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Evolution and Translation of Research

Findings: From Bench to Where?
John P. A. Ioannidis

Translation of Basic and

Preclinical Science

Translation of biomedical research

findings to useful applications is a

major challenge [1]. Thirty years ago,

Comroe and Dripps [2] proposed that

medical progress depends on basic

research, but their methods and

conclusions have been challenged [3,4].

Regardless, successful translation of

research promises is uncommon.

Among 101 articles published between

1979–1983 in six top basic science

journals that clearly made promises for

a major clinical application of their

findings in therapeutic or preventive

interventions, only 27 technologies

were evaluated in a published

randomized controlled trial (RCT) by
2003 [5]. Nineteen technologies were
evaluated in at least one RCT with
‘‘positive’’ results, but only five of them
are currently in licensed clinical use and
only one is in wide clinical use today.
Involvement of industry authors in the
original basic science report and
industry support increased translation
to human experimentation 10- and 3-
fold respectively.

Another study has examined [6]
whether the results obtained in animal
models of acute stroke guide the selection
of agents for testing in humans. Across
1,026 agents tested in animals, the agents
proceeding to human testing showed
similar reductions in infarct size in
animals as those that did not advance
further. Thus selection for further trans-
lation did not seem to be guided by
rational principles.

Other investigations have examined
whether in vitro or in vivo biological
research agrees with evidence on human
participants on the same topic. One
evaluation [7] of genetic polymorphisms
showed no correlation between epide-
miological odds ratios for disease suscept-
ibility and in vitro effects on gene
transcription in cell lines. Two other
investigations addressed the concordance
of epidemiological associations versus
evolutionary conservation and tissue-
based assays for genetic variants [8,9].
Despite some concordance, correlation
was still modest.

The methodological quality of basic
research is also largely understudied and
there are only preliminary efforts to
improve the reporting of basic and
preclinical studies [10]. Rapidly evolving
methods and technology are difficult to
standardize. Nevertheless, animal studies
with higher quality ‘‘scores’’ apparently
find more precise and more conservative
results than studies with lower ‘‘scores’’
[11,12]. Similarly, effect sizes appear
larger in studies lacking randomization
or blinding [13].

Some of the translation failure may be
due to difficulties in communication
between different fields in the spectrum
of basic, preclinical, and applied research.

Evidence-based medicine does not seem
to have penetrated basic and preclinical
science, while basic and preclinical re-
search is often performed in a clinical
and methodological vacuum (see Box 1).

Diminishing Effects and the
Proteus Phenomenon

Replication of research findings in differ-
ent studies means that, allowing for
random fluctuation in early investiga-
tions, accumulation of evidence from
many studies should converge towards
stable estimates that don’t shift with
additional data [14]. However, sometimes
we see continuously diminishing effects
over time. Even large effects, and prom-
inent claims, may gradually disappear
[15–17] as more data accumulate (Box 2)
[18–21].

In the ‘‘Proteus phenomenon,’’ the first
published study on a scientific question
may find a most extravagant effect size;
this is followed by the publication of
another study that shows a large contra-
dicting effect. Subsequent studies report
effect sizes between these extremes [22].
Impressive findings have priority for
publication. Strongly contradictory re-
sults may also have priority over repli-
cations and inconclusive results. The

Summary

The credibility and replication of research

findings evolve over time, as data accumulate.

However, translation of postulated research

promises to real-life biomedical applications is

uncommon. In some fields of research, we may

observe diminishing effects for the strength of

research findings and rapid alternations of

exaggerated claims and extreme contradic-

tions—the ‘‘Proteus Phenomenon.’’ While

these phenomena are probably more prom-

inent in the basic sciences, similar manifes-

tations have been documented even in clinical

trials and they may undermine the credibility

of clinical research. Significance-chasing bias

may be in part responsible, but the greatest

threat may come from the poor relevance and

scientific rationale and thus low pre-study

odds of success of research efforts. Given that

we currently have too many research findings,

often with low credibility, replication and

rigorous evaluation become as important as

or even more important than discovery.

Credibility, replication, and translation are all

desirable properties of research findings, but

are only modestly correlated. In this essay, I

discuss some of the evidence (or lack thereof)

for the process of evolution and translation of

research findings, with emphasis on the

biomedical sciences.
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extent of this phenomenon across differ-

ent disciplines needs more study.

Waves of Evidence Microcosms

New biomedical discoveries may try to

cover widely the perceived knowledge

gaps. This creates waves of new evidence

microcosms. An example is shown in Box

3. However, some old microcosms are not

abandoned, but continue their existence,

supported by circles with their societies,

meetings, and journals. Often they leave

behind not only their few genuine discov-

eries, but also literature that may no

longer be attractive to ‘‘outsiders,’’ even

to contradict. While early refutations are

attractive, kicking a dead horse is not.

Documented refutation may then be less

common than gradual fossilization.

Evidence microcosms may sometimes

reflect true paradigm shifts [23]. However,

new evidence microcosms may also arise

simply because some new technology

becomes available, not because scientists

rationally perceive a crisis of accumulat-

ing anomalies in old evidence micro-

cosms . These are not sc ient ific

revolutions, but simply searching under

yet another new lamppost that happened

to light up. Rational arguments may play

a role in the diversion from one lamppost

to another. However, the allure of grants,
touting in prestigious journals and meet-
ings, and plain novelty-seeking are also

strong motives. Some lampposts may have
few or no true discoveries to be made in

their lit area. In these ‘‘null fields,’’ the
claimed effect sizes of ‘‘discoveries’’ are
simply accurate measures of the net bias

operating in these microcosms.

Are Clinical Trials Immune to
these Problems?

RCTs are the most robust experimental

design for studies involving humans.
However, similar phenomena to those
described above for basic/preclinical re-

search may also apply to clinical trials
research. Even before the advent of truly
potent antiretroviral therapy, 25 RCTs

identified interventions with statistically
significant effects on survival of HIV-

infected patients [24]; meta-analyses of
published data suggested that approved,
controversial, and contradicted interven-

tions all shared similar effect sizes [25].
With current hindsight, several of the
apparent survival benefits with these

therapies (immuthiol, interferon, or im-
munoglobulin in adults, for example)

seem non-credible. The HIV field experi-
enced a wave of spuriously effective
treatments before truly effective ones

became available. In most clinical re-
search, we have not witnessed yet the

revolution now apparent in HIV thera-
peutics. Are some fields currently popu-
lated unawares by only seemingly

effective interventions [26,27]?

Discrepancies and diminishing effects
over time have been demonstrated even

in fields where large trials are common, as

with the use of nitrates and magnesium

sulphate for acute myocardial infarction,

for example [28]. In fields where small

trials predominate, diminishing effects

may be more likely [29,30]. As many

interventions are introduced in a field,

with most of them never compared head-

to-head, indirect comparisons sometimes

give incoherent conclusions [31,32]. Such

inconsistencies pose questions about the

internal [33] and external [34] validity of

both the direct and indirect evidence.

Diminishing and refuted effects are

more common in epidemiological than

randomized research [35,36]. However,

randomized evidence is not immune. The

refuted claims that vitamin E and hor-

mone replacement therapy may curtail

cardiovascular mortality did not emerge

only from the large Harvard cohorts, but

also from equally highly cited trials with

clinical or surrogate endpoints [37,38].

Odds of Truth for Clinical Trials

The odds that a research finding will be

true are small when effect sizes are small;

when studies are small; when a field is

‘‘hot’’; when there is strong interest in the

results; when databases are large; and

when analyses are more flexible [39]. To

improve the credibility of research, one

should increase pre-study odds, diminish

bias, and enhance power.

Bias causes the proportion of statisti-

cally significant findings in the literature

to be spuriously inflated. This significance-

chasing bias includes publication bias,

where the visible data are less than the

real data; selective analysis and outcome

Box 1. Lack of Communication

The Journal of Biological Chemistry is the

premier biochemistry journal and the most

cited journal across all sciences (the one

receiving the highest number of citations).

Emerging Infectious Diseases is the premier

journal addressing new and rapidly evolving

infectious threats that may have major

repercussions for human health globally. The

Journal of Biological Chemistry received

404,397 citations in 2005. Only nine of these

citations were from Emerging Infectious

Diseases—as compared with 38,676 from the

Journal of Biological Chemistry itself and 9,272

from Biochemistry-US. Also, the Journal of

Biological Chemistry made 237,572 citations

in 2005. Only nine of these citations were to

Emerging Infectious Diseases—as compared to

38,676 citations to the Journal of Biological

Chemistry itself and 6,500 citations to Cell. If

this seems like extreme isolation, it actually

could be worse. In the year 2005, the Journal

of Biological Chemistry never cited the Journal

of Clinical Epidemiology, the premier journal on

clinical epidemiology and research methods.

Similarly, in the same year, the Journal of

Clinical Epidemiology never cited the Journal of

Biological Chemistry. [Data are derived from

Thomson Scientific, Journal Citation Reports

2005.]

Box 2. Refuting a Nature Cover Page Story and a p-Value of 93 10�16

In 1994, the cover page of Nature announced the discovery of the osteoporosis gene. A study of a

few hundred subjects claimed that polymorphisms in the vitamin D receptor (VDR) gene could

explain 75% of the genetic variability of bone mineral density [18]. This paper has received more

than 1,000 citations to date. Three years later, the research team published an erratum in Nature

acknowledging a laboratory error. The revised results showed a weaker, but still formally

statistically significant association. Over 100 studies, mostly of small sample size, were performed

trying to replicate this association. Several meta-analyses tried to synthesize the published data

and concluded that the association was statistically significant. One of them [19] reached a p¼ 93
10�16 by comparing the proportion of studies with formally statistically significant results against

an ‘‘expected’’ 5%— a questionable approach. A subsequent meta-analysis of individual level data

from a small subset of studies also found an odds ratio of 4 for osteoporosis [20]. However, recent
studies questioned the association. A very large study found a statistically significant association,

but in the very opposite direction [21]. Finally, a large collaborative study with sample size about

100-fold larger than the original Nature study did not detect any association with either bone

mineral density or fractures. All odds ratios in the main analyses were between 0.98 and 1.02, and
not even 1% of the genetic variability of bone mineral density could be explained [52].

Nevertheless, this may not be the end of the story. VDR is a long gene with many haplotype blocks.

In general, as the amount of data increases exponentially (e.g., genomic testing in biobanks with

linkage to health outcomes), the potential for both discoveries and errors also increases
exponentially.
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bias, where the visible data are the real
data, but presented or interpreted the
wrong way; and fabrication bias, where
the visible data are more than the real
data. These biases may coexist in various
combinations in a body of evidence.

In publication bias, studies with stat-
istically significant results are more likely
to be published than other studies. Trial
registration [40] should diminish overt
publication bias, but ‘‘negative’’ results
may still be published later than ‘‘pos-
itive’’ results [41–43]. This time-lag may

distort the literature for many years,

enough time for a drug to carry its

market share. With selective analysis and

outcome bias, when investigators find

‘‘negative’’ results, they may change the

outcome definitions or mode of analysis

and thus find and publish results that

cross thresholds of statistical significance.

This bias is probably a greater problem

than we thought, and very difficult to

tackle [44–46]. Finally, fabrication bias is

difficult to track, but fabricated data may

arise even in the most visible clinical or

other research.

However, bias may be the least signifi-

cant problem for RCTs. For randomized

research, the main problem is probably

the conduct of too many trials with poor

scientific rationale and lack of clinical

relevance; this translates to low pre-study

odds. Most of these trials are also grossly

underpowered. Evidence microcosms of

randomized trials are built around

themes (‘‘lampposts’’) where the incre-

mental knowledge they can provide is

minimal. Systematic reviews have found

254 randomized trials comparing differ-

ent chemotherapy regimens in advanced

non-small cell lung cancer [47]; 136

randomized trials comparing selective

serotonin reuptake inhibitors against

tricyclic/heterocyclic agents in depression

[48]; and 666 articles on clinical trials of

regimens for Helicobacter pylori [49]. Some

clinical trials end up as tools for market-

ing, financing trial contractors, supple-

menting ‘‘clinical investigator’’ income,

or creating petty CVs for promotion.

The current median sample size for

RCTs is only 80 patients [50]. Even with-

out any bias, if the pre-study odds are

1:10, a formally statistically significant (a

¼0.05) finding from a small trial with 20%

power has only 28% chance of being true.

doi:10.1371/journal.pctr.0010036.g001

Figure 1. Three Waves of Evidence Microcosms in Genetics

doi:10.1371/journal.pctr.0010036.g001

Box 3. Waves of Evidence
Microcosms

The search for genetic determinants of disease

has been a fascinating field and it has

witnessed shifts of attention in the last three
decades: from human leukocyte antigens, to

linkage studies with ‘‘whole genome’’ scans

and testing of polymorphisms. Each wave has
claimed thousands of relationships between

genetic variation and human diseases. Some

are confirmed, many are refuted, and probably

even more are left behind in the literature, as
new waves are created. These waves of

evidence reflect wider waves of research in

the life sciences. Figure 1 shows the results of

simple PubMed searches for ‘‘HLA,’’ ‘‘linkage,’’
and ‘‘polymorphism.’’ All three show dynamic

rises over time. However, one should also

account for the general increase in the
number of articles, in particular in the

biological disciplines. The lower panel

standardizes the number of PubMed items

against the number of PubMed items for the
term ‘‘biology’’ in the same time periods. The

three waves peak in the mid-1980s, mid-

1980s/mid-1990s, and mid-to-late 1990s,

respectively, and decline thereafter, even if
the total number of items continues to be

high.
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Translation with Low Credibility

A seemingly effective intervention with

low credibility may still be worth adopt-

ing, if it is safe—and affordable [51].

Otherwise we miss our small chances of

benefit. One may also model the regret of

accepting an intervention as effective

while it is not [52]. However, besides

uncertainty on benefits, we have even

greater uncertainty about harms. The

collection and reporting of information

on harms of commonly used interven-

tions and practices is deficient [53].

Surprises about late-discovered toxicities

[54] may be only the tip of the iceberg.

Moreover, adoption of one scientific

hypothesis may affect also our view of

other hypotheses. With a domino effect,

one research finding being accepted leads

to other findings becoming seemingly

more credible as well. This creates webs

of information and practices to which we

assign considerable credibility, while they

may all be false and useless. Not surpris-

ingly, this does not lead to successful

translation.

Increasing Credibility,
Replication, and Translation

Evolution and translation of research

findings does not have to be a roundtrip

journey from bench to nowhere. In Box 4,

I list some suggestions that may improve

the situation. As we work on integrating

scientific disciplines and materializing

discoveries, translation would benefit

from robust evidence. Translating non-

credible, non-replicated research findings

may have bleak consequences. We already

have several useless prognostic and diag-

nostic tests, ineffective and possibly

harmful therapies, and redundant sub-

specialties sustained by unsubstantiated

optimism on their benefits [55]. We

should not add more junk to this pile.

As researchers, we should acknowledge

difficulties and failures. In a world where

everyone struggles to impress with

achievements, public trust in science
may be enhanced if it is seen as an
enterprise where its workers do not
simply try to impress, but seek the truth
under often unfavorable odds of success.
We also need to examine systematically
what really has worked to date and the
pathways of discovery for such successes.
Moreover, we have a large evidence base
where we can find out what has not
worked so far and where and why we
have been misled.

Research findings should be ascribed a
credibility level that is different from
their formal statistical significance. In the
current era of massive hypothesis testing,
levels of statistical significance are almost
non-interpretable. The p-value threshold
of 0.05, which barely worked when there
were few hypotheses and investigators, is
currently impractical. Circulating p-val-
ues increasingly reach depths of 10�4,
10�10, or 10�60. ‘‘Details’’ on how the data
are collected, handled, and analyzed can
change p-values by log scales.

In the past, we had few research
findings; currently we have too many.
This is exciting, but we don’t know what
they mean and how to use them. Credi-
bility of research findings may be visual-
ized in the form of a wide-based pyramid,
where most findings have low credibility,
and few have high credibility. RCTs can
test findings that are somewhere between
the middle to the top of the credibility
pyramid. Target selection should be care-
ful and systematically evidence based.
Apart from attention to design, power,
and protection from biases, this requires
also careful strategic planning for design-
ing research agendas and making sense of
the overall picture of all RCTs in each
field [56,57]. Designing trials in isolation
or with non-scientific priorities creates
fragmented, irrelevant evidence.

Finally, replication in the current era is
probably as important as or even more
important than discovery. Replication
alone does not protect against bias.
Studies with inherently bad design may

be prone to replication if the same errors
are repeated, while well-designed studies
tend to replicate only when they are
correct [58]. Replication requires rigor-
ous evaluation with consistency in a
variety of repeated tests. Scientific credit
has traditionally been given to discover-
ers, but for many research fronts, discov-
ery is currently an automated multiple
testing process. The more difficult chal-
lenge is to dismiss false discoveries and
materialize some truly useful findings.
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