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We derive a simple set of nonlinear, ð1þ 1Þ-dimensional partial differential equations that describe the
dynamical evolution of black strings and branes to leading order in the expansion in the inverse of the
number of dimensions D. These equations are easily solved numerically. Their solution shows that thin
enough black strings are unstable to developing inhomogeneities along their length, and at late times they
asymptote to stable nonuniform black strings. This proves an earlier conjecture about the end point of the
instability of black strings in a large enough number of dimensions. If the initial black string is very thin, the
final configuration is highly nonuniform and resembles a periodic array of localized black holes joined by
short necks. We also present the equations that describe the nonlinear dynamics of anti–de Sitter black
branes at large D.
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The instability of black strings and black branes dis-
covered in [1] is a phenomenon with wide implications for
the physics of higher-dimensional black holes and their
applications to string theory and gauge-gravity duality [2].
Black strings behave similarly to tubular soap films and
are prone, when thin enough, to rippling, i.e., developing
nonuniformities along their direction. This instability is
well established in perturbation theory, but its growth
beyond the linearized approximation and its end point at
asymptotically late times are notoriously hard problems.
The numerical evolution of a perturbed five-dimensional
black string in [3] is a landmark result: it gives strong
evidence that the classical evolution does not stop at any
stable configuration but proceeds in a self-similar cascade
to smaller scales.
Important as the result of [3] is, it still leaves open many

questions about the fate of unstable black strings and black
branes. For instance, it would be very convenient to have a
better, possibly analytic, understanding of the late-time
evolution. Moreover, [3] presents a single calculation of a
single system. Do all unstable black strings behave in the
same manner? This is indeed unlikely: there has long been
evidence that, by modifying the parameters of the system,
the end point may be different. In the simplest instance, the
parameter is the number of spacetime dimensions where the
black string lives. Reference [4] found a critical dimension,
D ¼ D� ≃ 13.5, above which weakly nonuniform static
black strings (NUBS) have larger horizon area, for fixed
string length and mass, than the uniform solutions. It is
then possible that the classical evolution of the system in
D > D� ends at a stable NUBS, as proposed (independ-
ently of D) in [5]. However, given the almost prohibitive

cost of the numerical simulations (100000 CPU hours for
[3]), the investigation of this possibility and the systematic
study of the evolution of related systems has not been
undertaken to date. This is strong motivation to search for
simpler methods capable of capturing at least the main
qualitative features of the phenomenon.
In this Letter we present an approach, based on an

expansion in 1=D, that allows us to address some of these
issues. In particular, we show that for large enough D the
end point of the instability is generically a stable NUBS.
The simplification of the problem is dramatic: accurate
numerical evolutions can be obtained in seconds (or less) in
a conventional computer running a one-line NDSolve of
Mathematica. This encourages further investigation of this and
similar problems by these means.
The large D approach to black hole physics, initiated

in [6–8], has been recently developed to deal with fully
nonlinear deformations of horizons [9–12]. While the
formalism of [10] incorporates time evolution, it is unclear
to us whether it allows us, as it is, to study the system
at hand, which involves horizon length scales ∼1=

ffiffiffiffi
D

p
.

Therefore, we solve the problem ab initio in a formulation
adapted to the dynamics of black branes.
Using ingoing Eddington-Finkelstein coordinates, the

metric of a uniform black p-brane in D ¼ nþ pþ 3
dimensions, boosted along its world volume with velocity
vector uμ, ημνuμuν ¼ −1, μ; ν ¼ 0;…; p, is

ds2 ¼
�
ημν þ

�
r0
r

�
n
uμuν

�
dσμdσν − 2uμdσμdrþ r2dΩnþ1:

ð1Þ
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The world volume directions are

σμ ¼ ðt; σaÞ; a ¼ 1;…; p: ð2Þ

We take p to be finite, so D → ∞ is n → ∞, and we will
study deformations of the black brane that depend on σμ.
Since thewavelength of unstable fluctuations is known to

be ∼1=
ffiffiffi
n

p
[6,7], we rescale σa → σa=

ffiffiffi
n

p
. Furthermore, we

consider small velocities, uμ ¼ ( − 1þOðn−1Þ; va=
ffiffiffi
n

p
),

so, denoting m ¼ rn0 , the metric, Eq. (1), becomes

ds2 ¼ −
�
1 −

m
rn

�
dt2 þ 2

�
dt −

va
n
dσa

�
dr −

2mva
nrn

dσadt

þ 1

n

�
δab þ

mvavb
nrn

�
dσadσb þ r2dΩnþ1: ð3Þ

We seek solutions that can be regarded as having m and
va not constant but varying with the coordinates σμ. In
order to find them, we take a metric ansatz of the form

ds2 ¼ −Adt2 − 2ðutdtþ uadσaÞdr − 2Cadσadt

þGabdσadσb þ r2dΩnþ1; ð4Þ

with

A ¼
X
k≥0

AðkÞðσμ; rÞ
nk

; ut ¼
X
k≥0

uðkÞt ðσμ; rÞ
nk

;

ua ¼
X
k≥0

uðkÞa ðσμ; rÞ
nkþ1

; ð5Þ

Ca ¼
X
k≥0

CðkÞ
a ðσμ; rÞ
nkþ1

;

Gab ¼
1

n

�
δab þ

X
k≥0

GðkÞ
ab ðσμ; rÞ
nkþ1

�
: ð6Þ

The different scalings with n conform to Eq. (3). We have
chosen a Bondi-type gauge where grr ¼ 0 and r is the area
radius of Snþ1 to all orders in 1=n. This leaves a gauge
freedom in the choice of ua, which is a shift vector on
surfaces at constant r and is only restricted by boundary
conditions. We have partially gauge fixed it to be inde-
pendent of r.
We introduce the radial coordinate

R ¼ rn; ð7Þ

such that when D → ∞ keeping R finite, we focus on the
near-horizon region, which we can always locate near
r ¼ 1, without loss of generality, by an appropriate choice
of scales. The boundary conditions at large R (for near-
horizon decoupled geometries [13]) are

A ¼ 1þOðR−1Þ; Ca ¼ OðR−1Þ;

Gab ¼
1

n
½δab þOðn−1;R−1Þ�: ð8Þ

We also require regularity at the horizon, which is where
gμνuμuν ¼ 0.
It is now straightforward to solve the Einstein equations

perturbatively in 1=n. To leading order, the solution is

Að0Þ ¼ 1−
mðσμÞ
R

; Cð0Þ
a ¼paðσμÞ

R
; Gð0Þ

ab ¼paðσμÞpbðσμÞ
mðσμÞR ;

ð9Þ

uð0Þt ¼ −1; uð0Þa ¼ const: ð10Þ

We have gauge fixed the σμ dependence of ua in a manner
consistent with boundary conditions. Solving similarly
at the next order, the equations Rtt ¼ 0 and Rta ¼ 0 are
R-independent constraints that require, respectively,

∂tm − ∂b∂bm ¼ −∂bpb; ð11Þ

and

∂tpa − ∂b∂bpa ¼ ∂am − ∂b

�
papb

m

�
ð12Þ

(a; b indices are raised with the flat metric δab). The
remaining Einstein equations are readily solved yielding
R-dependent metric components that preserve horizon
regularity, but we will not need their explicit form.
Equations (11) and (12) are one of our main results. They

are the effective equations for the collective variables,
mðσμÞ and paðσμÞ, that describe nonlinear fluctuations
of the black brane. These variables give the energy and
momentum densities of the black brane on sections at
constant σa at a given time. The horizon of the solution is at
R ¼ mðσμÞ, so the function mðσμÞ is also interpreted as the
area density, i.e., the area of the Snþ1 (up to a factor of the
unit-sphere area) at the horizon at a fixed value of t and σa,
to leading order in 1=n. For solutions that are spatially
periodic in σa, the quantities

M¼
Z

dσ1…dσpmðt;σbÞ; Pa ¼
Z

dσ1…dσppaðt;σbÞ;

ð13Þ

are conserved in time. Up to normalization factors, they
are the total mass and momentum of the black brane.
Up to similar factors and to leading order, M is also
the total horizon area, which therefore does not vary as the
system evolves. If we define the surface gravity as the
nonaffinity of the horizon generator ∂t, it also remains
constant.
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The equations are invariant under Galilean boosts along
σa with constant velocity va,

σa → σa − vat; pa → pa þmva; ð14Þ
which allows us to fix the rest frame of the black brane,
in which Pa ¼ 0, and set uð0Þa ¼ 0.
This effective formulation of black brane dynamics

passes two important checks. (i) For small, linearized
perturbations around the uniform black brane, with
momentum k aligned with σ1 ≡ z,

mðt;zÞ¼ 1þδme−iωtþikz; paðt;zÞ¼ δpae−iωtþikz; ð15Þ

the solution frequencies are

ω� ¼ ið�k − k2Þ; ω ¼ −ik2; ð16Þ
which reproduce the frequencies of the sound and shear
modes of the black brane to leading order at large D [7].
In particular, the frequency ωþ for 0 < k < 1 corresponds
to the Gregory-Laflamme unstable mode. (ii) If we consider
static, shear-free deformations, m ¼ mðzÞ, p1 ¼ pðzÞ, and
pa≠1 ¼ 0, the resulting equation (with p ¼ m0 in the rest
frame),

m00 þm −
ðm0Þ2
m

¼ const; ð17Þ

is equivalent to the equation for static black strings derived
in [9,12] (using different gauges), with the variables being
related by mðzÞ ¼ exp½2PðzÞ�.
Observe that the sound deformations m, p1 along a

direction σ1, are not affected by the shear pa≠1. In the
following, we set pa≠1 ¼ 0 and consider black strings with
p1ðt; σ1 ¼ zÞ≡ pðt; zÞ. The direction z is compactified,
z ∈ ½−L=2; L=2�. We parametrize the periodicity L in terms
of a wave number kL as

kL ¼ 2π

L
: ð18Þ

Since we are fixing the string thickness r0 ¼ 1, the uniform
strings are characterized by the value of kL. Smaller values
of kL correspond to thinner black strings.
We solve numerically the black string equations

∂tmðt; zÞ − ∂2
zmðt; zÞ ¼ −∂zpðt; zÞ; ð19Þ

and

∂tpðt; zÞ − ∂2
zpðt; zÞ ¼ ∂z

�
mðt; zÞ − pðt; zÞ2

mðt; zÞ
�
: ð20Þ

The Mathematica function NDSolve handles them
without difficulty. We fix a value of kL and introduce a
small perturbation of the static uniform black string,
mð0; zÞ ¼ 1þ δm0ðzÞ, pð0; zÞ ¼ δp0ðzÞ, such that the
momentum P vanishes. We find that for kL > 1, the per-
turbation quickly dissipates and the black string becomes
uniform, in agreement with the absence in Eq. (16) of
unstable linear modes with wave number k > 1.
For thinner black strings, with kL < 1, after brief initial

transients the deformation grows (at approximately the
exponential rate of the linearized solution). Eventually,
the system settles down at a stable configuration that solves
the static equation (17) to a precision that can easily reach
six digits. M and P in Eq. (13) remain constant throughout
the evolution to very good accuracy (easily better than
10−9 for M and 10−6 for P).
In Figs. 1 and 2 we show two sample simulations. We

plot mðt; zÞ, which gives the area of the Snþ1 at a given z.
This is different than the area radius of these spheres,
which is

Rðt; zÞ ¼ mðzÞ½1=ðnþ1Þ� ≃ 1þ lnmðt; zÞ
n

: ð21Þ

For large deformations, lnmðt; zÞ can reveal structure that
in mðt; zÞ is exponentially suppressed (insets in Fig. 2).
Figure 1 is the evolution of a not-too-thin black string

with kL ¼ 0.98. Since the perturbative unstable rate is

FIG. 1. Dynamical evolution of a perturbed string with kL ¼ 0.98. The horizontal axis is the Snþ1-area function, mðt; zÞ. For this
simulation, the final state was reached before t ¼ 500. The time it takes depends on the size and shape of the initial perturbation, but the
final configuration is independent of them.
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small, the evolution is slow. The final profile is approx-
imately sinusoidal, as expected for a small deformation.
Figure 2 shows the evolution for a thinner black string

with kL ¼ 0.55, which evolves much faster and develops a
large blob in its final state. As shown in [9,12], the profile
of large static blobs is very approximately Gaussian

mðzÞ≃ Lffiffiffiffiffiffi
2π

p e−z
2=2 ð22Þ

(the amplitude is fixed to have the same M as a uniform
black string of length L). The radius RðzÞ for Eq. (22)
decays only like −z2=2 away from the center, as seen in the
insets in Fig. 2, and the blob fills almost all the compact
direction. Indeed, Eq. (22) gives an excellent approxima-
tion to the profile of lnmðzÞ for the final solution at all z
(better than 1% for kL ≲ 0.6) except in a very short “neck”
of length ðΔzÞneck ≃ ð4=LÞ lnL near jzj ¼ L=2 [9]. As
shown in [12], these blobs approximate very well the shape
of a spherical black hole within a region of width ∼1=

ffiffiffi
n

p
around its equator, as well as its total area. Bear in mind,
however, that while the height of the blobs is R ¼ Oð1Þ,
their proper length along z is L=

ffiffiffi
n

p
; i.e., they are much

thinner than a sphere.
When 1=2 < kL < 1 the NUBS at the end point of the

evolution is unique for each value of kL, independently of
the shape and amplitude of the initial perturbation. When
0 < kL < 1=2 there are (at least) two different unstable
modes that can be excited, with wave numbers kL and 2kL
(or a higher multiple), and two possible final static NUBS.
Since their mass and area are the same to leading order in
1=n, the evolution depends on the relative growth rates
of the unstable modes and on the shape of the initial
perturbation. When the solution develops two or more
blobs, it may be difficult to determine if these will remain in
the asymptotic final state, or are instead only part of a very
long-lived transient phase: since m is exponentially small
in between the blobs, the interaction among them may be
lost in numerical error. These situations, however, may fall
outside the range of applicability of this formulation.

The large D approximation is valid when j lnmj,
j∂t;z lnmj, j∂t;z lnpj ≪ n. In the solutions we consider,
the most stringent condition is j lnmj ≪ n, which at the
neck becomes L ≪ 2

ffiffiffiffiffiffi
2n

p
, i.e., nk2L ≫ π2=2. Thus, our

results are quantitatively accurate in a given dimension only
for sufficiently large kL, or conversely, for a given kL only
in sufficiently large n. Observe that near the limit of
validity, at L ∼

ffiffiffi
n

p
, the blob has proper size Oð1Þ in all

directions [9]. This suggests that this final state can be
regarded as an array of roughly spherical black holes joined
by thin, short necks. Additionally, when the neck becomes
thin in Planck units, the black string may break up into
separate black holes due to quantum gravity effects.
Within this range of validity, we conclude that our

results are very strong evidence that the end point of the
black string instability at large enough D is generically a
stable NUBS.
There are several possible extensions of our study. With

little extra effort we can obtain the equations that describe
the leading large D nonlinear dynamics of anti–de Sitter
(AdS) black branes. Either by directly solving the equations
as in the previous case, or by applying the AdS/Ricci-flat
correspondence of [14], we find

∂tm − ∂b∂bm ¼ −∂bpb; ð23Þ
and

∂tpa − ∂b∂bpa ¼ −∂am − ∂b

�
papb

m

�
: ð24Þ

It is easy to prove that these equations do not have any
nonuniform static solutions. Small dynamical perturbations
of the uniform configuration, Eq. (15), give as solutions the
sound and shear quasinormal frequencies of the AdS black
brane computed in [15], namely,

ω� ¼ �k − ik2; ω ¼ −ik2: ð25Þ
Other quasinormal modes of the black brane have frequen-
cies OðDÞ and do not appear in the near-horizon

FIG. 2. Dynamical evolution of a perturbed string with kL ¼ 0.55. For the last two plots we display lnmðt; zÞ in insets, which show
that the blobs extend to almost fill the compact direction. For this simulation, the final state was reached around t ¼ 40.
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decoupling limit. Allowing variation in a number p ∼D of
horizon directions may involve qualitative changes.
The inclusion of 1=D corrections to Eqs. (11) and (12) is

potentially very interesting. It has been shown in [12] that
1=D corrections allow us to accurately identify the critical
dimension D� below which static NUBS of a given area
have higher mass than uniform black strings, so they cannot
be the end points of the instability [16,17]. This suggests
that the 1=D expansion may be able to reproduce, when
D < D�, an evolution qualitatively similar to the one
observed in [3]. We hope to report on this in the future.
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