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0. Preliminaries and Introduction
Many problems in mathematical physics and other sciences reduce to an equation of the form

dit
— 4 Al = (). 1
a T M

Here u = u(z,x) (¢ a time variable and x ¢ £ a space variable) is the unknown function with u(t,)
in a certain function space X for each . Further, A : D(A) € X -» X is a linear operator. In many
cases a mathematical or physical consideration suggests that a certain Banach or Hilbert space X
would be appropriate. In this setting we naturally have the fo]loWing definitions.

Definitions 0.1. The initial value probiem

%+Au=0 t>0 (inX)

u=upe X @

is said to be well posed if there exists a dense subspace D < D(A) of X such that
(i) For any given ug € D, there exists a continuously differentiable function u : [0,00) — X

such that (2) is satisfied.
(ii) For any sequence of continuously differentiable functions u, : [0,90) - X which satisfy
equation (1), u,(0) — 0 implies that u,(t) — 0 uniformly on compacta of 1 € [0,20). i

Definition 0.2. A family {T(z) | 12 0} of continuous mappings on a Banach space (X, -1} is
said to be a strongly continuous semigroup on X, or a C¢ semigroup on X, if the conditions below
are satisfied:

(i) T(0)=1Ithe identity mapping on X;
(i) T(@1) T(ty) =T(ty+1p) forall 11,27 2 O (the semigroup property);
(iii) Foreachu e X, the mapping T(¢)u : [0,00) = X is continuous. i

Definition 0.3. Let {T(t) | 12 0} be a Cy semigroup on X. Its infinitesimal generator is a linear
operator —A in X such that

D-A)={ue X | lim LOE=E i inX)
t 0+ I3
~Au=lim TOE=E o0 e DEA),
-0+

Theorem 0.4. The initial value problem (2) is well posed iff —A is closable and its closure -Ais
the infinitesimal operator of a Cg semigroup {T(t) | t2 0} on X, i
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This theorem deserves a little more detailed explanation. In fact, if the initial value problem (2) is
well posed, then A and hence Ahas D as a core and the semigroup {7'(r) | £2 0} is obtained by a
continuation of the solution operator u(f)¢):D — X (¢20). Conversely, if ~-A is the
infinitesimal generator of a Cq semigroup {T(z) | 1= 0} then D can be any core of —A. For con-
venience of the readers we mention that a subspace D of X is saidtobe acore of A if D c D(A)
and (Af ) =A.

From the above readily follows

Theorem 0.5. A dense subspace D < D{-A) is a core of the generator -4 of a C semigroup
(T 1 t2 0 onXif T()D cDforallz2 0. ]

The following well known theorem of Hille and Yosida in 1948 provides a characterization of an
infinitesimal generator —A of a Cg semigroup {T(¢) | t= 0} in terms of the spectral property of
the operator A.

Theorem 0.6. (Hille-Yosida) A linear operator —4 : D{-A) ¢ X -> X in a Banach space (X, li- 1)

is the infinitesimal generator of a Cg semigroup {T() | t= 0} on X iff the following conditions
hold:

(i) A is densely defined and closed.
(i) There exists @€ R and M 2 0 such that (©,%0) < p(4) and

HOI+AY IS MA—0)*, YVke Ny, YA> 0. 3)

The proof of the above theorem can be reduced to that for the so called contractive semigroup by
a renorming procedure. A Cg semigroup {T(f) | t= 0} is called contractive if 1 7)< 1 for all
t2 0. For such a class of Cy semigroup the above theorem reads as follows.

Theorem 0.6°. A linear operator —A : D(-4) c X — X is the infinitesimal generator of a contrac-
tive semigroup on X iff

(i) Ais densely defined and closed.
() (0,00) & p(A) and

t+AY <A, vas>o0. @)

Obviously condition (4) is equivalent to
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lu+pAull>liull, Yp>0, Yue D(A). ’ )

This is in turn equivalent to that

Re(Au, u)=2 0, Yue DA) 6)
where
Re(v,u)= Tim XV I=lull o0 cyws. )
t— 0+ t we J(u)

Here J : X — X* is the duality mapping (possibly multivalued). Such an operator A is said to be
accretive. If for some w € R the operator w/ + A is accretive, then A is called quasi-accretive.

As it happens very often, information on the dual operator A* of A is useful for the study of A
itself. For instance we have

Theorem 0.7. Let A be a densely defined closed operator on a Banach space X. Then
(i) R(A)=X iff AIM >0 Yue DA*)NA* ullzMllul]
(i) RA*)=X* iff AIM >0 Yue DAYMNAullZMllull] 1}

Theorem 0.6” with condition (4) replaced by (6) constitutes the Philips-Lumer characterization of
infinitesimal generators of contractive semigroups. In particular, a sufficient condition for —A to
generate a contractive semigroup on X is

®

Re(Au, u)z 0, Yu € D(A)
Re(A*v,v)=2 0, Vve D@A¥).

From Theorem 0.6 follows easily

Theorem 0.8, If A:DA)cX — X is a generator of a Cy semigroup {T(¢t) | t=0} on a
reflexive Banach space X, then A* is the generator of the C semigroup {[T()]* | t= 0}. (]

Note that for a non-reflexive Banach space X, [T()I* u : [0,00) — X* is not necessarily continu-
ous, so it is in general not a C¢ semigroup. '

Theorem 0.6 and its variants give perfect necessary and sufficient conditions for an operator —A
to generate a C semigroup on a Banach space X. Unfortunately these conditions are usually
hard to check in concrete situations. The following two results, one by Rellich, Kato, Gustafson
and Chernoff in terms of perturbations, one by De Graaf in terms of the so called auxiliary opera-
tors, provide useful sufficient conditions which are easier to verify in some concrete cases.

Theorem 0.9. (Rellich-Kato-Gustafson-Chemnoff) Suppose that A :D(A)cX — X be an
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infinitesimal generator of a C semigroup on a Banach space (X, il lf). Let P be another operator
in X such that D(P) o D(A) and

tPulls Miull+allAull, Yue D) &)

where M and o are nonnegative constants with o < 1. Then the operator A + P as defined on D(A)
generates a C semigroup on X.

If instead of (9) above a weaker condition
HPulls Miull+iAull, Yue D) 10)

is satisfied, then the operator A + P as defined in D(A) is closable and its closure A + P generates
a C semigroup on X. i

Theorem 0.10. (De Graaf) Let A be a closable densely defined operator in a Hilbert space
(H, ¢,-)). Assume that there exists a strictly positive self-adjoint operator @ such that
D{@)ycD(A),R(Q)=Hand

- Re(u, Aw) € o(u,u)

Re(Qu, Au) < co(Qu,u)} Vu e D(Q). (1

Then D(Q) is a core for the operator A and A generates a quasi-contractive Cg semigroup on X
(i.e. a Cg semigroup {T(#) | t= 0} suchthat {¢™® T(r) | t= 0} is contractive for some 0= 0). []

Theorem 0,10 was given in [Gr1]. All the remaining results are quite standard and can be found
in standard books on functional analysis or monographs on operator semigroups. Cf. e.g. [Fal,
[Go], [Pa], [R-S], [Ta] and [Yo].

Now we give a brief description of the structure of this thesis. For more details we refer to the
introductions of the respective chapiers,

In Chapter I we are concerned with the construction of the so called regular spaces and hyper-
spaces as well as linear operators therein. For a Banach space (X, Ii-1l) and an invertible operator
B of positive type in X a scale of Banach spaces {X§ | oe R} is defined. More precisely, for
020, X8 =(D(B°),I-l,) withllully = B ull for u « D(B?), and X3° = completion of X with
respect to the norm Il ull_s =1 B ull for u € X. From these Banach spaces we form their natural
inductive limits X3* = Tt;!u X} (o€ [~oo,+o0)) and projective limits X3~ = tr;\chg (0 € (~oo,400]),

Thus we have the scheme
X5 o X o X5 o X o X5 o X§ o XF.

In the above diagram the spaces to the right of X are called regular spaces and those to the left of
X hyper-spaces. We are thus led to the study of the inductive limits and projective limits of a
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sequence of Banach spaces in general, as well as linear operators therein. In doing so, the topo-
logical structures of the regular spaces and hyper-spaces are clarified and several types of con-
tinuous linear mappings on them are characterized. By choosing different space X and different
operator B various classical spaces of functions or generalized functions are realized functional-
analytically as regular spaces or hyper-spaces in the above sense.

In the second chapter we discuss the regularity and extendibility of a Cg semigroup ¢4 on X
with respect 1o a scale of Banach spaces {X§ | o € R} constructed in Chapter I. More precisely,
conditions between the operators A and B® (or A* and (B*)°) are given so that the semigroup
e on X restricts to a C semigroup on X§ (or extends to a Cy semigroup on Xz°). Applications
to matrix operators in [* and to second order partial differential operators on L2(IR") are
presented, We also set two criteria for an infinite matrix (a;) to generate a Cg semigroup on 2.

In Chapter III we formulate and prove a Hille-Yosida type theorem for locally equi-continuous
semigroups on the inductive limit space of a sequence of Banach spaces. We emphasize that
instead of semi-normms of the inductive limit, which are hard to find and to deal with, we use the
norms of the constituents of the inductive limit. The result together with that of Ouchi applies
readily to the spaces X§* defined in Chapter .

In the last chapter weighted L? spaces of harmonic functions on R%(g = 2) and several naturally
arising linear operators in them are studied. The central idea is an identification of a weighted L2
space of harmonic functions on R with the domain of a suitable positive self-adjoint operator in
L8771y (§97! the unit sphere in RY); the identification is the natural restriction-extension pro-
cedure. In particular, we have natural weighted L? spaces of harmonic functions on RY wherein
the differentiation operators are continuous or even compact. Also, working in the opposite
direction we arrive at a complete characterization of the ranges of the propagator of the fractional

spherical diffusion equation %’:— =—(~Arp)"* u, where Azp is the Laplace-Beltrami operator on
sl
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I. Regular Spaces and Hyper-spaces

This chapter is devoted to the construction of regular spaces, hyper-spaces and their linear opera-
tors.

In the first section we discuss topological properties of the inductive limit E* of an increasing
sequence of Banach spaces ((E,,l-llg) | n € Ny} and of the projective limit F~ of a decreas-
ing sequence of Banach spaces [(F, ll-lig,) | n e INg}, as well as lincar operators in them. One
point is the idea of using the so called interpolation type inequalities in the study of the topologi-
cal properties of inductive limits. Four types of continuous mappings T, i.e. E¥ - E*,E* - F~,
F-—F and F- - E* (E* and F* are spaces of type E* and F~ respectively), are characterized
in terms of, in particular, estimates of the form

BT ule < My Wull,,

The essential trick here is a "two dimensional” and a "three dimensional" diagonal argument.

In the second section so called regular spaces and hyperspaces are defined and studied. Given a
linear operator B : D(B) c X — X of positive type in a reflexive Banach space (X, - 1) we define
a scale of Banach spaces (X% ! ce R} as follows: For o2 0,X§ =(D(B%),l-ly) with
full, =kB°ull; for o <0 X§ is the completion of (X , - o) withllull o =B ull forue X. In

terms of this family of Banach spaces {X§ | ce R} we define X5 = U X3 with inductive

>0,
limit topology for oy e (o0, —o] and Xz = N X§ with projective limit topology for
o<,

o € [ee, o), By the properties of fractional powers of linear operators and by the results in the
first section we are able to clarify the relations among the spaces defined above and their topolog-
ical propetties as well as to give characterizations of continuous mappings thereupon. Together
with B the dual operator B* is an operator of positive type in the dual space X*; thus we have the
spaces (X*)§» , (X*)8t and (X™*)§+. There hold the natural duality relations (X§* =(X*)5%,
{(X*)p% 1* = X§ and similarly for the inductive and projective limits, We have the diagram

X o X o X o XM o X X o X o XF o XE o XS o X5
(X*)3% D X*)F o (X5 o XN o @M ox*
X* o (X*)F o (X*)F o X" o (X*)FF o X*)pe.

The spaces to the right of X and X™ are called regular spaces and the spaces to the left hyper-
spaces. Conditions are given for a densely defined operator A : D(A) ¢ X — X 10 be extendible to
a continuous operator acting between a pair of hyperspaces, in terms of its dual operator
A¥ : DAY) CcX* - X*.

Finally, in the third section we present various examples of regular spaces and hyperspaces by
choosing different Banach spaces X and operators B, In this way a number of classical function
spaces and generalized function spaces are realized as regular spaces and hyperspaces
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respectively. More precisely we have the following illustrative table.

X : B X$
comments
b g diag {3} P9 { R}
- weighted /7 spaces
2) L? u(x) > AX)u(x) L7 {A()}
weighted L? spaces
3) LP(R™) 1 - A(A Laplacian) wp s
Sobolev spaces on R”
4) L2([0,2]") 1-A w,
Periodic Sobolev spaces on R”
Wer periodic test space
Wher periodic generalized space
5) L2(R™) x%-A Lwyr
Modified Sobolov spaces
(LW)>* Schwartz test space

(LW)*>™ Schwartz tempered
a4 1

P
6) LP(R) e & =4 o
Ranges of heat-diffusion equation

7 LY(R) e X tanh(ar2)
Spaces of Van Eijndhoven-Meyers
X3 =S¥ Gelfand-Shilov
8) LYs7™) har® HAY,, (v.0)
Weighted spaces
of harmonic functions on R?
(877! unit sphere in RY) (Arp Laplace-Beltrami)  HAY(w)

Linear operators are discussed in these spaces.

L.1. Inductive Limits and Projective Limits of Sequences of Banach Spaces
Let there be given a sequence of Banach spaces {(E,.l-4,) | n e INg} such that E, c E, ., for
all n e INg and the embeddings are all continuous, i.e.,

Hull,y <M, lull, Vie No,Vuek, )

where the M,,’s are positive constants, In this case there always exists a corresponding sequence
of new norms 1 1, on E, which are each equivalent to I-li, and which are monotone decreasing,
ie.
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lul,yslul, Vne No,VuekE, )

Indeed it suffices to set
Lo g =li-lig
- o MY &)
belgn =M1 M, M)~ B llyyy ne Ny

Therefore in the sequel of this section we always assume the monotonicity of the sequence of
norms i+ 1,.

On the vector space E¥ = UN E, the locally convex inductive limit topology oiq is imposed; a
€ Ny

n

balanced convex set u in E is a neighbourhood of zero in (E*, o,,) iff u N E, is a neighbour-
hood of zero in E, forall n € INg. In general, topological properties of a subset G in E* cannot
simply be reduced to the corresponding properties of the sets G N E, in E,(ne INg). For
instance, Makarov has given various examples of inductive limits in which bounded sets in
(E*, 6ma) are not bounded in any of the spaces (E, , I+ I,), or even not situated in any of them.
However, there do exist conditions which ensure that a set G is bounded in (E*, oy,4) iff it is
bounded in some E,, (no depends on G); such a sequence {E, | n € INp} orits inductive Iimit
E* is said to be regular. We cite the following result of Floret [FI21.

Theorem L1.1, Let X, be the closed unit ball in E,,. If for all sequences {g,, | m € Ny} of posi-
n
tive numbers and all n € INg, Y, €,K,, is closed in E, 4, then the inductive limit E* = ind E,

m=0 R -3c0

is regular. , 0
As consequences of the above theorem we have the following corollaries.

Corollary L1.1. ([F12]) If there exists a semireflexive locally convex space E and an injective

continuous operator 7 : E* = ind E, -» E such that T X,, is closed for all n, then E* is regular.

n —»00 ]

Corollary 1.1.2. ([F12]) The inductive limit of a sequence of dual Banach space with the inclu-
sion mappings being dual mappings is regular. il

As pointed out by Floret, thé familiar fact that inductive limits of sequences of locally convex
spaces with (weakly) compact linking mappings are regular follows from Corollary 1.1.2 in view
of the following lemma ([Gro]).

Lemma 1.1.3. Let K be an absolutely convex, weakly compact subset of a locally convex space
V. Then there is a Banach space E such that [K] = E* isometrically and [K)|=E* <, V is
o(E*,E) - o(V,V*) continuous. Here [[K] denotes the linear hull of K equipped with the Min-
kowski normm mg. i
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¥ the inductive limit E* = ind E, is regular, then it readily follows that E¥ is bornological and

n—oe
barreled. If, in addition, an interpolation-type inequality is satisfied, then we can also character-
ize converging nets or sequences, Cauchy nets or sequences and compact sets in E* and conse-
quently obtain the completeness of E¥.

Theorem 1.1.4. Suppose that the inductive limit E* is regular and that E* is continuously
embedded in some Banach space £. Assume for each # € Ny there is £(>n) and a function
dnx: R* x R* - R suchthat the interpolation inequality

NS 0 0 uly, Hul), YueE, @)

holds. Here the function ¢, .(#,5) is monotone in each of its variables and such that ¢, ,{¢,5) — 0

as s — O for each fixed ¢. Then we have

(i) A bounded set {u, | e I} in E* converges (to zero) in E* iff it converges (to zero) in
some E,.

(ii) A bounded set {uy | o I} in E* is a Cauchy netin E* iff it is a Cauchy net in some E,,.

(iii) A subset G in E* is compact iff it is compact in some E,. (The same is true for relative
compactness.)

(iv) E” is complete,

Proof.

(i) Assume that a bounded set {uo | & I} converges to zero in E¥, The regularity of the
inductive limit E* implies the existence of some n ¢ Ny suchthat {u, { ce I} CE, and
lu, i€ M, forall o € I where M, is a positive constant. On the other hand the continuity of
the embedding from E* into E ensures that the net converges to zero in E, i.e., Hugll — 0.
Then, by assumption, there exists some & > n and a function ¢, ; such that (4) is satisfied. In
particular

Wik IS Gn g Mitgln, g )
s ¢n,k (Mn [ I “aﬂ)

from which follows that | u i, — 0. The converse is trivial.

(il) The proof is entirely similar to that of (i) and is omitted.

(iii) Let the subset G be compact in E™. In particular it is bounded in E* and the regularity of
the inductive limit implies the existence of some n € INg suchthat G c E, andfull,< M,
for all # € G, where M, is a positive constant. By our assumption we can choose some
k > n such that (4) is valid. Then, for a given sequence {u,, | me Ny} < G, the compact-
ness of G in E* implies the existence of a subsequence (i, —» v € G in E* and hence in E,
ie Huy—vll — 0asm’ ~» oo, From
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Watyr = VLS O g (U iy ~ V1, ity = VD)
S O M, Nty — v 1)
follows readily {u,,-} — v in E;. This shows the sequential compactess of G in E,, which
is however equivalent to compactness in the Banach space E;. The converse is trivial.

(iv) follows directly from (ii) and from the equivalence of bounded completeness and complete-
ness (Satz 4.3 in [F11]). fl

In analysis we meet projective limits as well as inductive limits of Banach spaces. However, the
theory for projective limits of Banach spaces is much simpler and more "classical” than that for
inductive limits. For completeness and easier citation we state the following standard results on
projective limits of Banach spaces, the proof of which is straightforward and can be found in the
standard text books on functional analysis and generalized functions, e.g., [G-S], [Sch] or [Wil].

Let there be given a sequence of Banach spaces {(F,,#-1,) | n € INg} such that F, o F,,; for
allne Ny and

Nul,< My hull,y; Vue Fpy,Vne No. @)

If we set

I« lg=l-Tlg
I lst =MoMy =+ Mylihyyy ne No ©)

then each of the new norms |- 1, on F, is equivalent to the original li.1, and they are monotone
increasing:

1+1,€1- 1,4 ne Ng. 6

Let us assume that F~ = r‘\ﬂ F, be not empty and equip F~ with the locally convex topology
ne e

Tproj generated by the sequence of norms (-, | n € INg}. Then we have

Theorem L1.5.

(i) F~ is aFrechét space, i.e., a complete metrizable locally convex space.

(i) A sequence {u, | ne Ny} in F~ converges (to zero) in (F~, Tpw;) iff it converges (to
zero) in all the spaces F,.

(iii) A sequence {lu, | n e INo} in F™ is a Cauchy sequence in (F™, Tyy) iff it is a Cauchy
sequence in each of the spaces F,.

(iv) AsetGinF~ is compact in (F~, T,;) iff it is compact in each of the spaces F,. The same
applies to relative compactness. i
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Now we proceed to characterize continuous mappings between spaces which are inductive limits
or projective limits of sequences of Banach spaces.

Theorem L1.6. Let {(E, I-lg)tine INg and {(E,,ll-llg*’) I ne INg} be two sequences of
Banach spaces with inductive limits E* and E* respectively, and let E* satisfy the conditions in
Theorem L14. Let {(F,,1-iz) I ne Ny} and {(F’,,,Il-l!,s_) Il ne Nl be two sequences of
Banach spaces with nonempty projective limits F~ and F~ respectively.

M

(i)

(i)

(iv)

For a linear mapping T : E* — E* the following are mutually equivalent:

1
2)

3)

T is continuous.

If a sequence {u, | me INy} is contained and converges (to zero) in E, for some
ne WNg,then {Tu, | me Iy} is contained and converges (to zero) in some E,;.

Forany n € Ny there exists an i € N such that
HTulg SsM,;lullg , Vue E, )

where (and below) M, ; is a positive constant.

For a linear mapping 7 : F~ — F~ the following are mutually equivalent:

1y
2

3

T is continuous.

If a sequence {u,, | m e INp} converges (to zero) in each Fp, then {Tu, | me Ng}
converges (to zero) in each F ;.

Forany /i € IN, there exists an n € Vg such that

T ullg, < Myiluly, , Vie F-. ®)

For a linear mapping 7 ;: E* — F~ the following are mutually equivalent:

®»
@

€)

T is continuous.

If a sequence {u, | me Ny} is contained and converges (fo zero) in some E,, then
{Tu, | me Ny} converges (to zero) in all the spaces Fi(ke INy).

For each nand kin IV holds that

1T ulp, £ My lully , Yue E,. ©

For a linear mapping: T : F~ -» E* the following are mutually equivalent:

M
@

3

T is continuous.

If a sequence {u,, | m € Ny} converges (fo zero) in all the spaces F,(n € Ny), then
{Tu, | me INg}iscontained and converges (to zero) in some E.

There exist n and k in [N such that

NTullg < My luly, Yue F-. (10)
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Proof. Since the arguments in the proofs to the four cases are quite similar, here we only include
the proofs to cases (i) and (iv).
@) 3) = 2)istrivial. 2) => 3): Suppose that there exists an n € N such that

lig, = ] .
Mﬁg&}ﬂ?‘u g, = Vie Ny as

Then, foreach i € INg we can find a sequence {u; | j € INo} such that
Hullg, =1 and 1T u;llz 2 j%, je N
Form the diagonal sequences {Tu; | ie Ny} and {u; | i € INg}. We have for each j e INg
andi > j
T ughg, 2N T ugllg, 2 i
and consequently
llT(u;;/i)lIE'j — oo as { > oo foreach je Ny,
However
Huglilg, m-}-——;o as [ -y oo,
The above two relations contradict with the statement in 2). Thus we have proved the equivalence
of 2) to 3}.

1) = 2): If asequence {u, | me INg} is contained and converges to zero in some E,, then it
converges to zero in E* and from the continuity of T follows that {Tu,, | m € INg} converges to
zero in E*. Theorem 1.1.4 (i) ensures the existence of some /i € Ngosuchthat {Tu, | me Ny}
is contained and converges to zero in E;.

3) = 1): Consider the restrictions of T to the subspace E,(ne INg). For a sequence
{u, | me Ny} lying and converging to zero in E,, since there exists an i € Ny such that (7)
holds, {7 u,, | m € INg)} converges to zero in £; and therefore in E*. Thus all the restrictions
are continuous. Now let U be a convex neighbourhood of zero in E*. Obviously T~} (U) is con-
vex in E* and E, n T™'(U) = (T gy (U) is a neighbourhood of zero in E,. So T71(U) is a
neighbourhood of zero in £* and T is continuous.

Thus we have completed the proof for (i).
(v) (3) = (2)is wrivial.

(2) = (3): Suppose that there be no pair of » and & such that (10) is valid. Then foranyn € Ny
and k ¢ INg we can find a sequence {#,:; | j € INo} in Fsup— such that

Nty jle, =1, N Ty jllg, 2 j2, Vje No. an

Now we form the sequence {v; | j € INo} with v;=u; ; ;, which is the diagonal of the "cube” of
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elements {u,; | n.k.j e INg}). Foreachn e INg we have, in view of the first relation in (11)
||v,-/;npnsnv,-/j||p}‘=%, Vjzn. 12)

Foreach k € INy we have, in view of the second relation in (11)
NI g, 20T gz j, Vjzk {13)

(12) and (13) readily lead to the conclusion that

“ijjﬂp.—-)()(j—}w), Vne Ny
NT(;/ j)lg, — o0 (j—o9), Yk e No a4

which contradicts the statement in (2).
(3) = (1)is obvious.
(1) = (2) follows from Theorem 1.1.4 (i). il

Note that the regularity of E* and its satisfying an interpolation type inequality are used only in
the arguments of (1) => (2) above, not in the other implications. By the way we also remark that
for a specific case of (iv) above both [Gr3] and [E-G1] gave an incorrect proof and the proof
given in [E-G2] is quite lenghy.

Coroliary LL.7. In each of the four cases in the above theorem, a linear operator T is continuous
iff it is bounded, i.e. it maps bounded subseis into bounded subsets. 1

Corollary L18. (E¥y* = n E*
ne Ny

F Y= U F¥,
FT) a,

Corollary 1.1.9.
() IfE*=E?* arevector spaces, then the following are mutual equivalent:

1) E*=E" astopological vector spaces, and both E* and E* satisfy the mentioned con-
ditions in Theorem L.1.6. '

2) If a sequence {u, i me INy) is contained and converges (to zero) in some E,, so
does it in some E;, and vice versa.

3) Forany ne INg there exists some /i € INg and a positive constant M, ; such that T
maps E,, into E;, and

zluﬁg‘SMn'g Vulg , Yae E,,

and vice versa. Note that in this case the regularity (and an interpolation type
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inequality) of £* implies that of E*.
(i) If F~ =F" as vector spaces, then the following are mutually equivalent:
1) F~=F" astopological vector spaces.
2) Ifasequence {u, | me Ny} convérges (to zero) in each of the spaces F,, (ne I¥y),
then it is convergent in each of the spaces F; (e Ny).

3) Foranyi e INp there exists some n € INg and a constant M, ; > O such that
Nulp, < My zVullp, VueF*,

and vice versa.

0

We point out that Theorem 1.1.6 (ii) and its counterparts in the above corollaries (the case of pro-
jective limits) are somewhat standard (see, e.g., [G-S], [Sch] and [Wil]). They are included here
mainly for completeness. It seems that Theorem L.1.6 (i) and its corollaries are not current in this
general setting. Geifand and Shilov made the statemert, in [G.S.], vol. I, Chapter 1 Section 8,
that sequential continuity and sequential boundedness for a linear mapping between two spaces of
inductive limit are equivalent to each other; however their proof is not correct. The advantage of
the above theorem and its corollaries consists in characterizing the continuity of linear mappings
in terms of inequality estimates rather than in topologies, which are the usual tools of analysis.

At the conclusion of this section we remark that in many instances of inductive limits interpola-
tion type inequalities as (4) indeed hold. It will be the case in the definition and discussion of reg-
ular spaces and hyper-spaces involving fractional powers of operators; see the next section. This
applies also to the spaces defined by ter Elst as intersections of Grevery spaces {[tE]). Here we
give another example.

Example L.1,10. Let ¢ 2 2 be a natural number and a,b > 0. The space HAZ (a,b) consists of all
harmonic functions #(x) on R such that

Huly=( [ 1u@)1? e doy¥ < oo, as
Re

It is a Hilbert space with the.given norm and its corresponding inner product. In the following ¢
and b are fixed. It is easy 1o see that if @y > g, > Othen

HA%(a,,b) o HA(a2,b) and Null, Slul,,

for u € HA%(a,,b). We have an interpolation type inequality for this scale of spaces.

Lemma L1.11. Foray > a; > a3 > 0 we have
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G383 a,-4dy

Haul,, < Ilulla‘:""’ ‘lluﬁ,f;"“’ , ue HAl(as,b) (16)
Proof. 1t follows from Holder's inequality that

b
a2, = [ 1ugyi®e™™" a

IR?
a;~a a,—a a4 a,~a
;—as et e:lﬁ-a3 et 2 ex‘-a2 i a!—az et
=[tum!l e T clum) TRe T &
Rt
ay~as -4,

SO 1 2™ ™ an ™ ([ lu@ 2™ dn
R R

Given g € (0,00]. Take a sequence of increasing positive numbers {a,, | m € INg} such that
am<a for all me Ny and a, —a as m — o, Corollary 1.1.2 implies that the inductive
sequence {HAI(an.b) | m € Ny} is regular; the corresponding inductive limit does not depend
on {a,} and is denoted by HA(a-+,b). For a < oo the above Lemma I.1.11 ensured that Theorem
1.1.4 applies here. In particular, a sequence {u,,} < HAI{(a+,b) converges to zero iff it converges
to zero in some HAY(a’,b) with a’ < a. It is not clear how we could directly apply Theorem 1.1.4
to the inductive limit space HAI(eo,b). It tums out that all the conclusions in Theorem 1.1.4
remain valid for the space HAZ(o0,b). Indeed, in stead of a Banach space we can use the Frechét
space HA(IR?), the topology of which means uniform convergence on each compact set of R7.
It is then obvious that each space HA%(a,b) is continuously embedded in HA(RY), so is the
inductive limit HAZ(oo,b). Let {u,, | m € Ny} be a sequence converging to zero in HA,(e0,b).
So it is bounded in HA,(eo,b) and hence in some HA,(a,b), for HA (e,b) is regular. It is also a
zero-sequence in HA (R ). Therefore we conclude that {u,,} is a zero sequence in HA,(a’,b) for
a’ > a. Indeed

fipld
NalZ = [ lue)1? > dx
R

< e m@BIR) sup 140 12+ e R ul
IxtaR
where m(B(R)) denotes the Lebesque measure of the ball {xe R7 1 ix I <R},

In the above we have considered spaces of harmonic functions. Actually the harmonicity of func-
tions in the spaces play no role here; it is assumed here only for easier citation in Chapter IV,
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L.2. Regular Spaces and Hyper-spaces: General Theory

First we give a brief survey on the definition and basic properties of fractional powers of linear
operators. For the details the reader is referred to {Ka3}, [Kr], [Ko2], [Ta], [Fr] and [Pa].

Let X be a Banach space with norm l-ll. For given constants we [O,n) and M2 1, a densely
defined closed linear operator B : D(B)c X — X is said to be of type P(w.M) if T, c p(B),
I -BY <M 117! forall A <0, and for each e & (0,x—w) there exists an M, > 1 such that
I =By i< M, 1A 17} forall A e I,,.. Here for an arbitrary o € [0,%), I, stands for the cone
inthe complex plane {ALe € | | argA | > o}. We say that the operator B is of type P(@) if itis of
type (©,M) for some M 2 1. A densely defined closed operator B in X is of type P(x/2,1) iff both
B itself and its dual operator B¥ are accretive, or equivalently, iff B is m-accretive, i.e., accretive
and A € p(B) for some (hence all) A < 0. It is well-known that for o € [0,x/2) the operator B is of
type P{w) iff it generates an analytic semigroup in the cone ¥y =€ — i.,;,m Here by an ana-
lytic semigroup we mean a family of operators {T() | te o) ©L(X) such that

T T(s)=T(s+¢t) for all t,5 € L'z o, for each u € X and each ¢ > Otﬁnr{) T(H)u =u, and the
-y

mapping T : 'y — L(X) is analytic. (The analycity is equivalent to T¢)u : £’y 5-, — X being
analytic for all u e X, or still, equivalent to (T¢)u ,v*) : £y —» € being analytic forall u € X
and v* € X*))

Assume that B : D(B) ¢ X — X is an operator of type P(w,M) and 0 ¢ p(B). We can define its
fractional powers B°(ce R) as follows. Take a neighbourhood Q of the origin in € such that
QU X, cp(B). Choose a > 0 and ¢ € (w,n) such that

I'={\e € ! arglh—a)=1¢} cQU I,

For o > 0 define
- _ 1 -G —_Rryl
B = i[;. W-B)dxr an
where A0 = | A 1™° ¢ ™°*# s analytic in € — {A | A< 0} and the path of integration is orientated

so that arg A is decreasing along I". B™ thus defined does not depend on the admissible pathes T

In particular, for o € (0,1) we can transfer the path I' to the upper and lower left-half real axis and
obtain

B = i‘—'gi‘-’ [ @ +B)™ an. (18)
[4]

Similarly it is easy to see that B~ = (B~!)". Moreover, if B is a positive self-adjoint operator in a
Hilbert space X, then
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B u=[N"dEMWu, ueX (19)
0

where {E(A)} is the spectral resolution of B. Still other formulations of the fractional powers
exist, especially when B is a generator of a Cg semigroup (cf. [Yo)).

Fractional powers of operators enjoy very nice properties. Some of these properties are listed
below:

@) B~ isinjective for each o > 0; we define B® = (B°)"! for6 > 0and B® =1.
(ii) Forall ¢ > O the operator B® is densely defined and closed.
(ii) If0< 1< athen D(B®) <« D(B™) and D(B®) is a core for B®,
(iv) {B77 1 620} is a Cy semigroup of operators on X which can be analytically extended 1o
the whole right-half plane. In particular, forallo,7e R
B u=B°B*u, ue D(B®
where 6 = max{c,1,0 +1}.
(v) (Interpolation inequality) For any ¢ < 1 < 8 there exists a constant C(c,t,6) such that

—

H —
1B ki< C(o,t,0) 1B ull ®° B ull®° , ue D(B®).

(vi) If Bis a generator of a Cq semigroup, then D(B*) = mo D(B%)isdensein X.
a>

‘We are now in a position to define a scale of graded Banach spaces. Given a linear operator B of
type (»,M) in a Banach space (X, ll-If) whose resolvent set contains the origin 0, then the same
properties are satisfied for its dual B* in (X*, I-1,,).

Definition 1.2.1. Let o € (0,00).

G Xg=D®B,l-lp,) where lullg s =IB°ull for u e D(B®). X3 =X, 1.1, -l o is
often abbreviated to l+lig; I g ¢ =l =11l

(i) X3° is the completion of (X, ll- 15 ) where

Hullp, o =lul_o=UB" ul for ueX.

From this definition and the properties of fractional powers immediately follows

Proposition 1.2.2. The scale of spaces {X§ | ce R} is a scale of graded Banach spaces. For
any 1 > ¢ > 0 we have the relation
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XpFoXg' >X>X§o>X; ’ (20)

where each smaller space is densely and continuously embedded into another bigger one.

Proof. We omit the details of the somewhat routine proof of this proposition. Nevertheless we
emphasize the important role played by the fact that for 0 < o < t, D(B") is a core for the opera-
tor B® in X (Property (iii) of fractional powers listed above). Since no literature, which is avail-
able 1o us, states this explicitly, we give a brief proof here. Without loss of generality we can
assume that 1 is an integer. Let u € D(B®). Then, for A> 0, 4, =A*(M +B)"u e D(BY). It is
easy to see that (M+B)Y B =B"°(M+B)*. From this follows it that
B®u, =A"(\ +B)™ B® u. In view of the standard fact (+X"'BY ' u s> uasA~ooforall ue X
and the continuity of the operator ( +A™! B)™ we have u, — 4 and B® u, — B°u. This com-
pletes our proof. 1

From the scale of Banach spaces {X§ | o e (—eo, +0)} we can construct their inductive limits
and projective limits.
Definition 1.2.3.

(i) Foroe [~oo,4+00), X§" = U X} with inductive limit topology; X5~ = Xz~.
k#.2.4

(i) Foroe (-oo,+o], X§ = N X} with projective limit topology; X§* = X5.
44

We remark that because of Proposition 1.2.2 above the inductive limits and projective limits are

well defined by any sequence of Banach spaces with monotone indices converging to the right
limits.

Proposition 1.2.4. Among the Banach spaces ({X§ | oe R}, the inductive limits
{X3" | & [—eo,%0)} and the projective limits (X | o & (~o0,90]} there holds the following rela-
tion (0 <o <1 < o0):

X3 DXF o Xp o X5 o X3 o X o X" oXF oX
XoXF oXg oX§oXE DX o X; o XY oX5¥. 1)

Here each smaller space is dénsely and continuously embedded in another bigger one except for
X7 which is only known to be dense in another bigger space when B is of type (A /2,1). il

‘We omit the proof of this proposition again only mentioning that Xj(x > 0) is shown to be dense
in X} via the same procedure as we used to prove that D(B) is a core for B® (0<a<1).

The next two theorems clarify the topological properties of these spaces of inductive limits and
projective limits.
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Theorem 1.2.5. Assume that either the Banach space X is reflexive or all the operators
B7° (o> 0) are compact in X. Then we have

1)  All the inductive limit spaces X§* (o € [~oo,+20)) are regular,

2) Foranyoe R abounded net {u, ! e 7} in X§ converges (to zero) iff it converges (to
zero) in some X} (x> 0).

3) Foranyoe IR abounded net {1, | o€ 1} in X§" is a Cauchy net in X§* iff it is a Cauchy
net in some X} (1> o). All the spaces X§* (ce R) are complete.

4y Foranyoce IR asetGinX§ is compact iff it is a compact set in some X} (x> 0). The
same is true for relative compactness.

5)  Each of the spaces X3' (oe RR) is barreled and bornological; it is Montel iff all the map-
pings B~ : X — X(z > 0) are compact.

Proof. Tt is readily seen that for each o > 0 the isometry operator B™ : X — X§ extends uniquely
to an isometry operator from Xz° onto X, still denoted B™; its inverse extends B® : X§ -» X and
is denoted by B again. In this way, via X, we have an isometric operator from X§ onto X3,
denoted by B° ™, foreacho,1€ R.

1) If the Banach space X is reflexive, so is each X§ (o€ R). It is also evident that
B X — X (v>0) is compact iff the inclusion mapping from X§ into X§™* is compact. Then the
regularity for each of the inductive limit spaces X§' (6 & [~o0,00)) follows from Corollary L1.2
and the remarks following it.

2}, 3) and 4) are consequences of 1) and Theorem L1.4 since now we have the interpolaﬁon
inequality
L m N
Hul. € Clo,t,0) Hulld™ luld® (c<1<6) (22)

which is just the corresponding property for fractional powers. Here for fixed ¢ we take E =X§ in
Theorem 1.14.

X§" is barreled and bornological since it is regular. If all the mappings B™: X -» X (1>0) are
compact, then, equivalently, all the inclusion mappings i : X} — X3 ™ (0 R) are compact.
Thus, if 6 is a closed and bounded set in X§', then by 1) there exists 8 > ¢ such that G is bounded
in X§. Thence it is compact in X§**¥2, so is it in X§". This shows that X" is Montel. Conversely,
assume that X§' is Montel for some o e R. For t> 0 and a bounded set G in X, B-®9 G is
bounded in X§*, so is it in X§*. Since X§" is Montel, B~°*? G is relatively compact in X§*. By
4) above there exists some § € (0,1) such that B°" G is relatively compact in X§*%”. This in
tum is equivalent to BB G =g G being relatively compact in X, so is
B™*G =B~ B~U-%" G This proves the compactness of B for eacht > 0. 0

Open problem L.2.6. For a sequence {u, | n € INo} converging to zero in X3, is there some ¢
such that it converges 1o zero in the space X§? {
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Theorem L2.7. Let o € (—oo,+00]. Then we have
1) X% is a Frechet space.

2) A sequence in X§~ converges (to zero) iff it converges (to zero) in each of the spaces
X; <o)

3) A sequence in X§ is a Cauchy sequence iff it is a Cauchy sequence in each of the spaces
X} (r<o).

4) A set G in X§ is bounded (compact) iff it is bounded (compact) in each of the spaces
X} (r < o). The same applies to relative compactness.

5) X§ is Montel iff all the mappings B~ : X — X (1> 0) are compact.

Proof. Assertions 1) to 4) follow directly from Theorem 1.1.5. The proof for 5) is similar to that
for Theorem 1.2.5 5) above and is omitted. ]

If the Banach space (X, §+ 1) and the operator B are replaced by the dual space (X* , - 1,) and
the dual operator B*, then we obtain another scale of Banach spaces (X*)§* (ce R), and their
inductive limits (X*)$ (o€ [~oo,00)) and projective limits (X*)§+ (oe (~oo,00]). The norm of
(X*)3 is denoted H- 4, g ,, sometimes abbreviated to -1l 5. There is a natural duality relation
between the two scales of spaces.

Theorem L2.8. (X$)* =(X*)p% and X§ ., [(X*)53]* (6>0) isometrically via the duality
pairing <-, >4 : X§ X (X*)5?

<U f>=Bu,B*Y°f), ue X, fe X*)5 23)
where (,-) is the duality pairing between X and X*. If, furthermore, the space X is reflexive,
then ((X*)p% * = X§ isometrically via the same duality pairing (23).
Proof. Foru € X§ and f € (X*)5% we have

b<u, foe =1 Bu,B*YN)Ishul i fl, . @)

Now letf ¢ (X*)3% be given and set g =(B*) ™ fe X*. There exists a sequence {v,} ¢ X such
thatvyll=1and | (v,,8) 1 > lgll, . Puttingu, =B v,, then u, € X§,lu,ll;=1and

V<t foel =1 @) gl =1fll, . (25)

(24) and (25) together then implies that F=<-,f>;: X§ — € belongs to XH)* and
WFI =1l o

Conversely, if F : X§ — € is in (X§)*, then, since X§ and X are isometric to each other under the
mapping B¢, there exists a unique g € X* such that F(u)=(B"u,g) for u € X§. Putting
f=(B*) gwehave f e (X*)3% and F(u) = <u, f >5. Thus we have shown that (X§)* = (X *)z%
isometrically via the duality pairing (23).
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Now let u € X§ be given and put v =B%u € X. Then, the Hahn-Banach theorem ensures the
existence of some g € X* such that (v,g) =l vill gli,. Putting f=(B*)™° g we have f e (X*)§¥
and

I <, foe =1 (mg) | =lulglfl, o (26)
(26) and (24) together imply that U=<u, >, (X*)5% — € belongs to [(X*)FF]* and
FU N =lully. This shows that X§ cy [(X*)3% I* isometrically.
Let now X be reflexive. For given U € [(X}+)™°T*, since (X}+ )™ and X* are isometric to each
other, there exists a unique v € X** =X such that
U=, B*Y°f)=Bu,B*)° f=<u,f>;

where # =B °v € X§. Thus, if X is reflexive then X§ = [(X*)5%]* isometrically via the duality
pairing (23). 0
Lemma 1.2.9. ’
(i) Givencz 0. Then

<u,frs=(mf) for ue Xg and fe X*, 2D
(i) Given0 <o <1 <00 Then

<U,fre=<u,f> for ue X and f e (X*)5%. (28)

Thus the mapping <. ,+>: Uo X x (X*)z% —> € is well defined in the patural way.
o>

Proof.

@ <f.g>=B%,B*)°f)
=(B%u, B
=(BB%u,f)
= (n ’f)'

() @.f=Bu,B*°f)
=B °B%u, (B*Y ) (B*)f)
=(B"°B%u, B T* (B*)°f)
=B%u,(B*)°f)
=@, fs.

Theorem 1L.2.10.
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(i) Leto e [0,00). Then
XE* = X", [(XHF* s X5 (29)

and if furthermore X is reflexive, equality "=" holds instead of "c_" in (29).
(ii) Leto €(0,0°]. Then

X =X*)F, [(X*)FPH* s X§ (30

and if furthermore X is refiexive, equality "=" holds instead of "c_," in (30).
All the equality relations above hold via the duality pairing <- ,- >.

Proof. The conclusions here directly follow from Theorem 1.2.8, Lemma 1.2.9 and Corollary
L18. 0

We now turn to the study of extendibility of an operator A in X to spaces Xz°(c>0) or their
inductive limits or projective limits.

Theorem 1.2.11. Suppose that the space X is reflexive. Let A : D(A) =X — X be a densely
defined operator and A* : D(A*) ¢ X* — X* its dual operator. Then

(i) For given o,T > 0 the operator A extends uniquely to a continuous operator from Xz° to Xz*
iff (X*)p+ c D(A¥), A*(X*)j+ c(X*)§+ and A* [‘(X*)Bt,, is continuous from (X*);+ to
X*)gs.

(ii) For given 6,7 € (0,0) the operator A extends uniquely to a continuous operator from Xz
to Xz iff X*)j» ¢ D(A*), A*X*)j» c (X*)§+ and A* |‘(X*)Bg— is continuous from
(X*)B+ 10 (X*)E+.

(iii) For given 6,7 € [0,00) the operator A extends uniquely to a continuous operator from Xz~
to Xp& iff (X*)F» cD@A*), A*(X*)FF c (X*)gt and A* I‘(X*)B? is continuous from

(X*)B* to (X*)g+.

Proof.

@) "<=". Set Zm =(A* [‘(Xt)Bz)*. Then, since {(X*)j+1* =X5* and [(X*)§+1* =X3° by
Theorem 1.2.8 applied to X* and B* and by the reflexitivity to X, the standard theorem on the
dual of a continuous operator from a Banach space to another (cf. Theorem 0.8) implies that A ot
is a continuous operator from X3 to Xz* and A, Il = A* Pace)5ll. Let us show that A, is
indeed an extension of A. In the following <-, - >4, : X5° X (X*)§* (6> 0) stands for the duality
pairing between (X*)$+ and X3°, and, of course, it has similar properties of <., >4 as are stated
in Lemma 1.2.9 above; <-, - >, is understood similarly to <-,- >. By definition we have

U A* >0 =<Agill,[>rs € XF, fe (X*)fs. (31
fue DAY cX cXg®and fe (X*)§+ then
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KU, A* oo =W, A )=(Au,f)=<Au,f> . 32)
Thus

<AUf>ep =<Agell [>rq. f (X*)fe
which implies that A o.x 4 = A u. The uniqueness follows from the denseness of D(A) in X and X

inX7".

"= ", Assume that A extends to a continuous operator from Xz° to X3°, denoted Zm. Set
A*l= (Zm)"‘. Then, since (Xz°)* = (X*)§» and (X3)* =(X*);+ by Theorem 1.2.8 applied to
X* and B* and by the reflexitivity of X, A*} is a continuous operator from (X*)j to
(X*)j» cD(A*) and ||A*|‘II=IIA'¢‘,IL If we can show that (X*)j» c D(A*) and
A* ] (X*)h» =A™ ], we have completed the proof. By definition

Aot foe =<U, A*| f>5, , ue X5, fe X*)he. (33
Hue D(A), then
(Ausf)=<gc,t“-f>‘c,* =<u,A* rf>o,* .fe (X*)ﬁ*

which  implies that (A4.,f):D@A)cX —>C is continuous and  therefore
fe D(A¥); (X*)k+ < D(A*). Furthermore, for fe (X*)i+ the above equation can be rewritten
as

<u,A*f>, =<u, A%} f>q,, 4 € DA).

This together with the denseness of D(A) in X and Xp° implies that A* f=A*| /. Thus
A* Pgmyi=A*].

()" «=". SetA* {‘(X':)BQ— = §. Then, as is assumed, S is a continuous operator from (X* )5
to (X*)§+. By Theorem 1.2.10 we have [(X*)5+* =X3™ and [(X*)§+ = X5°*. The dual operator
S* 1 Xz™ - X5 is well defined via the duality pairing

<u,Sf>=<S*u,f>, ueXg™, fe X*)g. (34)

A proof similar to the corresponding part of (i) above shows that $* | p(4y = A. Let us prove the
continuity of $*. Given ¢ ¢ (0,6). By the continuity of §, Theorem 1.1.6 (ii) implies the
existence of some ¥ e (0,7) such that '

IS flyu S Coxlfley, fe X*)E. (35)
Let u e X5% ¢ Xz°. Then, (34) and (35) implies $* u € X5° and
NS* ull_y =, 5. 1 <8*u,f>¢, | (since (X*)§+ is dense in (X*)j+)

€ p*
"ﬂ'-g’,*
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= su l<S*u,f>1
fea'gg‘*' f
Al g =1
= su t<u,Sf>1 34
redhs f (by (34)
U =1

SCow Hlul.y. (by(35)

Thus Theorem L.1.6 (i) is invoked to ensure the continuity of §*. The uniqueness of the extension
follows from the denseness of D(A) in X and X in X3™.

"= ", Assyme, conversely, that A extends to a continuous operator from Xz to X3*, denoted T.
Define its dual T* via the duality pairing
<Tu,f>=<u,T*f>,,ue Xg™, fe X (36)
It is a well defined operator from (X*)5+ to X*)§+.Ifu € D(A) and f € (X*)5» then
AU, f)=<Au,f> =<Tu,f>=<u,T*f>,=u,T*f)
which implies that fe D(A*) and A* f=T*f This proves that (X*)j* ¢ D(4*) and
A* P(X')BE— =T*,
Let us show that T* is continnous. Given ¢ € (0,0). By virtue of the continuity of
T : X3°" — Xz*, Theorem 1.1.6 (i) guarantees the existence of some 1’ e (0,7) such that
ITuly<Copluly,ueXs. 37
For f € (X*)§+, (36) and (37) imply that T* f e (X*)§» and
IT* fllg, .
= sup, |<u,T*f>qy, |
ue X;°
Nl =1
= sup, |<Tu,f>ey | (by(36)
ue X%

flullg =1

SCoxlifle, (by(37).
By Theorem 1.1.6 (ii) we have the continuity of T*,
(iii) The proof is completely parailel on that for (i) above and is omitted. {

We have a few remarks to the above theorem:
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a)  The conclusion in ii) above is still true for ¢ = oo or T = o if we assume that (X* )3+ is dense
in X* in case 1=1cc and if we replace the concept of continuity of operators by a formally
stronger one, as is described in Theorem 1.1.6 (i) (2) (or equivalently (3)).

b) Similarly to ii) and iii) above we have also characterizations of operators A in X which are
extendible continuously to one from X3** to X3 or from X7° to Xz™ in terms of its dual
operator A*.

¢) Instead of one space X and one operator B we have entirely similar results on the continuous
extendibility of an operator A : D(A) c X - Y to one from X3° to Y7, et al, for two spaces
X and Y and operators B and C.

To conclude the present section we put the results above in perspective. Given a reflexive Banach
space X and an operator B of type P (o, ) therein such that 0 € p(B). Along with the space X and
the operator B we have the dual space X* and the dual operator B* having similar properties.
Using the domains of the fractional powers B® and (B*)° we construct the scales of Banach
spaces X§ (ce R) and (X*)§+ and we form the scales of spaces of their inductive limits and pro-
jective limits, namely, X§" and (X*)3% (o€ [~o0,00)), X§™ and (X*)§+ (o€ (—oo,00]).

Thus we have the following diagram (o> 0):

T —

X5 o X5 o XF o X5 o XF o X

X*)p% o X*)p¥ o (X*)F o X*)p¥ o X*)§F ox*

t e |
o T

BDX?DXEDXBDXB
X* o (XN o XN D (X*)F > XH)F > X*)5

t ey

If X and X* are suitable spaces of functions and the operators B and B* are appropriately taken
(usually differential operators), then various classical function spaces appear as spaces X§ or
(X*)3* (o>0), and different test function spaces and their corresponding generalized function
spaces emerge as the spaces of inductive limits or projective limit with nonnegative indices and
nonpositive indices respectively. Thus, we call the spaces to the right of X and X* in the diagram
regular spaces, and those to the left hyper-spaces. Theorems 1.2.5 and 1.2.7 then clarify the topo-
logical structures of all the spaces of inductive limit and projective limit. Theorem 1.1.6 can be
directly invoked to give characterizations of continuous operators between those spaces.
Theorems 1.2.8 and 1.2.10 establish the duality between the two scales of spaces in the above
diagram (i.e. between spaces of smooth functions and generalized functions). And Theorem
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1.2.11 gives criteria which ensures that an operator initially acting on smooth functions could be
extended to spaces of generalized functions. In short our frame is a kind of Gelfand-Shilov triple
in a Banach space setting. We notice that in general the spaces to the right of X, in the above
diagram, cannot be embedded into their dual spaces, i.c., the ones to the left of X*. If, however, X
is a Hilbent space, this can always be done as long as we identify the dual of the Hilbert space
with itself. Also, in some instances, spaces "enough" right to X can be embedded to spaces
"enough” left to X*. Anyway, the spaces right to the spaces X and X* together are included in the
total of the spaces left to X and X* together.

1.3. Regular Spaces and Hyper-spaces: Examples

In this section we present some concrete regular spaces and hyper-spaces, i.e., classical function
spaces, test function spaces and generalized function spaces, which can be identified with the
spaces X§ or X§* with an appropriate Banach space X and a suitable operator B.

Example 1. Let X be a complex Hilbert space with inner product ¢,-) and norm #-}l, and
B : D(B) cX — X a nonnegative self-adjoint operator. Then both the operators B and e? are of

type P(0,1), and e? is invertible. Let {E(t)};20 be the spectral resolution of B. Then, by
definition

@) Cu=g [N (=
r

— f-c” —oyl
m‘,j.“ (l(x eYVdE® u)dr

o0

1
2
[ [xe et anaEou
0

= «! €Y dE®u

.___e-aB

u (ueX,o>0). . (38)
Thus (¢%)° = ¢ for all 6 € R. In particular we have X% =Sy p, X% =Ty p, X3 =14 and
X.# = oy p, the spaces of De Graaf and Van Eijndhoven. See [Gr 2], [Gr 3], [Ei] and [E-G] where
these spaces are defined and studied and a number of classical test function spaces and general-
ized function spaces have been realized as spaces of these types for suitable Hilbert spaces and
operators. In fact, the present work is very much inspired by theirs.

Example IL. Let X = [P(1£ p< o) with norm llull, = (¥, | IPYVP for u =(uz) € IP. Given a
&=0
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sequence of complex numbers {A, | £ € N} suchthat

largh 1S @ forsome o e [0,7) (39)
and

I 2 12 a for some constant g > 0 (40)
for all ke INg. With this sequence of numbers we define an operator B as follows:
w=0uy)ye DBYIF Qpu)e 1P and Bu = ).

Itiseasytoscethatforallk e IN,.

1AL If 0L wsn/2
P P - *r<0) 41)
IAlsine if x/2<w<x

and
IA=212 1Alsine forhe Zoe. 42)

Therefore the operator B is of type (0,1) if 0S ©< x/2 and type (o,1/sinw) ifn/2 <o <n. In
particular it is m-accretive if w = /2. Moreover

M =-BYu=(~2\)" ) for A e p(B).
Condition (40) implies that {A e € | | A1 <a} ¢ p(B). Thus, for ¢ > 0 by definition

- 1 - - B ~1 =—1 P (1Y -1 dx
B 21".52» (M -BYudn MI[ -2 )

= (57 [¥° 0ma0™ dhe )= O )
T

where the integration path T can be taken {Ae € | arg(A—a/2)=¢} < p(B) for appropriate
¢ & (w,n). Therefore, by definition, foro > 0

X§=1P (M) = (u=Gude P 1 ul,o=(3 (1% 1° L IP)/P <o} (43)
k=0 '
For-o < 0let
1P D) = (= () Vil o= (X (1A 17° 1 1P)P <o}, @)
k=0

Then it is readily seen that 77 {},} is a normed space isometric to /¥ under the mapping
o) — Afuw)e P70 (M), So I77° {X;} is a Banach space. Moreover, since obviously
I is dense in [P, we have IP = [P~ Namely X3° =17 {A}. Weset X3 =17 =170 (.} If
no confusion is incurred, {#° {A,} (ce R) is abbreviated to [”°. This applies, of course, also to
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the inductive limits X§' =17% (M} = U 1P (M} (o€ [~o,00)) and the projective limits
>0

X =17 = 0 177 () (@ o).

For 1< p < oo, X* = (IP)* =19 where ¢ =p* = —p—Ll,andB* :D(B*)c 19— 11 is defined by

DB*)={u=@p e 191 Q) e 19)
B*u= (X,,uk).

Thus, in accordance with the above notations, (X*)§+ =[?° {Xk} (6e R). Theorems 1.2.8 and
1.2.10 then imply the following: ([7*°)y* =197° forall 1< p < and ¢ > 0; (I%°)* =[P for all
1 <p <o 119 _y (1°>7°)*; and similarly for the inductive and projective limits.

Pq.
We notice that for p>g=p*, if u=AfFNel?7 (r,0e R) then »°c %" and
Nally o< Bpll 2L Null, o Thus, if, for instance, Ay =e™*' (a>0, v>0), then I#% =, 120
P=q

(conf. Theorem 1.1.6 (iii)). Indeed, by Hélder’ inequality we have
oty o= (Z (1A 1% Vg DTV = (2 1 0 16799 (10 1° 1 g 1)N)V9

(o) —F£— B4
SE It Py P (Tl |°uk)p)1”’ =lpl_ee ful,,. (45)
Pq

Let us now consider linear operators. Given an infinite matrix (ay), p € [1,%°], ¢ =p* and

6,7 € RR. Formally we have, for u = (4;) and v = (v;) with v, = 3’ ay; u;, the following estimates.
j

= Y
I|vllp,a—(§ (V% N4 IZakjuj IP) P
J

ST 1M 1P Qagllg e Nl  YPIP
k

=llapllg—lpollullye. (46)
If ay; = by;j cyj then

= 1
||V||P,°—[§ | A [P |Zbkjckjuj |p] P
]

SIX I M AP UB 12 T M 1F | cyyu; 1P1VP
k F
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< supllbellg— [EZAA 1% 1wy 1 1hc1° ey 1PIYP
ik

< s‘ip Nbp g,y s suplic,jlly o Huelly .. @n
i
With the estimates (46) and (47) we have

Proposition 1.3.1. Given an infinite matrix (a),p € [1,20], ¢ =p* and o,1e R. Then the

operator A tAu=v with u=(@) and v, = Za,q- u; is well defined and continuous from /" to
179 if one of the following conditions are sat;sﬁed:
D Hlagly llpq <oo. (48)
2) ayj=bjcyand
kséu& I bg llg e < 0o, ;2“&, e jlipg <os. (49)
Moreover, the norm of the operator A has the following estimates respectively

Al ep o< Mag lly 1,

AN < sup bl « sup We.ill, 5.
pupo= 5 Kvﬂ L Ro ilp.e

i
Corollary 1.3.2. The operator A given above is well defined and continuous from‘lp" to IP°if
kﬁu& Faglly,—y < o=, jguga la.jllyop <o, S0
and with norm
1Aty cp.0S (SUp N0 1—g) (sup la; Iy,op)t2.
Proof. Take by = | ag; 1Y and ¢4 = | ayg 1" ¥ in case 1) above. 0

The above proposition and its coroflary are generalizations of the well known criteria of the
boundedness of operators from w012 Seee. £., Chapter 6 Section 3 of the book [We].

From the above Proposition L3.3 and Theorem L.1.6 immediately follows the following criterion
for a linear operator to be continuous in the inductive/projective spaces I7*.
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Proposition 1.3.3. Given (ay;), p € [1,%0) and ¢ =p*.

(i) For1g,0p € [—oo,09), the operator A given above is well defined and continuous from /7™
to 7% if for any © > 1, there exists a 6 > o such that one of the conditions 1) and 2) in
Proposition 1.3.1 is satisfied.

(i) For 1g,00(~oo,00], the operator A is well defined and continuous from I7"™” to 17 if for

any o < oy there exists a 1 < 1p such that one of the conditions 1) and 2) in Proposition 1.3.1
is satisfied. ' S

We have omitted other two cases: operators from [”*™* to 17%” and from 17" 1o 17**",

We continue by discussing the problem of extendibility of linear operators in /? to spaces of
types [P~ and IPC°%, According to Theorem 1.2.11 we need to study the behaviour of the dual
operators in /9.

With a given infinite matrix (ay;) we associate an operator A in I? (1< p <o) as follows:

u=(y)e DAYiff vp= 3, au; converges for each ke Ny and v =(v) € I7; in this case
je Ny«

A u =v. The following proposition is about the denseness of the domains, the closedness and the

duals of such operators.

Proposition 1.3.4,

@ If(a;)el? foreach je N, then A is densely defined and A* < A*, which is an operator
in 17 defined as the operator A with the conjugate transpose matrix (a};) = ().

(ii) Ifboth(a.;) e IP foreachje INgand (az) € I? foreachk € Ny, then A is closed. i

‘We omit the somewhat standard proof of this proposition. Conf. [We] Chapter 6 Section 3, where
the 12 case corresponding to (i) and (ii) above is studied. Applying the above Propositions 1.3.1
and 1.3.4 and Theorem 1.2.11 we can easily write down some conditions which ensure the exten-
dibility of the operator A in /? associated with a matrix (ay;) to spaces {#™° or {7 oxt

For any two sequences u =(u;) and v =(v;) we define their convolution product to be the
sequence w = (w;) where

k
w,,=z Uj Vgj ke INQ.
=0

Weusethe notationw =u* v=v+* u.

Proposition L35, Letp € [Leo)and 0,1,6 € R.
Define a sequence it = i{0,71) = (0 (0,7))
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He(o,®) =max { 12,17 13,17 1 0S j< k). (50)
Assume that llplhe= ¥ 11X 1°p <oce. Then for ue I™® and vel® we have
ke N,
w=uxvel®and
Hwlly o Bl g Nul, g hvll,.. | 61

Thus, the convolution product is a continuous mapping from /7% x [%% to [1°,

Proof. We have, by Holder's inequality,

k
Iwklsuk(c.'c)}: |}»jlc lu,-l- l?\,k.jlt ivk-jl
j=0
Sulolull, vl .

from which readily follows (51). 1l

Corollary L.3.6. If for any 6,7 > 0 there exists a 8 > 0 such that !l ull; ¢ < oo, then /%" is a topo-
logical algebra under the ordinary linear operations and the convolution product.

Proof. Note thatliwll, g < fiwly g forall r2 1 andw e I, f

To conclude the present example we give simple illustrations of some of the above results, Take
A=() with &, = e* (v>0) and
0 V1
0 V2 0
@)=1o o V3

which is the matrix representation (with the Hermite functions as a basis) of the anihlation opera-
tor in quantum mechanics. Obviously

W lagly, 15 e= 5 Vk+1 Pt ®0 ) rge R, pe [1,00)).
ke N,

Therefore from Propositions 1.3.1 and 1.3.3 it readily follows that: If v > 1 then the anihlation
operator A is continuous on I7° (6> 0); if v > 0 it is continuous on I7*** (¢ [~e,=0) and on
1P (o€ (—oo,09]).

From the inequality
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o) +ak—j) 2 20 [jk- NI 2 2o0)* k12)" (0,7>0)

follows that p(c,7) < e 2@ ® 2 Then Proposition 1.3.5 and Corollary I.3.6 imply that the har-
monic product is continuous from 7% x 1% to [1¢ for @ < 2'™¥(o7)*. Thence [>% and I>* are
topological algebras,

Example IL Let X =L"(R") (1Sp< e, g=p*) with the usual nomm lull, =( [ 11 17 dx)'?.
m.

Let A(x) denote a complex-valued measurable function on /R” satisfying the conditions

A(x) € L (R™) 52)

1A(x)12a>0 forae.xe R" 53
and

larg A(x) | S wforae.x e R" with o e [0,%). (54)

With the given function A(x) we define an operator B as follows:
DB)={ue LP(R™ | Alx) ulx)e LP(R"™)}
(Bu) (x)= A(x) u(x).
Since A(x) € Lfc . C5' (R™) ¢ D(B) and B is densely defined. It is easily seen that

Ixl if 0L oS w2
A=A | 2 <O
A sine if 2 <o<n

and
IA-AG) 12 1Al sine (Ae Zope.

Consequently B is an operator of type P{w,1) if 0L o< /2 and of type P(w,l/sine) if
a2 < w <. Condition (53) implies that {Ae € | 1A | <a} cp(B). Moreover

M -BY 1 1] (x) = A=A ux) ford € p(B).

Thus, for ¢ > 0, by definition_

B ) ()= 5 [ NO= A u(x)dh
r

=[AGI™ u(x)

where the path can be {Ae € | arg(A—~a/2)=¢) ¢ p(B) for suitable ¢ € (o,x). Hence, by
definition
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X§=LP° (A®)} = (ue L | Null,g=[(IAGI® lu@x)| Y dr)? < oo},
For —o < 0 set
LP7° {A(x)} = {u measurable on R" | IIuIIp'_<,=(J'(IA(x)I'“ lu(x)| P dx)'? < oo},

LP—°{A(x)} thus defined is a normed space which is isometric to the Banach space L? under the
mapping L? 2 u(x) — [A®)]™ u(x) e L7 °{A(x)} and hence is a Banach space itself. More-
over it is easily seen that L? is dense in LP™°{A(x)}. Thus Xz° =LP °{A(x)}. We set
X% =107 =17 {A(x)}. Furthermore,

X§H=LP% {(A(x)} = U LP" {A(x)} (o€ [~o0,%0))

Xg =LP% (A®)} = N LP" {A(x)} (6€ (—oo,00])
T<0o
are the corresponding inductive limits and projective limits respectively.

Obviously we have
(B* u) (x) = Alx) u(x)
DB*)={ue L | Ax)ux) € L,}.

Therefore, (X*)§» = L%° {K(x)} , (X*)$% = L% (A(x)}. Theorems 1.2.8 and 1.2.10 then imply
the following: (LP°)* =L%° for all 1< p <o and 62 0; (LT °)* =LP° for all 1 <p <oo;
LY —_, (L™°)*; similar assertions hold for the inductive and projective limits.

Most of the conclusions for /P in the above Example II remain valid for the L case treated here.
We omit the details. ‘

Example IV, Let X =LP(IR") (1Sp<Seog=p* =;€—-1—) with the usual norm II-ll,. The opera-
tor Bin L? is given by

DB)={uelP\Aue »LP}

Bu=(U-Au

where I is the identity operator on L? and A is the ordinary Laplace operator. We note that the
operator B is well defined on § and §’, the Schwartz test function space and tempered distribution
space. Let F and F ! be the Fourier transform and its inverse, which act on § or S’ continuously.
We have

FOI-B)u=0—1-x)Fu,ucS’. (55)

Therefore, if A € [1,%0), then (M —~B) : §’ — S’ is invertible and
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W -BYlu=F{(A-1-x2"Ful

__1
(215)” I

We note that (by Fubini’s Theorem)

FHR-1=-x2)"» 7))

(At 14227 = [ MR g5
[

in the sense of tempered distributions. Then

1

KA(X) = (2“)',/2

Fl-1-x3)"

1 ]? -1 a8
= Fle ds
Qerr2

o

1
1T e
@mn* 3

8™ gs.

| 1KAG) L dx
mﬂ

oo x 3
1 ReA-18 gy ar-n2 B
£ e 25 dé | e dx
@ny? i @ n‘[

=(-ReA+ 1)L,
Thus, according to Young's inequality, we have
N =BY ull, < (ReA+1) T iull,, ue LP.

From this inequality it is readily seen that the operator B is of type P(»/2, 1) and 0 € p(B). [More
detailed analysis actually shows that B is of type P(0,1).]

Foro > 0and u € LP, by definition

B~ u) (x) = %‘- [AOs =By u] x)dh.
r

___1___ -0 -l I AT |
"2::3,[’“ FUA-1-x3"1Fuldr
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=FG (A A=1-22 db) Fu]
2ni

=F 1 (1+x°Ful. (58)

Therefore

X§2=WP°® = (ue L? | lulys=1F(1+x%) Full, < 0o}. (59)
The spaces WP*° (¢ > 0) are exactly the ones proposed and studied by Aronsjain and Smith [A-S]
and Calderon [Ca]. See also [St].
For—o < 0set

WPo={ulueS , F A+x>"?Fue LP}
with norm

Nully o =1 F1(1+x2)2 F ull,.

Since each WP ~° is isometric to L? under the mapping F(1+x2) 2 F : WP 5 LP, it is a
Banach space itself. And it is not difficult to show the denseness of L? in WP ~°, Therefore
Xg"? =WwPe,

For 6 € [—oo,o0) we set WP =  WP* with inductive limit topology. For ¢ € (—oo,o0] we set
1>¢ y

WP = n WP with projective limit topology. Then, of course, X§**=WP% and

T<C
X§T =wpo,

We can easily see that B* =/ — A in L? with domain D(B*)= {u e L7 | Au e L9}, Thus, we
have (X*)§# =W%°, (X*)§P* =W and (X*)§? = W%°". Theorems 1.2.8 and 1.2.10 then
imply that (WPC)*=W%° (620 and 1Sp<es), WE OV =WP°(6>0, 1<p <o),
wle c_, (W=°)* (¢>0), and similar relations for the inductive and projective limits.

Proposition L3.7. If F~1(1+x2)®2 ¢ L1”2, then WP® =, W*..
Proof. We have the identity
FlAQ+x)2 Fu=F11+x2)"2 F F11+x3)2 Fu

= FlA+x)2) [F1A+x)2 Ful (ue S).

So our assumption and Young’s inequality give rise to the conclusion. 1]

Corollary L3.8. Ifp < 4/3 (32 4) and ?(T-T;% > 1, then WP® = W4,
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.
Proof. 1f %3—)% > 1, then (1+x%)°%2 ¢ 1, 972 Thus, Hausdoff-Young inequality implies

that F~1 (142392 ¢ L9 and the desired conclusion follows from that of the last proposition.
0

We now discuss operators in those spaces. Recall that a bounded measurable function m(x) on
R" is said to be an LP-multiplier if T,u=F 'm@®x)Fue LP for all ue L2 LP and
W T ull, < M, Null, forall € L2 ~ LP with a positive constant M,,; the greatest lower bound of
such M,,’s is called the norm of the multiplier. Each bounded measurable function m(x) is an L%
multiplier with norm identical to the L= -nom of m(x). The Fourier transforms of all the finite
Borel measures on IR" constitute the Ly-multipliers with norm identical to those of the
corresponding Borel measures. The bounded measurable function m(x) is an L?-multiplier iff it is
an L7-multiplier. We cite the following condition for a function m(x) to be a L”-muliiplier; for
its proof and the above assertions we refer to [St] Chapter IV Section 3.

Theorem L.3.9. Let m(x) e C¥(R” —(0)), kan integer > n/2. If

: _a“_ * ~lal
l[ax] mx)1sClxl , lalgk, x20

for a constant C. Then m(x) is an L#-multiplier for all p € {1,%0). {
From the above theorem immediately follows

Theorem L3.10. Forp ¢ (1,¢0) and r a positive integer we have
W ={uel? Id®uel?, lalgr}

with equivalent norm

3 0o%ul,.

falsr

o

Proof. Letu e WP, then F1(1+x2)"2 Fu e L?. For any o with 1 ¢! S v, m(x) = —(1—:‘—2-;3
x

satisfies the conditions in the above theorem and therefore is an L?-multiplier. So the identity

Flx*Fu=F lm@x)FFl1+x*Y"?Fu
implies that F ' x*Fu e LP, ie., ®ue LP,

Conversely, assume that ® u € L? for all o such that | o | £ r. Obviously this is equivalent with
the fact that Flx®fuelL? for all o such that lal<r. If r=2s is even, then
(1+x2)"? = (14x2y. It is then readily follows that F1(14+x*Y2 Fu e LP. If v=2s+1 is odd,
then (1+x2)2 =(1+x2)° (1+x%)%. For any 1Sk<n F1x*Fv, e LP for all « such that
lalSr—1=2s, wherevy=F \x,Fuec WP,
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Note that (1 +x3)% = 1+x? = 1 + f_] s x;. And each of the functions
A+x%  1+x)% & Q+xd)E "
1 L X . . s .
mo(x) = ————— and my(x) = ——— is an LP-multiplier by Theorem 1.3.9. Thus the iden-
oW = agys MW= per oy ,
tity

n
FlA+x)?Fu=Y FlmF F'Q+x*Fv,
ked)
implies that F (1 +x2) 2 Fu e L?.
The equivalence of the norms is seen readily in the above. {

Theorem 1.3.10 is due to Calderon; see [St] Chapter V Section 3.3. Here we have given a shorter
proof using directly Theorem 1.3.9. The spaces W™ are hence called fractional Sobolev spaces.

For a € IR" and A an invertible n X n real matrix we define the operators t, , 6, and L, as fol-
lows:

(T ) X)) =u(x—a)

B u) (D) =eu(x) uel?

Law) X)=u@Tx).

It is easy to see that they are all bounded operators on LP. Moreover tf =1.,, 6% =0,
LY =1A L, all as operators in LY(1 <p < o). They are related via the Fourier transform in
the following way:

Fr,=0,F
Fo,=1,F (inS)
FLy=1AVLsrF.

Note that since all the operators 1.,, 8., and { A | Ly are continwous on §, Theorem 1.2.11
ensures that the operators 1, , 6, , Ly extend continuously t0 $” and the above relations are valid
ons’.

Proposition 1L3.11, Let 1< p <eoand ae R", Aaninvertible n X n matrix. Then all the opera-
tors 1, , 6, and L4 are continuous on each of the spaces WP (ce R).

Proof. We have the following identities:

F(14x%)%2 F(z, u)}
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=F(1+x%)" 0, F u]
=F6_, (1+x%)"? F u]
=1, F[(1+x%)°? F u);
FH(1+x%)°2 F(8, u))
=F Q1 +x3°? 1, Ful
=F gt (1+x%)°2 Fu]
=0, F [, +x%)%%. Fu)

Ly (14222
(1 +Jc2)"’2

FlUQ+x»™ FLyu]

F-Fl1+x)" Fu;

=F[(1+x%)°2 | Al Lyr F u]

=F 1L 1A LarQ+x2)%%)- F ul

Y LAFV[1A | (Lyr(1+x2)%%). Ful

=L, F! {[Lyr(14+x2)%2] (14322 F F1(14+x2)°2 F 4},

Since the functions [1_,(1+x2)*2] (1+x2)™2 and [Lsr(1+x2)*2] (1+x%)™7 satisfy the condi-
tions in the above Theorem L3.9, they are L,-multipliers. Then the desired conclusions follow
readily. i

Proposition 1.3.12. Let m(x) be a function on IR" with polynomial groth, i.e., it is infinitely dif-
ferentiable, and for any multi-index o there exist Moa>0 and r,>0 such that
9°m(x) | < M,(1+x%)® for all xe R". Then for o,7¢ R, the convolution operator
Tyt = F~V m(x) F u is continuous from WP* to WP if (1+x%)® 2 m(x) is an L, multiplier.
Proof. The desired result follows directly from the assumptions and the identity

Fl1+x%)"2 F. F'mx)Fu

=F 1A +x2) M2 pmx) F F1(1+x2)2 F u.

Corollary 1.3.13.
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(i) A differential operator with constant coefficients of order r is continuous from W?* to
WP foreachte R.

\4 . .
(i) The convolution operator Ty, =F! ¢*®Y Fuy (f,v>0) is continuous from W?™ to
wee,

Proof. In each of the two cases (1+x2)® %2 m(x) satisfies the conditions in Theorem 1.3.9 (in
case (i) 0= 1~r, and in case (ii) forany 1,6 € R). {i

Corollary 1.3.13. (i), in particular, demonstrates the smoothing effect of the solution operator of
the heat-diffusion equation B_ =—{~A) u.

Example V. Let X =L2((0,21)"), the space of L2-functions u(x) on the cube [0,2x]?, with the

usual nom luli=( [ lu(x)1?de)®. As is well known the set of functions
[0.22]"

{e 1 e=Qry™? %%, I =(l},...][) e IN}} is an orthonormal basis in L2((0,27)"). Thus, the
space L? is identified with the space /2 isometrically via the mapping: L% € u > ((u,ep)); € 1%
Note that A(e))=— 1112 ¢ for [ € IN}, where A is the Laplacian. The operator Bo=/—A
defined on the spanof {¢; 1; € N3} is closable in L? and its closure B is the operator:

Bu= Y (+U1%cge, u= Y ae
le ING le IN}

DB)={uec L’ 3 A+1111)? 1¢1? <o),
le IN}

The operator B is a positive self-adjoint operator, in particular, of type P(0,1) and 0 € p(B). So,

as has been derived in Example II above, B u= 3, Q+11He (u,e) e for o> 0 and
le Ivg

ueL? and

X =W ={ut ¥ A+111° I (e)1? = lluly <eo}.
le N}

For —¢ < 0 the spaces can be identified with spaces of formed Fourier series

X;ﬂ:@,:{w T el 3 A+ 1g1? = llulg < oo},
fe INg le Ny

The isometric mapping B™%: Wy —L? is given by B"%u= ¥ (1+1112y*?¢ . For
le N}

G € [~o0,00) we form the inductive limit X§%* = Wg.} = Wf»,n and for o€ (—o0,00] the projec-
>

tive limit X§> =Wge; = o Wier. Theorems 1.2.8 and 1.2.10 then imply that (Wger)* = Wps,
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(Wper)* = Wher (020) and similarly for the inductive and projective limits, under the duality

pairing <u,v>=B%u,B°?v)= ¥ cd foru=2c;¢ and v=2de. It is easily seen
le INy

that each of the operators B~ : L? — L? (6> 0) is compact. Hence Wper is embedded in Wi,
compactly if o > 1 and all the inductive and projective limit spaces are Montel.

For k€ Ng let cfey = cker((0,2m)") be the Banach space of 2 n-periodic c¥-functions on R"
with norm

luly=max max ID'ul.
ilgkxe [0,2e)

We have

Proposition 1.3.14. (Sobolev) W5, < Cge, ifo>ni2+k.

Proof. letu= Y, ciee Woandsetuj= 3, cje (je INg).Forany oe INj we have

ie INy le INg
sj
D* ;= Z A Cr€g. (60)
e N}
isj
From the inequality

(Y ®lgl1Ps T A+ 112 3 o+ 113y o2¢
le Ny le Ny le INy

and the assumption that ¢ > n/2 + k it follows that for each o with | a | < & the series in (60) con-
verges uniformly on the cube [0,27]". Hence D®u & Cfe, and

luleS( 3 A+ 1HE gy,
e ING

Proposition 1.3.15. Let Cio, = n  C%, be the projective limit of the sequence of Banach
P ke N, pes

spaces (Cfer ke IV, - Then Wie, = Cper topologically.

Proof. The above proposition implies that Wg., < C’;e, if > n/2 +k. Let us show the con-
verse, Giveng e IN.Letu € Cpe,. Then, as is well known in the theory of Fourier series



-41 -

U= Cc; €
le IN

D*u= Y [“ce, lalso
fe IN%

where the convergence of all the summations is uniform with respect to the cube [0,2x]*, and
hence in the norm of L2, Thus

{ |C‘2l="D[Li“SM|u| N lalgo
] [
e INg

from which readily follows that 4 € Wg, and

NalgS M Tuly (61)
where M and M” are suitable absolute constant. Since Ci, is dense in Cq,, the above holds for all
- #in Cper. 50 Cper &y Wer. Corollary 1.1.9 (ii) then implies that Crer = W, topologically. 1[I
Corollary L3.16. Wy, is the space of periodic distributions, i.e., Wper = (Cper)®.

Proof. (Cou)* = W)t =We. , i

Proposition 1.3.17.

(i) Foreach 1< k< n, the differential operator Dy, : Cpey — Cpe; extends uniquely to a continu-
ous operator from W3, to W: (ce R).

(i) Let ¢(x) e Cp;. Then the multiplication operator M o Cper € u(x) =3 ¢ ulx)e Cper
extends uniquely to a continuous operator on Wg,, (ce R).

Proof. @fu= 3 ciege CpthenDiu= Y, cliee Cprandforoe R
te Ny le IN}

WD ullyg=( E (A+1115HED 7 ¢ 12
ie ING

ST A+ g 1D =Null,.
le Ny

Since Cper is dense in Wpe , Dy extends uniquely to a continuous operator from Wg, to W"*‘.
(ii) First we assume that o2 0. Then Leibnitz’s rule and the inequalities

ID% ulig< laellyg -

and
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NullegsMy Y, UD%ul
leise

imply that
IMyulls< Mollully (ue Coy)

where M and M, are constants. Therefore M ¢ extends uniquely to a continuous operator on Wp,,.
Since obviously (M o)* =My, Theorem 1.2.11 (i) leads to the wanted result fore < 0. ]

Most of the results above are quite standard (see €.g., [BIS], Chapter 3). In the present treatment
however the various results follow as special cases.

Example VI. The Range of the propagation operator of the Ordinary Heat-Diffusion Equation.
Let X = LP(IR) (1< p <o) with the usual norm llull, = (I | u(x) I? dx)'? for u € LP(R). Con-
R

sider the heat-diffusion equation in the space of tempered distributions S’

ou _ u
L 62
FFRRE) (62)
Here the differentiation with respect 1o x is in the sense of tempered distributions, while that with
respect to ¢ is of the topology of §”. Since the Fourier transform F and its inverse are continuous
on §’, the above equation (62) is equivalent to

W - 2Fu ©3)
From this easily follows the solution of the initial value problem of (62):
2 R
N e il Py e ¥wy 64
¢ 2Vnt
a2
ol
Ifue L?, thene ** u=v(x)extends to an entire function v(¥) ({=x +iy) which is given by
iyl

4

. 1
v(§)=v{x+9*)f N e *(y u(x)

| L ey
=2\{’;e4‘Le o w(@dt.

Furthermore, Young’s inequality leads to that

IV +iy)lp e < € lluil,, (65)
Indeed



-43-

. _GOPRiG-ty .
le “ | dg= eX M gr=1.
| | el
& &

Put B=(e ® ) with DB)=R(e ® |.»). It is not difficult to show that the operator B is of
#

‘.—
type P(OM) for some M2 1, and for t>0,B'=(e % |.)"\. Therefore, by definition,
y ver—

§ t
X4 =R(e * }.»)fort>0. Thus, we need to characterize R(e ®° },») explicitly.
In view of the above consideration let us assume that v({) = v(x +iy) be an entire function such
that
v+, <Me” , xye R (66)

where M and 5 are nonnegative constants, We intend to find some ¢ > 0 and # € L? such that
s

§ —
vix)=¢e o u(x). A heuristic consideration suggests the following candidate for u:

1, ..
iz}
1 _[e 4 v(in)dn

u) = 2\’5 R
$oof 1
1 wEY
= -‘L’e WO dL 67

Of course, we must actually prove the convergence of the above integrals and # ¢ L? and
&

el a u(x)y=vix).

Lemma 1.3,18. If v({) is an entire function satisfying the condition (66) above, then, for any
s > s there exists o depending only on p,s and s” such that

sup | vx+iy) 1S oM . (68)
x+iye €

Proof. By the mean value theorem we have, (R >0),

Va+y)=—— | vi@+D+iG+m) dldn.
TR \geinl <R

An application of Holder’s inequality leads to the estimate

L
Ivix+iy) 1 € —1—2—(1:1?2)1 P ( j I VG + D+ iy +1)] 17 dldn)'?
xR Ig+inl <R
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1-1

S @RH P ([ IVG+D+iy+m] 1P didmP
R ig+nl <R

1 400

2y p o 12 P
S@RYH P 2R lcf;x&’zl‘lv(x-»m)l dx)

lip
<| 2| MestyIeRY,
TR
From this estimate follows the wanted assertion. 1]

According to the above lemma we are now certain that for an entire function v satisfying (66) for
some § >0 the integrals in (67) converge as long as 0<t < 4% Furthermore, the Cauchy
integral theorem enables us to transfer the path of integration so that (ce R)

1 € +o0f —1-(x~§)‘

m
u(x)= e v dt. (69
O Lot YOK ’
In particular, for ¢ = x we have
1 o8 __an
u(x) = e ¥ v(x+indu. 70
)= JEL ) dn (70)

Lemma 1.3.19. As in the above lemma let v({) be an entire function satisfying the condition
(66). Then fort < 21; the function u(x) in (67) is well defined and is equivalently given by equa-

tions {(69) or (70). Moreover, u(x) € L?, and for any a € (s, 217) holds that

2

1
(=l
M e %7 g, ey, (71)

le
2Vnr

Nul,<

Proof. As already observed above the function u(x) is well defined and is equivalently given by
(67), (69) and (70). Fix a e (5, 4%). By Hoélder's inequality and Fubini’s theorem we have

+oo
@Vrey [ 1uG) 1P dx

00 o5 lng

=[1]e* vatimdntra

— 0 g

4o L] 1

(g by
< Jar(f e anplt (] e vietin 1P dn)
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+ 00 -+ oo

)'Iz F
1P [ e?Wan [ Ivx+in) 1? dx

1
———g

...(
=(“e 41

1 o0
~(—a)?
S@le * P MP [ eP@ N gy

-0l

1

—-a

~(—ap
=@le ¥ " 1P Qe @y M2

from which readily follows (71). {1

Lemma 1.3.20. Assume that all the conditions in the above Lemma 1.3.19 are satisfied. Then
‘ ———
e ¥ ux)y=v@).

&

Proof. Put w(x) = e' o u{x). Then, by (64) and (76)

=1 a
w(x) = Py e * u(x)

1 G2 9 R
—[[e ¥ ¥ v@+mydtan
dnt 3

2

¥ 2n

e ¥ rar .[ v(x+re®®)do

=v(x) {(xe R).

Definition 1.3.21. Given p21 and s > 0. Let A?* denote the normed space of entire function
v(0) such that

Ivipe= su%a e (_[ Pv(x+iy) 1?7 d0)P < oo, 72)
ye R

Proposition 1.3.22. Foreachp2 2 and s > 0, the space AP* is a Banach space.

Proof. Let (v,) be a Cauchy sequence in AP°. Then for any € > O there exists an N € N such
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that
| Vo=V | s = P e-”’(l!e I Va(x+iy) — Vu(x +iy) 1P dx)P< e fornm= N.  (73)
Then for any given s* < s Lemma 1.3.18 implies that

sup v, (x+iy) —vux+iy) 1S ae ey, 7%
x+iye €

‘This estimate shows that the sequence of functions {v,(x+iy)} converges to an entire function
V(x +iy) uniformly on each strip {x+iy | 1yl < b} (b>0). On fixing n and letting m — oo in
(73), in view of Lebesque’s dominance convergence theorem we conclude that ve AP® and
v, =V in AP*_ Thus the space AP* is complete. 0

Definition L3.23. For s € (0,00] let AP** = U AP° be the inductive limit of the family of

o<s

Banach spaces {AP° | o<s}. For s € [0,00), let A”* = N AP° be the projective limit of the

a>s
family of Banach spaces {A”° | 6> s5}. 0

In summary of the above discussion we obtain

Theorem L3.24. Fort ¢ [0,0)
1

oW
(L”)};:AP 4" topologically.

Fort e (0,00]

1
| Aomia
AP =A ¥ topologically.

I
In the case p =2 we can characterize each of the Hilbert spaces (L2)% exactly. In fact, foru € L?
al
P
amndv=e = g, using Plancherel’s theorem we have

-

T;_;jcjlv(x#y) 2e 2 dxdy

1.,
1 T 1 ixk ,—ky—tk? 2
= e dy |dx | = | e™e (Fu)dk\
o kS VR
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.
je"z”‘ [ Ful? dk_[e 2 2kydy

21ct

=j|Fu|2dk
R

=[lut?dr (75)
R
The above identity and a theorem of Zalik and Saad {Z-S] yield

Theorem 1.3.26. (L2)} is isometrically equivalent to the Hilbert space of entire functions v such
that

Xy
Vi =-—-\,—21_—t~ L[ v +iy) (2 e % drdy <o,
1

Example VIL. If we take X = L2(IR") and B =x2 — A then X§? = (LW)>°, These spaces can be
characterized by the asymptotic behaviour of the expansion coefficients of a function « in L2 in
terms of the basis consisting of Hermite functions. Moreover, for ¢ a nonnegative integer

AW ={ue L2(R*) | x*0Pu e L} (R™),Vial <o, IBl S o).

Of course we have the inductive limits (LW)*°* and projective limits (LW)*°". And
(LW)>* = §, the Schwartz test function space, and (LW)>™ = §’, the space of tempered distribu-
tions. For details we refer to [R-S], Vol. 1, p. 141,

o
If we take X =L2{R} andB=e % , then X§* =S%, one of the test spaces introduced by Gel-
fand and Shilov, cf. [Zh]. Moreover X§ = {u | u extends to an entire analytic function u(x +iy)

such that 13 = J[ 1 u(r+y) 17 expltanh(2) % - ~L
2

= y21dx dy < eo}; cf. [E-M].
tanh(;)
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IL. Regularity and Extendibility of Solutions to Autonomous Evolution Equations

Recall that in Chapter I we constructed a scale of Banach spaces X} (ve IR) for a fixed positive
operator B in a Banach space (X, il il). In the first section of this chapter we assume that an opera-
tor A : D(A) © X generates a ¢ semigroup e on X and we discuss its regularity and extendibil-
ity with respect to the spaces X} (ve R). More precisely, both necessary-sufficient conditions
and sufficient conditions involving the operators A and BY or A* and (B*)" are given such that
A restricts to & cg Semigroup on X} (v>0) ore™ A extends 10 a ¢ semigroup on X3* (v <0).

In the first part of the second section two criteria are given for an infinite complex matrix (a;) to
generate a cg semigroup on /2. One of these criteria deals with diagonal-dominant matrices in
some sense using the well known perturbation theorem of Rellich-Kato-Gustafson-Chernoff. The
other aims at skew-symmetric matrices; here essential is the technique of the auxiliary operator of
De Graaf. In the final part of the section the results in the previous section are applied so that
these ¢ semigroups on /2 are regular or extendible with respect to the scale of weighted {2
spaces I*¥ (ve RR). Several concrete examples are given to illustrate the general results.

In the last section the theory presented in the first section is applied to the second order partial
differentiat operator

Ay = i a;j 8 B -i-Zb(x) +c(x)u

ij=1 =1
in L2(IR"™) and to the operator B =1 —~ A or x* - A. So regularity and extendibility of the solu-
tions of the corresponding evqlution equation %:— =~Au with respect to the Sobolev spaces

H'(IR™) and modified Sobolev spaces (LW)*"(IR™) are obtained under certain growth conditions
of the coefficients. Some estimates involving commutants of two differential operators play an
important role. In consistence with this the technique of pseudo-differential operators is also
applied.

11.1. General Theory

Theorem IL1.1. Let e™ be a ¢y semigroup of operators generated by the operator —A in X.
Then, the following two properties are equivalent (v>0):

(@) e™XpcXpforallt20ande™ Jy, isaco semigroup on X.

(ii) TheoperatorBYAB™ = A, is a generator of a ¢ semigroup e inXx.

Proof. (il) = (). Let u ¢ X} and set v=8B"u e X. Since A, generates a ¢g semigroup in X,
there must exist a sequence of points v, € D{A,) such thatllv, ~vli— Oand
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tzl(e-mv Vo)

~iA
= N 20.
& Ayle vy, 120 V]

An application of B~ on both sides yiclds that
d py, vy, ~tA,
< B vl =ABT ™ vl 3)

Obviously B"'(e"A‘ Vo) g =B v, = u,. This, together with (3) implies that
B™ [e"A;' vn)=e4 u,. Here we have used the uniqueness of the Cauchy problem for the equa-
tion (1). Further from the inequalities

Netu—B~ e v

She Al Nu—ull+lie™® u,~B~ e vl + 1B~ ™ (v, =W

Sle it Hu—uN+1B7V 1 te ™ Hv,—vll—>0 as n — o0
it follows that

eBu=Bve By @

which in turn implies ().

(i) => (i) If property (i) holds, then the family S(z)=B" e ™ B™ is a ¢ semigroup on X, It is
easy 10 see that the generator of S(¢) is precisely B¥A B™. 1

Thus we find essentially the same result as was obtained quite a time ago in [Kal]. See also [Pa]
and [Ta]. A comparison of the two proofs shows however that they are very different from each
other.

The above theorem deals with the regularity of the semigroup e ™ with respect to the space X}.
The next one is about the extendibility of the semigroup ¢ to the spaces Xz' (v> 0). ’

Theorem IL1.2. Assume that e is a ¢ semigroup of linear operators with generator —A in a
reflexive Banach space (X, li-If). Let v> 0. Then the following two statements are mutually
equivalent:

(i) e extends (uniquely) to a ¢ semigroup of linear operators on X3".

(il) The operator (B*)' A*(B*)™ generates a ¢ semigroup of linear operators on X*.

Proof. () = (ii). Put e~ = T(s) and let the extension of T(¢) onto the space Xz' be f\,(t) with
generator —Zv. According to the standard result on dual semigroups (conf. e.g. Theorem 0.8 or
[Ta), Theorem 3.1.6), both the operators ~A* and ~(4,)* generate semigroups of operators on
the spaces X* and (X*)}«, respectively. In fact, e = (e)* and e = (¢ )*. We want

to show that =4 ?(X ) T e"‘("“)*. Let <-,+ >, , be the duality pairing between (X*)}« and
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Xp'ie. <uf>y =B u, (B*) f)foru e Xz" and f e (X*)j+, where ¢,-) is the duality pair-
ing between X and X*, Assume that u € D(4) and f € D{(A,)*). Then we have

7?; [ =@ (O 1. ®
Thus

< L 15, =< G P S5, ©
or

W L™ p=<dyu, O fo,,, @
or

L ® p=can, O g, ®)

from which it follows that ¢ " f & D(A*) and that

4

L = -ar @ g, ©

Since D(A) is dense we have

_g_ [e“‘(A-)*ﬂ=_A* e“‘(Av)’.f‘

o a0

The differentiation with respect to ¢ in the above equation is originally in the norm of the space
(X*)p», and hfnce also in the weaker norm of X*. By the uniqueness of solutions we have finally
arrived at e ¥ £ = e74* ffor all f € D((A,)*). Since D((A,)*) is dense in (X*)}» it immedi-
ately follows that the above relation holds for all fe (X*)3+; in other words, we have finally
proved
1\

“hareyy = an

Then, from Theorem 11.1.1 follows readily assertion (ii).

Gi) = (). Conversely, if the operator (B*)* A*(B*)™ generates a ¢y semigroup on X*, then,
according to Theorem IL.1.1, e4" T(X* )} I8 @ ¢o semigroup on (X *)p+ with generator - -A* as
the part of -A* in (X*)}+. Of course, —(A*)* generates a co semigroup e~“4") on
[(X*)3+T* =X7", ice. (¢ Jusps. Tt remains to prove that

e—‘(j*)* l\X - e-lA. (12)
Letu € D(A)and fe D(A*). Then
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% e Pu)y=—Aetu 13
Further

(&) )= A e™u f) (14)
or

L, fy=( " -2* ) )
or

< % € u) fopy=<eBu ~A*f>, .. 15)

The last equality shows that ¢4 u € D((A*)*) and

< % € U),f>ey=<—@E*) e i, fo . (18)
Since D(A*) is dense in (X*)}+ it follows that

% (e A uy=~(A** (e u). a9

Differentiation 1o ¢ in the last equation is originally in terms of the norm in X, and hence also in
the weaker norm of Xp'. Therefore, from the uniqueness of the solutions follows that
ey =e"® 4 Since this is true for all u € D(A) which is dense in X, we finally have proved
the equation (12). il

The above Theorems 11.1.1 and I1.1.2 give necessary and sufficient conditions for a ¢y semigroup
e™ 10 be regular with respect to the space X} or to be extendible to the space X3', respectively.
In the following we present sufficient conditions which are easier to check in applications.

Theorem I.1.3. Let v > O be fixed and a generator Q in X given, If there exists a core A € D(Q)
of the generator Q such that

BV AcD(A) ‘ (20

AB™ Ac DY) V1))

(BYAB™ ~ ()} s quasi~accretive 21"
and

ll{B“AB’”-—Q}u!!SMVllul!-HlQul!, ue A 22)

where M, is a constant. Then, the above conditions (20), (21), (21°) and (22) are actually valid
for D(Q) instead of A, and B¥ A B™ generates a ¢ semigroup of operators on X.
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Proof. Let u € D(Q). Then, there exists a sequence {#,) cAsuchthat uy — uand Qu, — Qu.
From the inequality (22) follows that

NBYABY—0) (g~ M, Nty —~up 8+ 40ty — 0wl (23)

which shows that {(B¥ A B™ - Q) u,} is a Cauchy sequence and hence convergent. Now we have

DAY®B™ u, —»B™u (24)
DBYY®AB uy, =B~ Qu;+B™(B” A B™ — () u; converges 25)
BYAB™ 1, =Q up + (BY A B™ - Q) uy converges. 26)

Therefore, the closedness of A and BY implies that

B™u e D) @n

AB™u, —AB™ue D(BY) (28)

BYAB™ uk-;B"AB"” u. , 29
Further from (29) and

HBYAB™ ~Qu <M Bl +1Q wll
it follows that
EBYAB -Qyuls M, lull+1Qull. 30)

So conditions (20) - (22) are actually valid for D{Q) instead of A.

Then, according o the standard result on the perturbation of infinitesimal generators (see, e.g.,
Theorem 0.9 or [Pa], Chapter 3, Sect. 3), the closure of the operator
BYAB™ =Q+(BYAB™ —() as defined on D(Q) generates a ¢y semigroup. Our proof is com-
plete if we can show the closedness of the operator BYAB™. In fact, for a sequenée
e DBYAB™) ie. BV uy,e DIA) and ABYu,e D{B”) such that w,—>u and
BYAB™ u; — v, since B™ is continuous, we have B iy — BV uand A B™ u; — B™ v. There-
fore from the closedness of A follows that B~ ue D(A) and ABu=B""v, ie,
ABYue DB )YandB"AB Y u=v. i

Of course, if conditions (20)‘- (22) are satisfied for A* instead of A and B* instead of B, then
(B*) A*(B*)™ generates a cg semigroup on X*. We emphasize that only having to check con-
ditions (20) - (22) for a core instead of the whole domain D{Q) greatly facilitates the applications
to concrete problems. Recalling the structures of the spaces X§* the above Theorem I1.1.1 - I1.1.3
immediately give rise to the following two results on the regularity of a semigroup with respect to
the regular spaces of inductive or projective type and the extendibility to hyper-spaces of induc-
tive or projective type.
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Theorem X1.1.4.

(i) For some v 0 suppose there exists a sequence {v;} such that v; > v and v; ~> v and each
BY AB™ generates 2 ¢ semigroup on X (in particular if there exists a core A of some gen-
erator Q such that conditions (20) - (22) are valid for all the v =v;), then e ™ X}"  X}" and
eA) X}t is a continuous semigroup of operators on X5

(ii) Forv fixed, 0 < v< oo suppose there exists a sequence {v;} such that v; <v and v; — v and
each B“ AB™" generates a ¢ semigroup on X (in particular if there exists a core A such
that conditions (20) - (22) are valid for all v=v;). Then, e X} <X} and e { Xy isa
continuous semigroup of operators on X¥ . i

Theorem I.1.5.

(i) Forsome v, 0S v < oo, if all the conditions in the above Theorem I1.1.4 (i) are satisfied for
X*, B* and A* instead of X,B and A, then the semigroup ¢™ extends (uniquely) to a con-
tinuous semigroup on the space X5,

(ii) Forsomev, 0 <vs oo if all the conditions in the above Theorem I1.1.4 (ii) are satisfied for
X*, B* and A* instead of X,B and A, then the semigroup e~ extends uniquely to a con-
tinuous semigroup on the space X§™*. i

We note that in general the restricted semigroups e~ p Xy or the extended semigroups
e i X§ are not necessarily equicontinuous on the respective spaces (even if after multiplica-
tion by a factor ™) under the assumptions of the above Theorems. However, if conditions as
(20) - (22) are met without the term | A 4l in (22) and with a bounded sequence {M, ], then they
are indeed equicontinuous after multiplication by a suitable factor e ¥,

IL2. ¢y Semigroups in I and Their Regularity and Extendibility

Let (@j)jke v, be an infinite matrix of complex numbers with j,k the row index and column
index respectively. We suppose that

{ax)el?, Yike Ng;{aple 2, VYje Ny.

Corresponding to the matrix (a;) we can define an operator A e = Oplap) in 12 as follows:
Amax 8={3, ajp i} je v,
k=0
with

DAme)={u=@)e > | T aju converges for all
k=0
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je Noand (T apit)jem, € 32}.
k=0

If instead of the matrix (g;;) we use its complex conjugate (@;;), then we obtain another operator
on [2, denoted by A%,,. Under the above conditions it is easy to see that I2 € D(Ap,,) and
I © D(Ak), Where 12 = {u=(u) | ;=0 if k2 K depending on u}, the subspace of finite
sequences. We fix the notations Amax |2 = A and Al 2 =A};,. Thus both the operators
Amax and Al are densely defined. Actually they are also closed and obey the following rela-
tions:

Ana)* CAmin)* =Ahax s Amax)* CAin)* =Amax.

The above facts are simple to prove and can be found in standard text books, e.g., [Wel. In this
section we first give {wo criteria under which a matrix (ay) (actually a appropriate operator
corresponding to it) generates a co semigroup in /2, and finally examine its regularity and exten-
dibility with respect to the weighted /2 spaces /%° (2} =1%° constructed in 1.3.

For the sake of simplicity in formulation from now on we always assume that the matrices dis-
cussed are tridiagonal. Extensions to cases involving more general matrices are immediate.

Theorem IL2.1. Suppose that (a;) is a tridiagonal matrix with the diagonal elements
Ay —» +oo (k—>0s) and (Am,x-—Q)hg quasi-accretive. Here O =Opldiag(ag)]. Assume that
there exist constants K € INg and ¢; 2 O and ¢, 2 O with ¢; + ¢, < 1 such that

| @gorel GRS ¢y Vapryl aii S oy, VEZK. 31

Then the closure of A x| 2 gerierates a ¢ semigroup of operators on /2.

Proof. From the condition gy, — +oo (X ~ <o) it follows easily that the operator Q generates a
¢ o semigroup on /? with 12 as a core of Q.

For u e D(Q) we have the estimate

o
(T ! @it Mot + Gppst tiay 1%
£=0

STV G ot 1D+ (T pgeat tpar 1%
k=0 k=0

SMlull+(ci+c,) 10 ut

where
My=2 max {ia,1, la 1].
k { kk~1 12 ko k]l }

From this estimate we have D(Q) ¢ D{A . and foru € D(Q)
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HA-Q ull< 2Mg hull + (¢;+c )N QO ull ; (32)
and
NAull€ 2Mg llult+ Q+c+e )G ull. (33

By virtue of (32) with ¢; + ¢, % 1 the well known perturbation theorem (cf. ¢.g., Theorem 0.9)
ensures that the closure of A, | D(Q) &enerates a g semigroup on 2. Moreover (33) implies
that /2 is a core for Ay | D(Q)» @nd hence also for its closure. I

Corollary I1.2.2. If in the above theorem instead of condition (31) we assume the stronger con-
dition that

Hmsup | Gp4y 4 | aih +limsup | ag sy | af <1 34
then A | () Senerates a ¢o semigroup in 1% with 12 as a core for A pay | D©) 0

We remark that if (a;) = diag(ag) + (a%) + (@) with (a) a bounded matrix on /2 and (a@)
skew symmetric, then (A , — )| /2 is quasi-accretive.

Example I1.2.3. With (a;) givenby (t,v<1)

r < -

0 -1
o 2
diag(1,2,3,.)+| 2 0 -3
3 0
L J
0 1-— ]
(0 1 | |2l o 121
1* 0 2* 1 2
+i| »o0 + 0 2-% 0 1-%
¥ 0
T 2 g

the operator Ay | D(Q) generates a ¢o semigroup in 1% with 12 as a core of it. Here Q is the
maximal operator corresponding to diag (1,2,3,...). {1

The matrices corresponding to the generator in the above discussion are diagonal-dominant in a
certain sense, The next theorem avoids such a requirement.

Theorem IIL2.4. For an infinite matrix (ay) assume there exists a diagonal matrix
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diag(q¢.q1 ,...) with 0 < g — oo such that its corresponding maximal operator Q and the opera-
tors A .y and A, satisfy the following conditions:

Op(a; q7") is a Hilbert—Schmidt operator on /2 (35)
Op(aj+ay) | p ©) is quasi—accretive (36)
Op(g? ajqi” +47 " @i gl)| D(Q*) is quasi-accretive. 3N

Then A pax | D(Q) is closable and its closure generates a co semigroup on 2

Proof. Condition (35) implies in particular that D(Q) € D(A ax). Theorem 0.10 will yield the
wanted conclusion if we can check the conditions that

Re(u , Amax )2 B(u,u), Vu e D(Q) (38)

Re(Qu, Amax )2 B(Qu,u), Yu e D(Q) (39)

where B is a constant.
Let u € D(Q). We have
W, Apax W)=, 3, u;jdp iy
j=0 k=0

and

1
™38

Ms TMs IMs

(4, Amax ) Uj aji ui

L

I
IM: Iz T

(qj4) (a7 e qi?) (qeue)

(gj4)) (47" g5 (qe )

I

it
‘™M1

~
#
[~

it-j Qji Ui
oo L

= Z 2 Uj Agj Ug.
J=0 k=0

Note that the double summations above are interchangable because of the fact that (7' a az') is
a Hilbert-Schmidt matrix in /2. Consequently

Re(u , Apax #) ='12‘ [, Amax )+ (U, Aoy #)]
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o0 oo
=2 ¥ 3 4j@p+ay) i
j0i=0

=2 (u,0p(ap+ay)u), ue D(Q).
This together with the condition (36) implies (38).
Similarly, forv e D(Q %) we have
©@"V. Anx 0 V=3, T, 41V Bpai* Vi.
=0 k=0

And

©"V, Anx 07" V)= 3 ¥ @%7) @ gt qf vi
j=0 k=0

=3 3 @A) @raiHalve
k=0 j=0

=¥ ¥ g7*v;a54L Ve
J=0 k=0

The interchange of summations above is allowable since Op(a; q%") is Hilbert-Schmidt. There-
fore foru =0 ve D(Q) ‘

Re(Qu, Ay #) =Re(Q%* v, A Q7% V)

fl
‘™3

&

o B
1 Yoo U o ulp Yy —
3 Ig:’ﬂ"j(‘lj Qi qe” +qi" Mgk )k
i

=1 (v, 0p(q} ajq” +47* @y alHv).
Condition (39) then follows from (37) and the above relation. {
We have a few remarks on the conditions in the previous theorem. Condition (35) is satisfied if
we take .
qe=or' max {1 ap x|, tagl, 1@t

with {0} in /2. Condition (36) is verified if (aj) is a sum of a skew-symmetric matrix and a
bounded matrix. In case (a;) s skew-symmetric, then the entry at (%, k—1) of the mairix
) =(qP apqe” +q;" G qi) is

% "
a il - 73 _ L3 1
R P qi-1

Thus if g/ gx..1 —> 1 the operator in (37) might be bounded and hence quasi-accretive in spite of
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{1 @y 41 1} being unbounded.

Example I1.2.5, If

o v
-1 0 2

(ap)= =2¥ 0 3 vs1)

and Q@ =Opldiag(1*,2*,3*,. )] (u>v+-§— ), then the conditions in the above theorem are
satisfied. So Op(a;) ! p(() essentially generates a ¢ semigroup in /2. 0

For a sequence of positive numbers {A;} with A, — oo a comresponding scale of weighted 12
spaces, 12 {A} = %", has been constructed in L3. In the finally part of the present section we
examine the regularity and extendibility with respect to I>¥(ve R) of the ¢ semigroups in
Theorems 11.2.1 and 11.2.4. Let B = Op{diag (A)].

Theorem IL2.6. Suppose that a tridiagonal matrix (a;) with ay —> +e° generates a ¢p semi-
group e~ with /2 as a core. Set Q = Op [diag (a)]. For fixed v > 0 assume further more the fol-
lowing conditions:

B (Apx—~QB™} 2 is quasi~accretive (40)

I @gsre ! @it Qe A Y S ey
k2K @1)
I ag-1 | Gk et A1) S €y

with ¢, +¢, < 1. Then e (%) < > (12 0) and e } j2.v is a ¢ semigroup on /Y.

Proof. A= is a core for (. Obviously B™({Hcli?cD(A) and
AB™(1%) c A(®) ¢ 2 c D(B"). Furthermore, entirely similar to the proof of Theorem I1.2.1
above, corresponding to (32) we now have

IB*AB™-0)ullS My, lull+(cy+c,,)BQull, ne 2

where
Mg, =2 et | QuAihy), | I L))
kv o?kas).(x{ G-t b QA1) s Vagrer T Querzin)')

So, all the conditions in Theorem I1.1.3 are satisfied and from this theorem readily follows the
wanted conclusion. 1]

We remark that the condition (41) is satisfied if



-59.

- limsup | agqy g | @ Qesr A1) +limsup | @y g | gy A1) < 1. 42
In case lim(Ai41 / A,) = 1 condition (42) is equivalent to condition (34). Condition (40) holds iff
BYAmax~O)B™ + BV (AL ~ ) B} l% (uasi-accretive. 43)

In case (a;) —diag(ay) is skew-symmetric, the entry at (%,k—1) of the matrix corresponding to
the operator in (43) is :

a2 2T 0
LY he )

Corollary IL2.7. Suppose that a tridiagonal matrix (a;) with ag — +oo generates a ¢o semi-
group e on 12 with 12 as a core. For fixed v > 0, e extends to a ¢ semigroup on [>™ if the
following conditions are verified:

(B AL B™~() | is quasi-accretive 45)
Vagen | at (e MY S ey, k2K ; (46)
l Gt | aif QMY Sch, . k2K @n

withcf, +¢,S 1.

Proof. We have A* = (4] 2)* = Afax. Under the conditions above BY A% B~ generates a cg
semigroup in /2, as is shown in the proof of the above theorem. Theorem I1.1.2 then leads to the
conclusion that e is extendible to /2=, 0

Example I1.2.8. With A, =k +1 (ke INg), the semigroup e~ in Example I1.2.3 both restricts
10 a ¢ semigroup on [2¥ and extends to a ¢ semigroup on !> forany v > 0. 1

From now on we assume that

0 < liminf A, A7, < limsup A Ajly < oo, 48
Theorem IL2.9. Suppose that a tridiagonal matrix (aj) generates a ¢ semigroup e on /2
with D(Q) as a core for A, where O = Op[diag(q,)] with

gr = Hax {‘ A1,k I, 1 (753 i, 1 41,k I}.

. Ay oo
_,,Eggm“a"ki FGAT )Y —11) < (49)

then e ™4 restricts to a ¢ semigroup on /2,
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Progf. Because of condition (48) it is easily verified that B D(Q)c D(A) and
AB™ D(Q) € D(B"). Moreover condition (49) implies that (BYAB™-A)} D(©Q) is bounded.
Theorem I1.1.3 then leads us to the wanted conclusion.

Corollary I1.2.10. Suppose that a tridiagonal matrix (a;;) generates a co semigroup e on [*
with its adjoint semigroup e ™" having D(0) as a core.
Here Q = Op[diag(§ )] with

é,,:max {lak,k..l U, lagt, Iak',m l}

If
l ay; AR -1 5
s, (lag 1O =11} <o 50)
then ¢~ extends 1o a ¢ semigroup on /2™,

Proof. A proof similar to the one above shows that B” A* B™ generates a ¢ semigroup on / 2,
From Theorem I1.1.2 it follows readily that e™* extends to a ¢ semigroup on 1%, ]

Example IL2.11. The ¢y semigroup ¢ in Example 11.2.5 both restricts to a ¢y semigroup on
1% and extends to a ¢ semigroup on [>™ forany v > O with i, =k + 1 (ke INg).

Example I1.2.12. The ¢, semigroup e generated by the matrix

r -~

0 1%
1% 0 2%
(ap) = 2% 0 3%

3%

-

as in Example IL2.5 both restricts to a ¢ semigroup on /%" and extends to a ¢ semigroup on
%
127 with A = e®*D”  forallv > 0. 1

113. Application to Second Order Differential Operators

In this section we apply the general results in Section 111 to the following autonomous evolution
equation

du _ & _u
—8?",-3\:1 3 83:‘8 +Eb(x) ” 4 e 1))

where x = (X1,Xx2,... ,Je:,,}'r € IR™. Here all the a;; are complex constants, and all the b;(x) and
¢(x) are given complex functions on R” (in the sequel whenever we write 3% b; or 8%¢ it is
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implicitly assumed that the respective derivative exists and is continuous). Finally u = u(x,t) is
the unknown function. Throughout the whole section we assume that the operator

= S .s _izu_ id y _a—u_
~-Au= ,-,jz=1 a; ax;0x; + lzi bi(x) 3 +e()u

generates a ¢ semigroup e in L®(JR™) with the Schwartz test function space S as a core for A.
(See, e.g., [Ka2] and [Grl] for such conditions.) Our purpose is to prove the following two
theorems. '

Theorem I1.3.1.
(i) If for an integer N holds that

b, =0(), %c=0(1), lal<2N (52)
then e (H™) c H¥ and ¢™ | 2~ is a ¢y semigroup of operators on H2",
(ii) If for aninteger N the conditions
8%b;=0(1), lal<2N+1; %c=0(), lal<2N, (53)
are satisfied, then e ™ extends to a ¢ semigroup of operators on the space H~2'.
(i) If the conditions
d*b;=0(1), ¢ =0(1), lal <o, 54)

are satisfied, then ¢ ™ both restricts to a ¢ semigroup on the space H* and extends to a ¢
semigroup on the space H™™.

Theorem I1.3.2.
(i) If for some integer N hold the conditions

bi=0+1x1), c=0(1+1xH)%) (55)

b, =01+ 1x )Y, Fc=0(Q+Ix1'"), O< lal 2N, (56)

then e AUWYY < CW)P and ¢4 fawyy isaco semigroup of operators on (LW)3Y.
(ii) If for an integer N hold the conditions (55) and (56) and moreover

Db =0((1+1x 1)), lal =2N+1 D

then ¢~ extends 1o a ¢ semigroup on the space (LW)3%".

(iii) If the conditions (55) and (56) are satisfied for all multi-indices o, then e™* both restricts to
a cg semigroup on the Schwartz test function space S and extends 10 a ¢ semigroup on the
Schwartz tempered generalized function spaces S”.
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For the proof of these theorems we need the following two simple lemmas, both of which are

consequences of Leibnitz’s rule. Their proofs are omitted.

Lemma I1.3.3. For c(x) € C*(IR™) and u(x) e C*(R™) holds the following identity

Mwy=cAu+ ¥ pB @ )@Pw
ol =2k
181< 21

where the pf,? are suitable absolute constants.
Lemma I1.3.4. For N a natural number the following identity is valid:
N N
@- =TV * AV e py
k=0
where

Pv= % s xeob
le+pi < 2N -2

while the 3% are absolute constants.

Now we can give the proofs of Theorems I1.3.1 and 11.3.2.

61

(39

(60)

Proof of Theorem I1.3.1. (i) For B =B, =1~A we have X} = H?'; see Example 4 in Section 1.3.
By Theorems 1I.1.1 and IL.11.3 we only need to verify the conditions (20) - (22) in the presence of
our assumption (52). From the effects of the Fourier transformation on x® 8® u and on B, it fol-
lows immediately that BTV (S)<=S cD(A). Also, if the condition (52) is met, then
A(S) c H® =D(BY). Thus, the conditions (20) and (21) are verified. Further, since all the q;; are

assumed to be constants, Lemima I1.3.3 implies that foru e §
N N
BYAu=73 (-1t M A¥Au
k=0

n

=Y a ‘faaz -8V u +zb,a U-Au+cd~AVu

ij=1 i=1

n )
2T Puas @@+ T poas @0 @0
=] lasplS N Xi (wBlEaN
IBISON-1 IBISIN-1
where all the p; 5 ( =0,1,...,n) are constants. Therefore from the condition (52) follows
WA, BY juis M 4BY ull, ue S

which is (22) with the term Il A u il dropped.

(61)

(62)
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(ii) Obviously

A*u=3 a P (b) +(" Bi s o, ues
Thus, from the proof of (i) above, we see that under the condition (53), A* § ¢ D(B¥) and

nga* , BY1ulis M 0BY ull, ues. 63)
Then, according to Theorems 11.1.3 and I1.1.2, e™ extends to a ¢ semigroup on the space
X§ =H%,

The assertion in (iii) follows from () and (ii) directly. il

Proof of Theorem I13.2. (i) For B =B, =x2~A we have X} = (W)¥; see Example 7 in 1.3.
Obviously B3 Sc<S and in the presence of conditions (55) and (56) we have
AScw)¥ =D@BY).Forue BN § S, applying Lemmas I1.3.4 and IL.3.3 successively we
have

N N
BYAu=Y3 (1N * M x* AN Ay + Py Au
k=0

P - N - B L PN
=(3 g ax;aij‘ axi+c)£0( 1) [k]x ANky

ij=1
N x 'N‘ n n
+3 COVH| LY @A+ T biBal
k=0 L) =t i=l
N -k W] % < Gk du
uD LGVl I YD M Cd G
k=0 L") i=1 lo+pl S 2N-K) Xi
1B} 2N k)1
N (N
+Y VL * 0 P et @®w
k=0 L) lo+BI S 2(N k)
1B S UN~k)~1
+PyAu : ’ (64)
where
_3a®  wer, 9@ 0@y oG 3Vt
B ™ PR ©3)
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Buu=-5- ANy, (66)

The first termbon the right side of (64) is just
ABY —APyu. (67)

From the expressions (65) and (66) it is readily seen that each A;j is a linear combination of
terms in the form x® 0P u with lo+BI| < 2N, and each B, is such a sum with la+BI < 2N -1,
Therefore, because of the assumption that b; = O(1+ Ix 1) in (55), the absolute value of the
second term in (64) is bounded by

M Y A+lxnie 1kul. (68)
la+BI< 2N
It is also easy to see that, under the assumptions (55) and (56) the third and fourth terms in (64)
are bounded by an expression like (68). This applies equally well to —A Py u + Py A u. Thus we
have finally the estimate

I[A,BYlulsM ¥ (A+1x)*13Pul
latBIS2N

from which follows (conf. [R-S], p. 141)
WA, BY1un<s M i BY ull. (69)

Having verified all the conditions (20) - (22) we arrive at the assertion in (i).

In view of the expression for A*, the proof of the above assertion (i) and Theorems 1I.1.2 and
I1.1.3 imply assertion (ii).

Assertion (iii) is a direct consequence of (i) and (ii). 1

In the above Theorems 11.3.1 and 11.3.2 the regularity and extendibility of the solutions to the
equation (43) have been discussed in the Sobolev spaces H" and the modified Sobolev spaces
(LW)} with v even. Using the calculus of pseudo-differential operators we can treat the case HY
for arbitrary index v under the somewhat strong condition (54). We are wondering about the case
(LW)3 with odd index v.

Theorem IL3.5. If the condition (54) is satisfied, then the semigroup e™ both restricts to a
semigroup on each of the spaces HY, H" (0S v <) and H*™ (0< v< o), and extends to a cq
semigroup on each of the spaces H™ , H™ (0 v < o0) or HEY (0 < v< 00).

Proof. Take A=S. If is easily seen that B1"2 S ¢S cD(A) and ABY2 S cAS cS c D(BY?).
In the following, for the standard concepts, calculus and other results of pseudo-differential
operators we refer to the monograph [Ku2] and the paper [Kul].
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The symbols corresponding to the pseudo-differential operators A and B are respectively

oA D ==3 4 L +i 3 bi0) §+c(x) (70)
ik i=1
and
opp (4, O =(1+H)*%. 7

Then o, € 5% ¢ and 6= € S o. Furthermore
* 1 »

oapy (x,0) =04 Opp -i-z 1 9o de, Bf +Ry(x, 0
oAt E)CJ 0x;
=cy0pp + R0, Ry e STT2 =Sy, (72)
and
opya (x,§) =04 0pp + 04 Oy +;§1 i 3;2 . %%’FRz(x,Q
=oaopn + 3 @+ G 3 a Lgne 32y
k=l j=t O%j
+R, (0,0, Ry(x,0) e SYyp. (73)
Thus

oapy (%, §) —~ opaa (0, 0)
n b,
=X @+ Y +z € {1+Ry-Rye S}y (74)
i P ax; a ;

Therefore the operator (AB}? —B}? A) BY? is bounded on A in L2(RR"). This is equally true for
A¥ instead of A. An invocation of the theorems in I1.1 will complete the proof, 0
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111, Generation of Locally Equi-Bounded Semigroups in Inductive
Limit of Banach Spaces

Since the end of sixties locally equi-continuous semigroup on locally convex spaces have been
studied by several mathematicians. Cf. [Komu], [Ou], [Ba] and [De]. In those works necessary
and sufficient conditions on a linear operator in a locally convex space are given so that it gen-
erates such a semigroup., The conditions are usually formulated in terms of the so called general-
ized resolvents or asymptotic resolvents involving the continuous semi-norms of the locally con-
vex space. However, for the inductive limit space E* of a sequence {(E,,I-1,) | n e INg} of
‘Banach spaces very often it is hard even to imagin its continuous semi-norms. In this chapter we
present a Hille-Yosida type theorem for the so called locally equi-bounded semigroups on such
an inductive limit E™, using directly the norms of the constituent spaces (E,,I-1,) (ne WNg)
instead of the continuous semi-norms of E¥. The concept of locally equi-bounded semigroups is
in general stronger than that of locally equi-continuous semigroups. If, however, the inductive
limit E* is regular and satisfies a certain interpolation type inequality as in Theorem 1.1.6, then it
turns out to be that the two concepts are equivalent. The results obtained together with Ouchi’s
theory can be readily applied to the spaces X§* (e IR or oo} constructed in Chapter I. If the
operator A generates a ¢ semigroup e in X, then the results obtained here could be viewed as
results of more flexible regularity and extendibility of the semigroup e*4, Cf. Chapter II.

Let {(E,.1-1,) | n e INg]} be a sequence of Banach spaces such that each E,, is densely and con-
tinuously embedded in E,4; for all n € INg. Then, as in Chapter one, we can assume that the
sequence {l-H, | n € Iy} of norms is monotone decreasing. From the sequence of Banach

spaces {E,} we form its inductive limit space E* = \.:0 E, with the corresponding topology
n

denoted T3,4. In this section we are concerned with the so ¢alled locally equi-bounded semigroups
of linear operators on such inductive limits.
Definition IIL1. A family (T, | a € /} of linear operators defined on the inductive limit E* is
said to be equi-bounded if and only if

Vne No3ke Nodc,  YVae I VueE,

ToueE, and 1T, ully, < cppllull,. )
In particular, a linear operator T on E* is said to be bounded if {T'} is equi-bounded. i

Definition L2, A family of operators {T(#) | 2 0} one E* is called a locally equi-bounded
semigroup on E iff it has the following properties:

() T(0)=1, the identity operator on E™;
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i) TOTE=T@+s)foralls,120;
(iii) Forany? > 0, the subfamily {T(#) | 05 1 <7} is equi-bounded;

(v) VF>0¥ne Nodke NoVue E,Vie [0T[T()ueE and TOu:[0F] —E; is
 continuous). 0

Definition I1.3. For a locally equi-bounded semigroup {7(¢?) | 120} on E* we define its

infinitesimal generator A as follows: D(4) = v D(A,) and Au=A,u for u e D(A,), where
re N,

forallne Ny.
- -y 3 - .. T®u-u . .
DA)={ueE"137,>0Vte [01,]. T)u e E, and zlmti‘_——t—e:::usi:smf.‘,,}.
-3
and
Agu=im TOEZE
10+ t

Before we can formulate a theorem of Hille-Yosida type still another definition is needed.

Definition 1114, Let V be a locally convex spaces and A : D(A)cV —» V a densely defined
linear operator in V. A pseudo-resolvent triple of A is a set (P,.(4), R, §) such that

@ PsA)cC;

() R : Pus(A)LV) : A = RO,
S i Py(A) = L(V) : A = SOU:

(it) Vie Pu(A) ROV c DA);

(V) Vhe Py(A) Vue D) ARMu=RMAu

W) VYipe P(A) RO RAW=RW RA);

(vi) VAe Py(A) YueV, (-A)RMWu=u+SO)u 0

Theorem IIL5. Let A : D(A) c E* - E* be a linear operator in E*. Then, A is the infinitesimal
generator for a locally equi-bounded semigroup {7T() | ¢+ 0} on E* iff the following conditions
are satisfied: :

1) A, the part of A in E,, is densely defined and closed in E,, for each n large enough.
2) There exists a pseudo-resolvent triple ((w,0), R, §) (0> 0) such that
@) Vne Nodme No[RWE, cD@AL]
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(i) R@)and SQ\) are infinitely strongly differentiable on (w,00),ie. Vne Nodme Ny
VYi>oVueE, [RC)u:(wo0)->E, and S¢)u:(0,)— E, are infinitely dif-
ferentiable].

k+1
(iii) The family of operators {;‘—k'— R™ | A> w0, k€ INy) is equi-bounded on E*.

(iv) There exists some 7 > 0 such that the family {(D)™* ™ S®W\) | A> o, ke No} is
equi-bounded on E*.

The proof below is very much inspired by the work [Ou]. We first give the proof to the necessity
of the conditions. In order to do so we need '

Proposition IXL6. Assume that {T(t) | 12 0} is a locally equi-bounded semigroup on E*. Then
we have

®

Vne Nodme INgVue E,

. k
En) }}%(j} T(s)uds=u

Here and in the sequel the symbol (E,,) in front of an integral or another operation indicates that
the respective operation is meaningful in the space E,,,.

(i)

and

(iii)

and

@)

Vne NoVi>03me NoVue E, Yt e [0,7]

H
(En) [T(s)uds € D(A,)
0

t
An(T()uds)=T()u-u.
0

Vne NoVi>03me NoVue DA,) Yie [07]
T u e DA

En L @)W =AnTOU=TOA,u.

Vae NoVi>03me INgVue D(A,) V1,5 e [0,7]
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t
T@)u~T(s)u=(Ey) [T(r) A, udr

H
=En) [An (T¢I uldr.

Proof. (i) follows readily from (iv) in Definition IIL.2.
(ii) Again by (iv) in Definition III.2 we have

Vne NgVi>0dme NoVuckE,

2
T¢)u :[0,f+1] — E,, is continuous, @

Consequently, for 2 e (0,1) and ¢ € [0,7] we have

T(h)—1 t *—1_1+h ___!_h ‘
= gr(s)um_h !T(s)uds h({T(s)uds.

1
Letting 4 — O we conclude that [ 7(s) u ds € D(A,,) and
0

H
A ([T uds)=T@)u~u.
0

(iii)) As in (ii) above we have (2), which together with the equi-boundedness of the family
{T@® | t € [0,7]} implies that V¢ € [0,7] Vu € D(A,)

T(h) IT(t)u =7 TW=L T(h) ~1I

u—->TWOAu (h—>0+)inE,.
Thus T()u € D(Z;,,J and
%:— TOul=A, TOu=TE A, u 3)

However, from the equi-boundedness of {T(z) | 0< ¢ £ 7} it follows that

T@u~T@~h)u .
SR T A
=T(- k)[w Anu] +[Tt-h) A, u-T®)A, 4

-0 (A0 inE,.

This together with (3) proves the existence of —5; [T(t) u] and hence the wanted assertion,
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(iv) is obtained from (iii) by direct integration, 1
Using the above proposition we now give

Proof 1o the necessity of the conditions: By (i) and (ii) in Proposition I11.6 for n =0, 7=1 there
exists m € N such that

!
(Ew) [T(s)uds € D@Ap), Yue Eo, Vte [0.1] @
0
and

H
-}jr(s)umau(:-am)iniz,,,,we E,. )
4]

H
Relation (4) implies that % [T(s)uds € D(A,), which together with (5) shows that D(A,,) is
0

dense in Eg in the norm of E,,,. Since Eg is dense in E,,, we arrive at the conclusion that D(Z.,,,) is
dense in E,,.

By (iv) in Proposition II.6 we have
?
TOu-u=[T()Auds, Yue D(A)
0

where the integral is meaningful in some £, depending on u and £. Now let ; eD(A) (je INg)
be such that

{(u;} CE,, {Auj} CEn and u; o ue E,, Yu;—>ve E,

for some m € E,,. It holds true that
! -~
T(e)uj—u; = [ T(s) A ujds.
0

In view of the equi-boundedness of the family {T(s) | 0< s < ¢} letting j - oo in the above
equality we get

!
T@u—u=[T()vds.
0

Dividing both sides of this equality by 7> 0 then letting ¢ — O+ we see that u € D(A) and
Au=v.

Put A =A. In abuse of nolation we write A, for the part of A (i.e. of 3) inE, (ne WNg). Obvi-
ously D(A,) :D(A,,) for all n € INy. Then, for m fixed above, D(4,,) is dense in E,,. It is also
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closed in E,. Indeed, for {;} < D(A,) such that u; =>4 € E, and A, u — v € E, it follows
from last paragraphthatu € D(A)and Au=v.S0,u e D(A,)and A, u=v.
Let7 > 0 be fixed. By the equi-boundedness of the family {T'(#) | 0< r$7+1) we have

VYne Wodme Nyg3C,,>0Vue E,Vte [0,F+1]

TOueE, and 1T@Oulx< Cypliul,. 6)

Consequently a family of operators {R(A) | A > 0} on E* is well defined by

.
RO u=(Em) [e™ T udt, ue E,,A>0,ne No. )
0

Therefore we have in E,,,

k
R®Mu = :idi"— RO u] = (Ep) [ -0 €™ T()udr, ke No.
1]

7
HR®GY ull,, < g:* eMIT@Oul,dr

SCum [the™drhul,
0

=Com KN E VU, , Yue E,,YA>0,Vke Ny
which is precisely 2) (iii) in Theorem IIL5.

Forue E,,0<s< 1and A > 0 we have

T(s) o | ROYu

7 T
(Je™ T@+s)udt - [e™ Ty udr)
[4] 0

9:1;—-

Ll
5

T t;

§
e T@udi— [ T@yude
]

7
I e T(t)udt

&

+
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e T@Qu-u+ARMWu in E,ass — 0,

Thus R(A\) E, < D(A,,) © D(A,), i.c., condition 2) (i) is satisfied, and
ARMNu=e™T@u—-u+IRMNu

or equivalently
M—-ARMNu=u-e™T@u

.Set SMu =—e ¥ T(@u for A>0 and u € E*. Condition (iv) in Theorem IIL5 is obviously
verified, It is also easy to see that all the conditions in Definition II1.4 are met, 50 ((0,c), R, S) is
indeed a pseudo-resolvent triple. We thus have completed the proof to the necessity of the condi-
tions in Theorem IILS. ' 1}

Assuming that an operator A : D(A) ¢ E* — E* satisfies all the conditions in Theorem IIL5, we
prove that it is the infinitesimal generator of a unigue locally equi-bounded semigroup on E* by
the following four lemmas.

Lemma IIL1.7.
) Vrne No3me NyVuek,

lim AR(Mu=u in E,.

Ayo0

@) PutA)=-M+A?RQ).ThenVre Nodme Ny Vu e D(A,)
lim AMu=Au in E,.
A—poo

(iii} The family of operators

}de-Z en. . k
Gt [RED 4+ e+ DROJRDON] 1 1> 0, ke Ng
T+ (k+ 1)

is equi-bounded on E*.
Proof. (i) Conditions (i), (iif) and (iv) in 2) of Theorem H1.5 manifest themselves in the follow-
ing way:
Vrne Nogdme N9g3C,,, >0Vke NogVrA>0VuckE,

xk-bl
= R® ylly < Copm i ull, A ®

and
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H(E)™* e SONUNL Cpp uly. ©)

In particular forall u € E,

lim RQA)u =11im S(Mu=0 in E,. (10)
—00

A—>oo
On the other hand, conditions (iii), (iv) and (vi) in Definition II1.4 imply that

ARMu=u+SANu+RQNAu, Yu e DA). (11)

Relations (10) and (11) lead readily to the conclusion that JLlim AR(Mu=u in E, for all
—»00

u € D(A,). This is actually true for all u € E,,, for we can suppose D(4,) =E, and we have the
following inequality

HARA) V=V,
SHARQ) (vt} lpp + Mt =vily +IARQA) 6 — ull

S Com I v—ttlly + 0w =vll, +NARA) = utll.

(ii) We have from (11)

ANu=ARMNAu+ASM\u, Yue D). (12)

In view of (9) and the conclusion in (i) above we arrive at (E,,) k]im AMu=Au for all
-5 00

ue DA,).

(iii) Condition (vi) in Definition III.4 and condition 2) (i) in Theorem IIL5 imply that
~-Apn RMDu=u—-ARMu+SMNu, VA>o, Yuec E,. : 13)

By condition 1) in Theorem IIL.1.5 we can consider 4,, to be closed in E,,. Differentiating both
sides of the above equality (k + 1) times, in view of the closedness of A,, we have in E,,,

~Ap REDQY u=AREDR) - k+ DROQ)u + ¢V

VYueE,, VA>0. _ (19)
Multiplied on both sides by R (A) from the left the above equality becomes

(M =A,) RO)RED g =~k +1) RO RO 1 + RQ) SE D) u
or A

R*Vy 4+ (k+ 1) RO RPM) u==SQ) R“DYyu +RQ) SED)u
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Vue E,, VA>a (15)

We finally arrive at the assertion in (iii) by combining (15) with (8) and (9). i

Lemma IIL8, (i) A family of operators {T,(t) | A> @, t € [0,7/4]} on E* is well defined by

Y EVF 2o b
Ty(u=e™ {u+ % B G+D! RY¥Y(ul. (16)
| It is equi-bounded on E*. Moreover
AT (D=T, @AM}, Vi,u> 0, Ve [0,7/4]. 17

(ii) Vne Ngdme NoVueE,
(En) Klim T,.(¢) u exists uniformly in ¢ € [0,7/4].
- DO
The limits, denoted by T(¢), ¢ € [0,7/4] constitute an equi-bounded family of operators on E*.

Proof. (i) From (8) it readily follows that the family of operators {7, (t) | A > ®, t € [0,#/4]} is
well defined and equi-bounded on E*. Indeed ‘
BT uly< Comliull,, Yue E,, VA> @, Yt e [0,1/4]. (18)

Moreover the relation R(A) R (1) = R(u) R(}) in Definition 114 (v) implies (17) directly.

(ii) Differentiating both sides of (16) wehave forallu € E,
1)" AEnkaZ

m(t)u] = AT, Ou+e™ 3 (’ 22 R0
k=0
in E,,. This can be rewritten in the form
2 MOU=ADTOu+Pi (19)
where .
P =32 g™ (A2 k+1) ®
= 3 REDA) + (k+ DRA)ROM). ©0)

& G+ D kD!

Lemma H17. (iii) implies that for m large enoughand u € E, , A > wand ¢ € [0,7/4]

ot 2 kel k41
1Pyl 22 ™ o 37 — 20 (YR (231

ly
S G+ DU+ k2
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w0 2 k+1 k+1
G ORI S N U 1) s 1) ik PR

| GEDIEED G+

V7 i

<ae™MDe, | +e)lull,

= Cy (TP 4 oy,

SCymhe ™ Hull,. @1

Since T,(0)=17 for all A > w and since the family of operators {T,(t) | A > @, t € [0,i/4]} is
equi-bounded, we have for some sufficiently large m that in £,

T\u~Ty(Hu

[T2(s) Ty (t—-s)ulds

o
B la

(& MO TR =) +T26) -5 Ty =s)ul) ds

L]
ey, =

t

l (AWM TO Tyt -5)u~Tr() AW Tp(t—s)u

+Py Tyt =S u~T () Py sulds, Vue E,.
Therefore, in view of (17) we have for m’ sufficiently large

T () e =Ty () el
H

SH[Tols) Tyt =) [AQ 1 ~ AQ) u) ds I
0

HIPy s Tt —8)u =Ty () P s tilly

S CmNAM U = AQ) Ul + Cory e ™ +pe ™l ull,, Yu € E,. @2
Lemma II1.7 (ii) and (22) then lead to the conclusion that for any u € D(4,)

N300t =T (8) il > 0 a5 A,ps— oo uniformly in ¢ € [0,7/4).
Hence uniformly in ¢ € [0,7/4] "1.i_r)nao T',.(t) u exists, the limit of which is denoted by T(#) u. In fact
thisistrue forall u € E,, form=l€,‘ and

N7V = Ty(O) Vil
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SUTQ ()Y = Ta() il + N T ()t = Ty () il +U T ()t = T8 ¥ Uy
< Co W=Vl # 0 T30 = Ty ()l W € D(A), v € Ep).
The equi-bounded of {T(¢) | ¢t & [0,7/4]} follows from that of {T3(t) | A> o, t e [0,7/4]} and

the uniform convergence in ¢ of {T,(f) 1} as A — oo, il

Lemma HL9. The family of operators {T(¢) | ¢ € [0,7/41} has the following properties:
@ TO)=I
(i) Yne Ngdme NyVucE,
T¢)u : [0,7/4] = E,, is continuous;
(i) Yne No3dme INoVue D(A,)
T¢)u : [0,i/4] - E,, is continuously differentiable
T{t) DA,) © D(A,,) forall ¢t € [0,7/4] and

d___Té:) Y A TOUu=T@) Ay

iv) T T(s)=T@+s)forall ,s2 Osuchthats +1< /4.

Proof. Statement (i), T(0) =1, is obvious from the definition. Statement (ii) follows from the
continuity of T, ¢)u : [0,7/4] — E,, and the uniform convergence of T,¢)u to T¢)u on [0,7/4]
(Lemma II1.8 (ii)).

(iii) Forn € INg let m be chosen such that Lemma IIL7 (it) and Lemma IIL8 (ii) hold. Since the
family {T, () | A> o, t € [0,7/4]} is equi-bounded (Lemma IIL8 (1)) there exists an m’ 2 m such
that forany u € D{4,)

BT () Ay u~T(@)Aull,
SIT, @AM u~AuMly +1TE~-TENAull,
S Cpm HAQ) U ~ ARl +H (T2 (1) ~TENA ull,.

Thus, Lemma L7 ¢ii) and Lemma IIL8 (ii) lead to the assertion that T, () A(A) u converges to
T¢)Au in E, uniformly in ¢ e [0,7/4]. This combined with (19) and (21) implies that

—;’7 [T() ] converges to T(f) A u in E,,-, uniformly in ¢ € [0,F/4]. Therefore %[T(t) u] exists in
E, and ’ V

4 7y = tim & [T u)=T@Au, u e DA,). ~ 2)"
dt oo dt

On the other hand for u € D(4,)
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A RO)u=R(M\)A,u. 23)
Differentiating the above equality for k times, by virtue of the closedness of 4,, we get
R®M) DA, cD@A,), Yhke Ny, VA> 0 @4
Apg ROMu=ROO) A u, Yke Ny, YA>0, Yu e DA,). (25)

From (24) and (25) by the same reason as above we have
T (O DA, DA, YA> e, Ve [0,7/4] 26)
A TaOu=T () A u, Yi> e, VYte [0,74], Yue D@A,). 2h

Letting A — oo in (26) and (27), in view of the closedness of A, again and Lemma 1118 (ii). We
obtain finally

T@)DA,) cD(Ay), Vte [0,1/4] 28)
A, TOu=TE) Au, Yte [0,7/4], Yue DA,). : 29
(22) and (29) together provide the wanted result.
(iv) Let u ¢ D{A,). From the equi-boundedness of the family {7T{) | 0% ¢ < 7/4} and what we

have proved in (iii) above it follows that for sufficiently large m’ the function
T@¢—)T(+)u:[0,t] = E, is continuously differentiable and

T+ u-TE) T u

[T@¢~r)T(s+ryuldr

ol
SN

[TG-rATE+)u+T@~-r)T(s+r)Auldr

i
ey *

i
=[T(t~r)T(s+r) (Au-Au)dr=0.
0

Since D(A,)=E, and each of the operators T() (0S:<7%4) is continuous,
TO TS u=T@+sduforallue E,, henceforallu e E,. ]

Lemma HL10 @) If we extend the family {T(¢2) | t e {0,7/41} of operators on E* to the family
{T() | t € {0,00)} of operators on E* defined by
T =[T@EDFT), fort =k T4+t ,0< ¢ <T/4 (30)

then the later is a locally equi-bounded semigroup of operators on E*,

(ii) The infinitesimal generatorﬁ of {T(t) | t € [0,90)]} is equal to the operator A.
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@) I {S(¢) 112 0] is a locally-bounded semigroup of operators on E* which has A as its
infinitesimal generator, then S(t) =T(t) forall ¢ 2 0.

Proof. The assertion in (i) follows readily from Lemma 119,

(il) Since D(A)= . Eum D(A,), Lemma IIL9 (iii) implies that A c A. Let us show the converse.
We have
RWT\(Hu=T,) R@Wu, Yhp>w, Vee [074], Yue E*
and |
RWTOu=TOu=TE RWu, Vp> e, Vte [0,74], Yue E*.
letue D(A,.)‘ Choose m € INg such that RQA) E, < D(A,,)
R uly S Coppliull,, Yuek,
and such that Lemma 1IL7 ) is verified. Letting ¢ — O+ in

3(%& ROYu =R(O) I—(%’—' u

we get
An RN u=A, RO)u=RQO\) A, u.

Multiplying both sides of the above equality by A and then letting A — oo, by the closedness of
A, we have u € D(A,,) and A, u = A, u. In conclusion we have proved that A =A.

(iii) Letu € D(A,). In E,, with sufficiently large m we have
T u-S5@)u V

{S(t—~5)T(s)u}ds

LI
CNEN

]
ey, ™

(-SU-ATEu+SE-s)T()Aulds

H
=[{-SE-5)T(s)Au+St—5)T(s) Au}ds =0.
o
Since D(A,) = E, this is true forall u € E,, hence forallu € E™. 0

2 Mo d? d
Example HL11. Let X=L°(R),B=¢ and Aziay+b7‘;+c with

ae R,be C,ce C. Then,in the notation of Chapter I, X3" =S¥}, one of the spaces of type S
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introduced by Gelfand and Shilov, cf. [Zh]. There are several characterizations of the space Si.
Here we use the one given by Van Eijndhoven and Meyers ([E-M])

Xp={ulu extends to an entire analytic function w(x+iy) such that

y? dxdy < o).

Hul? = H lu(x+;y)l2exp[tanh(—-)x - .
tanh(-z-)

We can consider operator A as acting on the space § of Schwartz rapidly decreasing functions on
IR. Moreover
Au=F'(~ai®+bil+c)Fu, ues

where F and F~! are the Fourier transform and its inverse. Recall that each of the spaces X} is F
and F~! invariant. Then, it is easy to see that the operator A maps each space X} into X§ for any
o e (0,7). Therefore A maps X% =S into itself and for any 1> 0, A,, the part of A in X,‘g is
densely defined and closed. Let 7 > O be fixed. Put

T
ROyu=[e ™ ! /oG py g 0>0,u e S§)
0
and
Syu =—F1 ¢ Faitditic g,y
Note that

1 exp2t [-ia(x +iy)? +ib(x+iy)+c] I <
Sexp2t[lal(axz+—::~y2)+%- IReb | (1432 +L (1,5 | (s.x2+—i-)+ I Rec I1.

Then clearly R(A) and S(A) (A > 0) are well defined linear operators on St Itis simple to check
that {((0,00), R(A), S(A)) is a pseudo-resolvent triple on S?ﬁ. Also, for each © > 0 there exists a
o> 0 such that RQ) X; < X§; thus RQ)XE c D(Ay) for o € (0,0), ie. condition 2) (i) in
Theorem IHLS5 is satisfied. Moreover, for any t>0 there exisis oe (0,1) such that
RGYu i (0,000 —> X§ and S¢)u : (0,00) —> X3 are infinitely differentiable for all € XF. Expli-
citly, forallke Nganyue X3

T .
R(*)(l) u =I (“t)k e ™ F! el(—ai{’-#-bit_‘,-bc) Fudt
M

and
S(k)(l,) U= —(—-t)k Fl e—ﬁ—ai;’-&bi&c Fu.

It then readily follows that
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BREM) ully < Cop kI A E D N0,
and (A>0,ke Ny ueXp)
1S®Mully < Coo@®* e llul,.

So conditions 2) (ii), (iii) and (iv) in Theorem IIL5 hold true

In summary we have checked all the conditions of Theorem II1.5, which then garantees that the
‘operator A in St is the infinitesimal generator of a locally equi-bounded semigroup {T() | ¢ 2 0}
on St. Indeed we have the explicit expression

T(t)u=F! ! ColHite) p oy

A family of oi)erators {T() | t2 0} on E* is called a locally equi-continuous semigroup on E* if
in Definition 1.2 of locally equi-bounded semigroups conditions (iii) and (iv) are replaced by the
following ones respectively.

(iif)* ForanyT > 0, the family {T(t) | 0< ¢t <7} is equi-continuous.
(iv)’ The mapping T¢) u : [0,0¢) —> E* is continuous forall u € E*.

Obviously a locally equi-bounded semigroup (T(t) 1 2 0} on E* is a locally equi-continuous
semigroup on E¥. We are going to prove

Theorem I1.12. Assume that the inductive limit E* is regular and satisfies an interpolation type
inequality as in Theorem 1.1.6. Then a locally equi-continuous semigroup (T(®) 1 t2 0} on E* is
in fact a locally equi-bounded semigroup on E*. a

Before the proof of this theorem we formulate a more general result of an arbitrary family of
operators.

Theorem II1.13. Suppose that the assumptions on the inductive limit E* in Theorem 112 are

. satisfied. Then for a family of operators {Ty ! a.e I} on E* the following three statements are

mutually equivalent: ‘

@ (T, ! ae I}isequi-continucus on E*.

(i) For any sequence {u;)} converging (to zero) in E, there exists me IV such that
{Tow) cE,forallk e INgand x e [ and the family {{To u)se v, | @ € I'} of sequences
converge (to zero) uniformly in E,,.
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(iii) Forany n ¢ INg there exists m € N and constant M, ,,, such that

WTouluSMypllul,, VueE,, Vael.

Proof. The same arguments in the proof of Theorem 1.1.6 apply to a family of operators here. We
omit the details by only pointing out that the equi-continuity of a family of operator (T | a e I}
implies the boundedness of the set {T, u | o e I} forany fixed u. fl

Now we give

Proof of Theorem II1.12. According to Theorem II1.13 condition (iii)’ above implies condition
(iii) in Definition II1.2. It remains to check condition (iv). Let n € INg and 7> 0 be given. By
condition (iii) just verified there exist m € INg and constant M,, ,,, > 0 such that

1T®Oul s My llull,, Yue E,, Vte [0,I]. 31
On the other hand, for m so fixed, by our assumption there exists m’ € INg such that
Wil £ Qe Uiy, Vi), Vve E,. (G2

Here Gpm @ RY x R* — R* is a function monotone increasing in each of its arguments and
such that ¢, ,(M,s) —» 0 as s — 0 for each fixed M > 0; II-# is the norm of a normed space E
suchthat EY ., E.

For u ¢ E, relations (31) and (32) lead to that

BT u —T@o)ulpy < Qmm: @Myl ully , W T(2)u = T(tg) ull)
from which follows readily the continuity of T(¢)u : [0,':] - E,,-. So condition (iv) in Definition
II1.2 is satisfied. 0

To conclude we remark that the spaces X§* (ce R) satisfy the assumptions in Theorem IIL12
above so the concepts of locally equi-bounded semigroups and of locally equi-continuous semi-
groups on them are equivalent,
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IV. Hilbert Spaces of Harmonic Functions and Linear Operators

In Section 1 we give a brief review of the classical theory of harmonic functions and spherical
harmonics, especially the results which will be used in the subsequent sections.

In Section 2 we give conditions on a weight function p: (0,0¢) — (0,20) and a nonnegative
sequence {An}me v, Such that the (pre-) Hilbert space HAY(u) = (4 | u harmonic in R? and

Nuly = 1u@) 1>p(ixd0)* <o} can be identified with (D(A), Iy ‘where
Re

A D(A) c L3Sy — L%(577!) is a nonnegative self-adjoint operator in L2(S97!) defined by

oo

Au=3% A, Pnu

m=0

for

ue DA)={ue L*ST™) i luld = T AL 1P, uli? < oo}.
m=0
Here P, : L2(S%71) — HY, is the projection operator onto the subspace of spherical harmonics of
degree m in ¢ dimensions.

In Section 3 we give a characterization of the ranges of the propagation operators for the frac-
tional spherical reaction-diffusion equation

KA

ot ‘
with Az the spherical Laplace-Beltrami operator on §971,

Finally in Section 4 we are concermned with several naturally arising linear operators in spaces of
harmonic functions on R?. Namely, the differentiation operators d,, the multiplication operators
M, the "general linear" operators L, and the harmonic product ©. In particular we present
weighted Hilbert spaces of harmonic functions wherein the differentiation operators are continu-
ous or even compact.

IV.1. Preliminaries

Let g € IN. Asusual R stands for the Euclidean space of dimension ¢. The inner product in R?
is denoted by x-y for x,ye R? with norm Ix!. For xe R? and r>0 we set
Bi(x,ry={ye R ly~x| <r}, the ball in RY with center x and radius r; §q(x,r) stands for
the closure of BY(x,r). We adopt the abbreviations that BY(0,r) = B?(r), B*(0,r) = BY(r).

For a twice continuously differentiable function u(x) on £, an open set in R, we define the
Laplace operator A and the orbital angular momentum operator L2 as follows



-83-

ew=-3% & “(;") L xeQ M
k=1 a

Crwyw=L I (x~-g—-xk—§—)2u(x), xe Q. @
2 1<jksq 7 ox ox;

A direct while somewhat tedious calculation gives rise to

Proposition IV.1.1. Fora C? function on Q there always holds the identity

Ix12Au=L?u+0%u+(g~2)du 3)
2 du
whered,u= ¥ x —.
n kz_-l k axk D

If spherical coordinates are introduced, viz,

X1 =rcosé;
Xp=rsinfysinB; - - SinO.) c0s0;, 25k g1
Xg=rsind; sinG -+ §iN0,.2 5N 0, 4)
then clearly 9, =r % Similarly
Pu 1l 1 Pu ctan 6 ou
Liu=——+ =+ ¥ (g-k~-1 - 5
20} S sin®0, - - - sin®6,_; 067 ,:?‘ g-k=-1) Sin®@, - - - sin®0;_; 96k ©
Thus we have the expression for A in polar coordinates
rPAu=Apgu+(r -a-)2u+(q—2) (r—a—)u. ©)
or or

Here A;p stands for the right hand side in (5), namely, the Laplace-Beltrami operator,

Let S9! ={xe R 1 x| =1} be the unit sphere in R7. The points on S9! will be denoted by
Greek letters £,n et al. If not mentioned otherwise we always adopt the custom of relating x and
such that x =r{ with r = lx |. Similarly, if a function « is defined on a domain Q contaihing
8§97, u(x) represent the function defined on Q while u(Z) stands for its restriction on §7°1

A function u(x) in C2(Q) is said 10 be harmonic iff Au = 0. For a harmonic function u(x) on R?
which is homogeneous of degree m, one has, since

2w =2y ™ u@) = m " u(Q = m uGe) that

L u(x)=-m(m+q~2) u(x) @)

or
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Apg u(Q)=-m (m+q-2) u(®). ®

Let Hj, denote the set of all homogeneous harmonic polynomials of degree m in g variables, and
let HZ, be the set of the restrictions p(£) of p(x) in H%,. The entries in HZ, and H, are respectively
called solid harmonics and spherical harmonics of degree m and dimension ¢. Both Hf, and Hf,
are vector spaces with the usual linear operations and they are isomorphic to each other in the
natural way. Let N(g,m) denote their dimension. Then we have via a clever counting (cf. {Mii])

N(g,0)=1

_ -
N(@gm)=Q2m+q-2) ————‘1———1.(;(?1'; r(qzz R m=1.

In particular N(2,m) =2 and N(3,m) = 2m + 1. From (9) readily follows the estimate that

®

N(g.m)sK,m? -2 (K, constant), (10)
Let L2(S971) be the L2-space of functions on $7-1 with inner product defined by
“"”‘S,J., uQ v dog1© an
for u,v e L%(S97!), and corresponding norm
Nall =(sj lu(© 12 d o1 (0" (12)
i

Here d o,_; stands for the area element on §4 -1 Each of the spaces HY, is a finite dimensional
subspace of L2(S97"). For p,, € HY, and g, € H4, Green’s theorem implies that

aqn — ap,,, _
[ pm® © =3 =, ©1d 0,y =0.

sq—l ar

Since % =m u for a homogencous function of degree m we have (n —m) (Ppm,q,) =0. Thus, if

n#m then (p,,,q,)=0. This shows that the subspaces H%(m e IN) are mutually orthogonal.
Their linear span is actually dense in L2(S77"). In order to show this let us first prove that any
polynomial p,, in P, (the set of homogeneous polynomials of degree m in g variables) can be
uniquely written as pp(x) = pu(x) + 1x 12 pp_g(x) where p,, € H% and p,._; € P_,. In fact, if
we define

<Pmsdm> =Pm©)dm s Pm:dm € P 13)

then it is easy to see that <-,- > is a inner product in PJ,. For any p,, € HY, and p,,—» € P% 5 we
have '

<P 1212 Py > =Py 20) AP =0

which implies that HJ, is orthogonal to Ix 12 P4_, in P%,. They are in fact orthogonal duals of
each other. For, if <p,, Ix 12 DPm2>=0 for all p,,e P, and some p,, € P% then
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<AppPm— > =0 with Ap,, € P, and hence Ap,, =0 by setting p,,—2 = Ap,,. Therefore the
decomposition p,(x)=p(x)+ |x 12 Dm-2(x) holds true. Continuing in this way we derive the
decomposition

PG+ 1X 12 g + 1X 14 frax)+ -+ + 1x 1™ Po(x)

Pr®) =Y 5 )+ 1212 fmg() + 15 14 Bmg(0) + -+ + Lx 1™ 5 1)

14

m
for m even or odd respectively. In particular we have shown that p,,(0) =3, p(0). On the other
j=0
hand the space C($77!), functions continuous on $97*, is obviously dense in L2(S%!) and the
Stone-Weierstrass theorem in its turn implies that Span (p,(0) | pm € PL,me Ny} isdensein

C($771). In summary we arrive at the assertion that
L¥$ ™= & HY, as)
m=0 .
In the sequel P,, : L2(S77!) — HY, will be the projection mapping onto HY,.

Using the invariance property of HZ, with respect io the group SO(g) we have the following cru-
cial

Proposition IV.1.2. Givenm e N and any orthonormal basis (e}, ; | me INo} of HE. Then

9 e840 e = —("— PL.E), L e §91 (16)
Jj=1 Og-
2x97
where ¢,; = I d o, = ——— is the total area of the unit sphere. Here P,(¢) is a Gegenbauer
g g2
polynomial given by
-1
=) e N O LR
PL() = (-112)" - 2 - a-5 . an
T(m+ -‘L%) '

For the proof we refer to [Mi]. Multiplying both sides of (16) by u(n) and integrating with
respect to 1 we arrive at

Proposition IV.1.3. Foru({) e L*(S9™") and m € I, it holds true that
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Cr)©=NL [ PR uDdag1().
g-1 s

The Gegenbauer polynomials enjoy the following properties.

Proposition IV.1.4,

1) PZ isapolynomial of degree m
1 a3

2) [PIOPLOA-%) 2 dr=0for nzm
-1

3 PLH=1, me Ny

4) Fort,te Rwithltl <land ixi<1

S 1-£2
N(g,m) 1™ PL(t) = e
,,,2,20 @m) ¢ Pue) (1412 ~2e1)7"

where for each fixed 1 the series converges uniformly int e [-1,1].

Setting £ = in (16) and using 3) in Proposition IV.1.4 we have
Propeosition IV.1.5. Foru ¢ HY,

%
L@ 1< [M] Null, Ce S,

Tg-1

(18)

(19)

(20)

2D

The following characteristic property of harmonic functions, the mean value property, is proved

by a clever use of Green's theorem.

Theorem IV.1.6.

1) Ifu:Qc R?— € is ahamonic function in the region €, then, forany x° ¢ Qand r >0

such that B(x%,r) c Q, we have

ux%r) = | uG+rdo, 1@ =ui").

q-1 s+

22)

2)  Conversely, if a function u : Q ¢ R? — € is continuous and for any x° € Q there exists an
r® > 0 such that B(x°,r%) c Q and whenever r ¢ #° equality (22) holds true, then u is

infinitely differentiable and harmonic in 2.

The above Theorem IV.1.6 has the following two corollaries.

0
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Theorem IV.L7. For a harmonic function u:Qc R? -+ R, on the region Q if
A= su% u(x)<eo and u is not a constant on £, then u{x) <A for all xe Q. Thus, if
X€

u:Qc R? - IR is harmonic in € and continuous in 2, then either u is a constant on  or u
attains its maximum onty on the boundary. 0

Theorem IV.1.8. Let {u,(x)} be a sequence of harmonic functions on the region . If for any
x%e Q there exists an r® > 0 such that B(x%,r% cQ and {u,(x)} converges uniformly on
B(x°,r%), then it converges to a harmonic function on €. fl

Applying the above properties of harmonic functions we can solve the Dirichlet problem for the
unit ball.

Theorem IV.1.9.

(i) Assume that u({) € L*(S?!) and let P, u (me INg) be its prdjection onto the subspace
HY,. Then the series

oo

i FPrw) X=X 1" Ppuw) @), x=r{,r<1 (23)
m=0 m=0

converges uniformly on the ball B4(p) for each p < 1, the sum of which, denoted by u(x), is
harmonic in B (1) and is equivalently given by the Poisson formula

1 1—-1x12
Gy-1 sj lx—C)2 u(®) dog1 Q). o

ulx)=

Moreover, setting #,({) = u(r{) forr € (0,1) and L e $77}, we have l 4, —ull > Oasr T 1.
() Ifu®) e C(S™), then there exists a unique function u(x) which is harmonic in BY(1) and

continuous on Bq(l) with the given boundary values w{{) on $7 S given by (23) or

equivalently by the Poisson formula (24). 1

The following theorem on the central expansion of harmonic functions is important in our further
work.

Theorem IV.1.10. (Cf. [Gr])
@ #(®e L*ST) can be extended to a harmonic function u(x) on BY(R) (R > 1), iff

Y r7 Py ul? <oo forany re (O.R). (25)
=
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(i) If u(x) is a harmonic function on B4(R), then the series

3 Pt © = 5_':,0 (P t) () 26)

m={)

converges to u(x) uniformly on each ball B(r), r € (O,R).

Proof. 1) Assume that the condition (25) is satisfied. Then for 0 <r <p <R we have

| (P tt) ()} = 7™ Py i) (O |

Kq ¥ g;Z
s| == rmm ® UPuull by (10) and (21)
g3
K‘? 2m ~2 2m 2
SL [ (¢ /py" mT2 + ™ | P ull?). en
2 Oyt

Therefore, the series in (26) converges uniformly on cach ball BY(r) (r € (O,R)). Theorem I'V.1.8
above then implies that the sum, denoted by wu(x), is harmonic on B?(R). Especially,

3 (P 1) ({) converges uniformly in ¢ & S9! and hence in L2(S9~"). This shows that u(x) is
m=0

indeed an extension of u({).

Conversely, suppose that u({) is extendible to a hamnonic function u(x) on the ball

BI(R)(R>1). For fixed r € (1,R) set u, by 4, () =u(rf), e $971, Theorem IV.1.9 (ii) above
then leads to the assertion that the function v, (x) on B q(l) defined by

vi{x) = 2 PP u) (), x=pg, p<l
m=0 '
Q=@ =u¢y), e 5!
is harmonic in B7(1) and continuous on B q'(1). On the other hand it is easy to verify that the func-

tion vo(x) =u(r pf) (x=pf) is harmonic in B9(1) and continuous on B q(l) with the boundary
values v2(Q) =u(rl) (e s, By the uniqueness of the solution to the Dirichlet problem

(Theorem IV.1.9 (ii)) we then have v; = v;. In particular vl(-l— D= vz(% 0, namely

w®= g (P, 4y) (O uniformly in{ e S7°1.
m={

Thus we conclude that
Pou=r"P,u, (28)

from which it follows that
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oo 00
T NP ult= 3 P, u 1% < oo,
m=0 mel}

This completes the proof for (i).
The assertion in (ii) readily follow from the proof for (i). i

Finally we give the following theorem which provides estimates for the values of the derivatives
of a homogeneous harmonic polynomial in terms of the L2-norm on the unit sphere of the poly-
nomial itself. This will play an essential role in our investigation of differential operators in
spaces of harmonic functions (cf. Section IV 4 below).

Theorem IV.1.11. Forp, ¢ HL, ando ¢ ‘ IN§ there exists a constant C,, such that

..q-._l..*.[

3 P .
P (lecam 2 gl Le s 29)

ox*®

For the proof of the above theorem we need

Lemma IV.1.12. For a harmonic function « in BY®.7) and a e IN§

~al
<Agr 2 ([ lup)iZdy* (30)
Be(x,r)

“u
ox©

63

where A, is a constant depending only on o.

Proof. Take a radial C* function ¢(x) on R? (ie., ¢(x)= &(1x 1) for a function E: ‘R* 5 R),

which has its support in B ?(1) and which is normalized in the sense that I o(x)dx=1. Then
Re

1 1
[0 0y b)do =07 dp [ 060 d01©= [ )y =1
g1 R

From this and the mean value theorem, for ¢,(y) =r™ ¢(y/r) we have

[ uG-y) 6,y

IRY

=[prdp | uG=pD e 0dop©

§31

=[p" dpr s {P—J Ogu1 4@ dp
0

r
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1
= ([ 7 6421 6(P) dp) u®) = u ).
(4]

This can be rewritten as

u@= | u®y) &E-y)dy.
i

Hence
%u a“q’r
2% @)= ~y)dy.
o ® EL“O’) —a ENd
Noticing that ke ®)=r-a-'al Q0|21 e have by Schwartz inequality
ox® ox* | r
Th@|sC | tupyrzah( [ s |28
ox B BIGr) ox
: 4 al .
SAgr 2 (] 1ue)Pap*
BG,r)
where
2
Aa=(] |Z& )| an”.
Re dax

Proof of Theorem IV.1.11. Fore > 0 we have

4e
[ 1w 12ax=[ ritdg [ 1pu(rD 12 d oy 1O
BY(14¢) 0 g9

T4
=[P dr [ 1 pu(© 12 d o
0 st
_ (L+g)’me

I p,, 12,
2m+q P

For X e $9-1 by the above lemma we obtain

~Ly

¢
SAge 2 ([ 1pat)1Pan®
BE.e)

iaapm ®

ax®

¥4
% | x-y %
[,Hm
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al y
SAge 2 ([ Ipa)Zan*
B(1+e)

4 4 at
m+ a
g) 2¢g?

1+
<A
¢ Cm+q)*

Iyl

Choosing € = 1/m we arrive at

Ll
(1+ Um)mta2 2

Cm+q)*

o

0P
ox¢®

i oy

KA SO
SCom ? Il p,ll.

The above Theorem IV.1.11 can be found in [St], Appendix C. Here we have a little more precise
estimate on the power of m in (29), which is important to us.

IV.2. Identification of Weighted Hilbert spaces of Harmonic Functions on R? with Domains
of Positive Self-adjoint Operators in L3S

As is seen in the last section we have an identity decomposition for the Hilbert space L2(S771)
into spherical harmonics: L2(S97!) = 620 HY,. For a sequence {Ay}me v, Of positive numbers,
m

then, we have a well defined positive self-adjoint operator A on L2(S771), i.e.

Au=Y A, P u

m=0
o (31
DAY ={ue L3ST™) 1 T A2 1P, ul? <o},
m=0
The domain D(A), equipped with the inner product

WA= 3, Na(Pit, P v) (32)

m=0

and corresponding norm
Nuly =(X A3 1P, ul?) (33)

m=0

is a Hilbert space by itself. If the sequence {A,,} is such that R™/},, = O(1) for any R > 0, then
Theorem IV.1.10 implies that each  in D(A) extends uniquely to a harmonic functionon RY.
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On the other hand, it is easy to see that the space
HA?() = {u(x) harmonic on R I lull, = { [ 1u(x)12 p(lx )dx}* <0} (34)
. R?
is a pre-Hilbert space with the inner product
V), = jq w(x) v(x) u(lx 1) dx. (35

R

Here p : (0,00) — (0,20) is a Lebesgue measurable weight function.

The following fundamental result is on the identification of a space HA4(u) with a space D(A) for
an appropriate pair of weight function p and sequence {A;}.

Theorem IV.2,1, Assume that a weight function p : (0,%0) — (0,02) and a positive sequence
{Am}me mv, satisfy the conditions below:

)

1)) Jrz"",“q'l Wr)dr <o, Vme INg
0

2) R™/A,=0(), VR>0

3) (A4}~ j r2m+a=1 y(rydr. Here and afterwards, for two sequences of positive numbers
0
{a,} and {b,,} we write {a,,} ~ (b} iff O < liminf (a,, b,) < limsup (a,, by) < oo.
Then the space HA?(y) is isomorphic to the space D(A) as normed spaces. The isomorphism is

exactly the restriction-extension mapping. Furthermore, if, instead of condition 3) above,

AL = I r2™+4-1 \\() dr, then the isomorphism is actually an isometry.
0

Proof. Let u({) e D(A). Because of the condition 2) above Theorem IV.1.10 ensures that u({)
extends uniquely to a harmonic function u(x) on IR?, namely

oo

u@E)=uD= 3, r"(Pnu)®). (36)
m=0
It is clear that
| 1u¢® 12 doy @)= E r¥ I\ P ul. 3N
§et m=0

Therefore
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[ izt Va1 dx
IR?

= I ri-ludr J Lu(rO 12 dog (0
0

s+

= I i lurydr 3 r P, uli?
0 m=0

=y (j r2 -l iy dry WP u 2. (38)
m=0 0
This, in view of the condition 3) above, leads readily to the conclusion that #(x) € HAY(u).

Conversely, if u(x) € HA9(w), then Theorem 1V.1.10. ii) implies that Equation (36} is valid, so
are (37) and (38). From the latter and the condition 3) immediately follows that u({) € D(A).

Finally the relation (38) and the condition 3) lead readily to the conclusion that the restriction-
extension mapping is an isomorphism or isometry between the spaces HA(u) and D(A) under

the respective conditions. i

Corollary IV.2.2. Under the conditions in Theorem IV.2.1 above the space HA%(u) is complete.
So it is a Hilbert space. i

Corollary IV.2.3. Under the conditions in Theorem 1V.2.1 above we have HAY(W) = Q;) Hi,.
"
Moreover, if {ef (D 11<jsN(gm)} is an orthonormal basis in HY, then

{—l—e" {x) 1 1€ jS N(g,m)} is an orthonormal basis in HY considered as a subspace of
W, Emi

HA(y). Here y,, = ([ ™7 m(r)dr)*.
Q

Proof. Forp,, € H, and q, € H} we have
Pmr@ady = | 11X 1) pm(®) gu(x) dx = ([ r™** 971 u(r) dr) (s n)- (34)
R [i]

Hence HY, L HY in HAIGw) if m # n, for HE, L HY if m # n.

Let u € HAY(u). Since the last expression in (38) is obviously ¥, 1P, u 112, we have
m=0
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Nul2= Y 1P, ulll. (35)
m=0
Therefore
u=7Yy, P,u in HA(p). (36)
m=0

Thus HA7(w) = Qio HY,. The last assertion in the present corollary follows directly from (34). 0
m

Corollary IV.2.4. Under the conditions in Theorem IV.2.1 above the space HA?(y) has a repro-

ducing kernel K (x,y). Explicitly K{(x,y) = Z_oKﬁ,m(x,y), where for each m K{ ,,(x,y) is the
m=i

reproducing kernel for the subspace HZ,, namely

q =N(g.m) m mpg|_X Y
K{n(xy) P Ix 1™y Pm[ ™ |y|] (37

where PY, is the Gegenbauer polynomial (see (17)).

Proof. For the theory of reproducing kernel we refer to [Ar], [Yo], [Mal] and [Ma2].

©o

Let u € HAT(W). Then u(x)= 3, r" (P, u) ({). In view of the estimate N(g.m)< K, m92 and
m=0

condition 2) in Theorem IV.2.1 we have

lu) s f;r"‘l(Pmu)(C)l

m=0
o ¥

<5 | NE™ | yp yi Prop.Iv.15)
m=0 Gg-1

<| g ¥@mIT 5 a2 up,uity
m=0 0'q—l )\'m m=0
<Cllul,

where C is a constant depending only on ¢,p and {A,,}. The above inequality implies that for
each fixed x € IRY, the functional ¥ > u(x) is continuous on HA?(y). Hence HA(W) is a Hil-
bert space with a reproducing kemel.

Let {ef,; | 1< j< N(q,m)} be an orthonormal basis in H,. Corollary IV.2.3 above then shows

that {-ul— el j(x) | 1= j< N(g,m)} is an orthonormal basis in H7,. So its reproducing kernel is
m

give by
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N@gm) 1,
Kﬁ,m(x’y)= Z u— e?n,j(x)' Eem,j(}’)

m=Q Hm
_dxmayim Nem o x f ooy
=T & O T | | Ty
= N@m) | \m 1y|mpg[%7.TLl]. 38)
Cg-1 Mim X Yy
Of course the reproducing kemel of HAY(u) is given by Ki(xy)= %Kﬁ,m(x,y), for
m
W= 0 H.
HAY(W) mGZO " 0
Corollary IV.2.5,
@ Forue HY
%
N{g.m) Ix|™
lutx) 1< Hull,. (39)
( [ Gg-1 ] B *
(i) Forue HAY(W)
o0 m | ¥
lug 1< | 3, Y@m) 1x] } Nl (40)
m=0 Cg-1 Hm
Gii) Forue HAYwandme Ny
m
Py = TP [ gy mpg | 2| u)ay. @)
Og—1 B IR* xl yl

Proof. (i) and (ii) follow from the last corollary. Multiplying both sides of (38) by u(y) and then
integrating over IR we obtain (40) readily. i

The above considerations on reproducing kemels is motivated by [Mal] and [Ma2] where Mar-
tens treated in effect the space HA%(e™t '*'"),

D
Example IV.2.6. Forp(ry=e™" (a,b >0) and A% = [%] m?® * (me Ng)all the condi-

tions in Theorem IV.2.1 above are satisfied. Thus, HA%(e ") is a Hilbert space isomorphic to the
space D(A) and all the assertions in the above corollaries hold true. In fact we have
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LemmalIV.2.7.
20 . lm_ﬂ...._l.
g e...a; r2m+q«-1 dr = (zx)ﬁ b—% (eab)”'(zm"‘q)fb (2m +q) b 2 R (41)

Here and in the sequel for two sequences {a,} and {b,]} of positive numbers we write

(8} = (b} iff Him @p/by=1.
L -y OO

Proof. Substituting s for a r® we have

DO
je"”b -l gy
o

1
e*a b pls b gs

I
— 3§

Jumig
=a * b r{l”-’i‘i} :
: b
Then an invocation to Stirrings formula
T(0) = 2m)* ¥ % ¢™® (8 o)

yields (41). ‘ i

IV.3. The Range of the Propagation Operator for the Spherical Reaction-Diffusion Equa-
tion

We proceed to discuss the spherical reaction-diffusion equation
= Arp . 42
3 Dl 42)

Here u =u((,t) ({e ST, t>0) is the unknown function and Ay is the Laplace-Beltrami opera-
tor for S971 (cf. (2)-(6) in IV.1). As is observed in IV.1 we have
Apu=-mim+q~Du, YVue HE. 43)
Thus the operator A;p, as defined on the algebraic direct sum of HY, (me INy), is essentially
self-adjoint in L2(S971). Its self-adjoint closure, still denoted Az, is given by
Apu=—3 mm+q-23P,u
me)

o @4
ue DAp)={ue LAST™), T mm+q-2)F 1 Ppull® <o}
me=(}
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The solution u = u({,¢) of (42) for the initial value u(0) = v e L%($9™") is given by

u=e®y= 3 ¢ Dp (45)
m=0

The range of the propagation operator at time ¢, R(em“), i.e., the possible states of the system at
time £ starting from the initial states in L2($77!), is given by

D™y ={ue LXSI™) | T ¥ D)p, yI? < oo} (46)
m=0

If instead of Equation (42) we consider the more general fractional spherical reaction-diffusion
equation

a5 ) 42y

then in place of (44)-(46) we have

D) u== 5, (m(m+q -2} P

={J
" oo 4y
we D(=A) D ={ue L2ST™H | ¥ (mm+q~2)} 1Pyuli? < oo}
m={} )

u= e"(“‘&”)v;z v= E gt mimsq 22 Py,v 45y

m=()

and

st-t5)2 120cq-18 | e, 2{mimeg-2Y2 2 )
D(e Y={uel?*STTH1 Y e 4 P, ul? < oo}, (46)

m=0

a2
The purpose of this section is to characterize D(e’( Aca) ), more precisely, to identify it with a

/2
weighted space of harmonic functions on R Y. Note that D(e‘('a“‘)v ) equipped with the norm

Nl g =( 3 eXimma D2y 2y @)
m=0

| 2
is just the space X4 for X = L2(S91) and B = ¢, in the notation of Chapter 1.

Theorem IV.3.1. Given 1 <v< 2 and r > 0. The space X} =D(e'('A”YQ) is isomorphic to the
space HA?(u) as normed spaces under the restriction-extension mapping. Here j1: (0,00) — (0,90)
is the weight function given by

2(v-1
2~v '_ng"

ury=r2 llogr 1200 ¢ V7 pogr 1T 50, @8)

v

The Hilbert space HA9(y) has all the properties stated in Theorem IV.2.1 and Corollaries IV.2.2-
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Proof. Obviously conditions 1) and 2) in Theorem IV 2.1 hold true. The assertions in the present
theorem are proved provided condition 3) in Theorem IV.2.1 is verified, which is done in the next
lemma. 0

Lemma IV.3.2, For 1 <v< 2 and ¢ > 0 fixed and p described as in Theorem IV.3.1 above we
have

o

[+t yiryar ~ gHmimsa-212 (49)
0

In order to prove this lemma we need the following delicate result of Brands ([Br]) on the asymp-
totic behaviouss of integrals.

Theorem IV.3.3, Assume that a function M R* - R™ satisfy the following conditions:

@ Me C({0,0,R),Me C*([a,>o,R) for some a=20, M"(x)>0 (x2a) and
M'(x) = oo (x —>00),

(ii) There exists a positive function o on [&, =) for some b 2 0 such that
a(x) M GN* > o (& —o);
oalx)Sx (x2b);
Ve>03A>0Vx2AVy20{ly—xisax) = 1C"M~-C"(x)ISeC”X)].

Then the integral
400
I(M,t)= J' elx—M(l.ﬂ)dx
has the following asymptotic behaviour as ¢ — o<

2 ¥
I(M,t)=l: X ] MO (1+0(1))

m’(m ()

=Rrem<Y®]” MO (1+0(1) (50)

!
where m(f) =M’(t), m(¢) is the inverse function of m(r) and M*(r) = [ m* (x) dx.
0

Corollary IV.34. ForM : R* — IR” satisfying the conditions in the theorem above and
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M(x)= ol xoH 4 clogx for x sufficiently large (A >0, a>0,ce R) (62))
we have
L —I-—'~l i LA_u“tl-kllu
IMp~t e c el (t ~>o0). (52)

Proof. We need to know the asymptotic behaviour of m(¢) as ¢ — oo, We have
y=m@x)=M(x)=Ax"+ —;- (x large). (53)
Since
m'x)=M"(x)=4 ax*! -~ xiz > 0 for x large enough

the function m(x) is strictly increasing in a neighbourhood of oo, Therefore the inverse function

m*(y) exists in a neighbourhood of o, Substituting for x in (53) we

[+

for y and 11

o a+l o o+l ®

have
Flo,0)=a0*—A-coa®™! =0 4

Clearly F(0,AY*) =0 and F(o,®) is analytic in (o,®) in the neighbourhood of (0,4 ¥*). Accord-
ing to Weierstrass’ theorem we have the following expansion in a neighbourhood of 6 =0

w
A"’“a)=l+w,c+—22—cz+--- (55)

So is true the expansion

1

m=1-wlﬁ+"‘ (56)

1/o

Inserting (55) in (54) and equating the coefficient of ¢ on both sides we obtain w; = ¢
together with (56) implies that

. This
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1

~(2
=AVayla_ —2— yl4+¢’y  ® + .- (fory large enough)

(57

where ¢ is a constant. The series converges uniformly in a neighbourhood of y = e, s0 does its

derivative. Thus we have
(m - ).' ~t Vo1
t

J’m“(*:)d'r
eM"(t) ~ g%

8 p-Voltlia

lia logt

~e ~—=logt.
o

Relation (52) then follows from relations (50), (58) and (59).

Proof of Lemma IV.3.2. For 1 < v< 2 we have

' Vit 472
2imimiq-22 87"’" s 1'

For M(x) in Coroliary IV.3.4 we have

1 1),...‘?. LA“"’“(M)‘*’”“U*F{I*‘U&}“%::—*]

1
~Qm+q-2) 2 @l

Consequently if we could take o, ¢ and A such that

,

rl_pn-L-p
2o a
< 1+—1—=v

o

8 -ty e g
| 1+a

then

IM.2m+q-2)~ e2immeg-02

oz .

It turns out that the system of equations (62) indeed has a set of solutions:

(8

(59

(61)

(62)

(63)
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o= .—_1__
v-1
V-2
= 64
2v—1) ©4)
2
A=—T1
L (tV) -1
On the other hand
[rimatyrydr= [ @ we®) e dx. (65)
] -

Relation (49) then follows from the relations (63), (64), (65), (48) and the fact that for any con-
tinuous function y on (0,%0) and § < 1 there exists a constant C, such that

1457
I r2 =l n(rydr |
1=

<C, 2 [<1+6-‘>2'"*‘f (1-§)¥*)

= o(e%'(’”"q’z)}w,z) (m —o0).

Thus Lemma IV.3.2 is proved, so is Theorem IV.3.1. ]

Finally we remark that Theorem 1V.3.1 is still valid forv > 2 in case ¢ = 2.

IV.4. Linear Operators in Spaces of Harmonic Functions

In the last sections we introduced some Hilbert spaces of harmonic functions on R?. We are now
in a position to discuss several naturally arising linear operators in these spaces. In order to do so
it seems appropriate to introduce the space HA(RRY) of all harmonic functions in RY.

Proposition IV.4.1, The space HA(R?) equipped with the norms {ll-1, | r > 1}

Nl =(F r2" 1P, ul?) : (66)
m=0

is a Frechét space. For any R > 0, a sequence of functions {u,} in HA(RY) converges t0 zero
uniformly on each ball BI(r) with r < R iff il u, 1, — O for all < R. So, convergence to zero of a
sequence {u,} in HA?( R ) means its uniform convergence 1o zero on ¢ach compact set in RY.

Proof. The inequality (¢f. 27)inIV.1)
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[Ppu()i=1r"Puru)(@)!

K % g-2
s|—| rmm % yP,ul
Cg-1

A
slie—2 1= m® 2+t piP, ul? 67
5 e oo {p} P (67
ee (0,1), pe (nR)

leads to the assertion that if Hu,ll, — 0 for all » <R then {u,} converges to zero uniformly on
each ball BY(r) withr <R.

Set u,(x) = u{rx). Then the equality (cf. (28) in IV.1)
" Pau=P,u,

implies the converse, i.e., that if {u,} converges to zero uniformly on each ball BY(r) with r <R
thenfiu, i, = Oforallr <R.

As a consequence it follows that HA(IRY) is complete with respect to the norms {I-1,} (cf.
Theorem IV.1.8). i

In the following for a pair (i, {An)me zv,) Of weight function p and positive sequence {A,,} we
always assume that the conditions in Theorem IV.2.1 are satisfied so that the space HA7(y) is iso-
morphic to the space D(A) under the restriction-extension correspondence. Corollary IV.2.5 (ii)
then implies that the space HA?() for each ¢ is continuously and densely embedded in the space
HA(RY).

For convenience of reference here we settle down a few special notations for the spaces we are
most interested in. HAY(e™ ") = HA%a,b) (a,b>0) (cf. Example IV.2.6). The symbol
HAZ, (v,t) (1<v<2,t>0) stands for the space HA7(u) with p given in (48), i.e., the space
cotresponding to the range of the propagator for the fractional spherical reaction-diffusion equa-
tion {cf. IV.3). We also form inductive limits and projective limits of these spaces:

HAl(a+, by = 12:}.%1‘511 HAUa',b) ({0<aseo)
HAi(a—, b)= pr;%lgn HA¥a'.b) (0sa<e)
HAf , (v, t+)= m‘d}}‘m HAL,(v,t) (0Lt <o)
HAY,, (v, t-) = proflim HAL,, (v.t) (0<%,

Let us begin with the differentiation operators 5‘}- = o (15ksq).
k
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Proposition IV.4.2. (i) The differentiation operator 9,(1£ k< ¢) is continuous in HA(RY) and
Ppdy=3;Pny (1Sk<q, me o) on HACRY).

Gi) If A2(2)/22 .4 (1) =0(m ™) then the differentiation operator d; is continuous from
HAY(u(1)) to HAT(u(2)).

i) IFAZQ)/ A2 (D) =0m ™"V thend, (1< k< q) is compact from HA(u(1)) to HAI(u(2)).

Proof. (i) Let u € HA(R?). We have u(x) = Y, (P, u) (x) with uniform convergence on com-

m={)
Py ) (x)
y ——=—

pactaof R?. Form e INg clearl e H}, and by Theorem I1V.1.11 we have

axk
P il
l—(%)(x) <SCon+1) 2 rmUP,, ul
el m
=CRYm+1) ? [é} R™M P,y ull O<r<R). (68)

= op
Therefore the series ¥, w

converges uniformly on compacta in R? and hence holds
m=0 axk

true the equality

u(x) _ & 0Pmu)(x)
9%, 3":0 dx,

So P, d u =0y Py u. From (68) and Proposition 1V.4.1 follows also the continuity of d; in
HA(RY).

(i), (iii) For u € HA?7(u(1)) we have

19, ullkpy = E AZ () WP (0, )12
m=0

=3 AN Py ul?
m=0

< ¥ AZQ) Con+ )T 1P ull?
m=0

< M@ g 2
=C 35— m" A (DU Py ul®, 69)
m=) Zvm-»} (1)
The assertions in (ii) and (iii) then follow easily from the above estimate. i

Corollary IV4.3.
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(i) The differential operator d; is continuous in the Hilbert spaces HAXQ . (I<vs2, t>0)
and HAY(a,b) witha >0 and 0 < b < qil

. It is in fact compact in those spaces except for

b= p i T for which we do not know whether it is compact.

(ii) The differential operator d; is compact from HA%(a,,b) to HA(a,,b) for all
a;>0,a,>0andb > 0Osuchthat a, <a,.

(iii) The differential operator dy is compact on each of the spaces HA%(a+, b) and HAZ(a~, b).

Proof. The assertions in the present corollary follow from Proposition IV.4.2 above and the next
lemma. i

Lemma IV.4.4. (i) Forv> 1
{n+1) (m+1+g-2D}"% ~ (m(m+q -2} ~m*!

(i) ForO<a;€agzand b >0

”' LAy
2
2
£ 2
eagb a |s" ry
9.1

2
“(m+1) "y
[2(m+1)} DN S
ealb

We continue to smdy the multiplication operators, For 1<k<g define

L2ST Y > L3S by Meu) (Q =4 u(. It is obvious that M, is continuous and
i Myll = 1. For u € HA(RY) we first define (M; 1) () =L u(0) on S9! as above, then extend it
to a harmonic function on R? provided this is possible at all. Such an operation is still denoted
by M, ke

Proposition IV.4.5. (i) Form € INg and p,,(D € Hf, we have (H?; = {0})

(M pm) (‘:.) = (Pp-1 Mkpm) ©) + (Pt My pp) (Q (70)
where )

P My p) (§) = 5"""+—— @2pm) (© an
and

Py My Pr) (O = M pn) (O ~ m Orpm) (©). (72)

Corresponding
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P My pm) (x) = OcPm) (%)

1
2m+q-2

Prsi My pm) (X} =X pp(x) — mta—2 ©bm) (x)

(M pm) (x) =X prx) + 2+— Ok pm) (x).

(i) MJHA(RD] c HA(RY) and M, : HA(R?) — HA(IRY) is continuous. Moreover

and

(iii) If

(B M) (O =GPt ) © = eGPt 0 O

+ g OcPan 1) @

|;c|2
2m+q

(Prs My 1) () = 24Py 1) () = (3;; Py u) (x)

1
+ miq Ok Py ) (x)

My u) (x) =z u(x) + (1~ 1x1%) z @ Py 4) (x)

2 +q

=xu(x)+(1=1x1%) Q3,+¢)" o

ALQ) ALQ)
=0(1),
AZaa(l) o AL

=0(1)

then M [HAT(u(1)] ¢ HA(u(2)) and M : HAT(u(1)) — HA(u(2)) is continuous.

If instead of (79) we have
A2 AZ(Q2
Dy, D
7“m+1(1) }"m—l(l)
then M, is compact.

Progf. (i) For p,(x) e HY we have by calculation

A1 pu))=n@m+n+qg-2) 1x1"2 p.(x).

In particular n = 2 gives rise to the identity

73)

(74)

(75)

(76)

an

)

78y

79

(80)

@81
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A1 12 pr(x)) =22m +q) pr(). (82)
On the other hand we have
A P () = 201 Prm) (%) (83)

The identities (82) and (83) together suggest that

Ix12

m-Drq Ok Pm(x)1=0. 84

Alxe Pralx) ~

This together with A [{(9; p..(x))] = 0 leads readily to all the assertions in (i).

(i) For u(x)e HACRY) we have u(Q)= 3 (Prat) Q) and (M) Q= ¥ GuPrit) (©) where
m=0 m={

the series converges uniformly and absolutely in { & §7 1. From (70), (71) and (72) follow, there-
fore, (76) and (77). In particular

P Miu=P My Pp yu+Pyp M Pyt (83)

Since IMpll =P, =1 wehaveforr>1

IMeul2= 3 r? 1P Mul?< Y 1% APy ull +11 Py wll)?
m=0 m=0

2% rP Py g ul? + 1Py uli?).
m=H{)

This together with Theorem IV,1.10 and Proposition IV.4.1 ensures that M u € HA(R?) and
that My : HA(R?) — HA(IR?) is continuous. (78) then follows directly from (77).

(iii) The respective assertions follow easily from the following estimate

IMyuliey= 3 AZ@UP, M ul?
m=0

€2 3 ALQ) U1 Ppoy w12 +1 Py uli?),
m=0 .

Corollary 1V.4.6. The multiplication operator M, is a compact operator from HAZ(ay, b) to
HA%{a;,b)(0<a;<ay,b>0) or from HA%w vt1) o HA%w WV.t2) (1 <vL2, 0<y <ty).
Hence it is compact operator on the inductive limits HAZ(a+, b) and HA%M (v,t+) or on the pro-
jective limits HAI(a-, b) and HAZ , (v,z-).

Proof. The assertions in the present corollary are immediate consequences of the above Proposi-
tion IV.4.5 and Lemma IV.4 4. 1
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We remark that the possibility of the decomposition (70) was known before, see [S-W] Chapter
VI, Lemma 3.4, and [Marl1], Lemma 2.12. In (i) of Proposition IV.4.5 above we gave an explicit
formula for the components P,y My p,, and Py My p,,.

Recall that by definition —A, 5 is the nonnegative self-adjoint operator in L2(S%™") given by

CAp ) ©= 3, m(m+q=2) Prit) ©

m=

for

oo

u=Y PpueDW@p)={ue L2E"™) | T (mm+q-2)}? 1Ppul? <o}
m=0 m={)

Now for u € HA(R %) we first define (A7 u) ({) as above (note that indeed u(€) € D(Arp)) then
extend it to a harmonic function in R?. Theorem 1V.1.10 ensures that this is allowable. Further-
more Proposition IV.4.1 implies that such an operation (still denoted A;) is continuous on
HA(RY). In fact it will be shown that it coincides with the arbital angular momentum operator
L? defined in (2) in IV.1. Equation (78) demonstrates that M, differs from x,- by a term

a-1xt»h ¥ L

o 2m+q

Bk Py ) (x).

For some special expressions involving the d,'s and M,’s, we will show, however, that it does not
matter if the M, ’s are replaced by the ordinary multiplications x;-. We will also show that the
multiplication operators M; are not continuous in any Hilbert spaces of harmonic functions
HAY() where the differential operators @, are continuous.

Proposition IV.4.7. (i) Foru € HA(IR?) we have

4
zMgaku=a,,u=§x;¢8ku (86)
k=1 k=1

and
q hod 1
ElakMku-anu+(q-1)u+(q—2)”§0umu. ¢Y))

(i) App : HA(RT) — HA(IR?) is continuous and for u € HA(RRY)

A== m(m+q—=2)Pmu=—3%u—(q-2)d,u=L2u. 8)
m=0

(ili) Foru e HA(RHand 15 j, k< ¢q
(Mkaijjag)u =(xk8j—xj Bk)u. (89)
So
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% Y (M;‘aj—M,-ak)zu=L2u =Arpu. 90)
1ISkjsq

Proof. (i) Foru = Z P, u & HA(IR?) we have by Propositions IV.4.2 and IV 4.5 that
m={)

Bku = Z akPm+1 u
m=0

Myu=x u+(1- |x|2)2 2m+ Ok Ppyy 1.
Therefore

M dgu=x0,u+(1-1x1% zaﬁ miq (®}P i)
and

HMiu=x0u+u— Exkz i Or Posi 88)

= 1
—1x12 2 .
+(1-1x )m{:ome @k Prpay )

From these follow readily (86) and (87) (note that AP, u =0).

(i) The continuity of Arp : HA(R?) — HA(IRY) was already observed in the remarks prior to
the proposition. Furthermore

Mpu=—3 mim+q—2)Ppu
m=0

== 3 [02+(q-2)3,]Pnu
m=0

=- z [(z AM): +(q- 2)(2 M1 P u
m=0 k=)

——[(2 M) +<q-2)<z O M)l z Pnu

m=0
(s and M, 's are continuous in HA(R YY)
=—[02+(q-2)9,]u (by (i) again)
=L%y,

Statement (iii) is proved similarly by noticing that
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Mjdeu=xj0eu+(1-1x1%) ¥, 1

9,0t Ppya.
m=02m+q F Yk m2

Corollary IV4.8.

'
@ 3 M,dis continuous in no Hilbert spaces of harmonic functions HAY(u).
k=1

(ii) M, is not continuous in any Hilbert spaces of harmonic functions HA 7(u) in which the dif-
ferentiation operator is continuous.

Proof. By (i) of the above proposition we have

q
(X, Mi3)pm =0, P =mpy forp, € Hf, (me Ny).
k=1

Now for any given real g %X ¢ square matrix A we define an operator Ly on HA(R?) as follows.
For u € HA(IRY) first define (Ly 1) (O =u(AY) on L e $7°}, then extend it to a harmonic func-
tion on R Y. The possibility of such an extension will be seen below.

Proposition IV.4.9.

(iy The operator L, is a well defined continuous operator on HA(IRY).

(i) IfATA =1, then L, isunitary on any of the Hilbert space HA7().

iii) If Al =sup {IAx| | xe R?, x| =1} <1 then the operator L, is compact on any Hil-

bert space HA ().
(v) If
A2
—'2"(—) A1 mie ! ©n
An(1)

then L, is compact from HA?(u(1)) to HAT(u(2)).

Proof. (i) Letu € HA(RY). By definition
Lam) © =T Pew) AD
k=0

where the series converges uniformly in { € S9~! and hence also in L2(S97}). Therefore
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CrLat) Q=3 P [(Pru) (AD]
k=0

=Y Pn [(Pru) AL
kzm
Here we have used the fact that (P, u) (Ax) is a homogeneous polynomial of degree k and hence
P, [(Pru) (AD)] =0 for m > k. Further, we have

1P LyultS 3 WPLI(Peu) ADI
kzm

oo

< Y HPe) (ADI

k2m

= Nk | *
< 3 1agk | YRy,
kzm Og-1

oo %
<3 1ark | NaB | yp
kzm g1

Therefore

(X r™ WP, Laul®h”* (>0
m=)

o ¥
<Y ¥ rmiAlk NGB |y pyui
m=0 kzm Gg-1
o Ngo |
<Y G+D)rk |A|’{—(~‘l’~l P ul

m=0 6,;..1

%

K o

s[ . } T (k+1) 1A 1K R9D2 kP, ©2)
O¢-1] &0 :

%o oo
g[ al } (T G+ (A L/QAL+ % (T (A T+ DI Pu i,
Cg-1 k=0 £=0

Theorem IV.1.10 and Proposition IV.4.1 imply then that Ly u € HA(R %) and L4 is continuous in
HA(RY). :

(ii) is readily seen by

ILguli= [ p(lx ) 1 u(AD 12 do, (@)
R?
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= [ w(lx ) 1@ 12 dog_(Q=Null.
IR¢

(iii) follows readily from

Y%
o0 . K 3 N oo
(3 MIPLau®? < | —1| (T k+17 1412%9% (3 AZ1PulD)
k=K Og-t k=K k=K

(cf. (92)) and the fact that

Y (k+1)7 [A1%# <o for 1Al <1.
k=0

(iv) is shown similarly by noticing the estimate

Y MQUPLyul?< [;K—"-] (X (k+1)7 |A|2*[M] YA(S AR IP %,
k=K

k=K 7-1 parg (D
i
Corollary IV .4.10,
(i) For any matrix A, L, is a compact operator from HA{ , (v,t1) to HAL , (v.23) (0<13<1y)
b b
a a
or from HA(a1_b) to HA3(a,, b) provided either {—a—‘} Al <1or {;i] 1A1=1but
2 2
2
b< -1

(i) L, is compact on each of the spaces HAY,(v,t+), HAZ, (v,t-), HAl(eo+,b) and
HAZ(0-,b).

Proof. The claims in the present corollary are direct consequences of the above Proposition
IV.4.9 and Lemma IV 4.4, 0

Our next concern is the so called harmonic product. For u(x) € HA(RR?) and v(x) € HA(IR?) we
will show below that their point wise product on the sphere, w(¥) = u({) v(0) for{ e S9!, can be
extended to a harmonic function w(x) on the whole space RY. It is called the harmonic product
of u and v and is denoted w =1 © v.

Proposition IV.4.11.
(i) The mapping @ : HA(R?) X HA(RY) — HA(R?) is well defined and continuous.

(i) Assume that p,(1)p.(2)2 ¢y for a positive constant ¢ and all m,nle Ny with
m+n=1Then, ® : HAYQu;) X HA(up) — HAY(u3) is compact if {i,(3)my 1972} e 11,
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Proof. (i) Let u,v e HA(R?). By definition we have

WQ=uQOVO=3 T Enit)(©Esv)© ©3)

1=0 m4ns=l

where the series converges absolutely and uniformly in { € $771, We note that

Pl X Prt) Q) Prv)(OI=0 for k> 1. o4

mn={

On the other hand

2 PayQ@EMO!

mnsl
Ky 42
e 3 WP ull 1P, v, 95)
g1 ]

The above (93), (94) and (95) lead to that

twl, =(X r* 1P wii
k=0
<3 rfupwi
k=0

s i "kinPk[ Z Enw)©EON

k=) =0 man=]

2 z 1972 Y WP ull 1P,V
k=0 I2k Gq~1 man=l

<y L " 197270 S Pl P,V (P> 1)
1= Gq~1 mn=!

“Z 142 (riRY ¥ R"WPpull- R*UP, v (R>r)
1=0 Gq 1 min=l

2R huliglvig. (96)
Oq-l 1=0

From this estimate and Proposition IV.4.1 it readily follows that the mapping
©  HA(RT) x HA(IR?) is well defined and continuous.

(ii) The assertion follows from the next estimate which is derived entirely similarly to (96) above

Kje = 2 '
L (S u@ m ) uly, 1Vl ©7)

w “A; <
Cg-1 =0



o TP - s oy B TR e T T

- 13-

Corollary IV.4.12.

(i) The mapping ® acts from HAZ,(v,t) x HAL, (v.s) to HAY,(v,p) continuously for
1<v<2,t>0,8s>0and

L.
p <polt,s)= ""—r"—é‘—r—— 68)

@ syl

(i) Given g € HA}, (v,s), the operator of multiplication by g , Mg, defined by Mg =g ® -, is
a éompact operator from HAZ | (v,0) to HAL , (v.p) where p meets the condition (98) above.
Consequently Mg is compact on the inductive limit HAY, (v,0+). If, moreover,
g € HAY,(v,~), then Mg is compact on each of the inductive or projective limits
HAR, (v,t1).

(ili) HAp,suq(v,0+) and HAL , (v,o0) are topological algebras, i.c., the operations of addition,
scalar multiplication and harmonic product are well defined and are continuous in each of
the two spaces.

Proof. We have fort,s2 Oand m,n,l € INg with m + n = [ the estimate

timm+q=-2D1? +5{n(n+q-2)}"*

2tm¥+sn’
v v
l 1
2H |\t —
@) +1 @i +1
=po(t.)I’. 99
Now it remains to apply Proposition IV.4.11 above. i

At the end of this section let us examin the translation operator 1, defined by (z, #) (x) = u(x -a).

Proposition IV.4.13,

(i) The translation operator ¢, (a € IR?) is well defined and continuous on the space HA(R ).

(ii) The operator 7, —I is compact in each of the spaces HAL, (v.r)(1<v<2,¢>0) and
HA%(a,b) with 0<b < —q—i—l and a > 0. It is continuous in HAZ(a,b) for all ¢ > 0 and
0<b<l.

(ii) The Taylor series converges properly in each of the spaces HAL , (v,t) (1<v<2, ¢>0) and
HAI(a,b) (0<a, 0<b< Ei’f) |
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Ta=e @V, (100)
Namely
u(x-a)= E‘, & [(a, V)" u] (x)
m=0 M
= E (G YA i,- (0% u) (x). (101)
m=0 lal=m &

Proof. (i) Proposition IV 4.1 implies the assertions here directly.
(ii) and (iii). Under the conditions in (iii) above the operator (g, V) is continuous in the respective
spaces. Hence the series

o0 g AV
e @V - )y (Vi (a, V)" (102)
m=0 m!
converges to a continuous operator. On the other hand Taylor’s theorem reads

M (—1)’"

)@ =ukx-a)=3 ~—— @ V)" u]l &)
m=0 m.
DM UM ] (r—6a) (0<6<1) (103)
M+ @ :

For u in the respective spaces the convergence of the series in (102) implies that the series in
(101) converges uniformly on compacta of R?. Therefore

1
84_1):% [(a, VY*! 1] (x) = 0 as M — oo . (104)

uniformly on compacta of R?. Now (104) and (103) together yields the equality (101) or (100).

From this immediately follow the first assertion in (ii) and the second assertion for b < L.

q+1
However the latter is true also for b ¢ (—(;_2'_—1 , 1). This can be observed from the relation
e2x’ _gmalrtal” g 13| e (B<1). (105)
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Summary

This thesis is concemed with constructions of special scales of Banach spaces and with the study
of linear operators and of evolution equations in such scales.

In Chapter I we deal with the construction of so called regular spaces and hyperspaces as well as
linear operators therein. For a Banach space (X, I-11) and an invertible operator B of positive type
in X a scale of Banach spaces {X§!loe IR} is defined. More precisely, for
o= 0,X§ =(D(B"),I-1,) with lull, = B%ull for u € D(B®), and X3® = completion of X with
respect to the norm lullo =1 B® ull for u € X. From these Banach spaces we form their natural

inductive limits X§" = U X} (o6& [-oo, +o0)) and projective limits X§ = N X} (& (~o0, +oo]).

>0 TG

Thus we have the scheme
X oXF@ o X5 o X oX§ o X§ o X§.

In the above diagram the spaces to the right of X are called regular spaces and those to the left of
X hyper-spaces. We are thus led to the study of the inductive limits and projective limits of a
sequence of Banach spaces in general, as well as linear operators thercin. In doing so, the topo-
logical structures of the regular spaces and hyper-spaces are clarified and several types of con-
tinuous linear mappings on them are characterized. By choosing different space X and different
operator B various classical spaces of functions or generalized functions are realized functional-
analytically as regular spaces or hyper-spaces in the above sense.

In Chapter II we discuss the regularity and extendibility of a C o semigroup ¢™ on X with respect
io a scale of Banach spaces {X§ | o ¢ R} constructed in Chapter 1. More precisely, conditions
between the operators A and B® (or A* and (B*)®) are given so that the semigroup ¢~ on X res-
tricts to a Cg semigroup on X§ (or exiends 10 a Cg semigroup on X3°), Applications to matrix
operators in 1% and to second order partial differential operators on L3(R™) are presented. We
also set two criteria for an infinite matrix (a;) to generate a C ¢ semigroup on ! 2,

In Chapter III we formulate and prove a Hille-Yosida type theorem for locally equi-continuous
semigroups on the inductive limit space of a sequence of Banach spaces. We emphasize that
instead of semi-norms of the inductive limit, which are hard to find and to deal with, we use the
nomms of the constituents of the inductive limit. The result together with that of Ouchi applies
readily to the spaces X§ defined in Chapter L

In Chapter IV weighted L? spaces of harmonic functions on R (g 2) and several naturally aris-
ing linear operators in them are studied. The central idea is an identification of a weighted L2
space of harmonic functions on R ? with the domain of a suitable positive self-adjoint operator in
L8971y ($77! the unit sphere in IR?); the identification is the natural restriction-extension pro-
cedure. In particular, we have natural weighted L? spaces of harmonic functions on R? wherein
the differentiation operators are continuous or even compact. Also, working in the opposite
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direction we arrive at a complete characterization of the ranges of the propagator of the fractional
spherical diffusion equatio %l;- =—(~Arp)"? u, where A;p is the Laplace-Beltrami operator on
s9-1,
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1.
For a homogeneous harmonic polynomial 4 of degree m in IR the following estimate holds true:

%
g;i(c) ls m [%;L'”-)-] T

Here $9°! is the unit sphere in R? with center at the origin and with total Lebesque measure
©,_1, and N{g,m) is the number of linear independent homogeneous harmonic polynomials of
degree min IR, See [L-M]L.

2.
q
The operator L2+ Y 4,9, (ay €) generates a Co semigroup in HAL, (v)(1<v<2) and
k=1

q
HA%(a,b)(@>0,b>0ifgs4,a4>0,0<b < q& ifqg>4). Heref,z:% 3 (xka;—xjak)z,
kj=1

and HAZ, (v) and HAY(a,b) are the weighted Hilbert spaces of harmonic functions defined in
Chapter IV Sections 2 and 3 of this thesis.

3.
The operator x,0% (1SkS ¢, lal =2) is compact in the spaces HAL, M (1 <v£2) and

2 . . 2
q = q B
HAY(ab)(@>0,0<b < 753 ), and continuous in HA{(e,b) (@ >0, b 743 ).

4,

. .
Since Y, apM; (ax € €) is a bounded perturbation of the positive self-adjoint operator Azp in
k=1 i

q
L3S, the operator Arg + 3, ap M, is the infinitesimal generator of a Cg semigroup 7'(£) in
k=l

L2(8771), Actually T(¢) restricts to a C o semigroup on each of the spaces HAZ, (v) or HAY(a,b).

5.
Let A : D(A) c X — X be an w-accretive nonlinear operator in a Banach space (X, - 1) with X*
Fréchet differentiable. A and J » denote the closure and the resolvent (M +A4)™! of A respectively.
Assume furthermore that R( +A4) 2 D(A) for sufficiently small positive value of A. Then the
semigroup {S(®)}0 on M generated by 4 is differentiable in the following sense:

(i) For each xe é{A)'—"[XG D(A); lim ™ lx~Jyxlt <oo) both Hm ¢~} (x~S()x) and
=0+ 1->0+ .

Hm ¢~t(x—J, x) exist and are equal,
10+

Defining the common limit tobe A* x foreachx e D(a), A* is precisely the infinitesimal
generator of {S()}pe.
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() (A)° is single valued, D((A)®) = D(A)=D(A) and (A)° =A*. Here for an operator B in
X,B%=(ylyeBx,lyl=1Bxl}with IBx| =inf (Iyll | y e Bx}.
Thus

% [S)x]+@AYP Sx =0, Vx € D(A), Vi20.

See [L1].

6.
Let (E, 111, X) be a regular and strongly minimal ordered Banach space and let (V,d) be a com-
plete quasimeltric space with 4 : V XV — E. Assume that F . V — E is a lower semi-continuous
mapping bounded from below. For arbitrary € > 0, ¢ > 0 (zero in E), choose u & V such that

Fu): u‘}f F+ee.
Then, there exists some v € V (an approximate Pareto minimum) satisfying the following rela-
tions:

ef du,v)

FWS F(u)

Fw) <</ F(v)—ed(v,w), Ywe V

Fw)$ F¥)—ed(v,w), Vw e Vsuch that d(v,w) >> 0.
See [L2].

7.

Let {T, | 1S k< K} be a finite family of bounded lincar operators in a Banach space (X, llI}

with spectral radii (W(Ty) | 1< k< K} If they are mutually commutative, ie., T, T; = T; T, for all
1% j, k< K, then, for any given ¢ > 0 there exists an equivalent new nomm || on X such that

IT I <UTH, 1<k<sK
and
KT T S (T +e.
Here T}l and 1T} | stand for the operator norms of T with respect to the old norm Il and new

norm |+ | of X respectively. See [Y-L].

8.
World peace can only be realized by its partition into a large number of small states, not by
grouping together into a few ones.



[1.1]

fL2]

[L-M]

[Y-L]

-3-

References

Liu G., The differentiability of semigroups generated by w-accretive operators. In Non-
linear Analysis and Applications (ed. by V. Lakshmikantham), pp. 313-318, Lecture
Notes in Pure and Appl. Math. 109, Marcel Dekker, Inc., New York and Basel, 1987.
Liu G., A principle of Approximate Pareto minimums and a theorem of fixed points, Pre-
print, 1987, Eindhoven,

Liu G. and Martens F.J.L., Improvement on an estimate of spherical harmonics, Preprint,
1989, Eindhoven.

You Zhao-Yong and Liu Gui-Zhong, Simultaneous of linear operators in terms of their
respective spectral radii, J. Math. Research and Exposition 6 (1986), no. 3, 99-102.

Eindhoven, 28 June 1989.



ISBN  90-9002908-7



