (N), and LRR (L)], many “atyp-

ical” domain arrangements of plant NLRs have been reported.

Some examples are TNTNL and TTNL in Arabidopsis (18), TNLT,

TTNL, TNTNL, and NTNL in M. truncatula (39), TNLT, TNLN,

TNLTN, TNLTNL, CNNL, CNLNL, and TCNL (a possible mix-

ture of TNL and CNL) in wine grape and TNLT, TNLN, TNLTN,

CNNL, TCNL in poplar (42, 90). The functional analysis of RPP2a

(a TNTNL) suggests that these atypical NLRs can indeed func-

tion in disease resistance and are not just inactive chimeras (18,

91).

Tandem assemblies of the same domains are reminiscent

of homotypic dimerization (oligomerization) that have been

reported for several plant NLRs (89, 92–95). Apart from the TCNL

arrangement with yet unidentified functions found in poplar and

wine grape (42, 90), chimeras between CNLs and TNLs appear to

be rare. On one hand, this might result from infrequent recombi-

nation events between CNLs and TNLs or from negative selection

acting on the resulting chimeras. On the other hand, it might

suggest that physical interaction between CNLs and TNLs is not

functionally relevant. At least, the CNLs in monocots and some

other particular plant species can function in the absence of TNLs

(see Absence of TNLs in Several Plant Species). However a para-

dox would be the fact that some TNL functions are dependent

on ADR1 family and also likely on NRG1 which both belong to

the CNL type of NLRs (53, 54). Thus there might be a molecular

constraint that makes fusion of two types of NLRs difficult. Alter-

natively, functions of TNLs might not require direct interactions

with ADR1/NRG1 family.

“TRUNCATED” FORMS OF NLRs

NLRs are modular proteins and therefore the reverse implication

of the “Rosetta Stone Hypothesis” would suggest that separated

modules or “truncated” versions of NLR could still be func-

tional proteins. Below we discuss the phylogenetic and functional

analyses, which support this hypothesis.

The genome-wide survey of Arabidopsis genes encoding either

TIR- or NB-ARC-LRR-containing proteins has revealed that a sig-

nificant proportion (∼28%) of those proteins are truncated forms

of NLR (18). These truncated forms lack either an N-terminal

domain, or the C-terminal region including the LRR with a vari-

able part of the NB-ARC domain. A. thaliana genome encodes

20 TNs and 27 TXs (X indicates a domain other than CC, TIR,

NB-ARC, or LRR). According to the phylogenetic analysis of

the TIR-encoding genes in Arabidopsis, some large families of

TNs and TXs share a common origin with TNLs, but diversified

independently from the TNL family (96).

Similar truncated forms were identified in numerous other

plant species including gymnosperm species, wine grape, poplar,

and rice (42, 96). Phylogenetic analyses suggest that some TXs and

some TNs might have orthologs in other species (42, 96, 97).
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A particular family composed of atypical XTNXs was identified

in Arabidopsis. BLAST searches revealed 35 homologs for these

XTNXs in rice, grape, soybean, poplar, sorghum, physcomitrella,

castor bean, maize, cassava, cucumis, papaya, and mimulus. These

homologs have a high identity percentage. Therefore, this XTNX

family seems to be highly conserved among land plants, including

monocots, basal angiosperms, and magnoliids (98).

Although the function of these TN, TX, and XTNX proteins

remains unclear, their diversification and conservation would

suggest that at least some of these proteins do have important

functions. Yet some studies on Arabidopsis TXs and TNs sug-

gest possible roles in immunity and beyond. Arabidopsis CHS1

encodes a TN protein which confers cold resistance by limit-

ing chloroplast damage and cell death at low temperature. CHS1

function is achieved by regulating a PAD4-EDS1-dependent and

SA-independent resistance pathway like many other TNLs (99). In

several cases like CHS1, TNs appear to lack a functional NB-ARC

domain (96, 99). A systematic overexpression analysis of Ara-

bidopsis TXs and TNs in tobacco or Arabidopsis suggests that at

least some TXs and TNs might function in disease resistance (98).

Interestingly some TNs and TXs were shown to interact with other

NLRs and/or pathogen effectors in yeast-two-hybrid assay (98).

Arabidopsis RPW8.1 and RPW8.2 (named together RPW8)

possess a putative N-terminal transmembrane domain and a CC

motif. This CC motif displays a high similarity with the CC found

at the N-termini of a group of CNLs, sometimes referred to

as RPW8-type CNLs (51, 100). RPW8 confers broad-spectrum

powdery mildew resistance in Arabidopsis. RPW8 requires the

phytohormone salicylic acid, EDS1, NPR1, and PAD4 for its func-

tion, suggesting that RPW8 signaling might integrate downstream

components required for TNLs or basal immunity (101). RPW8

probably does not represent an ancestral function of NLRs, since

RPW8 has evolved recently in Arabidopsis (102). As mentioned

before, RPW8-type CNLs include ADR1 family which also displays

atypical functions in and beyond innate immunity (51, 66, 67).

Truncated NLR forms can be produced by alternative splicing of

full-length NLR transcripts. This phenomenon has already been

described for diverse NLRs like L6 and N (103, 104), and those

variants appear to be required for fine-tuning of the function of

those NLRs (105). RLM3 predominantly encodes a TX protein

due to alternative splicing. The truncated RLM3 confers broad-

spectrum resistance to necrotrophic fungal pathogens, a pathogen

type that kills its host to acquire nutrients (106). Therefore, RLM3

exemplifies that, in some cases, the truncated form can be the

active form.

VARIABILITY AT THE CENTRAL NB-ARC DOMAIN: NLRs LACKING A

CONVENTIONAL NUCLEOTIDE-BINDING MOTIF

Binding of ADP/ATP at the central domain (i.e., NB-ARC domain)

is pivotal for plant NLR function. It has been proposed that per-

ception of the cognate effector induces an initial conformational

change of the receptor, leading to an exchange of ADP by ATP at

the NB-ARC domain. The ATP binding is expected to induce sub-

sequent conformational changes of the NLR for signal initiation

(9). This model is drawn by an auto-active phenotype and loss-of-

function phenotype of plant NLRs carrying non-ATP-hydrolyzing

mutations and non-ATP/ADP-binding mutations at the NB-ARC

domain, respectively (9, 107). However, it becomes evident that

several plant NLRs confer pathogen resistance without the conven-

tional nucleotide-binding motif (i.e., P-loop motif). For example,

Rice Pb1 encodes an unconventional NLR protein that contains

two N-terminal CC domains (with a degenerate EDVID-motif)

and a degenerate NB domain that completely lacks the P-loop

motif (62). Interestingly, many of the NLR or NLR-like proteins

which do not require a functional NB-ARC domain have non-

canonical functions. For example, Pb1 confers broad-spectrum

resistance to rice blast (62). The ADR1 family, as described earlier

in this review, seems to have a regulatory role in biotic and abiotic

stress signaling (51, 54, 55).

Altogether, these data suggest that a subset of NLRs might

use an unconventional activation mechanism. Some of them also

have an atypical function, suggesting that along the diversification

process, some functional innovations might have arisen in these

NLR families.

ATYPICAL DOMAINS FOUND IN THE NLR STRUCTURE

The study of NLRs and NLR-like proteins in various plant species

has revealed that some NLRs consist of domain combinations

different from the classical TNL or CNL structures. Other addi-

tional domains and other N-terminal domains have been reported.

We believe that these findings might help uncovering hidden

interactions and mechanisms involved in NLR function.

In the indirect recognition mode, the NLR detects effector-

induced modifications of a plant protein, which is designated as

“guardee,” a protein targeted by an effector, or “decoy,” a pro-

tein that mimics the target of an effector but does not have a

clear biological function. It has been reported that different NLRs

could monitor a guardee/decoy to detect different effector activi-

ties when effectors target the same guardee/decoy (5–8). In light

of the “Rosetta stone hypothesis,” it seems plausible that a fusion

event has occurred between the NLR and its cognate decoy or

guardee protein. Rice RGA5 can directly bind its two cognate

effectors via a non-LRR C-terminal domain. The correspond-

ing 70 amino acids have features like a heavy metal-associated

domain related to the yeast copper binding protein ATX1 (RATX1

domain) (10). Therefore RGA5 might illustrate such a fusion

event between NLR and its cognate decoy or guardee. A simi-

lar RATX1 domain was found in the N-terminal domain of rice

Pik-1, where it also likely contributes to effector binding (108).

Therefore additional domains fused to the core NLR structure

might contribute to different functions (effector recognition, NLR

regulation, downstream signaling), independent of their position

in the NLR backbone.

A mutation in the WRKY domain of RRS1 impairs DNA-

binding and induces constitutive defense activation (109). Inter-

estingly, the CNL MLA interacts with WRKY1/2 which also

act as negative regulators of disease resistance (86). However

OsWRKY45 interacting with Pb1 is a positive regulator of the Pb1-

mediated immunity (63). These examples suggest diverse roles of

WRKY transcription factors in plant NLR functions.

A negative regulatory role was found for the C-terminal LIM

domain (named after Lin11, Isl-1, and Mec-3) of CHS3/DAR4

(110, 111). Other domains or structures have been identified at the

C-terminus of some NLRs, like the Zn-metallopeptidase domain
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(18) or the Exo70 subunit of exocyst complex (112), but their

functions remain unknown.

The N-terminal part of NLRs is typically considered as a sig-

naling module, although it sometimes also contributes to effector

recognition (1, 113), because expression of the N-terminal TIR

or CC domain alone is able to trigger host cell death (51, 94, 95,

114). A variety of N-terminal domains other than TIR or CC have

been identified, which are often restricted to certain taxa. CNLs in

Solanaceae often possess an extended N-terminus. This extended

N-terminus frequently contains a homologous domain, called the

solanaceae domain (SD) (115). The SD domain is present in Mi-

1.1, Mi-1.2, Rpi-blb2, Hero, and Prf (116). The SD domain does

not resemble any known protein motif therefore its function is

difficult to predict. A function of the SD domain was reported in

Mi-1.2. In this case, different parts of the SD domain act as either

positive or negative regulator of Mi-1.2 function (116).

More interestingly, some atypical N-termini show similarities

to known structures: 6 NLRs of P. patens have a protein kinase

(PK) domain [Ref. (28, 117); Figure 1], several NLRs of Marchan-

tia polymorpha have a α/β-hydrolase domain (28), 37 NLRs of

Populus trichocarpa have a BED-DNA-binding zinc-finger domain

(42, 90). A similar zinc-finger, DNA-binding domain was found in

Xa1 and in two other rice NLRs (97). The most striking example

might be WRKY19/MEKK4 in A. thaliana, which consists of a TNL

fused with a WRKY domain at its N-terminus and a MAPKKK

domain at its C-terminus (WRKY-TNL-MAPKKK) (18). In addi-

tion to the known interaction between WRKYs and NLRs, these

fusion events are also consistent with the reported MAPK cas-

cade requirement for NLR function (118). Unfortunately, apart

from Xa1, these atypical NLRs have not been functionally char-

acterized (97). PK, MAPKKK, α/β-hydrolase, BED, and WRKY

might represent some modules required for NLR function, either

in cis or in trans. Future studies will be needed to confirm the

functional link between NLR function and these modules. So far,

the BED-NLRs of P. patens are reminiscent of the interaction of

Prf with Pto kinase in tomato (115). The presence of BED and

WRKY domains also suggests a possible direct role of some NLRs

in transcription regulation.

CONSERVATION OF NLR-MEDIATED IMMUNITY IN PLANTS

In addition to the aforementioned mechanisms, plant-pathogen

arms race also accounts for highly species-specific NLR reper-

toires. Pathogens have evolved effectors either to increase viru-

lence or to escape detection by the cognate NLR; in turn, plants

further evolved NLRs to detect the novel effectors (119). These

iterative cycles of effector and receptor adaptations drive co-

evolution of many plant NLRs with pathogen effectors, thereby

driving species-specific evolution of each NLR-mediated innate

immune mechanisms (1). Since interfamily transfer of NLRs pre-

viously failed to produce stable transgenic plants with expected

disease resistance, the proposed restricted taxonomic functional-

ity of individual NLRs has been considered as a major barrier

to explore NLR genes in unrelated plant species (120). Interfamily

transfer of NLR function was shown in a few cases by co-expression

of an NLR, its cognate effector and the effector target (121). How-

ever, these data are often based on transient gene expression with

strong promoters and use host cell death as proxy for NLR activity.

Since NLR-mediated host cell death responses can be uncoupled

from NLR-mediated pathogen growth restriction in several cases

(1, 122), it was unclear if plant NLRs also confer disease resistance

in stable transgenic plants in phylogenetically distant species.

Recently it was shown that a subset of plant NLRs confers dis-

ease resistance across different taxonomic classes (123, 124). Our

group demonstrated that a CNL designated as MLA1 (Mildew A

1) from the monocotyledonous plant barley (Hordeum vulgare,

Poaceae) functions in the eudicot plant thale cress (A. thaliana:

Brassicaceae) against barley powdery mildew Blumeria graminis f.

sp. hordei (Bgh) (123). The MLA1-triggered immunity including

host cell death response and disease resistance is fully retained in

Arabidopsis mutant plants that are simultaneously impaired in the

well-characterized defense-phytohormone pathways (ethylene,

jasmonic acid, and salicylic acid). These data suggest the existence

of an evolutionarily conserved and phytohormone-independent

CNL-mediated immune mechanism. Similar to MLA1, co-acting

Arabidopsis TNL pair, RPS4 (Resistance to Pseudomonas Syringae

4) and RRS1 (Resistance to Ralstonia Solanacearum 1) also con-

fers resistance in cucumber (Cucurbitaceae), N. benthamiana, and

tomato (Solanaceae) (124). Additionally the Arabidopsis RPW8.1

and RPW8.2 encoding truncated CNL-like proteins, confer resis-

tance to powdery mildews in N. tabacum and N. benthamiana as

in Arabidopsis (125). These results strongly imply that a subset of

plant NLRs, despite their evolutionary separation, still follows a

common principle in innate immunity.

Large-scale yeast-two-hybrid assays revealed that indepen-

dently evolved effectors from different pathogen kingdoms

(Gram-negative bacterium Pseudomonas syringae and obligate

biotrophic oomycete Hyaloperonospora arabidopsidis) physically

associate with the same host (Arabidopsis) proteins positioning at

intersections of the host protein interaction network (126). Those

proteins are designated “cellular hubs” and most of the tested

hubs exhibit immune functions (126). Since the pair of RRS1-

RPS4 detects three independently evolved effectors from different

pathogen species (127), RRS1-RPS4 might monitor modification

of a cellular hub targeted by three different effectors, enabling indi-

rect detection. In this case, the expected cellular hub should be

conserved in cucumber, N. benthamiana, tomato, and Arabidop-

sis. Indeed, such a conserved protein, EDS1, has been shown to

be the target of two unrelated Pseudomonas effectors, suggesting

that EDS1 might be a cellular hub guarded by RRS1-RPS4 (128,

129). Alternatively, RRS1-RPS4 might detect three cognate effec-

tors by direct interaction as demonstrated with the co-acting rice

RGA4-RGA5 (R-gene analog 4 and 5) pair, of which RGA5 phys-

ically interacts with two sequence-unrelated effectors of the rice

blast fungus, Magnaporthe oryzae (10). At least for MLA, domain

swap experiments between different MLA receptors that detect

genetically diverse Bgh effectors, imply that recognition specificity

is determined by the LRR domain (130). In addition, sequence

comparison of ∼20 different MLA receptors possessing differ-

ent recognition specificities revealed that diversified selection sites

are predominately accumulated at the surface of the concave side

of a hypothetical model of the MLA LRR structure, indicative

of a direct receptor-effector interaction at the LRR domain (82,

123). Although two cognate effectors for RRS1-RPS4 have been

isolated from Pseudomonas syringae and Ralstonia solanacearum,
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the effector of Colletotrichum higginsianum remains to be isolated

(124, 131, 132). In addition, the cognate effector for MLA1 has

not been isolated, yet. To examine how RRS1-RPS4 and MLA1

detect the cognate effectors (i.e., indirect or direct) in their native

plant species and heterologous species will most likely require the

identification of these effectors.

The existence of evolutionarily conserved immune mecha-

nisms, especially downstream signaling mechanisms mediated by

plant NLRs prompts a new question: how could a “conserved

mechanism” have been retained during evolution despite the pre-

sumed emergence of pathogen counter arsenals that intercept this

conserved signaling? It is unlikely that plant NLRs rely on a sin-

gle conserved immune signaling pathway, which could be easily

disarmed by pathogens. In an attempt to solve this paradox, we

proposed that a single NLR could mediate immune responses via

multiple signaling pathways (123), since it is difficult for pathogens

to evolve an effector which simultaneously hampers multiple

signaling pathways. Plants deploy NLRs at various sub-cellular

locations for perception of effectors and/or initiation of immune

signaling (see the review by Qi and Innes in the same issue). Thus it

is tempting to speculate that entry nodes for NLR-signaling might

exist at various sub-cellular locations in plants. Existence of mul-

tiple immune targets downstream of a single plant NLR (i.e., entry

nodes for signaling pathways) would contribute to the robustness

against rapidly evolving pathogens. This might also contribute to

the conservation of plant NLR-signaling mechanism across plant

species (123, 124), since a “foreign” NLR transferred with trans-

genic technology could have higher chances to find an entry node

for downstream signaling in different plant species. Collectively,

NLRs can be exploited for disease resistance breeding in a much

wider range of plant species than previously thought.

HIJACKING OF PLANT NLR-MEDIATED IMMUNITY BY

PATHOGENS

Transferring NLRs into different plant species might be a

causal agent of unexpected disease, since some pathogens hijack

plant NLR-mediated immunity for their proliferation. Based on

nutrition modes, plant pathogens are classified into biotrophs,

necrotrophs, and their intermediate, hemibiotrophs (133, 134).

Biotrophic pathogens rely on living host cells for nutrition,

whereas necrotrophic pathogens actively kill host cells to acquire

nutrients. Hemibiotrophic pathogens are initially biotrophic and

shift later to necrotrophy. Similar to biotrophic pathogens, many

necrotrophic pathogens have a narrow host range infecting only

one or few related plant species [summarized in Ref. (134)]. In

addition to lytic enzymes and secondary metabolites, necrotrophic

pathogens secrete toxins, which function as effectors to pro-

mote host cell death response. These toxins are often host-plant

species-specific, thus called host-selective toxins and mediate

effector-triggered susceptibility (ETS), which mirrors ETI to some

extent (134).

It has been implicated that susceptibility to necrotrophic

pathogens or sensitivity to their host-selective toxins is associ-

ated with NLR loci in diverse plant species such as Arabidopsis

(135), sorghum (136), and wheat (32). These NLRs are likely main-

tained for resistance to other pathogens but targeted by virulent

necrotrophs (137, 138). The ETS caused by the pathogenic fungus

Cochliobolus victoriae in Arabidopsis is conditioned by a CNL,

LOV1 (Locus orchestrating victorin effects 1). LOV1 is activated

upon direct binding of its cognate toxin, called victorin, to a host

thioredoxin related to immunity (138). Since Arabidopsis, barley,

bean, Brachypodium, oats, and rice are sensitive to victorin (137,

138), the underlying principle for victorin sensitivity is expected to

be conserved across plant species. However it is likely that different

NLRs other than LOV1 homologs monitor the victorin action in

the respective plant species, since analysis of cereal DNA databases

failed to detect obvious LOV1-like genes (137).

Resistance to host specific necrotrophs is mediated by PTI,

detoxification of toxins, loss of toxin recognitions, or restricting

toxin-mediated cell death response (139). Plant NLRs seem to

play minor roles in resistance to necrotrophic pathogens. How-

ever Arabidopsis RLM3 locus, which encodes a truncated TNL

lacking NB and LRR domains, confers resistance to a broad range

of necrotrophs by unknown mechanisms (106).

NLR-mediated susceptibility is also observed in animal-

pathogen interactions. In mouse, an NLR designated NOD2

(nucleotide-binding oligomerization domain-containing protein

2) mediates susceptibility to Yersinia pseudotuberculosis, a gut-

living bacterial pathogen that disrupts the interstitial barrier to

invade host cells (140). Similar to plant pathogens, Y. pseudotuber-

culosis delivers a set of effectors through the type III secretion sys-

tem for virulence. Among the effectors,YopJ, an acetyl-transferase,

mediates the intestinal barrier dysfunction by redirecting NOD2

signaling. YopJ acetylates RICK (Rip-like interacting caspase-like

apoptosis-regulatory PK), an immediate downstream target of

NOD2, resulting in reduced binding affinity of RICK to NOD2.

As a consequence, NOD2 is able to form a complex with caspase-

1 other than RICK, resulting in higher IL-1β production. This

appears to increase the intestinal permeability for the bacterial

invasion (140). Consistently, Crohn’s disease-associated NOD2

mutations found in ∼20% of healthy white individuals are likely

maintained to protect the host from systemic infection by com-

mon enteric bacteria (141). Similar to Y. pseudotuberculosis, Sal-

monella enterica subspecies trigger host immune responses (i.e.,

inflammation) to obtain a niche in the already established gut

microbial community (142), suggesting that induction of inflam-

matory responses might be a common strategy for pathogenesis

of enteric bacteria.

Thus host immune response is sometimes beneficial for

pathogens in plants and animals. Plant pathogens might also

exploit host immune mechanisms to compete with host associat-

ing microorganisms. Plants and animals deploy an array of NLRs

to fight against pathogens, whilst deployment of NLRs must be

tightly balanced. Otherwise, these could be exploited by pathogens.

Such a constraint might also contribute to shaping the current

repertoires of NLRs in plants and animals.

PLANT NLRs REGULATING TRANSCRIPTION

Apart from the host cell death response, NLR action is often asso-

ciated with transcriptional changes. Here we review the emerging

picture how NLRs actively participate in transcriptional regulation

in plants.

It has been shown that transcriptional differences in resistant

vs. susceptible interactions are rather quantitative than qualitative

in several cases. This implies that NLRs amplify or sustain defense-

related gene expression mediated by pattern-recognition receptors
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(123, 143–147). Transcriptome analysis comparing gene expres-

sion mediated by a TNL and a CNL, each recognizing different

effectors from the same pathogen, identified a common set of

target genes. This indicates that the underlying mechanism for

transcriptional regulation might be shared by both types of NLRs

(148). Recent studies start to unravel how NLR action is converted

to transcriptional reprograming.

Recognition of the cognate effectors by plasma membrane-

associated CNLs RPS2 (Resistance to Pseudomonas Syringae 2)

and RPM1 (Resistance to Pseudomonas Syringae pv Maculicola 1)

results in transcriptional reprograming (144, 149), indicating a

mechanism that relays signals from the plasma membrane to the

nucleus. To uncouple ETI from PTI with a synchronized homoge-

neous cell population, Gao et al. (150) used an Arabidopsis pro-

toplast system, in which the cognate effectors for RPS2 or RPM1

are expressed under an inducible promoter. Genome-wide tran-

scriptome analysis with the protoplast system identified WRKY46

as an early marker gene shared in RPS2- and RPM1-mediated sig-

naling. Since chemical inhibitors affecting various Ca2+ channels

suppressed the effector-mediated WRKY46 promoter activation,

potential involvement of Ca2+-dependent protein kinases (CPKs)

were examined. A genetic and biochemical screen identified a

group of Ca2+-dependent PKs (CPK 4, 5, 6, and 11), acting as sig-

naling mediators between the NLRs and the transcription factors

WRKY8, WRKY28, and WRKY48. Those WRKYs are proposed to

regulate gene expression downstream of RPS2 and RPM1. Notably,

another group of CPKs (CPK1 and 2) appears to be involved in

host cell death response rather than transcriptional reprograming,

suggesting the existence of a bifurcated CPK-dependent signaling

pathway mediating distinctive NLR-triggered immunity outputs

(i.e., cell death and transcriptional reprograming). However, it still

remains unclear how RPS2 and RPM1 activate the set of CPKs. So

far, a direct interaction between the CPKs and RPS2 or RPM1 was

not detected (150). Potential players in the RPS2 or RPM1-CPK

signaling cascade might be CNGCs (cyclic nucleotide-gated ion

channels), a family of putative Ca2+ channels, some of which are

involved in plant immunity (151, 152). However, the mechanistic

link between NLRs and CNGCs remains unknown.

Signaling relay via a mediator such as CPK might be one

mechanism by which membrane-associated NLRs regulate tran-

scriptional reprograming. However, recent work indicates that

some soluble NLRs participate in an even shorter signaling path-

way. Localization into the nucleus has been shown for several

NLRs. When excluded from the nucleus by fusion with a nuclear

exclusion signal, immunity mediated by the nucleo-cytoplasmic

barley MLA10 (CNL) is compromised (86). Similarly, nuclear

exclusion of the nucleo-cytoplasmic N (TNL) resulted in com-

promised immunity in N. benthamiana (153). Disruption of the

nuclear localization sequence of Arabidopsis RPS4 (TNL) resulted

in impaired immunity toward Pst DC3000 expressing its cognate

effector (154). Together, these data point toward a nuclear function

of a subset of NLRs.

Recent studies have started to elucidate the activity of nuclear-

localizing NLRs. Following up on the demonstration that bar-

ley MLA10 interacts with HvWRKY1 and HvWRKY2, nega-

tive regulators of immunity, Chang et al. (155) elucidated the

mechanism by which this interaction results in immunity. They

demonstrated that the CC domain of barley MLA10 interacts

not only with the aforementioned repressors but also with the

transcriptional factor HvMYB6, a positive regulator of immu-

nity. Strikingly, only the active form of MLA10 is able to bind

HvMYB6, which is sequestered by HvWRKY1 in the absence

of the activated MLA10. The interaction through the MLA CC

domain prevents WRKY1 from interacting with HvMYB6, thereby

allowing HvMYB6 binding to the corresponding cis-element. The

MLA10-HvMYB6 complex, in turn, greatly enhances transcrip-

tion downstream of the cis-element compared to HvMYB6 alone

in a transient assay. While this interaction greatly adds to our

understanding of MLA function in barley, it cannot explain the

conserved function of MLA1 in Arabidopsis (123), since HvMYB6

is a highly monocot-specific transcription factor (155).

Pb1, a rice CNL, has also recently been shown to inter-

act with the transcription factor OsWRKY45, likely leading to

transcriptional reprograming. However, in contrast to the MLA-

HvMYB6 interaction, the transcriptional activity is regulated via

OsWRKY45 abundance, since Pb1 protects OsWRKY45 from

degradation upon pathogen attack (63).

A third example aiding in our understanding of NLR nuclear

activity is the interaction of N with the transcription factor SPL6

(SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 6) in N.

benthamiana (156). The association of N and SPL6 at subnu-

clear bodies occurs only in the presence of the cognate effector.

A genetic requirement for SPL6 was shown in N. benthami-

ana for N-mediated disease resistance as well as in A. thaliana

for RPS4-mediated immunity. A number of RPS4-mediated

defense responsive genes are differentially regulated upon AtSPL6

silencing (156).

Close re-examination of yeast-two-hybrid data generated

by Mukhtar et al. (126) provides further support of NLR-

transcription factor interaction as a more common mechanism of

NLR actions. Mukhtar et al. (126) tested interactions using as bait

N-terminal domains of Arabidopsis CNLs and TNLs, which have

previously been demonstrated to function as minimal signaling

domains in some cases (94, 95), and as prey full-length con-

structs of ∼8,000 immune-related genes including transcriptional

regulators. Strikingly, of those NLRs showing interactions, the

majority interacted with one or more transcriptional regulators.

Furthermore, these interactions could be found for both CNLs and

TNLs. Interaction between transcriptional regulators and NLRs

has already been demonstrated too, for example the interaction of

the transcriptional co-repressor TPR1 (Topless-related 1) with the

Arabidopsis TNL SNC1 (157).

Taken together, these studies draw an emerging picture in which

nuclear localized NLRs mediate transcriptional reprograming via

interaction with transcription factors in various plants species.

Interaction with transcriptional regulators appears not to be lim-

ited to one subclass only or to just a few specialized NLRs. Instead,

this type of interactions might be a more common phenome-

non, implying a possible general mechanism of direct regulation

of transcriptional reprograming via plant NLRs. Transcriptional

regulation via NLRs also occurs in animals. Two well documented

NLRs, CIITA and NLRC5, both regulate a set of genes, MHC class I

and class II genes, by recognizing specific cis-elements and recruit-

ing a group of transcriptional regulators (158, 159). The protein
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complex formed is known as enhanceosome (160, 161). It remains

to be proven whether NLRs in plants also form such large order

complexes or modulate transcription by interacting with only a

few transcriptional regulators at a time.

STRUCTURAL INSIGHT INTO AUTO-INHIBITION

MECHANISM OF NLRs

Very recently the first crystal structure of an NLR monomer

(mouse NLRC4) in its inactive state was resolved (162). The struc-

ture revealed the presence of multiple“security locks,”coordinated

by several and distinctive intra-domain interactions to keep the

receptor in an inactive state. These locks prevent the receptor from

homo-oligomerization driven by associations through the central

domain. The observed intra-domain interactions cluster in close

proximity of the potential ligand-binding pocket, which is primar-

ily shaped by the LRR domain together with the other domains

(162). Thus, it is proposed that ligand-binding at the pocket

could release the multiple locks all at once, enabling a subsequent

conformational change of the receptor (e.g., ADP-ATP exchange,

oligomerization). Interestingly, the structure and the experimental

evidence suggest that ADP-binding at the P-loop motif also con-

tributes to auto-inhibition of the receptor. However, the inhibition

mechanism seems to be distinctive from that mediated by the other

intra-domain interactions, since the position of ADP in the crystal

is distant from the pocket (162). Unlike animal NLRs, plant NLRs

lack the HD2 sub-domain (also known as ARC3 sub-domain) in

the central NB-ARC domain (14), and general applicability of the

central domain mediated homo-oligomerization of plant NLRs

upon receptor activation is unclear.

The LRR domain of plant NLRs is also involved in forming

“security locks” by cooperating with the other domains in the

absence of pathogens (93, 163–166). A structure-function analysis

combined with docking simulations of structural models of the

NB-ARC and the LRR domains identified regions that determine

intra-domain interactions in two CNLs, Rx1 and Gpa2 (166). At

least in the case of these two highly homologous CNLs, the asso-

ciation between the N-terminal repeats of the LRR domain and a

small region of the ARC2 domain are sufficient to keep these NLRs

in an inactive state, whilst the rest of C-terminal repeats of the LRR

domain act as the major determinant of the effector recognitions

(166). Thus it is proposed that detection of the cognate effectors

at the C-terminal repeats of the LRR domain disrupts the

intra-domain interaction to activate the receptor (166).

CONCLUSION AND PERSPECTIVE

Over the past few decades, many NLRs and NLR-like proteins

were isolated from plants and animals and their functions have

been extensively studied. The development of new technologies

has further accelerated research on NLR biology. For example,

deep sequencing technology offers more opportunities to conduct

comparative genome-wide analyses of NLRs in various species.

Whole-transcriptome analysis at single transcript level combined

with ChIP-seq analysis (chromatin immunoprecipitation followed

by sequencing) allows to uncover underlying mechanisms for NLR

functions in the nucleus. Furthermore, structural biology pro-

vides in-depth understanding of mechanistic insights into NLR

actions. Nevertheless, a balanced combination of those technolo-

gies and “classical” genetics and biochemical studies are important

to unravel the principle of NLR functions.

As we discussed above, a plant NLR might initiate downstream

signaling by connecting to multiple signaling targets rather than

through a single evolutionarily conserved target. Despite a lack

of direct experimental evidence to date, putative compartment-

specific activities of plant NLRs, particularly in the cytoplasm

and nucleus (129, 167), suggest that a single NLR interacts with

structurally different downstream components to initiate immune

responses in different compartments. Thus, it might be possible

that a second, third, or even more downstream signaling layers

exist for a given NLR, including several interacting components

that might constitute “as a whole” the downstream innate immune

mechanism. Finally, we imagine that comprehensive knowledge of

NLR actions would allow the design of synthetic NLRs in order

to control pathogens and manipulate NLR functions even beyond

innate immunity.
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