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ABSTRACT 

Time-evolution and hence, forecasting the growth profiles of business-centric technoeconomics are ascertained. As an 
example, the vast telecommunication (telco)-specific business is considered as a complex enterprise depicting a cyber-
space of digital ecology (DE) with a backbone of network that supports a host of information sources and destinations 
facilitating a variety of triple (voice, data and video) services. To specify the temporal trend of evolution of telco eco-
nomics in a series format, the approach pursued here (and differs from traditional series analyses) takes into account 
only a selective (and justifiable) set of autoregressive integrated moving average (ARIMA) parameters consistent with 
the test data. However, this simplified approach yields sufficiently accurate time-series (depicting the business growth) 
extendable to forecasting regimes. The efficacy of the proposed method is determined via goodness-fit evaluations both 
in time- and frequency-domains. The data adopted in the computations conform to typical telco service industry. 
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1. Introduction 

In modern business world, the plethora of telecommunica-
tion (telco) networks and the associated information tech-
nology (IT) is comprised of a technological infrastructure 
supporting streams of voice, data and video (entertainment) 
data flow plus an economic base that earns revenues as 
well as incurs capital and operational expenses (CAPEX 
and OPEX). In this technoeconomic context, the entirety 
of telco service industry constitutes a complex digital 
ecology (DE) populated by a set of “digital species” de-
noting various (tele)-communication entities (information, 
technology, service options etc.) along with the entirety of 
computing systems (soft- and hardware), constituents of 
entertainment media and items of economics. DE is a neo-
teric perception [1], which can be attributed to the com-
plex system of telecommunications [2].  

Within the broad scope of DE, addressed exclusively in 
this paper are heuristics of business-centric digital eco-
systems (such as telco service industry) in ascertaining the 
temporal trend and seasonal/non-seasonal movements of 
the underlying technoeconomic parameters (expressed in 
terms of a time-series representation of the associated 
data). The approach pursued thereof differs from tradi-

tional analyses by considering only a selective set of 
global moving-average (such as autoregressive integrated 
moving average or ARIMA) parameters compatible for 
the test data. The reasons for selective parameter-set us-
age are justifiably explained.  

In spite of the simplified approach (via selective pa-
rameter usage), the method indicated yields sufficiently 
accurate time-series depiction of business growth/evolution 
compatible for forecasting efforts. The efficacy of the 
proposed technique is determined via goodness-fit evalua-
tions both in time- and frequency-domains. The data 
adopted in the computations conform to typical telecom-
munication (telco) service industry. 

2. Technoeconomic Growth Profile 
In the context of modern telco service business, modeling 
the associated growth scenario (viewed in terms of ser-
vice expansion, revenue growth, customer population etc.) 
will lead to predicting the survival of the business in the 
cyberspace of service provisioning implicated by inter-
acting aspects of quality-of-service (QoS) expectations, 
variety in services (of voice, data and video), competitive 
deregulated market, government regulations, customer 
churning, revenue/return-on-investment (RoI) etc..  
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Given a set of data on technoeconomic evolution, 
which is invariably nonlinear [3], it is governed by vari-
ous endogenous and/or exogenous variables; and, a re-
gression analysis of it can be normally performed in or-
der to get a trend curve, which is projected to forecast an 
estimate of possible values of the dependent variable at 
any specified value of the dependent variable extrapo-
lated beyond the range over which the regression is per-
formed. This is called trend projection (forward) proce-
dure. Further, forecasting is exercised via exponential 
smoothing of the trend projection, wherein greater 
weights to recent observations are prescribed in the time- 
series.  

Considering time-series representation of short-term 
growth of technoeconomics, often cyclical and/or sea-
sonal variations (specified as what are known as seasonal 
indices) are seen in the trend projection. In the 
time-series analysis of long-term business planning is-
sues and decision suite, such seasonal movements and 
variations should be explicitly included in realistic trend 
projections toward forecasting (because, the growth of 
underlying economic features is supposedly centered on 
such movements and trend details on such movements 
imply a moving average (MA) of seasonal variations). 
The associated seasonal indices are decided by annihila-
tion and augmentation of details (technoeconomic infor-
mation) applied on the growth function dynamics (mostly 
in random manner); and as such, the growth aspect of the 
system would exhibit a jagged variation (largely in the 
initial phase) caused by the (random) interactions of en-
dogenous and/or exogenous entities) [3]. 

The seasonal index indicated above can be defined, for 
example, in terms of raw data of pertinent economic in-
formation across specified periods, (such as quarters of a 
year). Normally the pattern of time-series is assumed to 
be stable over the “season” of interest and the seasonal 
variations presumably follow the baseline trend. Hence, 
the series of successive moving averages roughly denote 
the trend as well as cyclic/seasonal elements. Typically, 
the time-series of economic variation conceived in terms 
of original/raw observations periodically (say, quarterly) 
are expressed as MA figures and data-shift components 
(namely, cyclical, seasonal and irregular (random) enti-
ties) [4]. 

Forecasting time-series typically follows the classical 
methodology known as X-12 procedure proposed by the 
US Bureau of Census [5]. It implements the strategy of 
segregating descriptive components into trend and cyclic 
movements and leads to evaluating the constants and 
seasonal indices of time-series data. The underlying pro-
cedure eliminates large (as well as small) outliers of the 
data. It also smoothens out speckles of non-informative 
fluctuations. That is, in estimating the parameters via 
X-12 procedure, relevant seasonal adjustment implies a 
signal-extraction technique of seasonal movements 

manifesting as a noise-like feature. Therefore non-in-
formative artifacts have to be suppressed in order to re-
veal the signal part of interest more explicitly. A practi-
cal method that includes such signal extraction procedure 
is due to Box and Jenkins [6,7], which can be imple-
mented basically by the following steps: 1) Exercising an 
identification procedure so as to determine whether the 
time-series can be specified by a combination of MA and 
autocorrelation terms; 2) using this combination per-
forming an estimation of parameters of a tentative model; 
and 3) applying a diagnostic test to examine the ade-
quacy of matching between fitted models vis-à-vis raw 
data.  

In general, the technoeconomic growth trend plus the 
seasonal and non-seasonal variations can be modeled 
either in an analytical format [3] or in terms of MA series 
(like ARIMA). In both cases, the task ahead is to formu-
late a fairly reasonable forecasting strategy. Such eco-
nomic forecasting refers to the “best estimate” of futuris-
tic projection of an economic entity’s disposition, (its 
growth or decline) as a function of time. Thus, the pur-
pose of forecasting (an economic entity) should be an 
insight of certain foreseeable realism rolled ahead with 
the global uncertainty of associated economics tagging 
along; (and, for sure it is not just a projection of a set of 
numbers crunched (into a regression curve) as a futuristic 
roadmap). 

All the aforesaid factors inherently involve the inclu-
sion of buried details in the seasonal and non-seasonal 
indices across the data set presented as a time-series for 
eventual forecasting.  

3. Statement of the Problem 

Commensurate with the modeling objective to realize a 
systematic and a simplified ARIMA representation of a 
test technoeconomic data set in describing the time-evo-
lution of the underlying digital economy of real-world 
telco business, this paper describes a relevant computa-
tional effort (by duly including the seasonal and non- 
seasonal features). In its computational simplicity, the 
approach indicated uses only a limited number of coeffi-
cients (of the time-series). The logistics behind the selec-
tion and use of such limited coefficients thereof are iden-
tified. Further, the efficacy of the procedure in hand is 
verified via goodness-fit tests in time- and frequency- 
domains. Lastly, using the time-series developed, the 
feasibility of forecasting (in the ex ante regime) of the 
growth of a test business economics is demonstrated.  

4. Method of Approach 

In general, the time-series analyses conform to, for ex-
ample, the so-called airline model due to Box-Jenkins [6] 
and its variations [7] or, more generally, the seasonal 
ARIMA models described in [8] by Hillmer and Tiao. 
The airline model denotes the seasonal ARIMA process 
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s
t

s

pertinent to the time-series  as given by the following 

lag-polynomial expression: 
ty

s
t(1 L)(1 L ) y (1 θL)(1 ΘL ) ε           (1) 

where L is the time lag (that is, the backshift) operator 
performing  and . Here, θ and  

are parameters that characterize respectively the 
non-seasonal and seasonal moving average (MA) com-
ponents of the process. Further, the exponent s (on L) 

depicts the number of observations per year, and  is a 

sequence of independent identically distributed (i.i.d.) set 
of random variables with , and 

t t-1Ly =y s
t t-L  y = y

tE[ε ] 0

Θ
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The airline model is a member of the broader class of 
seasonal ARIMA models, which generalize the airline 
model formulation. Conventionally, in the relevant 
ARIMA pursuits, models are characterized by a set of 
parameters, namely, {autoregressive order, number of 
unit roots, moving average order} depicted identically as 
{(p, d, q) non-seasonal and (P, D, Q) seasonal}, and are speci-
fied by the following lag polynomial expression: 

s s D d s
tφ(L) γ(L )  (1 L ) (1 L) y = θ(L) Θ(L ) ε  t   (2) 

where L, s and  are as in (1), the lag polynomials 

and  depict non-seasonal and seasonal auto-

correlation (AR) filters, with orders p and P respectively. 
Further, the polynomials  and  represent 

the non-seasonal and seasonal moving-average (MA) 
components, and are of order q and Q respectively. These 
polynomials generalize the parameters θ and  of the 
airline model in (1). Lastly, d and D denote the orders of 
non-seasonal and seasonal differencing of the original 
series , respectively.  

tε

φ(L) sγ(L )

θ(L) sΘ(L )

Θ

t

The airline model of Equation (1) can be obtained 
from the general formulation in (2) by setting p=0, P=0, 
d=1, D=1, q=1 and Q=1, that is, it is the seasonal 
ARIMA model {(0,1,1) (0, 1, 1) s}. 

y

There are several alternatives to the airline model ad-
dressed in [7] (due to Findley et al.). They include more 
generalized airline models plus a restricted version 
known as the 1-12-13, which is used in the present work. 
It is specified in a convenient form in [9] as follows:  

12 12 13
t 1 12 13 t(1 L)(1 L ) y (1 L L L ) ε            (3) 

where  are the parameters of the model. 

Note that the airline model defined in Equation (1) cor-
responds to a restricted version of Equation (3), 
where , , and . 

1 12 13θ , θ , and θ

1θ = θ 12θ =  13θ = θ 
The ARIMA approach currently envisaged (following 

the Box-Jenkins model) decomposes the series into sea-
sonal and non-seasonal parts and obtains the estimated 
time-series (which can be extended to forecast regime as 
well). The goodness-fit of such simplified models is then 
evaluated by applying some well-known criteria due to 

Akaike [10,11], and also validated in the frequency- 
domain [9]. Consideration is also given to the fact that 
these estimated models can be extended to the forecast 
regime as well.  

5. Proposed Time-Series Analysis 

The seasonal ARIMA model of Equation (2) is used to 
represent seasonal time series in the widely used fore-
casting software X12 [5] and TSW [12]. For a given data 
series, these programs can either estimate the coefficients 
of a given {(p, d, q); (P, D, Q)s} model chosen by the 
analyst, or be requested to choose the “best” seasonal 
ARIMA model from the set of all possible models. In the 
latter case the generalized model chosen is the one that 
shows a better adjustment to the series, when evaluated 
by a statistical metric such as Akaike Information Crite-
rion (AIC) [10,11]. 

In typical use, this optimal choice of model is per-
formed for an ensemble of time-series yielding several 
“best” models, one for each series of the data set. How-
ever, a cursory examination of the models chosen and 
represented by vectors {(p, d, q); (P, D, Q)s}, often indi-
cates that the models that appear most frequently in 
yielding the “best” estimate constitute only a limited sub-
set, as compared to the whole set of possible models. It 
follows that the analysis can be simplified by giving due 
consideration only to this restricted subset of “best” mod-
els. This selective adoption of models would significantly 
reduce computational burden that is otherwise imposed. 

Hence, it is proposed in this work that it would suffice 
to identify and use only the models in this limited sense 
of subsets so as to get a good fit for the estimation. The 
models in this restricted set are further separated into two 
subsets of models: One comprises of non-seasonal mod-
els; and another of seasonal models. The choice of the 
subset in the analysis will be made for each time-series 
on the basis of a test for the presence/absence of the sea-
sonal features.  

In addition to the models selected by X12 and TSW, 
the 1-12-13 model is also included in the present work 
inasmuch as it is effective in signal extraction efforts as 
is evident in the models of economic series pertinent to 
several case studies tested by Findley et al. [7].  

The selective option (of subsets) suggested above 
should, however, yield consistently an acceptable estimate 
of time-series that fits to the actual data set, regardless of 
the vagaries in the business structures to which the data 
belongs to. Hence, the underlying efficacy of the selective 
procedure should first be ascertained and confirmed, both 
time-and frequency-domain analyses. Relevant goodness 
of the estimation (of the time-series) is decided by the 
Akaike method [10,11]; and, the goodness-fit in fre-
quency-domain is ascertained by computing the mean 
Euclidean distance between the actual frequency spectrum 
of the time-series (obtained via fast Fourier transform 
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(FFT)) and the ARIMA-based estimates of the frequency 
spectrum. 

5.1 Model Estimation 

Model estimation steps are as follows (Figure 1):  
Step 1: (a) The chosen telco economic test series are 

first transformed by taking logarithms so as to highlight 
the intrinsic properties of the time-series data. Relevant 
filtering or data-smoothing partially minimizes the com-
putational burden due to outliers [13]; (b) also, in cases 
of extreme values typically observed with large ampli-
tude fluctuations in the series [14], the logarithmic trans-
formation smoothens out and stabilizes the variance; and, 
(c) the calculated mean of the transformed series (ob-
tained as above) is then subtracted leading to “demean-
ing” of the log-transformed series. 

Step 2: (a) The airline model (ARIMA (0, 1, 1) (0, 1, 
1)), is fitted to each test time-series in the ensemble data 
set. When seasonality is present , the models be-

ing fitted to the series are chosen from the subset of sea-
sonal models. Alternatively, if seasonality is ab-
sent , then the models are chosen from the subset 

( 1  )

)( 1 
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Figure 1. Flow-chart for the proposed estimation of ARIMA 
coefficients. (*Model V: corresponds to the 1-12-13 model of 
[7] where the set {(p, d, q); (P, D, Q)} is not used) 

of non-seasonal models. That is, when  in Equa-
tion (1), the seasonal MA term in the right hand side 
cancels out the seasonal unit-root term in the left hand 
side, and the ARIMA process becomes a non-seasonal 
MA(1) process for the differenced series, namely, 

t t

1 

(1 L) y  = (1 θL) ε  ; and, (b) this method of identify-

ing the presence of a seasonal unit root is simpler than 
those traditionally available in the literature (due to 
Hylleberg et al. [15] and Frances [16] respectively). 

Step 3: (a) Next the ensemble of time-series test-data 
is subjected to ARIMA modeling using the X12 [13] and 
TSW [19] programs so as to decide on the “best” model 
for each series; and, (b) from the collection of such opti-
mally-decided ARIMA models, only a limited (five) 
subset (indicated as Models II, III, IV, VI, and VII in 
Figure 1) is chosen for subsequent use. The choice of 
five in the present study conforms to a set of two models 
having a seasonal unit root, and another set of three 
models that do not have a seasonal unit root. Addition-
ally, the 1-12-13 model is also used (and designated as 
Model V in Figure 1).  

Step 4: In this step, the ARIMA coefficients of the 
test-series for the models selected above are estimated. 
Relevant computation is done using the WinRats-7 
time-series analysis software [17,18]. Models (in Step 3) 
with D=0 signify series that do not have a seasonal unit 
root, while models with  are for series that do 
have a seasonal unit root. 

D 0

Step 5: In the time-domain, the goodness-fit of the es-
timation is evaluated by comparing the raw time-series 
(log-formatted and demeaned) with the time-series con-
structed with parameters obtained. The models fitted 
thereof should have a good adherence to actual 
time-domain data for any forecasting applications. The 
evaluation of the fit used here is based on the AIC of the 
Akaike method [10,11]. 

The frequency-domain goodness-fit of the model is 
evaluated by comparing the spectrum of the raw 
time-series to the frequency-spectrum of the correspond-
ing ARIMA representation [19]. The spectrum of the raw 
data corresponds to the FFT transform of the given (raw) 
series, and the ARIMA-estimated spectrum is synthesized 
from the coefficients obtained. The fitted model should 
have a significant closeness to the raw data spectrum. 
Relevant evaluation is based on the calculation of an index 
equal to the sum over all frequencies of the absolute 
Euclidean distance between the FFT of the raw signal 
ARIMA-estimated spectrum. 

5.2 Time-Domain Analysis 

The test models are evaluated for their efficacy in 
time-domain in terms of the AIC. The lowest value of 
AIC indicates the “best estimate”. Specifically adopted in 
WinRats-7 software [17,18] is the formula for AIC given 
by:  AIC= ln (RSS)/T  + 2 n T , where T is the number 

Copyright © 2009 SciRes                                                                                    iB 



Evolution and Forecasting of Business-Centric Technoeconomics: A Time-Series Pursuit via Digital Ecology 61 

of observations along the time scale, n is the number of 
parameters estimated, and RSS is the residual 
sum-squared  value, which refers to the sum of squared 
differences between the series,  ,and its projected 

value, . That is, . 

ty

t ŷ )tŷ

AI

T
2

t
t 0

RSS (y 


The calculations above are done for each of the test 
raw series, with an appropriate model (out of the seven 
indicated earlier). This is denoted by indexing the statis-
tics as , where the subscripts i and m correspond 

to the raw series (i=1, 2, ..., I) and the model (m=1, 2, …, 
M=7) respectively. The index of average performance of 
(each model) in the time-domain can be calculated as the 
average AIC over all series fitted with that model. That is, 

i,mC

(I,AIC AICM)
1

=
I i = 1,2,...I; m = 1,2,...M

i

The test models of each category (with and without the 
seasonal unit root), is then compared in the time-domain 
on the basis of their average AIC. The goodness-fit in the 
time-domain can also be evaluated by comparing the 
plots of actual raw series (in log-demeaned format) and 
the corresponding series predicted by the ARIMA model, 
and also by evaluating the forecasting performance 
[5,12].  

. 

5.3 Frequency-Domain Analysis 

For a given test series, the discrete spectrum is evaluated 
at (discrete) frequencies (given by  ω = 2π T k , where k 

= 1,…, T) via Discrete Fourier Transform (DFT), namely, 

 kF =F T k2π  . The ARIMA-estimated power spec-

trum density  is the square of the norm of the afore-

said discrete frequency response, given by: 

kS
2

k kS F   . 

In order to compare the test models (Models I, etc.) of 
the present study, a statistical measure depicting the dif-
ference between them is indicated as the mean absolute 
deviation (MAD), which is calculated as follows: 

T

k k
k=1

MAD = S G                (4) 

where  is the power spectrum density (PSD) of the 

data computed via Fast Fourier Transform (FFT) and , 

respectively. (Both Gk and Sk are expressed in dB). Fur-
ther, the values of k corresponding to the seasonal fre-
quencies are not included in the summation of Equation 
(9). Lastly, by indexing MAD as , with the 

subscripts i (= 1, 2, 3, …I) and m (=1, 2, 3, …M), each 
of the test series and the models is respectively desig-
nated. The average performance of each model in the 
frequency domain can be calculated by considering the 
average of all MAD values over the series fitted. That is, 

kG

kS

i,mMAD

i,m
i

1
MAD = MAD

I
m  , where I (=8) is the total number 

of series that are fitted with model m. thus, the models of 
each category, (with and without seasonal unit root), can 
be compared in the frequency-domain on the basis of 
average MAD.  

5.4 Combined Time- and Frequency-domain 
Analyses 

The indicators of the performance via AIC and MAD in 
time- and frequency-domains (defined by Equations (4) 
and (10) respectively) can be linearly rescaled (normal-

ized) between 0 and 1 and are denoted (I,M)AIC  

and ,MADi m . For either of these indices, the best per-
formance corresponds to a value tending to zero, because 
it indicates the minimum absolute deviation in the time- 
and frequency-domains; and, a value of the indices tend-
ing to unity would correspond to the worst performance 
because it implies the largest deviation of the models 
selected over the series in the data set. Lastly, the two 
indices as above can be combined by their arithmetic 
average to produce an index of overall performance of 
each model. That is, .  m m mIDX = AIC + MAD / 2

5.5 Merits of the Proposed Approach 

The novelty of the proposed efforts can be observed by 
comparing the underlying considerations with those of 
existing methods. For example, the efforts in Hyndman 
et al. [20] do not include an upfront assertion as regards 
to knowing whether the data contains seasonal variations 
or not; and if the outcome on the computed time-series 
fail to give results to an expected level of accuracy, then 
the computation is redone (with the inclusion of seasonal 
attributes). Further, their computations refer only to a 
time-domain exercise with eventual goodness-fit done 
only in the time-domain. However, the goodness-fit of 
the series is verified in the present study, both in time- as 
well as in frequency-domain; hence it is more compre-
hensive in ascertaining the goodness-fit. 

The present approach significantly pursues and ex-
tends the efforts due to Findley et al. [7] on the economic 
series pertinent to non-telco macroeconomic data. How-
ever, the differences in the levels of such estimations (in 
terms of accuracy) are not easily discernible because the 
seasonal component present is usually small in amplitude. 
Further evaluated in [9] is the efficacy of the generalized 
models in the frequency-domain with the introduction of 
a canonical seasonal adjustment filter, but without the 
adoption of a goodness-of-fit index done in the present 
approach. 

According to [21], the simplified pre-selected use of a 
limited number of models was employed in pre-2000 
versions of X12, but not in its current version [5]. The 
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convenience of simplifying the models chosen by the 
automatic choice feature of the current version of X12 is 
indicated in [22], but has not been implemented.  

6. Proposed Methodology: Implementation 

In view of the above considerations and in concurrence 
with the views of Findley et al. [7], the present research 
is directed in applying the proposed method to the time 
evolutionary profiles of service growth data of modern 
telco enterprises. Essentially, the research effort pursued 
uses the available data specified in an ex post regime and 
the ex ante details of the technoeconomic growth are 
obtained. Determination of ex ante profile leads to fore-
casting feasibilities. 

6.1 Description of the Telco Test Data 

Few sets of seasonal data on telco services are readily 
available in the literature. From the published work, eight 
test time-series data (whose names and mnemonics are 
given in Table 1) are chosen as follows: 
 

Table 1. Description of telco series (# T1 to # T8) test data 

 
Series  

 
Mnemonic 

 
Name 

# T1 INWARD 
Number of inward calls from tele-
phone exchange in Wisconsin 

# T2 OUTWARD 
Number of outward calls into tele-
phone exchange in Wisconsin 

# T3 NATIONAL 
Number of national outward calls 
from university campus 

# T4 MOBILE 
Number of mobile outward calls 
from university campus 

# T5 INTERNAT 
Number of international outward 
calls from university campus 

# T6 N2806 
Telecom series number 2806 of M3 
IIF forecasting competition 

# T7 N2817 
Telecom series number 2806 of M3 
IIF forecasting competition 

# T8 N2822 
Telecom series number 2806 of M3 
IIF forecasting competition 
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Figure 2. Plot of the demeaned and log-formatted telco se-
ries # T1 to # T8 shown as (a) through (h) 

The two first Series (#T1 and #T2) report the number 
of incoming and outgoing telephone calls in an exchange 
of the Wisconsin Telephone Company, as reported by 
Thompson and Tiao [23]. This data has often been used 
to test telecommunications load forecasting models as, 
for example, by Madden et al. [24]. The test series con-
sidered display marked seasonal features, as well as clear 
technoeconomic time-trends.  

The next three series (#T3 to #T5) refer to the number 
of outgoing calls of three types (national, mobile, and 
international) gathered at a university campus over a pe-
riod of six years, and are available in [25]. 

The remaining three Series (#T6 to # T8) are from the 
dataset relevant to telco services and produced by the 
Institute of Forecasters for the M3 competition [26,27]. 
No explicit details on the underlying telco services are 
indicated in the data sources. They are simply identified 
by the codes N2806, N2817 and N2822 for those series 
[26]. A cursory examination of Figure 2, that displays 
the demeaned log transformed series, obtained as de-
scribed earlier, indicates that telco Series # T2 to # T5 
seem to exhibit a seasonal behavior, with the possible 
exception of 3, which displays irregular peaks and val-
leys. Series # T1, # T2 and # T4 have a clear time-trend, 
while the other seasonal series do not. The series # T6 to # 
T8, (extracted from the M3 IIF competition database), do 
not however, show any obvious seasonality et all. Series # 
T7 and # T8 have negative time trend, while Series # T6 has 
a peculiar behavior, namely, it is stable for the first 2 year, 
and then displays a “hump” in the last four years. 

6.2 Selection of Models (I, II,…, VII) 

In the seasonal ARIMA framework used here, the tem-
poral trend is captured by the non-seasonal ARIMA pa-
rameters, while the seasonal ARIMA parameters capture 
the recurring time pattern. Consistent with this observa-
tion, both X12 and TSW programs choose as the “best” 
models for series 1 to 4 of the non-telco dataset those 
without a seasonal unit root with the vectors (1,1,1), 
(0,1,1) and (1,1,2) most frequently appearing in the 
non-seasonal part of these models. As such, these vectors 
are chosen as the non-seasonal specification of the Mod-
els II, III and IV and the seasonal part of those models is 
chosen as (0,0,0). 

In all the chosen models, the seasonal part is seen to be 
the same as that of the airline model. Therefore, Models 
VI and VII, which have a seasonal unit root, also bear the 
same seasonal specification. For the non-seasonal part of 
these models, the vectors that appear most frequently are 
(1, 1, 2) and (2, 1, 1), and are therefore chosen as the 
non-seasonal specification of the Models VI and VII re-
spectively.  

6.3 Estimation of Seasonal ARIMA Coefficients 

Consistent with Figure 1, first the procedures of 

Copyright © 2009 SciRes                                                                                    iB 



Evolution and Forecasting of Business-Centric Technoeconomics: A Time-Series Pursuit via Digital Ecology 63 

log-transforming in demeaned format of the test data 
ensembles are performed. Then, the ARIMA coefficient 
estimation procedure of Model I (the airline model) is 
applied to the series and tested for the presence/absence 
of a seasonal unit root. Next, the ARIMA coefficients of 
the pertinent models are estimated with the software 
WinRats-7 [17,18].  

The pseudocode of the procedure as above is presented 
Table 2. (The Box-Jenkins command is used with the 
option that allows for maximum-likelihood estimation 
because it enables more precise estimation than the al-
ternative least-squares option). 

6.4 Raw Data versus Estimated Models in 
Time-Domain 

This section discusses the fitted and the original series in 
the time-domain making use of Series #T1 of the telco 
dataset as shown in Figure 3. A qualitative observation 
shows that for the test series, not only the airline model, 
but also its generalized versions appear to offer a good 
adherence to the raw data (inasmuch as no large devia-
tions are observed across the broad stretches of their  
graphs). A small difference between the graphs of the 
 
Table 2. Pseudocode: Estimation of the ARIMA coefficients 
using WinRats-7 

<-  Initialize 
<- Data input (Extracted from EXCEL R file) 
<- Parameter Specifications 

<- for each model selected 
<- for each series in the data set  
Call Box-Jenkins function in WinRATS-7 R 
End 
End 

<- Execution of the Code 
<- Output of estimated ARIMA coefficients 
<- END 
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Figure 3. Actual and fitted values for demeaned and 
log-transformed data set of telco Series # T1 (Ev: Economic 
variable of interest normalized). (Note: The actual 
time-series data is shown as A and the computed model 
time-series data are indicated as B and C, which appear 
almost overlapping for the models pursued) 

different models is however, observed for the other series 
of the dataset but within limits of acceptability of the 
goodness fit in the time-domain. 

For quantitative model comparison, an indicator such 
as the quadratic-error adjusted for the different number 
of degrees of freedom encountered in different models, is 
needed. Hence, AIC mentioned earlier is used. 

Another important dimension of goodness-of-fit in the 
time-domain refers to the forecasting performance. For 
this evaluation, the models of the series (of the telco da-
tabase) are re-estimated excluding the end-section of nine 
months, respectively. With this exclusion, the data is 
considered as ex post data. And the forecasting is done in 
the period of last nine months taken as the ex ante regime. 
The forecast result is compared against the excluded data 
points. Relevant examples of such comparison are shown 
in Figure 4. They show a good forecasting performance 
of the estimated models. 

6.5 Comparison of RAW Data and Estimated 
Models in the Frequency-Domain 

Figure 5 shows the one-sided frequency-spectrum of the 
(demeaned and log-formatted) test series of telco data en-
sembles. These are obtained by calculating the discrete 
Fourier transform. The computation is performed through 
the FFT subroutine of MatLabTM. Examination of Figure 5 
confirms the presence of seasonality, seen as peaks. The 
spectra of telco correspond to Series # (T1-T5). With the 
seasonal unit root ascertained, each series is conformed to 
an appropriate model designated earlier (as Models I to 
VII). The ARIMA-estimated spectrum is constructed for 
each series, and compared against the FFT-estimated 
spectrum. Examples of such comparisons are shown in 
Figure 6 for series #T1 of the telco dataset. The spectrum 
estimated by the airline model as well as the one estimated 
by the best extended airline model, are displayed. 

In the estimated spectrum, the peaks occur at the fre-
quencies that correspond to discrete locales (cycles per 
year) of the seasonal roots in the ARIMA models (I 
through VII), at the monthly, bi-monthly, quarterly, 
4-month, half-year and yearly frequency. Only six peaks, 
rather than 12, appear in Figure 6 because they display 
the half-spectrum of the full spectrum symmetry. 

As in the quarterly seasonal model above, there is also a 
peak at the zero frequency corresponding to the 
non-seasonal unit root. To a large extent, the models 
studies lead to estimated spectra that closely approximate 
the actual data spectra reproducing most of the peaks as in 
Figure 5. However, the symmetric nature of the unit roots 
in the seasonal ARIMA model imposes peaks at all integer 
seasonal frequencies, while the actual data do not display 
them for some frequencies. Also, in some cases, a peak 
exists in the actual spectrum for some frequencies, but 
does not have the intensity prescribed by the seasonal 
ARIMA model. 
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Figure 4. Time-series estimation in the forecast (ex ante) 
regime denoted as FR (3-steps ahead of last 9 months fore-
cast based on demeaned log-transformed telco Series 1#T1 
data). The forecast regime FR is shown with grey back-
ground expanded for clarity. (a) depicts Model 2: (1, 1, 1) (0, 
0, 0) and (b) denotes Model 4: (1, 1, 2) (0, 0, 1). (Ev: Eco-
nomic variable of interest normalized) 
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Figure 5. One-sided frequency spectrum: Demeaned and 
log-formatted telco series. (The encircled regimes denote 
some samples of explicit seasonal peaks) 

6.6 Overall Performance with AIC and MAD  

The relative values of AIC and MAD indices are pre-
sented in Figure 7 for telco datasets. In general, they show 
that the lowest value of the AIC (that indicates the best fit 
in the time-domain) is not necessarily compatible to the 
lowest value for the MAD index (depicting the best fit in 
the frequency-domain). Hence, an aggregation index can 
be specified by taking the mean of AIC and MAD indices 
as the overall goodness fit indicator in time- and fre-
quency-domains. 

Figure 7 shows, for example, that model VII namely, 
ARIMA (2, 1, 1) (0, 1, 1) is the best overall model for the 
Series # T1 and # T5 of the telco data set. In Figure 14, it 
can be observed that some series do not have values of 
AIC or MAD indices displayed for some models. This  

 
Figure 6. FFT and ARIMA power spectrum of the de-
meaned and log-formatted telco Series # T1 displaying dis-
tinct signature peaks. (A) depicts FFT estimation, (B) de-
notes Model 1: (0, 1, 1)(0, 1, 1)-Airline, and (C) corresponds 
to Model 6: (1, 1, 2)(0, 1, 1) 
 

 
Figure 7. Normalized AIC and MAD indices of demeaned 
log-formatted telco series versus model number; (A) MAD of 
estimated power spectrum; (B) AIC of estimated time series; 
nd (C) average of AIC and MAD a

 
indicates that the estimation procedure does not converge 
for those cases. For example, it can be seen in Figure 14 
Findley’s 1-12-13 model referred to Model 5 has not 
converged for any of the series in the telco dataset (that 
have a unit root). 

7. Concluding Remarks 
Telecommunications is viewed as a part of digital ecol-
ogy with its underlying technoeconomics is analyzed via 
evolution considerations in terms of time-series. Hence, 
consistent with relevant procedure described in this paper, 
the following can be stated as closing remarks: 

A simplified ARIMA-based time-series modeling of 
technoeconomic evolution in telecommunications (that 
display seasonal features) is feasible via the approach 
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summarized as follows: 
 A decision hypothesis is first projected to declare 

whether the data set is seasonal or not via the Box-Jenkins 
airline model. This avoids the complexity of pursuing 
computation with seasonal variation implications when 
seasonal attributes are absent. The use of the airline model 
for this purpose to the best of the authors’ knowledge is 
novel. 

 The ARIMA-type models that characterize the sea-
sonal and non-seasonal aspects of the time-series model 
are selected. The assertion above on the existence of sea-
sonal and non-seasonal components leads to choosing the 
models to be estimated for the time-series from within two 
possible sets of models.  

 In order to test the efficacy of the proposed method-
ology and to choose the “best” model, a comparison of 
estimated models versus real data is done in time- and 
frequency-domains. The criteria correspond to Akaike 
Information Criterion (AIC) and mean absolute deviation 
(MAD) metrics, respectively. They provide a dual asser-
tion on the goodness-fit of the models for the time-series 
being evaluated. An aggregation index is specified by tak-
ing the mean of AIC and MAD indices to indicate the 
overall goodness-of-fit. 

The usefulness of the proposed approach is ascertained 
in the present study by applying it to a diverse ensemble of 
time-series data of typical telco technoeconomics. The 
fitted models are compared with raw data in the time- and 
frequency-domains and their performance is assessed both 
in heuristic and quantitative terms summarized below: 

 Examples of the heuristic assessment in both domains 
correspond to the inspection of graphs comparing the 
time-evolutions of the fitted and original series, and fig-
ures comparing the actual and fitted frequency spectra of 
some of the test series The models as chosen in this study 
provide a good fit for the data in both domains. 

 Quantitatively assessment of AIC, MAD and their av-
erage confirms the selected model-based results offer good 
adherence to the raw data.  

 The estimated models also lead to a good forecasting 
performance assessment for the test data.  

In short, claimed here is that the proposed approach is 
computationally simple, enables an assured convergence 
of the series (regardless of the data set being intense or 
sparse) and the goodness fit of the estimation conforms to 
an acceptable extent both in time- and frequency domains. 
The efficacy of the proposal is demonstrated with 
real-world data sets concerning telco economics. Thus, the 
evolutionary aspect of a digital ecosystem is compre-
hended via time-series approach. 
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