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Evolution, Detection and Analysis of Malware for
Smart Devices

Guillermo Suarez-Tangil, Juan E. Tapiador, Pedro Peris-Lopez, and Arturo Ribagorda

Abstract—Smart devices equipped with powerful sensing,
computing and networking capabilities have proliferated lately,
ranging from popular smartphones and tablets to Internet
appliances, smart TVs, and others that will soon appear (e.g.,
watches, glasses, and clothes). One key feature of such devices
is their ability to incorporate third-party apps from a variety of
markets. This poses strong security and privacy issues to users
and infrastructure operators, particularly through software of
malicious (or dubious) nature that can easily get access to the
services provided by the device and collect sensory data and
personal information. Malware in current smart devices –mostly
smartphones and tablets– have rocketed in the last few years,
in some cases supported by sophisticated techniques purposely
designed to overcome security architectures currently in use
by such devices. Even though important advances have been
made on malware detection in traditional personal computers
during the last decades, adopting and adapting those techniques
to smart devices is a challenging problem. For example, power
consumption is one major constraint that makes unaffordable to
run traditional detection engines on the device, while externalized
(i.e., cloud-based) techniques rise many privacy concerns.

This article examines the problem of malware in smart devices
and recent progress made in detection techniques. We first
present a detailed analysis on how malware has evolved over
the last years for the most popular platforms. We identify
exhibited behaviors, pursued goals, infection and distribution
strategies, etc. and provide numerous examples through case
studies of the most relevant specimens. We next survey, classify
and discuss efforts made on detecting both malware and other
suspicious software (grayware), concentrating on the 20 most
relevant techniques proposed between 2010 and 2013. Based on
the conclusions extracted from this study, we finally provide
constructive discussion on open research problems and areas
where we believe that more work is needed.

Index Terms—smart devices, malware, grayware, smart-
phones, security, privacy.

I. INTRODUCTION

S
MART devices are rapidly emerging as popular appliances

with increasingly powerful computing, networking and

sensing capabilities. Perhaps the most successful examples

of such devices so far are smartphones and tablets, which

in their current generation are far more powerful than early

personal computers (PCs). The key difference between such

“smart” devices and traditional “non-smart” appliances is that

they offer the possibility to easily incorporate third-party
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applications through online markets. The popularity of smart

devices –intimately related to the rise of cloud-computing

paradigms giving complementary storage and computing ser-

vices – is backed by recent commercial surveys, showing that

they will very soon outsell the number of PCs worldwide [1].

For example, the number of smartphone users has rapidly

increased over the past few years. In 2011, global mobile

handset shipments reached 1.6 billion units [2] and the total

smartphone sales reached 472 million units (58% percent of

all mobile devices sales in 2010) [3]. In fact, the number

of ANDROID OS and IOS users alone increased from 38 to

84 million between 2011 and 2012 according to a report by

Nielsen [4]. The same report also indicates that the average

number of applications per device increased from 32 to 41

and the proportion of time spent by users on smartphone

applications almost equals the time spent on the Web (73%

vs. 81%). Furthermore, the number of worldwide smartphone

sales saw a record of 207.7 million units during 2012, rising

up 38.3% with respect to the same period in the previous year

[5]. Specifically, the global mobile Operating System (OS)

market share shows that ANDROID OS reached 69.7% at the

beginning of 2013, racing past SYMBIAN OS, BLACKBERRY

OS and IOS as depicted in Figure 1.

New smart devices are appearing at a steady pace, including

TVs [6], watches [7], glasses [8], clothes [9] and cars [10].

This is not only playing a key role in bringing to reality

much-discussed paradigms such as wearable computing or

the Internet of Things, but also finding innovative and very

attractive applications in critical domains such as, for example,

healthcare. Both medical staff and patients are increasingly

taking advantage of such devices, from regular tablets and

smartphones [11] to smart pillboxes [12], and the new gener-

ation of smart wearable systems (SWS) for health monitoring

(HM) or implantable medical devices (IMDs) [13], among

others.

A. Ubiquitous Networking and Smart Devices

One key element behind the popularity of smart devices is

their mobile nature along with their capabilities to provide per-

vasive user connectivity. Wireless communication technologies

offer smart devices the ability to ubiquitously communicate

with an ample variety of Internet services, remotely located

personal appliances, and wearable or implantable objects. The

most common wireless technologies used by current smart

devices are infrared (IR) and radio frequency (RF) commu-

nication. While the use of IR has gone unnoticed during the

proliferation of smartphones, it has recently become popular

again [15]. A wide variety of RF technologies are present

1553-877X/13/$31.00 © 2013 IEEE
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Fig. 1. Main smartphone platforms by market share from 2007 to 2012 [14].

in wireless communication capabilities for smart devices.

Perhaps the most notorious ones are Near field Communica-

tion (NFC), IEEE 802.15.1 (Bluetooth), IEEE 802.11 (WiFi),

Global System for Mobile Communications (GSM), Universal

Mobile Telecommunications System (UMTS), Radio Data

System (RDS), Global Positi oning System (GPS), Software

Defined Radio (SDR) and Cognitive Radio (CR).

Integrated wireless communications also provide smart

devices with new sensor capabilities. Current sensors have

evolved from mechanical transducers featured with network

connectivity (e.g., Wireless Sensor Networks [16] or Smart

Grids [17]) to communication-centric systems where many

information is acquired via communications interfaces. For

instance, some communication techniques allow devices to

sense their position based on radio signals transmitted either

by a local positioning system (e.g., cellular base stations, WiFi

access points, etc.) [18] or by a global positioning system

such as GPS. Additionally, communication standards such as

Bluetooth Low Energy (LE), namely Bluetooth SMART, allow

smart devices to sense information by simply communicating

with them. Similarly, the use of RFID and NFC can be used to

sense near field information by encoding it in programmable

tokens or tags (e.g., SmartTags [19]). Both Bluetooth SMART

and SmartTags technologies transform everyday objects into

powerful data sensors.

All these heterogeneous communication and sensing ca-

pabilities pull together several opportunistic networking

paradigms [20], such as: (i) Device-to-Cloud, (ii) Device-to-

Device, and (iii) Device-to-Environment, which have played

an important role in the proliferation of communication-based

services. For instance, paradigm (i) offer users the possibility

to remotely manage their devices, back-up data, or access

online software markets. In addition to this, other paradigms

such as (ii) and (iii) allow users to interact with their envi-

ronment for a better social experience, such as for example

multi-player games. Furthermore, the combination of different

communication and networking paradigms has made possible

the rise of very promising services, such as NFC-based e-

payment schemes, Location-Based Services (LBS), or even

novel forms of authentication in anonymous networks [21].

Most researchers agree that this trend towards a rich ecosystem

of wireless technologies will continue in the near future,

quite possibly in a more versatile way as (smart) devices are

increasingly capable of adaptively incorporating new software-

based communication capabilities via RadioApps [22].

While this fruitful environment of cheap, fast and heteroge-

neous communications capabilities has been key to the success

of smart devices, it has also brought about a number of security

and privacy concerns. Attack vectors have multiplied ([23],

[24]), and the availability of a myriad of networking paradigms

has given rise to new epidemic behaviors (see, e.g., [25]). Even

services that historically have been exceptionally harmless

have suddenly turned into a potential menace: one of the most

recent examples is the advent of AM/FM radio-based attacks

[26], which have proved to be particularly viral due to the

broadcast nature of RDS and the increasing popularity of SDR

and CR systems [27] based on RadioApps.

Recent communication-centric sensors rise new privacy

problems. For instance, sensors such as GPS can potentially

leak users’ location, and NFC-equipped devices can pose

traceability issues. Other sensors, such as for example the ac-

celerometer or the gyroscope, can be used to infer the location

of screen taps and, therefore, be used to guess user passwords.

These Device-to-Environment communication paradigms can

be especially harmful when correlated with others such as

Device-to-Cloud or Device-to-Device. All these features pose

a security threat to communications and fundamental research

in this regard is therefore required. In fact, several approaches

have tackled privacy leakage from the sensor’s perspective

[28], [29]. We next provide a closer look at some of these

issues.

B. Malware and Smart Devices

In many respects, smart devices present greater security

and privacy issues to users than traditional PCs [30]. For

instance, many of such devices incorporate numerous sensors

that could leak highly sensitive information about users loca-

tion, gestures, moves and other physical activities, as well as

recording audio, pictures and video from their surroundings.

Furthermore, users are increasingly embedding authentication

credentials into their devices, as well as making use of on-

platform micropayment technologies such as NFC [31].

One major source of security and privacy problems is

precisely the ability to incorporate third-party applications,

primarily from available online markets but also by other

means. There are currently two established models of smart

devices according to how users can access such markets [32].

In the open-market model, users are free to install applications

from any online market, whereas the so-called walled-garden

market model restricts the market from which users can

install applications. (In spite of this, users have found ways

of circumventing such restrictions by modifying the device

so that other markets will be accessible too.) Many market

operators carry out a revision process over submitted apps,

which presumably also involves some form of security testing
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to detect if the app includes malicious code. So far such

revisions have proven clearly insufficient for several reasons.

First, market operators do no give details about how (secu

rity) revisions are done. However, the ceaseless presence of

malware in official markets reveals that operators cannot afford

to perform an exhaustive analysis over each submitted app.

Second, determining which applications are malicious and

which are not is still a formidable challenge. This is further

complicated by a recent rise in the so-called grayware [33],

namely apps that are not fully malicious but that entail security

and/or privacy risks of which the user is not aware. And finally,

a significant fraction of users rely on alternative markets to

get access for free to apps that cost money in official markets.

Such unofficial and/or illegal markets have repeatedly proven

to be fertile ground for malware, particularly in the form of

popular apps modified (repackaged) to include malicious code.

The reality is that the rapid growth of smartphone technolo-

gies and its widespread user-acceptance have come hand in

hand with a similar increase in the number and sophistication

of malicious software targeting popular platforms. Malware

developed for early mobile devices such as Palm platforms

and featured mobile phones was identified prior to 2004.

The proliferation of mobile devices in the subsequent years

translated into an exponential growth in the presence of

malware specifically developed for them (mostly SYMBIAN

OS), with more than 400 cases between 2004 and 2007

[34], [35]. Later on that year, IPHONE and ANDROID OS

were released and shortly became the predominant platforms.

This gave rise to an alarming escalation in the number and

sophistication of malicious software targetting these platforms,

particularly ANDROID OS. For example, according to the

mobile threat report published by Juniper Networks in 2012,

the number of un ique malware variants for ANDROID OS has

increased by 3325.5% during 2011 [2] and by 614% between

2012 and 2013 [36]. A similar report by F-Secure reveals that

the number of malicious ANDROID OS applications received

during the first quarter of 2012 increased from 139 to 3063

when compared to the first quarter of 2011 [37], and by the

end of 2012 it already represents 97% of the total mobile

malware according to McAfee [38].

The main factors driving the development of malware have

swiftly changed from research, amusement and the search

for notoriety to purely economical –and political, to a lesser

extent. Current malware industry already generates substantial

revenues [39], and emergent paradigms such as Malware-as-

a-Service (MAAS) paint a gloomy forecast for the years to

come. This admits a simple explanation from an economic

point of view: all in all, attackers seek to minimize the cost

required to achieve their goals and, therefore, aim at obtaining

the maximum revenues with minimal efforts. For example, the

inequality

Cost(Attack)< Potential Revenue (1)

is used in [40] to give a cost-benefit analysis of mobile

attacks. This fits perfectly the case of smart devices such as

smartphones, where malware is rather profitable due to (i) the

existence of a high number of potential targets and/or high

value targets; and (ii) the availability of reuse-oriented de-

velopment methodologies for malware that make exceedingly

easy to produce new specimens. Both points are true for the

case of ANDROID OS and explain, together with the open

nature of this platform and some technical particularities, why

it has become such an attractive target to attackers (see for

example Figure 2, where the correlation between the market

share and the number of unique malware cases reported is

straightforward).

Correlations –if not causations– such as those discussed

above are paramount to understand future tendencies and

threats, not only in the case of smartphones or tablets but also

in other devices that soon will likely proliferate. For instance,

it has been recently reported that medical devices are plagued

with malware [42]. In the near future, it is quite plausible that

similar risks will affect vulnerable IMDs [43], leaving users

and patients exposed to exfiltration of highly-sensitive medical

information or even malicious manipulation [44].

C. The Malware Challenge for Smart Devices

Thwarting malware attacks in smart devices is a thriving

research area with a substantial amount of still unsolved

problems. In the case of smartphones, one primary line of

defense is given by the security architecture of the device,

one of whose foremost features is a permission system that

restricts apps privileges. This has proven patently insufficient

so far. For example, in the case of ANDROID OS apps

request permissions in a non-negotiable fashion, in such a

way that users are left with the choice of either granting

the app everything it asks for at installation time or it will

not be possible to use it. Most users simply do not pay

attention to such requests; or do not fully understand what

each permission means; or, even if they do, it is hard to

figure out all possible consequences of granting a given set of

privileges. For example, applications requesting permission to

access the accelerometer of a smartphone or a tablet are rather

common. However, it has been demonstrated that it is possible

to infer the keys pressed by the user on a touchscreen from just

vibrations and motion data [45]. Thus, using such a permission

in conjunction with Internet access –another rather common

privilege– could pose a serious risk of data exfiltration. On top

of that, the problem aggravates in platforms where apps can

interact with each other and share information, as one needs

to consider the privileges acquired by potential collusions.

Many of these problems cannot be solved by market op-

erators alone or by enhanced security models, as they really

depend on each user’s privacy preferences. For example, a

leakage of data such as one’s location or the list of contacts

might well constitute a serious privacy issue for many users,

but others will simply not care about it.

Even if a piece of malware gets it way into a device, it

remains unclear how it is possible to detect its presence. Tra-

ditional signature-based antimalware techniques suffer from

inherent limitations: they can only detect malware for which a

signature is available, and are useless against polymorphic and

metamorphic code. For example, a recent report by Zhou et al.

[46] shows that common smartphone antivirus software detects

only between 20.2% and 79.6% of analyzed malware. More

optimistic studies such as AV-Test [47], performed with a

much more restricted dataset, shows that 31 out of 41 solutions
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Fig. 2. Correlation between the number of malware cases and platform market share during a) 2009-2010 [41], b) 2010 [2], and c) 2011 [2].

tested presented a detection rate lower than 90%. Approaches

based on dynamic code analysis [48] are promising, but adopt-

ing and adapting them to smart devices is not straightforward.

For instance, many devices suffer from strong limitations

in terms of power consumption, so a constant monitoring

executed on the platform may be simply unaffordable. External

analysis performed on the cloud in near real time constitute an

alternative, although it is not exempted from privacy-related

risks.

D. Scope and Organization

In this article, we present a comprehensive survey of the

evolution and current state of malware for smart devices and

techniques proposed to thwart malware attacks. Our analysis is

strongly biased towards smartphones, since they currently are

the most extended class of smart devices and the platform of

choice for malware developers and security researchers. How-

ever, our discussion and conclusions apply to other devices as

well, and can help to better understand the problem and to

improve upon current defense techniques. In this regard, our

survey complements and extends other works such as [24].

The rest of this paper is organized as follows. In Section II

we describe current smartphone security architectures and dis-

cuss a number of research works that have recently proposed

enhanced models to provide protection against malicious ap-

plications. In Section III we provide a characterization of the

various categories of malware developed for smart devices

by identifying possible attack goals, distribution and infection

strategies, and exhibited behavior. Other authors (e.g., [33],

[46]) have previously discussed similar issues for smartphone

malware, but not to the extent covered by this work. Fur-

thermore, our taxonomy is used to analyze the evolution of

malware using a representative sample of specimens that have

gained notoriety over the last few years.

Section IV analyzes and discusses malware detection ap-

proaches specifically developed for smart devices. Again,

we first identify a number of features according to which

each technique can be classified and use them to provide a

systematic review of the most relevant works proposed so far.

Among our contributions, we identify an extensive number

of indicators that can be monitored to detect the presence

of malware and that apply to any kind of smart device –

not only smartphones or tablets. Additionally, we correlate

these features with our malware characterization, pointing out

how each class of malicious behavior manifests in terms of

observable indicators.

Finally, in Section V we discuss open research topics and

in Section VI describe our main conclusions.

II. SECURITY MODELS IN CURRENT SMART DEVICES

In this section we provide an overview of the security

models and protection measures incorporated in current smart

devices, with particular emphasis on smartphones. The two

major mobile platforms –IOS and ANDROID OS– are built

upon traditional desktop Operating Systems (OS) and inherit

some security features from them. However, they also employ

more elaborated security models designed to better fit the

architecture and usage of these devices.

A. Security Features

A number of recent works (e.g., [49], [50]) have provided

detailed account of the major security features incorporated in

smartphones. In what follows we restrict ourselves to highlight

the fundamentals about:

1) security measures implemented at the market level;

2) security features incorporated in the platform; and

3) an overview of recently proposed security mechanisms

with particular emphasis on the protection against malware

that they provide.

1) Market Protection: A primary line of defense against

malicious software consists of preventing it from entering

available distribution markets. To this end, two basic security

measures are applied at the market level:

• Application review. Some official markets analyze sub-

mitted apps before making them available for download

and install. Operators do not give details about the

particularities of such reviews, but it is generally under-

stood that some form of security testing is carried out.

Furthermore, in walled-garden models devices can only

access some markets, which presumably only distribute

reviewed apps.
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• Application signing. Most markets force authors to sign

their apps. This allows authors to claim authorship and

also has some technical consequences in certain platforms

(e.g., apps signed with the same certificate can share

resources). Thus, a device can be sure about the integrity

of an app by verifying the associated signature against

the corresponding certificate authority.

Both measures have proven so far insufficient to combat

malware. Manually reviewing applications is a a difficult and

time-consuming task, impossible to perform in full extent due

to the massive number of applications being submitted every

day. Automated approaches have been recently explored as an

affordable alternative [51], [52], [53], [54]. For instance, in

2012 Google announced an application approval tool named

Google Bouncer [53] for ANDROID OS. Also in this line,

Zhou et al. proposes DroidRanger for detecting smartphone

malware in Android markets [54], [55]. Their analysis shows

that the infection rate in alternative marketplaces is one order

of magnitude higher than the official marketplace. Addition-

ally, they found that about 0.1% of the 204.040 analyzed

applications are malicious. We however believe that such a

fraction is much higher for two reasons. On the one hand,

samples were taken during a two-month period in the first

and third quarter of 2011. However, according to McAfee

Threat Report [56], the number of ANDROID OS malicious

samples experimented an exponential growth of 400% during

the fourth quarter of that year. On the other hand, the detection

heuristics used by authors present a high false negative rate,

ranging from 5.04% to 23.52%.

Even if application review processes were perfect, many de-

vices install applications through unofficial markets in which

there are no guarantees whatsoever about the trustworthiness

of such apps. Application signing can give users some as-

surance about the integrity of software downloaded from a

questionable source, particularly when such software claims

to be an unmodified copy of the same available in official

markets. But most of the time users do not perform such

verifications, nor it is possible to do so in many cases as

signatures are stripped off.

2) Platform Protection: Current platforms incorporate a

number of mechanisms to confine and limit the actuation of

malicious apps once installed in the device:

• Permissions. Most platforms provide a permission-based

system aimed at restricting the actions that an app can

execute on the device, including access to stored data

and available services (e.g., networking, sensors, etc.).

Au et al. [57] examine the permission system of several

smartphone OS, focusing on:

1) The amount of control users have over app permis-

sions. Depending on the granularity offered by the OS,

users can grant privileges using precise or coarse per-

missions. Additionally, such permissions cannot always

be individually enabled or disabled.

2) The information they convey to the user. Several plat-

forms offer the users specific information about how

applications are using resources. While some OS only

inform of what resources the application may use,

others track the actual use of permissions throughout

execution.

3) The interactivity of the system. Some permission sys-

tems require a heavy intervention of the user. Typically,

fine-grained permissions require more interaction than

coarse-grained. Furthermore, permissions can either be

requested only once (assuming they will remain the

same) or they can be requested periodically.

A summary of their analysis is shown in Table I. These

results will be further discussed later on Section II-B

when discussing the security features of the most im-

portant platforms. A recent study by Felt et al. [58], [59]

on the effectiveness of app permission systems concludes

that they are rather effective at protecting users. However,

in the case of ANDROID OS it points out that many apps

request a significant amount of permissions identified

as potentially dangerous and that frequent exposure to

warnings drastically reduces effectiveness. Furthermore,

authors also conclude in [59] that apps are often overpriv-

ileged due to a lack of documentation and development

bad practices. In this regard, Barrera et al. [60] propose

a methodology for analyzing permission-based security

models and suggest to increase the expressiveness without

maintaining the total number of permissions.

• Sandboxing. Trusted execution environments are a se-

curity mechanism used by some platform architectures

to isolate running applications based on mandatory ac-

cess control policies. Sandboxing can provide protection

against malicious applications to a certain extent, but are

ineffective if users overlook the permissions entitled to

installed apps. Furthermore, sandboxing do not prevent

apps from exploiting system or kernel vulnerabilities and,

besides, can also be bypassed in some cases [61]. In

this regard, several works [62], [32], [63], [64] propose

the use of hypervisors that run directly on the hardware.

Other authors (e.g., [65]) have focused on optimizing the

virtual machine manager, as virtualization introduces a

trade-off between security and performance [66].

• Interactions between apps. Some platforms provide the

developer with a rich inter-application communication

system to facilitate component reuse. Such Inter Com-

ponent Communication (ICC) systems introduce several

security issues. For example, in a compromised device

messages exchanged between two components could be

intercepted, stopped, and/or replaced by others, as they

generally are not encrypted or authenticated. Addition-

ally, two or more malicious applications can collude to

violate app security policies, such as for example in the

so-called re-delegation attacks [67]. Chin et al. [68] have

recently identified a number of security risks derived from

the app interaction system in ANDROID OS. Their re-

ported results show that 97% of the analyzed applications

are exposed to activity hijacking; 57% to activity launch;

56% to broadcast injection; 44% to broadcast theft; 19%

to service hijacking; 14% to service launch; and 13% to

system broadcast without action check.

• Remote management. Some market and network oper-

ators, as well as platform manufacturers, are empowered

with the ability to remotely remove apps from the device
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TABLE I
PERMISSION MODELS IN THE MAIN SMARTPHONE PLATFORMS [57].

Platform #Perm. Control Information Interactivity

ANDROID OS 75 Medium High Low
WINDOWS MOBILE 15 Medium Medium Low
IOS 1 Low Low Low
BLACKBERRY OS 24 High High High

and even repair damages caused by malware. This can

be seen as an extension of other functionalities already

present, such as for example updating the OS or applying

patches. However convenient, this feature can be seen by

many users as too intrusive and is not exempt from risks,

both privacy-wise but also in case of compromise of the

remote management function.

3) Other Proposals: Over the last few years there has

been an explosion of proposals suggesting enhanced security

models and alternative policy languages to improve upon the

limitations discussed above. The interested reader can find a

summary in recent surveys, such as for example [50]. The

majority of them fall in one or more of the next categories:

1) Rule driven policy approaches [69], [70], [71], [72]

propose richer languages based on rules, aiming at palliat-

ing insufficient policy expressibility on current protection

systems.

2) High-level policy protection techniques focus on en-

forcing information flow throughout the system. Several

approaches focus on applying different labeling systems

[73], while others enforce full isolation based on distinct

security profiles within a single device [65].

3) Platform hardening aims at simplifying underlying plat-

form layers, i.e., bootloader and kernel, to mitigate the

risk of unpatched vulnerabilities [32]. SELinux-based

systems [74] and remote attestation [75] approaches can

be applied to improve trusted computing base protection.

4) Multiple-users protection assumes scenarios where dif-

ferent users share the same device. Several approaches

focus on applying different access control mechanisms

such as DifUser [76] or RBACA [77] (a Role Based

Access Control for Android).

Most of these proposals would certainly provide enhanced

protection against malicious apps. However, in many cases

they ultimately rely on richer –and more complex– policies

that users must specify. But users generally lack security ex-

pertise [78], and developing complete and consistent security

policies is far from being an easy task even for experts with the

appropriate background. It can be argued that devices could

use policies created by others, but it is unclear to what extent

“one size fits all.” Furthermore, there is an incipient interest on

intentionally bypassing the platform protection mechanisms to

gain full control of the device and, for example, install apps

otherwise forbidden.

B. Security Features in Dominant Platforms

When compared with traditional PCs, smartphone platforms

have taken an innovative approach to securing the device and

the distribution of software. We next provide an overview of

some of the security features present in the five platforms that

currently dominate the market.

1) Symbian: SYMBIAN OS security model is based on

a basic permission system. Phone resources are controlled

by the OS using a set of permissions called “capabilites”.

Furthermore, applications run in user space, while the OS

run in kernel space. Those applications requiring access to

protected libraries must be signed using a certificate issued by

Symbian, while all others can be self-signed [49]. Protection

at the market level is inexistent or very low.

2) BlackBerry: BLACKBERRY security model is based on

a coarse-grained permission protection model. Applications

have very limited access to the device resources and, as in

the case of BLACKBERRY OS, they must be signed by the

manufacturer (RIM) to be able to access resources such as,

for example, the user’s personal information. Additionally,

applications must get user authorization to access resources

such as the network. However, once the user grants access

to an application to use the network, the application can both

send SMSs and connect to Internet [79]. Although applications

are not executed in a sandbox, some basic process and memory

protection is offered. For instance, a process cannot kill other

processes nor access memory outside the app bounds.

3) Android: Google’s ANDROID OS security model relies

on platform protection mechanism rather than on market

protection, as users are free to download applications from

any market. Applications declare the permissions they request

at installation time through the so-called manifest. If the

user accepts them, the operating system will be in charge of

enforcing them at running time.

Many researchers have pointed out that ANDROID OS’s per-

missions are overly broad and have proposed alternatives and

extensions. For example, Ongtang et al. propose a fine-grained

permission model called Saint to limit the granularity at which

resources are accessed [72]. Similarly, Jeon et al. [80] propose

a framework that enhances ANDROID OS’s security policies

and extends permission enforcement both an installation time

and during runtime. Schreckling et al. introduced in [81]

Constroid, a framework to define data-centric security policies

for access management. Security policies are here defined for

each individual resource, instead of specifying permissions for

each app. Furthermore, such definition can be done at a fine-

grained level, allowing users to, for example, grant an app

access to a part of the address book only. A major consequence

is that security policies are therefore defined by the user, not by

the developer. However, this approach can easily overwhelm

users as they are held responsible of specifying security and

privacy policies.
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Additionally, ANDROID OS uses sandboxing technique and

Address Space Layout Randomization (ASLR) to protect

applications from malicious interference of others apps. Al-

though ANDROID OS isolates each running process, apps

can still communicate with each other using ICC, a rich

functionality that, however, introduces risks such as those

discussed before. Bugiel et al. introduce a security framework

called TrustDroid [82] to separate trusted an untrusted appli-

cations into domains, firewalling ICCs among these domains.

Similarly, Dietz et al. propose Quire [83], a signature scheme

that allow developers to specify local (ICC) and remote

(RPC) communication restrictions. Other proposals such as

TaintDroid [84], AppFence [85] or XManDroid [70] closely

monitors apps to enforce given security policies. The first two

uses dynamic taint analysis to prevent data leakage and protect

user’s privacy, while the last one extends ANDROID OS’s

security architecture to prevent privilege escalation attacks

at runtime. The main difference between TaintDroid and

AppFence is that the latter tries to covertly anonymize private

information prior to blocking leakages.

Furthermore, all ANDROID OS applications must be signed

with a certificate to identify the developer. However, the

certificate can be self-signed, in which case no certificate

authority verifies the identity of the developer.

Several articles discuss ANDROID OS security model [86],

[87], providing a deep understanding of android architecture.

Enck et al. [88] also present a study of Android security by

analyzing 1100 free applications. We refer the reader to these

works for further details.
4) iOS: Apples IOS security model [89] relies on market

protection mechanisms rather than enforcing complex per-

mission polices on the device at installation time. Apple’s

App Store is a walled-garden market with a rigorous review

process. Those processes are essential for preventing malware

from entering the devie, as runtime security mechanisms are

limited to sandboxing and user supervision. IOS isolates each

third-party application in a sandbox. However, most of the

device’s resources are accesible1 and misuse of a few of them

–such as GPS, SMS, and phone calls– can only be detected

by the user after installation. Furthermore, IOS sandboxing

model is weaker than ANDROID OS’s, as Apple only uses

one sandbox to run all applications, whereas Google separates

each application in a sandbox [91].
Specific details on Apples App Store application review

are unknown. In July 2009 Apple revealed that at least two

different reviewers study each application [92]. However, it is

probable that Apple uses also static and dynamic analyses.
Applications distributed on Apple’s App Store must be

signed by a valid certificate issued by Apple. Developer

certificates are issued to individuals and/or companies after

obtaining a verified Apple credential. IOS dynamically verifies

that the application is signed, and therefore it is trusted,

before executing it. Nevertheless, IOS can be tampered with

(jailbroken) to install applications from alternative markets.

This practice violates Apple policies, causes the device to lose

its warranty, and avoids prevention of shellcode injection.

1In IOS version 5, although Apple is likely to introduce some modifications
in IOS version 6. Specifically, the new version will restrict access to most of
the device’s resources [90].

Latest versions of IOS provide a number of features to

protect user data based on master encryption keys and pro-

tected by a passcode. The entire file system is encrypted

using block-based encryption and can only be decrypted when

the phone is unlocked. Additionally, IOS supports ASLR and

Data Execution Prevention (DEP) to prevent the execution of

arbitrary code at runtime.

5) Windows Mobile: Microsoft’s market protection model

for WINDOWS MOBILE systems is based on application

review. Developers are also validated prior to application’s

approval. Platform protection in WINDOWS MOBILE is similar

to ANDROID OS. It uses a trusted boot component and code

signing to protect the integrity of the operating system. It also

provides signed drivers and applications through the Windows

Phone Store online market.

Latest versions of WINDOWS MOBILE (Windows Phone

7 and 8) incorporate isolation among different sandboxes

[93], and each app is executed in its own sandbox, named

“chamber.” While chambers are defined and implemented

using a number of system policies, each security policy defines

what permissions are given to an app, known as capabilities.

In this regard, users are informed of the capabilities of an

application prior to install. However, the only control users

have over these capabilities at runtime is quite limited, as

only GPS needs user authorization the first time an application

request access to it [57].

III. MALWARE IN SMART DEVICES: EVOLUTION,

CHARACTERIZATION AND EXAMPLES

Malicious applications for smart devices –notably

smartphones– have rocketed over the last few years, evolving

from relatively simple apps causing annoyance to complex

and sophisticated pieces of code designed for profit, sabotage

or espionage. In this Section we first provide a brief overview

of such evolution from early mobile platforms to current

devices. We subsequently propose a number of features that

can be used to classify, characterize and better understand

malware for smart devices.

A. Evolution

As in the case of traditional PCs, where malware evolution

was intimately connected to the increase in computing re-

sources and the advent of the Internet, the complexity and hos-

tility of malicious software has intensified from early mobile

handsets to the current generation of smart devices. In the early

2000s, Palm platforms were affected by malicious software

that mimicked strategies well-known in PC malware. For

example, Symb/Liberty, Symb/Vapor and Symb/Skuller were

popular trojans at the time, i.e., applications that perform some

useful function while simultaneously conducting malicious

activities. Others such as Symb/Phage employed classical virus

propagation strategies to infect additional programs present in

the handset. Their malicious payload varied, but in all cases it

was sought to inflict damage over user information or corrupt

system files in order to cause a device failure.

The rise of featured mobile phones brought about a variety

of distinctive infection vectors when compared to traditional



8 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, ACCEPTED FOR PUBLICATION

PCs, primarily through the communication and network-

ing functions offered by 3G, Wi-Fi, EDGE, Bluetooth, the

SMS/MMS messaging system, and NFC [94], [95]. For in-

stance, Symb/Cabir was one of the first SYMBIAN OS worms

using Bluetooth to infect other devices. Additionally, when

handsets were given Internet connectivity and the possibility

to easily install third-party applications, more sophisticated in-

fection strategies appeared. One early example was Symb/Yxes,

which used the SMS channel and support from remote servers

to propagate and configure itself.

The availability of mobile networking and pay-per-use

services contributed to a rapid escalation of the malware

phenomenon, both in featured phones and smartphones. Ex-

amples such as Android/YZHCSMS.A and WinCE/Fakemini

send premium-rate SMSs without the user’s knowledge, which

results in very significant revenues for the owner of the regis-

tered number. Others such as Android/Smspacem have been

also driven by economic incentives: sending spam through

SMSs.

In recent years, the proliferation of smartphones with

improved sensing and networking capabilities has trans-

lated into more sophisticated threats. For example, An-

droid/DroidKungFu and iPhone/FindAndCall steal a variety

of personal information stored in the device and exfiltrate it

through the network to a remote server. Other pieces of mal-

ware such as Android/Spybubble, Android/Nickispy and FinSpy

Mobile2 have evolved into fully fledged spy instruments with

the ability to monitor, record and exfiltrate the device’s current

location, ongoing and past phone calls and SMS logs to name

a few. Although more illustrative examples are provided later

on this section, readers interested in a more in-depth study are

referred to the recent work of Zhou and Jiang [46], where a

study of more than 1200 malware samples is presented.

It is plausible to believe that similar threats will soon affect

other smart devices such as smart TVs or IMDs. For example,

Auriemma [96] has recently shown that several versions of

Samsung’s Smart TV [6] are vulnerable to buffer-overflow

attacks that could allow an attacker to remotely control the

device. Many security vendors are already releasing security

frameworks for smart TVs, including antimalware products

[97]. The situation may become similar for medical devices

too, particularly for those designed to remotely monitor a

patient’s condition and/or control body functions. We are not

aware of any malware reported so far that affects existing

IMDs or other medical smart devices, although researchers

believe that malicious programs will certainly target them

sooner or later [98], [99].

B. Malware Characterization

Current malware for PCs have evolved into complex and

reuse-oriented pieces of software. Traditional classifications

have focused on factors such as the propagation strategy

(e.g., viruses vs. worms) or the malicious activity carried out

(trojan horses, spyware, adware, rootkits, etc.), among others

2FinSpy is a surveillance component part of a commercial surveillance
toolkit called FinFisher, designed to spy over a wide range of mobile
platforms. The mobile version is capable to monitor apps, emails, text
messages, etc. on Android, iOS, BackBerry, Symbian, etc.

[100], [101], [33], [46]. However, these categories are rather

imprecise and do not contribute to a better understanding

in terms of detecting the presence of malware, particularly

in current times where most malware present multiple and

constantly changing features.

We next identify several criteria according to which mal-

ware in smart devices can be described and classified. Each

provided criterion will be subsequently associated with some

observable behavior in one or more features of the device.

Thus, our classification will serve both to better understand

the functionality of malware, but also to point out where to

look for detecting malicious activities. We believe this can be

of help to improve upon current detection strategies.

We classify malware for smart devices in terms of the

following three features (a graphical summary is provided in

Figure 3):

• Attack goals and behavior: Identifying malware’s mo-

tivation on smart devices is paramount to have a better

understanding of its behavior and can be used to develop

targetted detection strategies. Such goals range from fraud

and service misuse driven by economic incentives, to

spamming, espionage, data theft and sabotage.

• Distribution and Infection: Malware creators can use a

variety of techniques to distribute malicious applications

and infect devices, from self-propagation mechanisms

based on vulnerabilities and misconfigurations, to simply

tricking the user into installing it by means of social-

engineering techniques.

• Privilege acquisition: Once the malicious code is in-

stalled on the device, it often needs to acquire enough

privileges to carry out its goals. This is automatic in many

cases, as the user might already have granted them to

the app, whereas in other cases technical vulnerabilities

and/or misconfigurations are exploited.

In the remaining of this section we describe each criterion

in detail and discuss some illustrative examples.

C. Attack Goals and Behavior

Felt et al. [33] analyze the main incentives behind IOS,

ANDROID OS, and SYMBIAN OS malware using a dataset

containing 46 specimens found between 2009 and 2011.

According to their analysis, the most common malicious

activities are related to the exfiltration of personal information

and user credentials (44%), followed by premium-rate SMSs

(33%) and, to a lesser extent, research, novelty, or amusement

purposes. It is also pointed out that the majority of the

analyzed pieces exhibited behaviors related to more than one

incentive, and that they often incorporate secondary goals such

as SMS advertisement, spamming, search engine optimization

and, in a few cases, ransom. About the 33% of the studied

malware changed their behavior based on commands received

from a Command and Control (C&C) server.

More recently, new pieces of malware such as An-

droid/NotCompatible [102] are demonstrating that attackers’

interests are not only limited to the scope of a smartphone

and its user, but to large private networks. By turning an

infected device into a TCP relay/proxy –capable of forwarding

network traffic–, smartphones can be used to support many
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Fig. 3. Malware characterization for smart devices.
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Fig. 4. Main attack goals, associated incentives, and exhibited behavior for
malware in smart devices.

infection vectors. For instance, an attacker could establish

an encrypted point-to-point session via HTTP with a device

located behind the firewall. Using such tunnel, the attacker

might be able to probe the private network and run exploits

against assets within the corporation. Thus, malware such as

Android/NotCompatible opens new opportunities for penetrat-

ing corporate networks.

Understanding the motivations behind malware can lead to

a better identification of its behavior. Figure 4 presents the

relation between most common incentives and the behavior

associated with them. Common behaviors can be classified

in monitoring (eavesdropping, profiling, etc.), service misuse

(SMS, call, email, other services used for spamming, etc.),

sabotage (draining the battery, deleting critical files, etc.), data

exfiltration, and fraud. Note that some behaviors could affect

two or more categories. For example, the unauthorized use of

SMSs for spamming might well be both a service misuse and

a fraud.

1) Example: Smartphone-based Botnets: A botnet is a

collection of compromised devices that can be remotely con-

trolled by an attacker (i.e., the bot master). As the number

of smartphones is rapidly approaching the number of PCs,

botnets for such platforms have gained momentum using a

variety of distribution strategies to harvest as many devices as

possible.

Traynor et al. [103] were among the first to study the

potential theoretical impact of mobile-phone botnets in cellular

networks. As far as we are aware, the first mobile botnet –

named SymbOS/Yxes– appeared in 2009 and targetted SYM-

BIAN OS platforms, using a rudimentary HTTP-based com-

mand and control (C&C) channel. iPhone/Ikee appeared later

on that same year, infecting around 21000 IPHONEs within

two weeks. One remarkable feature of Ikee was that it showed

how easy it can be to hijack a smartphone platform when root

exploits are available. Specifically, it exploited IPHONEs that

were left with the SSH port open and a default password after

having been jailbroken. Such simple but very effective attack

vectors can enable an attacker to control thousands of devices

through an easy-to-implement C&C mechanism, as Ikee.B did

[104].

C&C resilience is essential for a botnet to survive. In this

regard, smartphones are very attractive devices, as they offer

multiple communication alternatives that can be leveraged

to implement a C&C channel, including rather non-standard

means such as SMSs [105]. Nulliner et al. implemented and

evaluated an IPHONE-based mobile botnet named iBot and

demonstrated that thwarting them is more challenging than

in computer networks, in particular because of employing

multiple C&C channels (HTTP, SMS, etc.) in a peer-to-peer

(P2P) fashion.

Android/Andbot [106] introduced a new energy-aware C&C

strategy named URL Flux for ANDROID OS botnets. An-

droid/Andbot uses URL Flux to eliminate the single point

of failure problem present in Ikee.B and also reduces the

SMS fees incurred by iBot. URL Flux is a domain name

conversion used by Confiker –a Windows worm that infected

millions of computers between 2009 and 2011– based on

a domain generation algorithm seeded with a public key.

Recently, more advanced IOS rootkit-like malware such as

iSAM [107] integrates multi-functional tools also capable of

self-propagating to other IPHONE devices in ways similar to

Ikee’s.

Obfuscation is becoming popular in botnets, both by en-

crypting communications exchanged over the C&C channel

and also local resources that might facilitate detection through
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static analysis, such as server names and URLs, keywords, file

names, etc. AnserverBot makes extensive use of some of these

techniques, and also relies on posts made on public blogs to

retrieve code updates and communicate with other members

of the botnet.

2) Example: Grayware: The so-called grayware apps

gather potentially sensitive user and/or device information,

sometimes without user knowledge, and use it for dubious

purposes or in contexts that the user might well not approve.

For example, Aurora Feint is an app that sends the whole

address book to an unknown destination and was quickly de-

listed from Apple’s market in July 2008. Similarly, the author

of Storm8 –a popular game– was sued for collecting users’

phone numbers, and Twitter has been widely criticized for

sending the phone’s contact list without informing the user.

Most grayware apps claim to retrieve such information

for legitimate purposes and that it is crucial to improve the

quality of the service offered to users. This, however, has

recently become a major privacy threat for users’ privacy,

as apps collect excessive amounts of personal information

and it remains unclear whether the service provider will

use that data for legitimate purposes or not. Some platform

manufacturers are increasingly deploying measures to prevent

this. For example, in IPHONE a strict control is carried out to

guarantee that personal information is not sent to the cloud

unless really needed.

D. Distribution and Infection Strategies

Malicious programs employ a number of distinctive tech-

niques to distribute themselves. We next discuss the most

relevant and propose a taxonomy to classify them according to

the channel used to enter the device. Distribution techniques

are primarily influenced by malware in desktop computers,

although the emergence of app markets have opened new

possibilities. Two main approches exist: (i) self-propagation

and (ii) social engineering. A self-propagating piece of mal-

ware can use different strategies to automatically install the

payload into a device, whereas social engineering-based dis-

tribution strategies exploit the securiy unawareness of users

to trick them into manually installing the application (e.g.,

Andr/Opfake-C by Sophos [108], which spreads via Facebook

and, once installed, allows the attacker to perform premium-

rate calls).

We have identified six different distribution vectors that can

be used to infect devices:

• Market to Device (M2D): This propagation strategy

is based on market-borne attacks. An attacker uploads

a malicious application to a market, sometimes using

a stolen identity. Users can only get infected if mar-

kets accept such malicious apps and users install them.

Open markets, in particular those performing little or

no security revisions, are particularly vulnerable to this

distribution method. For instance, malware using devious

exploits (e.g.: Android/DroidKungFu3), might compro-

mise the device by these means.

3Android/DroidKungFu uses an exploit called ‘Rage Against The Cage”
[109] for privilege escalation

• Application to Device (A2D): This propagation strategy

is based on application-borne attacks. An attacker might

rely on a specific, vulnerable application to spread itself.

For instance, instances such as Andr/Opfake-C can use

Facebook to post links with a copy of the malicious code.

The main difference with M2D is that attackers assume

the presence of other installed applications (presumably

“goodware”) to achieve infection. In this regard, even

walled-garden models can be vulnerable to this type of

infection vector.

• Web-browser to Device (W2D): W2D uses web-borne

attacks to propagate the malware in way similar to A2D.

In this regard, we can consider W2D an specific type of

A2D. The difference is that A2D strategies are limited

by the possibilities offered by the application, whereas

in W2D malware can exploit general drive-by-download

strategies. This attack vector has recently gained popular-

ity due the widespread use of vulnerable multi-platform

components such as WebView [110].

• SMS to Device (S2D): This strategy is used by malware

that propagates via SMS or MMS or attacks that distribute

a malicious payload by these means.

• Network to Device (N2D): This propagation strategy is

based on exploiting vulnerabilities or misconfigurations

in the device. We distinguish between:

– Device to Device (D2D): When distribution is driven

by another device in a P2P-fashion, and

– Cloud to Device (C2D): When distribution is done

by a powerful computer such as a workstation or a

server.

• USB to Device (U2D): This strategy is used by malware

that enters the device through a port (typically a cable)

when connected to an infected PC.

1) Example: Repackaging: One of the most common distri-

bution strategy for smartphone malware consists of repackag-

ing popular applications and distributing them through alterna-

tive markets (M2D) with additional malicious code attached.

Repackaging is not a phenomenon exclusive of the current

generation of smartphones, although the proliferation of these

platforms and the impressive growth in available apps have

certainly contributed to make it a popular infection strategy.

As far as we know, M2D repackaging started with SYMBIAN

OS trojans such as SymbOS/Skuller and SymbOS/Dampig,

which replaced system applications and antivirus files with

modified ones. The focus has recently shifted towards AN-

DROID OS apps, particularly by repackaging popular games

and tools [111], including banking apps. For example, An-

droid/FakeToken trojan implements a man-in-the middle attack

to forward SMS messages with mTANs (Mobile Transaction

Numbers).

Zhou et al. present in [55] a systematic study of six pop-

ular third-party marketplaces for ANDROID OS. Their report

concludes that between 5% and 13% of all available apps

online are malware using repackaging, and the most common

incentive is fraud in the form of replaced in-application adver-

tisements to re-route revenues. The study also identifies a few

cases with planted backdoors and other malicious payloads.
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2) Example: Malicious Code Transference via Network:

In some cases, malware creators do not repackage an app

with the full malicious code. Instead, the modified app only

encloses a short piece of code that downloads and install the

malicious payload once the app is installed on the device. One

example of this variant –sometimes known as update attacks

[46]– is Android/DroidKungFuUpdate. Remarkably enough,

repackaged apps can enter the device without the user being

aware of it. By exploiting some technical vulnerabilities and

misconfigurations, some malware samples have even been able

to replace another installed app by a repackaged version of the

same one.

Repackaged apps often rely on obfuscation techniques to

avoid detection and to make static analysis harder [112]. For

example, in the case of update attacks the transferred payload

is often encrypted. In other cases, encryption is applied to

malicious components that are distributed together with the

repackaged app, usually as if they were class files, images

or other raw resources. For instance, Android/RootSmart and

Android/Fjcon use AES to hide domain names and URLs;

Android/Geinimi conceals URLs by encrypting them with

DES; and Android/OpFake simply makes an XOR with a

predefined key.

E. Privilege Acquisition

Exploitation strategies comprise a variety of techniques used

by malware to gain the privileges required to achieve its goals.

We distinguish two broad classes:

• User Manipulation: In many cases, privileges are di-

rectly granted by users who are not aware of the potential

repercussions of doing so. These strategies, which rarely

involve any technical sophistication, can be surprisingly

effective and very damaging. Common forms of user

manipulation include:

– Social engineering.

– Malware and/or grayware installed by novice users

who do not understand –or do not pay atention to–

the permission model.

– Repackaged applications found in alternative mar-

kets.

As in other similar security problems in computing, these

methods can be prevented by raising awareness about the

dangers of malicious apps.

• Technical Exploitation: In other cases the malicious app

can escalate by exploiting technical vulnerabilities or mis-

configurations of the platform. Even though the particular

technical means greatly depend on each platform, the

most common current attacks include [68], [61]:

– API vulnerabilities.

– Buffer overflows.

– Code injection attacks.

– ICC vulnerabilities.

– Return-oriented Programming (ROP) and ROP with-

out return flaws.

– System vulnerabilities.

– Netwoking protocol flaws.

– Bootloader vulnerabilities.

– Rooted device-based vulnerabilities.

1) Example: Rootkits: Current smartphone platforms are

becoming increasingly complex, including not only the op-

erating system itself but also dozens of libraries that give

support to the services offered by the device. Kernel-level

rootkits similar to those known for traditional PCs have

recently appeared with identical purposes, namely to hide the

existence of malicious software from the operating system.

Most rootkits infect devices via N2D vectors, but app markets

–official or not– are increasingly playing a key role. For

example, it is pointed out in [46] that repackaged apps that

implement technical exploits to gain root access once installed

in the device do exist. Such exploits are often distributed

with the repackaged app or acquired from a remote server

as they become available. Contrarily, other exploits involve

user manipulation to acquire privilege escalation. For example,

iPhone/Mobileconfigs [113] allows an attacker to remotely

hijack the device by installing malicious system-level settings

into the device through social engineering.

Root exploits in IPHONE are often quickly patched by Apple

and it is difficult to find malware samples exploiting these

vulnerabilities [114]. The first exploit known for IOS was

identified as early as 2007 and exploited a buffer overflow

in the libtiff library. Other known exploits affected the SMS

service –SMS fuzzing, presented at Black Hat USA 2009 by

Miller and Mulliner– and PDF-related functionalitites –as the

one used by iPhone/JailbreakMe to root IOS 4.3.3 and earlier

versions via a web browser. Later in 2011, Miller submitted

iPhone/InstaStock [115], which, after being approved, dis-

closed a hidden payload endowing InstaStock with remotely

controlled root capabilities.

Hypervisors are a common strategy to counteract rootkits.

Although there are some approaches to incorporate them

on smartphones, such architectures are heavyweight and not

widely available yet. Bickford et al. [116] implemented three

proof-of-concept rootkits for Android. Firstly, they rootkit the

GSM Linux Kernel Module (LKM) in a way that a remote

attacker can listen to the victim’s conversations. Secondly, they

rootkit the GPS LKM so that the attacker compromises the

victim’s location privacy. And thirdly, they exploit a number

of power-intense services so that the battery is drained in two

hours. They conclude that there is currently no effective nor

efficient technique to detect infection by rootkits.

F. Discussion

Table II shows a representative set of smarphone malware

and provides, for each one of them, sought attack goals and the

distribution and privilege acquisition strategies implemented.

Various conclusions can be drawn:

• M2D strategies clearly dominate other distribution and

infection strategies. This conforms the study conducted in

[46] over 1200 samples of ANDROID OS malware, which

points out that 86% of them use repackaging techniques.

• Privileges are mostly acquired by simple user manipu-

lation, i.e., by simply asking the user to grant them to

the app. This is certainly worrysome and motivates many

recent works dealing with enhanced permission models

and novel ways of communicating requested privileges to

users. Even though repackaging is nowadays the primary
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TABLE II
SAMPLES OF SMARTPHONE MALWARE FOR THE MAIN OS AND THEIR MOST RELEVANT CHARACTERISTICS.

Attack Goals Distribution / Infection P.A.
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FinSpy Mobile • � � – – – • • • • • • •

Symb/Cabir ♦ ♦ ♦ ♦ ♦ – – – • – – • –
Symb/Skuller � � • � � • – – – – – • –
Symb/Yxes • – • – – • – – – • • –
Sym/ZeusMitmo • � � � � • – – – – – • •

BB/FlexiSpy • – – – – • – – – – – • –
BB/BBproxy – • – – – • – – – – – • –
BB/ZeusMitmo • � � � � • – – – – – • •

And/YZHCSMS • – – – • • – – – – – • –
And/SpyBubble • – – – – • – – – – – • –
And/SimChecker • – – – – • – – – – – • –
And/BaseBridge • – – – – • – – – – – • –
And/GinMaster • – – – – • – – – – – • –
And/DroidKungFu • – – – – • – – – – – • –
And/AutoSPSubs – – – – • • – – – – – • –
And/Nickispy • – – – – • – – – – – • –
And/Smspacem – • – • – • – – – – – • –
And/Crusewind • – – – – • – – – – – • –
And/Zsone – • – – – • – – – – – • –
And/GGTracker • • – • – • – – – – – • –
And/AdSMS • • – – – – – • – – – – •
And/Fakeplayer – • – – – • – – – – – • –
And/Bgserv • – – – – • – – – – – • –

And/Lightdd • – – – – • – – – – – • –
And/Rootcager • – – – – • – – – – – • •
And/Opfake – • – – – • • – – – – • –
And/OneClickFraud – – – – • • – – – – – • –
And/FakeToken – – – – • • – – – – – • –

iP/MogoRoad – – – – • – – • – – – – •
iP/JailbreakMe – ♦ – – – – – • – – – – •
iP/InstaStock ♦ ♦ ♦ ♦ ♦ • – – – – – – •
iP/FindAndCall • – – • – • – – – – – • –
iP/Mobileconfigs � � � � � – – • – • – • –
iPJ/iKee.A ♦ ♦ ♦ ♦ ♦ – – – • – – – •
iPJ/iKee.B � � � � � – – – • – – – •
iPJ/Dutch 5 – – – – • – – – • – – – •
iPJ/Privacy.A • – – – – – – – • – – – •

WinCE/Duts.A ♦ ♦ ♦ ♦ ♦ • – – – – – • –
WinCE/Fakemini – • – – – • – – – – – • –
WinCE/Pmcryptic – • – – – – – – – • – • –
WinCE/Terred – • – – – • – – – – – • –
WinCE/ZeusMit. • � � � � • – – – – – • •

Legend:

Symb: Symbian iPJ: Jailbroken iPhone iP: iPhone
And: Android WinCE: Windows Mobile BB: BlackBerry

•: The referred characteristics are applied to the application.
♦: Proof-of-concept for demonstration, novelty or amusement purposes.
�: Multi-purpose malware having multiple goals.
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entry point for malware, it is pointed out in [46] that

36.7% of studied specimes attempt to leverage technical

exploits to obtain root privileges.

• In terms of behavior, malware with just one goal is

rare. Most samples spy on users and steal personal data,

but also attempt to commit fraud or misuse services. A

possible explanation for this is the reconfigurable nature

of most malware specimens through updates, as in the

case of botnets. Thus, attackers basically seek to plant

a basic bot engine in the device, and then to provide

it with instructions and further code to perform specific

tasks. Again, this conforms similar studies carried out

recently. For example, in [46] it is pointed out that 90%

of the samples turn the compromised device into a bot;

almost half of them (45.3%) try to misuse SMS or call

services to obtain financial profit; and 51.1% harvest user

information. Finally, sabotage is quite unusual, with only

a few examples that drain the device’s battery or remove

selected files.

• There are remarkable differences between ANDROID OS

and IPHONE malware in the three criteria of our taxon-

omy

– First, most ANDROID OS malware is distributed by

markets, notably in the form of repackaged appli-

cations. IPHONE barely suffers from such infection

vectors, and the majority of malware enters via web

and network exploits. In part, this is a consequence

of the walled-garden model of Apple’s market.

– The differences in their respective permission models

and the way of granting privileges also show up:

while a significant fraction of ANDROID OS malware

is entitled with sufficient privileges by the user –even

if it later escalates by other means–, in IPHONE most

specimens depend on technical exploits.

– Finally, in contrast with ANDROID OS malware,

most IPHONE specimens discovered so far have been

created for demonstration or amusement purposes.

A word of caution is appropriate, though: because of

its openness, ANDROID OS is the de facto platform-

of-choice for security research in smartphones, which

may have also negatively contributed to the malware

phenomenon; and, furthermore, Apple follows a less

communicative strategy about IPHONE malware.

IV. MALWARE DETECTION AND ANALYSIS

As detailed in the previous section, current malware pose

severe threats to security models in smart devices. In this

section we classify and describe the most significant advances

in malware detection systems for such devices [117]. More

precisely, we show how such systems build their foundations

based on a variety of detection techniques. These techniques

aim at identifying where and how malware manifests by

constantly monitoring various device-based features. We also

show how detection systems are driven by these features, as

they represent the key elements for malware identification.

We believe that this comprehensive study is paramount for

researchers and practitioners in order to facilitate the construc-

tion of new detection systems.

A. A Taxonomy of Detection Techniques

Malware detection is a complex process pulling together

monitoring, analysis and identification tasks. In order to

organize and better understand current detection systems,

we next propose a taxonomy based on the following seven

characteristics (see Figure 5 for a graphical summary):

• Type of Detection (ToD) There are two common types

of malware detection techniques according to how code

is analyzed:

– Static analysis: this type of technique attempts to

identify malicious code by unpacking and disassem-

bling (or decompiling) the application. This tech-

nique is a relatively fast approach and it has been

widely used in preliminary analysis to search for

suspicious strings or blocks of code.

– Dynamic analysis techniques seek to identify ma-

licious behaviors after deploying and executing the

application on an emulator or a controlled device.

These techniques require some human or automated

interaction with the app, as malicious behavior is

sometimes triggered only after certain events occur.

Static analysis techniques are well known in traditional

malware detection and have recently gained popularity

as efficient mechanisms for market protection [118].

As a major drawback, these techniques fail to identify

malicious behavior when it is obfuscated or distributed

separately from the app. Contrarily, dynamic analysis are

arguably more powerful in these cases. In fact, the only

way of learning what the app is really doing necessarily

requires to run the code and observe its actions. However,

the inputs generated by most dynamic analysis tools

are generally produced by using random streams of

user events, which might not trigger the execution of

the malicious payload, resulting in malicious apps that

avoid being detected. This particular shortcoming can

be tackled by modelling users’ behavior and providing

human-like inputs. Dynamic analysis can be used both in

the cloud for market protection or directly in the device,

although resource consumption is certainly a issue (see

later discussion on this).

• Type of Monitoring (ToM) Malware can be detected

by analyzing various features that serve to tell apart

benign from malicious activities. A monitoring system

can collect user-level, kernel-level, or hypervisor-level

activity, depending on the type of features that will be

extracted. Monitoring approaches include the collection

of: (i) system calls (SYS); (ii) network activity (NET);

(iii) event logs (EL); (iv) user activity; (v) instructions

(I); (vi) permissions (P); or (vii) program traces (PT); to

name a few. Each type of monitoring activity requires

the deployment of different instruments to intercept and

format the corresponding events. For instance, SYS re-

quires the use of a system trap technique with root

privileges, while NET requires capturing all packets from

the network interface. Additionally, monitoring any of

these features when the app is run in an hypervisor

requires the introspection of a virtual environment.

Monitoring can be potentially expensive in terms of



14 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, ACCEPTED FOR PUBLICATION

Fig. 5. Taxonomy of malware detection techniques for smart devices.

resource consumption, particularly if a large number

of events is collected directly over the platform being

monitored. As far as we are aware, no power consumption

analysis has been carried out yet, but practical experience

suggests that intensive monitoring is prohibitive for cur-

rent smart devices.

• Granularity of Detection (GoD) A point related to the

ToM discussed above is how collected data is filtered in

order to select the detection scope. Monitoring can be

carried out at different levels:

– Per App: features related to a specific application are

monitored and analyzed independently from other

apps in the system. This type of feature classification

presents good performance when malware is a stand-

alone application.

– Per group of apps: in this case, data from a collection

of applications is gathered and analyzed. This is

potentially useful when malware’s goals are achieved

in a distributed way by several collaborating apps.

– Per device: detecting certain types of malware, such

as for example rootkits, requires a more general

detection approach focused on monitoring the device

itself rather than particular apps executed on it.

• Type of Analysis (ToA) The monitored information is

subsequently analyzed to extract evidence on the presence

of malware. Such analysis can be carried out by a

human expert (E), although this possibility is becoming

increasingly unaffordable, at least without the support

of automated analysis tools. There are several types of

techniques for analyzing data obtained after monitoring,

including: Clustering (CL), Support Vector Machines

(SVM), Self-Organizing Maps (SOM), other general Ma-

chine Learning (ML) algorithms, Control Flow Graphs

(CFG), Data Flow Graphs (DFG), Program Dependency

Graphs (PDG), etc.

• Type of Identification (ToI) Depending on the type

of identification carried out, detection systems can be

classified as either anomaly-based (A), misuse-based (M),

or specification-based (SPEC) system. This feature refers

to the principle guiding the identification of malicious

activities and follows the same ideas explored in Intrusion

Detection Systems [119], [120].

– Anomaly-based identification attempt to model the

“normal” behavior of the monitored system, clas-

sifying as anomalous any other behavior reported.

Anomaly detection techniques have the potential to

detect previously unseen malware. However, they

generally present a high rate of false positives, i.e.,

they are prone to detect rare legitimate behaviors as

malicious.

– Misuse-based identification –also known as

signature-based– aims at identifying known

malicious activity by means of predefined patterns

of signatures. Thus, only “malicious” behaviors are

modeled here. The main benefit of misuse detection

lies in its accuracy detecting well-known attacks.

Generally, for each know malicious behavior, misuse

systems are equipped with one or more signatures.

In this regard, maintaining an up-to-date database

with a massive amount of signatures poses a

major challenge. Furthermore, resource-constrained

devices are not capable of processing big amount of

signatures.

– Specification-based identification works on the basis

of predefined authorized behaviors (specifications)

and assumes that any activity deviating from them

violates the system policy and, therefore, is mali-

cious.

• Place of Monitoring and Identification (PoMI) Moni-

toring, analysis, and identification techniques are gener-

ally resource-intensive tasks that cannot be afforded in

battery-constrained devices. As a consequentce, in recent

years it has been proposed to extenalize many of such

tasks to more powerful platforms, even though some

processing still needs to be taking place in the device.

We distinguish three main classes of detection schemes

according to where monitoring and identification takes

place:

– In the device: both monitoring and identification

are placed locally in the device. This requires very

lightweight approaches and their scope may be quite

limited. There are two types of local monitoring

or identification techniques according to where the

monitoring is taking place:

∗ Local out-line (L): this type of technique aims at

monitoring the device by installing itself in one of
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Fig. 6. Taxonomy of monitorable features for smart devices.

the lower layers of the device’s architecture, and

generally require root privileges.

∗ Local in-line, also known as Inline Reference

Monitor (IRM): this type of technique rewrites

untrusted applications so that the monitoring code

is embedded into the app, and does not require

root privileges.

– Distributed (D) among other devices. Performs any

monitoring, analysis or identification task in a coop-

erative way among different trusted devices.

– In the cloud (C). Uses virtual environments for

running several devices on a single server machine

without reducing the battery life.

∗ Sandbox (SB): uses a tightly controlled set of

resources for running dynamic analysis over target

apps.

∗ Replica in the cloud (RC): uses remote security

servers for hosting exact replicas of the device.

Monitoring and identification techniques that are

placed on the replicas require complex synchro-

nization systems to ensure that the replica is at

all times identical to the actual device, as well as

collaboration with the service provider (e.g., the

internet provider for general purpose devices or

phone provider for smartphones).

– Place of Analysis (PoA) Finally, depending on

where the analysis component is placed –i.e., lo-

cally or in the cloud– the approach used poses

TABLE III
MONITORABLE HARDWARE FEATURES AND EXAMPLES OF ATTACKS

THAT COULD AFFECT THEM.
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Battery

Charging Enabled • – – – – – – –
Battery Voltage • • – – – – – –
Battery Current • • – – – – – –
Battery Temp • • – – – – – –

Battery Level Change • • – – – – – –

I/O

LED – – – – – – – –
USB Connection – – – – – – – –
Coverage Range – – – – – – – –

Press Key – – – – – • • –

Device Info.

IMEI – – – – – • – –
Device Id – – – – – • – –
SIM Card – – – – – • – –

Phone State – – – – – • – –
UID Access – – – – – • – –

UID Removal – – – – – • – –

different challenges. On the one hand, cloud-based

approaches require local preprocessing of the moni-

tored traces, transmitting them to the cloud, and wait-

ing for the results. Finally, results may be included

for further identification of malware. On the other

hand, local approaches might accelerate the delay in

obtaining the response, especially when traces are

too big and/or the connection is very slow.

B. Monitorable Features in Smart Devices

According to the monitoring approaches discussed above,

we next identify and classify a number of device-based

features that can provide evidence of malware activities.

We subsequently explore how the behavior of some

representative classes of malicious activities manifest in

subsets of these features. A summary of this taxonomy

–excluding the full list of features for each class– is given

in Figure 6.

– Hardware: this kind of features identify the state of

the hardware (HW) components of the device. We

group HW features in three subclasses: (i) battery,

(ii) input/output HW, and (iii) device info. Table III

provides a detailed list of features for each subclass.

The state of the battery or the access to the unique

device identifier can be used to detect a specific type

of malware. For instance, some botnets check first

that the battery is charging before performing heavy

operations. Another example of the use of HW-based

features for malicious purposes is access to the IMEI

of a smartphone with the goal of exfiltrating it.

– Communications: communications represent an es-

sential infection vector in smartphones. They include

the following features: (i) phone and internet calls,

(ii) phone and internet messaging, and (iii) network

usage (data other than calls and messaging), as

identified in Table IV.

• Sensors: on-platform sensors allow the device to inter-

pret the physical context of a user [121]. Currently the

most common sensors are: (i) accelerometer, (ii) GPS,

(iii) compass, (vi) gyroscope, (v) microphone, (vi) touch
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TABLE IV
MONITORABLE COMMUNICATIONS FEATURES AND EXAMPLES OF

ATTACKS THAT COULD AFFECT THEM.
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Calls
Phone

Phone Outgoing – • – – – • – –
Phone Incoming – • – – – • – –
Phone Missed – • – – – • – –

Phone Privileged – • – – – • – –

Internet
SIP Incoming – • – – – – – –
SIP Outgoing – • – – – • – –

Msg.
Phone

SMS Incoming • • • – – • – –
SMS Outgoing • • – – – • – –

SMS Read • • – • – • – –
SMS Privileged – • – – – • • –
MMS Incoming • • • – – • – –
MMS Outgoing • • – – – • – –

MMS Read • • – – – • – –
MMS Privilege – • – – – • • –

Internet
XMPP Incoming • – – – – • – –
XMPP Outgoing • • – – – • – –

Net.

Byte

WiFI TX Bytes • – – – • • – –
Phone TX Bytes • • – – – • – –

Bluetooth TX Bytes • • – – – • – –
WiFI RX Bytes • • – – – • – –
Phone RX Bytes • • – – – • – –

Bluetooth RX Bytes • • – – – • – –

Packets

WiFI TX Pckts • • – – • • – –
Phone TX Pckts • • – – – • – –

Bluetooth TX Pckts • • – – – • – –
WiFI RX Pckts • • – – – • – –
Phone RX Pckts • • – – – • – –

Bluetooth RX Pckts • • – – – • – –

Connections

WiFI CX • • – • • • – –
Phone CX • • – • • • – –

Bluetooth CX • • – • • • – –
DNS Resoluc. • • – • • • – –

sensors, (vii) speakers, and (viii) camera, as illustrated

in Table V. Access to sensors can be monitored to

identify malicious use. For instance, profiling malware

will typically access the user’s current location. Thus,

if an application is constantly accessing the GPS and

sending this information through the network, it could

be an indication of malicious –or, at least, potentially

dangerous– usage.

• System: access to system resources can be used to

identify malicious behaviors by monitoring: (i) processes,

(ii) storage, (iii) memory, (iv) package management, and

(v) scheduler, as identified in Table VI.

• User: there are a number of features that generally

involve user interaction and that could also provide

evidence of malicious behavior. We identify (i) user-

permissions frequency requests (applications can be clas-

sified into categories by monitoring the frequency at

which they request permissions [122]), (ii) third-party

apps, (iii) built-in apps, and (iv) other actions, as detailed

in Table VII.

1) Discussion: Malicious apps –as any other app– rely

on the device’s system and sensors to achieve their goals.

Different components of the device are therefore interrogated

by the malware to operate. For instance, the behavior of

botnets is deeply related to almost any kind of communication

feature as all bots rely on a C&C back-end. Additionally, they

could also require some system interactions in order to store

and update themselves. However, they are not likely to access

any sensor –unless the master commands it through a remotely

transmitted payload. Another interesting example is given by

TABLE V
MONITORABLE SENSORS FEATURES AND EXAMPLES OF ATTACKS THAT

COULD AFFECT THEM.
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Accelerometer
Access Accelerometer – – – – – • – –

Current Roll Pitch Yaw – – – – – • – –
Orientation Changing – – – – – • – –

GPS
Access Location – – – – – • – –
Current Location – – – – – • – –

Location Changing – – – – – • – –

Compass
Access Compass – – – – – • – –

Current Cardinal Orientation – – – – – • – –
Cardinal Orientation Changing – – – – – • – –

Gyroscope
Access Gyroscope – – – – – • – –

Current Angular Moment – – – – – • – –
Angular Moment Changing – – – – – • – –

Microphone
Record Audio – – – – – • – –
Access Audio – – – – – • – –

Touch
Touch Screen Preasure – – – – – • – –

Touch Screen Area – – – – – • – –

Speaker
Access Speakers – – – – – • – –

Play Audio – – – – – • – –

Camera

Take Picture – – – – – • – •
Access Picture – – – – – • – •
Record Video – – – – – • – –
Access Video – – – – – • – –

Calculate Depth (RGDB) – – – – – • – –

TABLE VI
MONITORABLE SYSTEM FEATURES AND EXAMPLES OF ATTACKS THAT

COULD AFFECT THEM.
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Processing

CPU Time – • • – – – – –
Runnable Entities – • – – – – – –
Context Switching – – – – – – – –

Wakelocks – – – – – – – –
Processes Changing – • – – – – – –

Storage

File Open • – – – – – – –
File Reads • – – – – – – –
File Writes • – – – – – – –

File Read Bytes • – – – – – – –
File Write Bytes • – – – – – – –

Memory

Dirty Pages – – – – – – – –
Active Pages – – – – – – – –

Anonymous Pages – – – – – – – –
Page Activations – – – – – – – –

Page Desactivations – – – – – – – –
Page Faults – – – – – – – –

DMA Allocations – – – – – – – –
Garbage Collections – – – – – – – –

Page Frees – – – – – – – –
Inactive Pages – – – – – – – –

File Pages – – – – – – – –
Mapped Pages – – – – – – – –

Writeback Pages – – – – – – – –

Pkg Mgmt

App Load Time • – – – – – – –
Install Packages • – – – – – – –
Delete Packages • – – – – – – –
Change Package • – – – – – – –
Restart Package • – – – – – – –

Master Clear • – – – – – – –

Scheduler

Yield Calls – – – – – – – –
Schedule Idle – – – – – – – –

Running Jiffies – – – – – – – –
Waiting Jiffies – – – – – – – –

fraud attacks such as Phising or Pharming. In these cases, the

malware is likely to use network connections in order to get

to the victim, access to SMS messages to steal, for example,

One Time Passwords (OTPs), or change the DNS resolution

of the device, but it will definitely not access sensors.

Accessing those components in a stealthy manner is still,

to the best of our knowledge, a limitation for attackers.



SUAREZ-TANGIL et al.: MALWARE IN SMART DEVICES: EVOLUTION, DETECTION AND FUTURE TRENDS 17

TABLE VII
MONITORABLE USER FEATURES AND EXAMPLES OF ATTACKS THAT

COULD AFFECT THEM.
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User–permissions # requests • • • • • • • •

Third Party Apps
Apps Installed • – – – – – – –
Apps Usage • – – – – – – –
Apps Delete • – – – – – – –

Built–in Apps

Address Book – – – – – • – –
History – – – – – • – –

Bookmarks – – – – – • – –
Calendar – – – – – • – –

Feeds – – – – – • – –
Email – – – – – • – –

Other Actions
Push Notifications – – – – – • – –

Unlock • • • • • • • –

Nevertheless, there are some technical exploitation vectors

that allow a malware to root the device, which could thwart

detection at some levels. In those cases, access to hypervisor-

level monitoring is paramount to identifying such cases.

Tables III through VII present various examples of ma-

licious activities and the features that would likely allow a

detection system to identify them. Several conclusions can be

drawn:

• Monitoring can be a very heavy consuming task. Thus,

identifying a monitoring strategy as well as an appropriate

type of features is crucial to reduce workload and improve

detection efficacy. For instance, if a user is interested in

using his device in a Bring-Your-Own-Device (BYOD)

context, avoiding exfiltration of sensitive information may

be critical, and therefore monitoring only some specific

features would be a good strategy.

• From all eight cases studied, the most relevant group

of features affects communications (Table IV). In this

regard, it is also interesting to identify adaptive mon-

itoring strategies based on the appropriate amount of

features. Thus, if a detection system can likely identify

the most popular malware by only monitoring, say, 40%

of the features, then monitoring the remaining ones can

be eventually switched off, e.g., when the battery is lower

than a given threshold.

Finally, we emphasize that the list of detection features

presented in Tables III through VII are only an excerpt of

all those that can be used by a detection system. In general,

each type of device will offer a more or less exhaustive list

of available features for each category given above.

C. Overview of Detection Systems

In the last few years several works have been proposed to

detect malware on smart devices –mostly smartphones and,

more specifically, for ANDROID OS platforms. We have clas-

sifed the 20 most representative detection systems according to

the taxonomy provided above. The result, shown in Table VIII,

summarizes current research directions.

Even though all detection systems are strongly interrelated,

some general characteristics are evident. For example, while

some techniques are more versatile and, therefore, are used

more often, others are used mainly for certain detection sys-

tems. Thus, both static and dynamic analysis are used for both

device and market protection. However, it is more frequent to

use dynamic analysis for device-oriented detection and static

analysis for market protection. Despite this, dynamic analysis

is becoming an important technique for market detection as

well, as new paradigms based on Security-as-a-Service, such

as Replicas in the Cloud, are gaining popularity.

For the sake of organization, in the remaining of this section

we describe current research proposals grouped into three

main categories:

i) Device monitoring systems.

ii) Automatic app-review systems for market protection.

iii) Attack-specific malware identification systems (both for

user and market protection).

D. Device-based Monitoring Systems

Device-based malware detection systems have received

much attention lately. They mostly use dynamic analysis

techniques, although some combine them with static analysis

to improve the detection strategy. In this regard, both anomaly

and misuse detectors are proposed.

1) Anomaly Detectors: Schmidt et al. [137] leverage both

static and dynamic analysis for detecting malware in SYM-

BIAN OS and ANDROID OS devices. On the one hand,

function calls are first extracted, and monitored data is then an-

alyzed using decision trees. Classifiers are trained to recognize

normal and malicious apps. On the other hand, an anomaly-

based malware detection is used for dynamic analysis. Fea-

tures such as free RAM memory, CPU usage, SMS count,

etc. are monitored for further analyzing behavior. Analysis

is done in the cloud using machine learning algorithms such

as Artificial Immune Systems (AIS), Self-Organizing Maps

(SOM), Support Vector Machines (SVM), and Tree Kernels.

A somewhat similar approach is Andromaly [127], which

uses dynamic analysis for periodically monitoring a number

of features and machine learning anomaly-based detectors for

classifying apps as goodware or malware. In Andromaly, how-

ever, classification is done locally in the device. The scheme

monitors various system features such as CPU consumption,

number of network packages, number of running processes

and battery level. Redundant features are first eliminated

using three feature selection algorithms: Chi-Square, Fisher

Score, and Information Gain. Furthermore, collected obser-

vations are classified using K-Means, Logistic Regression,

Histograms, Decision Trees, Bayesian Networks and Naive

Bayes. Evaluation was performed testing a small number

of self-implemented malware samples, and results show a

detection rate accuracy ranging from 44% to 100%. More

precisely, they show that Fisher Score with 10 top features

selected, and using Naive Bayes and Logistic Regression,

perform better than the other classifiers. Although no real

malware is studied, their experiments help to understand

which machine learning algorithms are superior as well as

their degradation. In fact, their experiments show a 10% of

performance degradation in the worst scenario, i.e., 8 different

classifiers with 30 features. However, it is not clear how this

performance has been measured and whether the consumption
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TABLE VIII
MALWARE DETECTION SYSTEMS.

LEGEND

Platform Type of Monitoring (ToM) Type of Analysis (ToA)
Place of Monitoring and Identification
(PoMI) and Place of Analysis (PoA)

And: Android SYS: System calls E: Expert L: Local Outline
Win: Windows NET: Network ML: Machine Learning IRM: Local Inline (IRM)
Sym: Symbian EL: Event Log CL: Clustering C: Cloud

I: Instructions DG: Dependency Graphs DB: Distributed
Type of Detection (ToD) P: Permissions ST: Statistical HP: Honeypot

S: Static PT: Program Traces PRO: Probabilistic Models RC: Replica in the Cloud
D: Dynamic PCB: Process Control Block SB: Sandbox

API: API Calls Type of Identification (ToI) H: Hybrid
Other K: Kernel-level A: Anomaly

/0: Unavailable U: User-level M: Misuse
SPEC: Specification

Detection Approach
Plat. ToD ToM ToA ToI PoMI PoA Consumption Features Attack Observations

Dendroid
(2013) [118]

And S I
ST,
DG,
CL

/0 C C

Discussed: deals
efficiently with
large databases
of malware
instances

Code Chunks –
a high-level rep-
resentation of the
CFG

Automatic
classification
of unknown
malware samples

The classification is done using
text mining and information re-
trieval techniques. Hierarchical
Clustering is also used to extract
evolutionary analysis

AppProfiler
(2013) [123]

And S, D
API,
PT

E M L L, C Not available
Permissions, and
API Calls

Privacy leakage

API calls are analyzed stati-
cally using signatures and apps
are traced dynamically through
tainting analysis

Apps
Playground
(2013) [124]

And D
SYS,
PT

/0 /0 C C Not applicable
Taint tracing,
SYS call, etc.

Any kind
Heuristic-based UI interaction
based on contextual exploration

Secloud
(2013) [125]

And * * * * RC C
Device consump-
tion not available

Any kind Any kind

Detection techniques: AV scan-
ning, file integrity checking,
SYS call monitoring, or network
intrusion detection and response

TStructDroid
(2013) [126]

And D PCB
STAT,
ML

A L L

Performance
degradation
of 3.73% on
average

Frequencies of
99 preliminary
parameters: page
frames, context
switches, page
faults, virtual
memory, etc.

Any kind

Type of analysis: theoretic anal-
ysis, time–series feature log-
ging, segmentation and fre-
quency component analysis of
data, and machine learning clas-
sifier

Andromaly
(2012) [127]

And D * ML A L L

16,78Kb ±32
RAM (≈ 8.8%),
5.52% ±2.11
CPU, and 10%
Battery (unclear)

Detection
Method:
monitorization of
features. Feature
selection: Subset
of selected
features from 88
initial categories

Any kind of
anomaly

Training Method: Classification
with labelled data. Experimental
evaluation

AppGuard
(2012) [128]

And D PT /0 M IRM C Not available
Program traces
and generated
events

Privacy leakage
and user–level
misuse —kernel-
level is not
monitored

Analysis is done off-line, prior
to repackaging the app, i.e., in
the cloud

Crowdroid
(2011) [129]

And D SYS CL A L C Not available
System calls per
application

Any kind of
anomaly

Training Method: Clustering
with k–means: i) malware,
and ii) goodware. Evaluation:
Experimental and wild malware

DroidScope
(2012) [130]

And D * /0 /0 SB C Not applicable Any kind Any kind

ToM: Syscalls, etc. Ad–hoc plu-
gins for monitoring features and
analyzing data (authors provide
several proof of concepts, e.g.:
tainting

MADAM
(2012) [131]

And D K, U ML A L L

Overhead of
3% memory
utilization, 7%
CPU and 5 %
battery

K: SYS, proc.,
memory, CPU
usage. U: user–
state, key strokes,
called numbers,
SMS, NET

Any kind of
anomaly

K-NN (with K=1) for classifica-
tion. 10 malicious apps and 50
benign. 93% detection rate and
5% FP

Peng et al.
(2012) [132]

And S P PRO N/A C C Not applicable Permissions
Effectiveness of
apps permissions

RiskRanker
(2012) [133]

And S I/P/API DG M C C Not applicable

Vulnerability sig-
natures, permis-
sions, API calls:
crypto, dynamic
code, IPC, and
JNI, etc.

Any kind

Checks a pre-defined set of ma-
licious operations (e.g.: known
exploits) to rate the severity of
stealthy applications

SmartDroid
(2012) [134]

And H * * * SB SB Unavailable Any
UI–based obfus-
cation

Improved detection by generat-
ing UI-based trigger conditions.
Any kind of detection system
might be plunged, but no further
details are given
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Detection Approach
Plat. ToD ToM ToA ToI PoMI PoA Consumption Features Attack Observations

Woodpecker
(2012) [135]

And S I/P DG /0 C C
Time consuming
analysis: 1 hour
per phone image

Executing
paths and 13
representative
privileged
permissions

Capability leaks.
Confused deputy
attacks

Uses CFG for detecting explicit
capability leakages and permis-
sion analysis for implicit capa-
bility leakage

PiOS (2011)
[136]

iOS S N/A DG N/A C C Not applicable Instructions Obfuscation
Uses CFG for detecting capabil-
ity leakages

Schmidt et
al. (2011)
[137]

Sym/And S/D SYS CL A L C/DB Not available

Free RAM,
User Inactivity,
Process count,
CPU usage, SMS
sent, and others
not specified

Any kind of
anomaly

Training method: SVM–light
and user’s statistical data

Elish et al.
(2013) [138]

And S I DG /0 C C Not applicable
Data event–
specific control

Component
hijacking for
information
leakage and
unauthorized
access

Uses DDG to track the user’s
private information

CHEX
(2012) [139]

And S I DG /0 C C Not applicable User’s data

Component
hijacking for
information
leakage and
unauthorized
access

Uses system dependence graphs
to track the user’s private infor-
mation

AASandbox
(2010) [140]

And D * CL M SB C Not applicable Not available Any kind
Training method: Unspecified
type of clustering. Evaluation:
Self–written malware

Paranoid
Android
(2010)
[141]

And D * * * RC C
Discussed.
Apparently larger
than expected

Not available Any kind
Training method: Dynamic anal-
ysis and AV Analysis. Evalua-
tion: Not performed

TaintDroid
(2010) [84]

And D PT E M L L

Uses 14%
CPU and
4.4% memory
overhead. Power
consumption not
available

Variables,
methods, file,
and message

Explicit informa-
tion flow leakage

Type of monitoring: label-based
tracking of variables, methods,
files and IPC via dynamic taint-
ing, and enforced by the user.
Tainted variables are propagated
according to data flow rules

Kim et al.
(2008) [142]

Win D HW ST M L L/C Not available
Energy consump-
tion

Energy–depletion
attacks

The consumption is monitored
using physical hardware (HW)
and the analysis is done either
at the phone or at the server (no
performance comparison is pro-
vided). The signatures are gen-
erated sampling the power con-
sumption history and matching
is computed using χ2–distance

exhibited is in the same conditions with the malware detector

or without it.

Similarly to Andromaly [127], MADAM [131] uses dy-

namic analysis for periodically monitoring a number of fea-

tures, and machine learning anomaly detectors for classify-

ing goodware and malware, locally in the device. However,

MADAM is evaluated using real malware samples, and con-

sequently needs a higher number of features to model user

behavior. Furthermore, collected observations are classified

using K-Nearest Neighbor (K-NN) with K = 1 (1-NN). The

evaluation was carried out with more than 50 goodware

applications and 10 malware samples along with several

user behaviors, improving the detection accuracy (93%) with

respect to the same classifier used in Andromaly [127]. The

results show an average number of number of 5 false positives

per day. The reported performance overhead is 3% of memory

consumption, 7% of CPU overhead and 5% of battery.

More recently, TStructDroid [126] presents a real-time

malware detection system for ANDROID OS devices. The

proposed system monitors Process Control Blocks (PCB) and

uses theoretical analysis, time-series feature logging, segmen-

tation and frequency component analysis of data, and a learned

classifier to analyze monitored data. Evaluation shows a 98%

accuracy and less than 1% false alarm rate, togetther with a

3.73% of performance degradation.

Finally, Crowdroid [129] is another anomaly-based mal-

ware detection system for ANDROID OS devices. The main

difference with Andromaly [127] and MADAM [131] is that

authors analyze the monitored featured in the cloud, whereas

the other two approaches train their classifiers locally in the

device. Collected observations are classified using K-Means.

Evaluation was also carried out using a self-implemented

set of malware samples, showing a detection rate of 100%.

Additionally, they also test their system with two malware

instances observed in the wild, showing a detection rate of

85% and 100% respectively. A key limitation in their study is

that they assume that outsourcing the analysis should present a

lower battery degradation than approaches that classify locally.

However, we consider that this assumption has to be formally

proven as some detection approaches are quite lightweight and

might consume less than continuously transmitting all traces

through the network.

2) Misuse Detection: AppGuard [128] is a malware preven-

tion system for ANDROID OS in which the monitoring system

is placed inline (IRM) with the application. Applications are

manipulated using the repackaging technique, and the monitor-

ing system is, therefore, inserted inside the applications. Ap-

plications can thus trace themselves and a number of security

policies can be defined to enforce system permissions at run-

time. Evaluation was performed using 13 apps, each of which
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was inlined with 9 policies. One noteworthy characteristic is

that inlined apps incur a negligible increment in their size.

Reported experiments in [128] also compare the execution

of three function calls in both the original and the inlined

app (the latter with no policies set), showing a degradation of

5.0%, 6.2%, and 1.0% of overhead respectively. In this regard,

we consider that the three micro-benchmarks used are not

conclusive due to their simplicity. Additionally, we consider

that these results cannot be compared with Andromaly as they

were not tested under the same conditions.

3) Replicas in the Cloud: Approaches such as Paranoid

Android [141] or Secloud [125] have focused on performing

malware detection tasks over synchronized replicas of the

device maintained in the cloud. Thus, all security monitoring,

analysis and identification tasks can be done in an environ-

ment not subject to battery constraints. Additionally, multiple

detection techniques can be applied simultaneously, as several

replicas can be run at the same time.

The proposed systems introduce several attack detection

mechanisms for dynamic analysis in the replicas such as

AV scanners and tainting analysis. However, Secloud [125]

extends those mechanisms and deploys a number of response

and prevention techniques, including file removal, process

termination, periodic backups, network filtering, and device

quarantining.

Experiments on Paranoid Android [141] show that syn-

chronizing the device with the replicas does not introduce

more than 2KB/s and 64B/s of trace data for high-load and

idle operation environments, respectively. This performance,

however, cannot be compared with Secloud [125], as for the

latter no information about the consumption of the device

being replicated is provided.

E. Market Protection

Most of the aforementioned techniques are typically de-

signed to monitor physical devices, although they can also

be used in virtual environments for market protection. Using

specific monitoring techniques for virtual environments can

bring about a number of benefits, such as (i) performing

a resource-intensive security analysis, (ii) enabling virtual

machine introspection [143] to intercept OS-level semantics,

or (iii) enabling the possibility of hosting exact replicas of

the device in the cloud (e.g.: CloneCloud [144], and ThinkAir

[145]) as mentioned before.

1) Sandboxing: Several approaches have been proposed for

malware detection in the form of sandboxes. For example,

AASandbox [140] is an ANDROID OS analysis sandbox for

both static and dynamic analysis. AASandbox uses an android

emulator, pre-loaded with a SYS call monitoring service.

DroidScope [130] is another sandbox for ANDROID OS

based on virtualization. It allows to monitor app features at the

three layers of ANDROID OS’s architecture, i.e., hardware, OS,

and Dalvik Virtual Machine. Different types of monitoring can

be enabled by developing custom plugins over DroidScope. In

this regard, the authors include (i) a collector for native and

Dalvik instructions traces, (ii) a profiler for API-level activity,

and (iii) a tracking system for information leakage using taint

analysis.

2) Smart Interaction: Sandbox analysis poses a limitation

when interacting with samples in an automated way, due to

the fact that some malicious apps hide their malicious activity

through the User Interface (UI). In this regard, SmartDroid

[134] presents an hybrid static and dynamic detection method

to reveal UI-based trigger conditions in ANDROID OS. While

static analysis is used to generate Activity and Function Call

Graphs (ACG and FCG, respectively), dynamic analysis is

used to explore such paths.

AppsPlayground [124] presents a similar approach combin-

ing detection techniques (ranging from taint tracing to SYS

call monitoring) along with automatic exploration strategies.

The proposed framework uses heuristics to guide the UI

inputs, avoiding redundant explorations and using contextual

information to fill editable text boxes.

3) Risk Analysis: Risk analysis techniques are emerging

as a mechanism to palliate the ineffective way in which

permissions are used to communicate potential threats to

the user [33]. Here, Grace et al. propose the use of static

assessment metrics to measure dangerous behaviors in AN-

DROID OS called RiskRanker [133]. Their proposal focuses

on conducting a scalable, efficient and accurate proof-of-

concept rather than leveraging on sophistication. Contrary,

Peng et al. [132] propose the use use probabilistic generative

models for risk ranking and scoring schemes. More precisely,

they evaluate a range of models starting from simple Basic

Naive Bayes (BNB) to advanced hierarchical mixture models,

showing that these models offer a promising mechanism for

risk scoring.

4) Similarity detection: Researchers have explored differ-

ent ways to detect repackaging in markets by detecting simi-

larity dependencies among population of applications. While

early approaches use syntactic analysis such as string-based

matching [146], recently approaches elaborate on semantic

analysis [147], [118], e.g., PDG, as it is resilient to code

obfuscation. However, semantic analysis is generally more

expensive than syntactic analysis.

A different approach is presented in [146], where sev-

eral compression algorithms are used to compute normal-

ized information distances between two applications based

on Kolmogorov complexity measurement. Their algorithm

first identifies which methods are identical and calculates

the similarity of the reminder methods using Normalized

Compression Distances (NCD). In order to reduce complexity,

the authors use a representation of each method based on

structured control flow signatures [148]. Finally, authors apply

Longest Common Subsequence (LCS) algorithm to identify

differences between similar elements.

Zhou et al. [55] propose a system called DroidMOSS for

detecting repackaged applications based on a fuzzy hashing

technique. Distinguishing features are first extracted in the

form of fingerprints, and then compared with those from other

applications in order to identify similarities. These features

are computed by applying traditional hash functions to pieces

of code of variable size. The size of the pieces is bounded

by smaller chunks of fixed size called reset points. A chunk

is considered a reset point when the resulting hash is a

prime number. Then, the edit distance is calculated between

two applications by comparing their fingerprints on identical
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matching-basis. More recently, authors have extended their

work in [149]. While their former work is designed to detect

repackaging in unofficial markets, the latter is capable of

detecting repackaging among apps in the same market.

Authors in [150] present Juxtapp, a system for detecting app

similarity. They propose an optimization over the representa-

tion of the applications as an alternative to k-grams based on

feature hashing and then use hierarchical clustering to classify

similar applications.

Authors in [147] present DNADroid, a system for detecting

cloned applications based on dependency graphs between

methods. PDG is used to detect semantic similarities by com-

paring graph isomorphism. Prior to similarity detection, au-

thors group applications based on meta-information retrieved

from each application, and they use several filters to enhance

efficiency. Although their experiments show better results than

similar approaches such as [146], the scheme is less efficient

in terms of performance. In fact, their experimental testbed is

deployed in a small cluster composed of one server and three

desktop computers over Hadoop. Even there, the analysis rate

is 0.7 applications per minute.

More recently, Suarez-Tangil et al present Dendroid [118],

a text mining approach to analyzing and classifying code

structures in Android malware families. By adapting the

standard Vector Space Model and reformulating the modelling

process followed in text mining applications, authors present

a novel way to measure similarity between malware samples.

This similarity is used to automatically classify samples into

families. Authors also investigate the application of hierarchi-

cal clustering over the feature vectors obtained for each mal-

ware family. The resulting dendograms resemble the so-called

phylogenetic trees for biological species, allowing researchers

to conjecture about evolutionary relationships among families.

Experimental results suggest that the approach is remarkably

accurate and deals efficiently with large databases of malware

instances.

F. Attack-specific Malware Identification Systems

The majority of the approaches described above focus on

general detectors using either anomaly or misuse detection

for both static and dynamic analysis. However, due to the

diversity of malware goals and incentives, other schemes are

narrowing the complexity towards detecting specific classes

of malware, such as privileged escalation, battery-depletion

attacks, or money stealing.

1) Privilege Escalation: There are two common types of

privilege escalation attacks according to whether the exploita-

tion strategy focuses on inter-process capability leakage or

system vulnerabilities. Approaches such as XManDroid [70],

Woodpecker [135], Elish et al. [138] or CHEX [139] focus on

the first class, while others such as [151] concentrate on the

latter.

XManDroid [70] is a privilege escalation detection tool

for ANDROID OS devices. Dynamic analysis is used to

identify covert channels using DFG. Woodpecker [135] is

capable of identifying both explicit and implicit leakage by

combining static with dynamic analysis. Static analysis is used

to identify possible execution paths by means of CFG, and

inter-procedural data flow analysis is used to filter out non-

dangerous paths. Additionally, app permissions are examined

to broaden leakage search. Similarly, Elish et al. [138] use

DDG providing user-interaction dependencies of more than

1000 benign and malign apps, while CHEX [139] employs

system dependence graphs over more than 5000 applications

from Google Play.

ROPdefender [152] is a generic ROP detection tool for

Windows and Linux–based OS capable of enforcing a return

address check. Although ROPdefender is not built for smart

devices, the proposed framework can be applied in this con-

text.

2) Grayware: As discussed early in this paper, grayware

poses a serious challenge to privacy leakage detection system.

Several approaches have focused on detecting such privacy

leakages, such as TaintDroid [84] for ANDROID OS devices

and PiOS [136] for IOS.

TaintDroid [84] uses dynamic taint analysis to track sen-

sitive information. It monitors variables, methods, files, and

messages throughout the program execution according to data

flow rules, and label the variables as they use the sensi-

tive data. When a piece of sensitive information attempts

to leave a taint sink, e.g., through the network interface,

TaintDroid requests user consent to do so. The authors studied

30 popular applications, showing that at least 20 of them

misused users’ private information. Experiments also show

that TaintDroid incurs 14% CPU and 4.4% memory overhead.

A major limitation of TaintDroid is its inability to distinguish

between legitimate and non-legitimate exfiltrations, especially

when facing grayware. In fact, their experiments show that

37 out of 105 instances (35%) were incorrectly classified as

false positives. Additionally, techniques such as tainting can

be circumvented through leaks via implicit flows, i.e., using

program control flow to disclose information.

AppProfiler [123] uses dynamic tainting analysis along with

static analysis to extract privacy-related behaviors. The scheme

builds a knowledge base that maps application behaviors with

API calls observed during static analysis, providing the user

with valuable information about their apps.

Finally, PiOS [136] is an information leakage detection

system for IOS devices that uses static analysis on apps.

PiOS constructs CFG paths from the sources of sensitive

information to data sinks by means of data-flow analysis. So

far, static analysis of IOS apps does not have to face the

obfuscation challenge, as obviously obfuscated apps would

not pass the revision process. However, this might change in

the coming years if non-walled-garden models such as Cydia

gain popularity.

3) Battery-depletion: Traditional anomaly and misuse de-

tection techniques have not paid much attention to unknown

energy-depletion attacks. In this regard, Kim et al. [142]

proposes a power-aware malware detection system for smart

devices. It uses dynamic analysis to monitor power sam-

ples and build a consumption model. Power signatures are

generated from monitoring malicious samples in the device,

and results are analyzed in the device or in the cloud using

noise filtering and data compression algorithms. After building

the model, malware is identified by using χ2-distance and

comparing the results with a set of signatures.
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V. OPEN RESEARCH TOPICS

Malware in smart devices still pose many challenges and

a number of important issues need to be further studied and

addressed with novel solutions. This section identifies some

open issues where research is needed. Some of these problems

are not specific to smart devices, such as for example the case

of botnets. Others, such as Online Social Networks (OSNs) –

which have attracted millions of active users in the last years–

are increasingly related to smart devices, as users mostly

access them through their smartphones and smart TVs. Thus,

security problems in these domains (e.g. socialbots [153]) will

likely target these platforms soon.

A. Automatic Malware Analysis and Classification

The impressive growth both in malware and benign apps is

making increasingly unaffordable any human-driven analysis

of potentially dangerous apps. Dynamic analysis techniques

such as those surveyed in [48] are progressively playing a

key role in detecting malware for smart devices. Current

trends in malware engineering suggest that malicious software

will continue to evolve its sophistication, in part due to

the availability of reuse-oriented development methodologies.

From the defender’s point of view, this should be exploited

to facilitate analysis and detection. For example, some works

conducted over the last years have explored the possibility

of clustering malware instances [154], [147] into classes

according to some similarity metric. Such classes can be later

used to automatically classify newly discovered specimens,

thus facilitating their analysis. We believe that further efforts

along this line are required, in particular by developing more

fine-grained techniques. For example, instead of just pointing

out what malware samples are similar to a given one, it would

be more useful to decompose the sample in components and

perform the similarity search at that level (we refer the reader

to Dendroid [118] for more details in this regard).

B. Trusted Software

In the case of current smartphones and tablets, trust on the

non-malicious nature of an app is based on two factors: (i) the

implicit assumption that the market operator has conducted

some security review before making the app available for

download; and (ii) the identity of the developer, given by

the signature attached to the app, which also provides some

evidence of the app’s integrity. The first point is not fully

reliable, as operators cannot afford to carry out an exhaustive

analysis over every submitted app; and, even if they could,

there is still some non-negligible probability of sophisticated

malware evading detection. As for the identify of the developer

and the app’s integrity, evidence suggests that most users do

not pay much attention to them, or positively ignore them

when downloading apps from alternative markets.
We believe that further efforts to improve trust in software

are required. This will be increasingly necessary in the near

future, as the number of developers –and, hence, apps– will

likely grow very significantly. Reputation systems [155], [156]

adapted to this context might offer some added value, in

particular by exploiting interactions in large user communities

such as, for example, those provided by online social networks

or mobile adhoc networks [157]. But other mechanisms for

building trust could also apply, such as for example remote

attestation protocols [158], [156], [75] or any other schemes

to ensure the authenticity and integrity of software.

C. Malware in Other Smart Devices

The experience gained from current smartphones suggests

that malware will also hit other smartdevices as soon as

they appear. Evidence in other pervasive technologies already

exists. For example, nowadays Radio Frequency Identification

(RFID) systems are used in a wide range of applications,

such as transport tickets, access control systems, e-passports,

e-health applications, etc. The benefits of adopting RFID

technology for identification purposes are clear, but its as-

sociated security risks need to be addressed. One of them –

often underestimated– is malware. The use of Internet-enabled

mobile devices as RFID readers makes this sort of attacks

potentially more harmful. Most previous works have focused

on the securing the communication link between the tag and

the (mobile) reader. There are, however, some preliminary

works [159], [42] on RFID malware, but further studies and

solutions are required. Similarly, IMDs and other medical

devices will likely be an attractive target for attackers due to

the economic value of the information they can provide [43],

[160]. These devices are not prune to the software problems

like malfunctions and corrupted updated versions [161], [162].

D. Grayware and Other Privacy Issues

Applications are increasingly requiring the user to authorize

the transference of personal information to the cloud as part

of the normal use of the application. For instance, What-

sApp sends the user’s address book to establish friendship

connections [163]. However, even if the user authorizes such

transference, it does not mean that it will be used for purposes

other than those conveyed to the user, such as for example

market research. In other cases users are only informed that

some personal information will be sent, but the particulars

about what specific items or how it will be used are not

given. Identifying misuse of personal information, both on-

platform and in the cloud, is a challenging process that

is typically tackled by legal enforcement mechanisms, but

technical approaches should be explored. For instance, in the

same way that Google App Engine [164] is used to deploy

in-the-cloud applications –monitored by Google–, back-end

services for smartphones and other smart devices could be

moved to a cloud controlled and monitored by a trusted

third party. This could make feasible to monitor behavior

and enforce security policies in the cloud-end of the service,

thus complementing other security mechanisms applied in the

device.

Similar privacy-related problems arise in cloud-based mon-

itoring schemes, primarily in those that maintain a virtualized

replica of the device to carry out monitoring tasks that

are unaffordable to perform directly on the device. Privacy-

preserving monitoring systems for this scenario are required,

but also more lightweight monitoring and detection mecha-

nisms that can run on the device with an appropriate balance

between efficacy and power consumption.
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E. Cooperative security

In the near future it is very likely that many users will own

a network of smart devices, including smartphones, smart TVs

and other home appliance, and wearable computing platforms.

Such networks could be leveraged to implement cooperative

security functions, as a complement to cloud-based and on-

platform monitoring and analysis mechanisms. Ideally, several

connected devices could cooperate to improve security in a

number of ways. For example, resource-intensive tasks can

be delegated to devices with a permanent power source to

preserve the battery of mobile platforms. Similarly, mutually

monitoring schemes could be interesting, where each device

monitors the behavior of others to detect compromise.

F. Forensics-based analysis for smart device protection

Sometimes malicious programs uninstall themselves after

achieving their goals. However, analyzing evidences that they

leave behind could be used as an input for detecting future

propagations using the same infection vector. Identifying such

traces is a great challenge, particularly due to the availability

of anti-forensic tools for devices such as smartphones [165]. In

this regard, two different approaches might be worth exploring.

On the one hand, deleting evidences or attempting to neutralize

any source of evidence usually produces fresh new evidences.

On the other hand, new paradigms such as the aforementioned

replicas in the cloud, allow the creation of novel forensic

approaches on the cloud based on virtual introspection.

VI. CONCLUSIONS

In this paper, we have presented a comprehensive survey

on the evolution of malware for smart devices and recent

results on detection and analysis techniques. We have first

provided an overview of the security models and protection

mechanisms present in current platforms for smart devices,

mostly smartphones. Next we have proposed a characterization

of malware in terms of three key factors: pursued goals and

associated behaviors; distribution and infection channels; and

privilege acquisition strategies. Our analysis of some represen-

tative samples shows that malware is becoming increasingly

complex and adaptive, with constantly changing goals and

using multiple distribution and infection strategies.

We have also provided an analysis of the 20 most significant

proposals for detecting and analyzing malware for smart

devices proposed between 2010 and 2013. Instead of merely

enumerating and describing each one of them, we have first

identified and classifed all device features where malware

behavior could manifest. This taxonomy is complemented with

additional elements, such as where the monitoring and analysis

tasks takes place, or the specific detection technique used.

Finally, we have discussed a number of open research

problems in the hope of stimulating further research in this

thriving area.
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