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A B S T R A C T

We present a new derivation of the equations governing the oscillations of slowly rotating

relativistic stars. Previous investigations have been mostly carried out in the Regge–Wheeler

gauge. However, in this gauge the process of linearizing the Einstein field equations leads to

perturbation equations in a form that cannot be used to perform numerical time evolutions. It

is only through the tedious process of combining and rearranging the perturbation variables in

a clever way that the system can be cast into a set of hyperbolic first-order equations, which is

then well suited for the numerical integration. The equations remain quite lengthy, and we

therefore rederive them in a different gauge. Using the ADM formalism, one immediately

obtains a first-order hyperbolic evolution system, which is remarkably simple and can be

integrated numerically without many further manipulations. Moreover, the symmetry

between the polar and axial equations becomes directly apparent.
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1 I N T R O D U C T I O N

The theory of non-radial perturbations of relativistic stars has been a field of intensive study for more than three decades, beginning with the

pioneering paper of Thorne & Campolattaro in 1967. These authors focused on perturbations of non-rotating stars, while Hartle (1967) laid

the foundations for computing rotating relativistic stellar models. He also devised a way of modelling slowly rotating stars. This was widely

used in following works since the problem becomes one dimensional and therefore much simpler than the two-dimensional case of rapidly-

rotating and strongly-deformed stars. It was well known from the very early days that rotating relativistic bodies can become unstable with

respect to gravitational radiation. The most interesting instability mechanism in the context of r-mode oscillations is the Chandrasekhar–

Friedman–Schutz (CFS) mechanism (Chandrasekhar 1970; Friedman & Schutz 1978), where the gravitational radiation continuously

removes angular momentum from a backwards moving mode, thus reducing the total angular momentum of the star and slowing it down.

As the full set of perturbation equations for rotating relativistic stars is quite complicated, it was only in the last decade that people

started to compute their oscillation modes. In most studies the slow-rotation approximation is still used to tackle the problem. Investigating

the axisymmetric perturbations, Chandrasekhar & Ferrari (1991) showed how rotation induces coupling of the polar and axial modes, which

are decoupled in the non-rotating case. (Polar or even parity modes are characterized by a sign change under parity transformation according

to (21)l, while the axial ones change as (21)lþ1.) Soon after, Kojima (1992) presented the first complete derivation of the coupled polar and

axial perturbation equations.

For more than 40 yr, it was quite common to work in the Regge–Wheeler gauge (Regge & Wheeler 1957), although some groups have

used different gauges or the gauge-invariant formulation of Moncrief (1974). In a series of papers devoted to the study of the stability

properties of non-radial oscillations in relativistic non-rotating stars, Battiston, Cazzola & Lucaroni introduced in 1971 a different gauge,

which, however, has not received much attention since (Battiston, Cazzola & Lucaroni 1971; Cazzola & Lucaroni 1972, 1974, 1978; Cazzola,

Lucaroni & Semenzato 1978a,b).

Since the perturbation equations of non-rotating stars are fairly simple, there is no real advantage of one gauge over the other. For

rotating stars, however, the equations become much more complicated and choosing the ‘right’ gauge can make life much simpler. In
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particular, when one is interested in the time-dependent problem, the perturbation equations have to be brought into a form suitable for the

numerical evolution. In this case, the effort that has to be spent manipulating the equations can depend considerably on the chosen gauge.

Time evolutions of the perturbations of non-rotating stars have been carried out, first for the axial equations (Andersson & Kokkotas

1996) and then for the polar equations using the Regge–Wheeler gauge by Allen et al. (1998) and Ruoff (2001). Allen et al. (1998) managed

to write down the evolution equations as two relatively simple wave equations for the metric perturbations and one wave equation for the fluid

enthalpy perturbation inside the star. Ruoff (2001) rederived these equations using the Arnowitt–Deser–Misner (ADM) formalism (Arnowitt

et al. 1962). They were used to evolve and study initial data representing the late stage of a binary neutron star head-on collision (Allen et al.

1999).

Using the ADM formalism, Ruoff & Kokkotas (2001, 2002) derived the evolution equations for the axial perturbations of slowly rotating

stars as a first-order system both in space and time, which could be used for the numerical evolution without many further manipulations. In

the non-rotating case, it is an easy task to transform the first-order system into a single wave equation for a metric variable. In the rotating

case, however, this is not possible because of the rotational correction terms.

When looking at the set of polar equations derived by Kojima (1992) it is apparent that the presence of mixed spatial and time derivatives

makes them unsuitable for the numerical time integration. Nevertheless, using a number of successive manipulations and the introduction of

many additional variables, we were able to cast the equations into a hyperbolic first-order form.

A more natural way to obtain a first-order-in-time set of equations automatically is to use the ADM formalism. However, as we shall

explain, even in that case the polar equations in the Regge–Wheeler gauge need to be manipulated further before they are suitable for a

numerical integration. In general the ADM formalism yields a set of partial differential equations that are first order in time, but second order

in space. For the numerical evolution, this is not ideal and one would rather have a pure first-order system, or if possible a complete second-

order system, thus representing generalized wave equations. As we mentioned above, in the non-rotating case, it is easy to convert the

perturbation equations into a set of wave equations. However, in the rotating case, this is no longer possible, even in the simple case of purely

axial perturbations. To illustrate the problems associated with the Regge–Wheeler gauge, let us recall Einstein’s (unperturbed) evolution

equations written in the ADM formalism:

ð›t 2 LbÞgij ¼ 22aKij; ð1Þ

ð›t 2 LbÞKij ¼ 2a;ij þ a½Rij þ Kk
kKij 2 2KikKk

j 2 4pð2Tij 2 Tn
ngijÞ�; ð2Þ

with a denoting the lapse function, b i the shift vector, Lb the Lie-derivative with respect to b i, gij the metric of a space-like three-

dimensional hypersurface with Ricci tensor Rij, and Kij its extrinsic curvature. It is obvious that the only second-order spatial derivatives are

›i›ja and ›i›jgkl with the latter originating from the Ricci tensor Rij. This is still true for the linearized version of equations (1) and (2).

In the Regge–Wheeler gauge, we have a non-vanishing perturbation of the lapse a and the diagonal components of the spatial

perturbations hij. Using the notation of Ruoff (2001), the polar perturbations can be written as

a ,
l;m

X
Slm

1 ðt; rÞYlmðu;fÞ; ð3Þ

hij ,
l;m

X Slm
3 ðt; rÞ 0 0

0 Tlm
2 ðt; rÞ 0

0 0 sin2uTlm
2 ðt; rÞ

0BB@
1CCAYlmðu;fÞ: ð4Þ

The perturbation equations obtained from equation (2) contain second r-derivatives of S1 and T2. Note that they do not contain second

derivatives of S3, because only the angular components of the metric are differentiated twice with respect to r. In the axial case there is only

one perturbation function for the angular metric components, but it is set to zero in the Regge–Wheeler gauge. Therefore the ADM

formalism immediately yields a first-order system.

The polar equations, in contrast, can be cast into a fully first-order system only through the introduction of auxiliary variables. In the

non-rotating case, this is a fairly easy task, but for the rotating case it turns out to be considerably more complicated. One of the main reasons

is that, in the non-rotating case, we have a simple proportionality between S1 and S3, which we can use to eliminate S1 in all the equations.

This is crucial since S1 represents the perturbation of the lapse, for which the ADM formalism does not provide an evolution equation. In the

rotating case, however, the relation between S1 and S3 contains various rotational correction terms and the replacement of S1 by S3 would lead

to a considerable inflation of the equations.

Instead of manipulating the perturbation equations in the Regge–Wheeler gauge, we therefore look for a gauge in which the

perturbation equations, by construction, do not show any second-order spatial derivative. We have seen that the second derivatives originate

from the angular terms of the spatial metric perturbations and the perturbation of the lapse function. It seems natural therefore to set these to

zero. For the axial case this is already realized in the Regge–Wheeler gauge. It is only for the polar perturbations that we need a different

gauge. From the seven polar components of the metric, Regge & Wheeler (1957) chose to set the components V1, V3 and T1 to zero, which, in

the notation of Ruoff (2001), represent the polar angular vector perturbations and one of the angular tensor perturbations. We now proceed

differently: we keep the vector perturbations V1 and V3, while we set the tensor perturbations T1, T2, together with the perturbation of the lapse

S1, to zero. With this choice we expect the ADM formalism to provide us with an evolution system without any second r-derivatives.
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We note again that this gauge was actually introduced thirty years ago by Battiston et al. (1971) to derive the perturbation equations for

non-radial oscillations of non-rotating neutron stars and to investigate their stability properties in a subsequent series of papers (Cazzola &

Lucaroni 1972, 1974, 1978; Cazzola, Lucaroni & Semenzato 1978a,b). The first paper is of particular relevance, as they show that this gauge

does not contain any further gauge freedom and establish the relation with the Regge–Wheeler gauge. From now on, we will call this gauge

the BCL gauge.

This paper is structured as follows. In Section 2, we will use the ADM formalism to derive the time-dependent perturbation equations for

slowly rotating relativistic stars in the BCL gauge. Section 3 contains a brief discussion of the non-rotating limit, and conclusions will be

drawn in Section 4. In the appendix, we present the perturbation equations as they follow directly from Einstein’s equations in a form similar

to the equations in the Regge–Wheeler gauge given by Kojima (1992). Throughout the paper, we adopt the metric signature (2þþþ ), and

we use geometrical units with c ¼ G ¼ 1. Derivatives with respect to the radial coordinate r are denoted by a prime, while derivatives with

respect to time t are denoted by a dot. Greek indices run from 0 to 3, Latin indices from 1 to 3.

2 T H E P E RT U R B AT I O N E Q UAT I O N S I N T H E A D M F O R M A L I S M

The metric describing a slowly rotating neutron star in spherical coordinates (t, r, u, f) is

gmn ¼

2e 2n 0 0 2vr 2 sin2u

0 e 2l 0 0

0 0 r 2 0

2vr 2 sin2u 0 0 r 2 sin2u

0BBBBB@

1CCCCCA; ð5Þ

where n, l and the ‘frame dragging’ v are functions of the radial coordinate r only. With the neutron star matter described by a perfect fluid

with pressure p, energy density e, and 4-velocity

U m ¼ ðe 2n; 0; 0;Ve 2nÞ; ð6Þ

the Einstein equations together with an equation of state p ¼ pðeÞ yield the well-known TOV equations plus an extra equation for the frame

dragging, which to linear order is given by

400 2 4pre 2lðpþ eÞ2
4

r

� �
40 2 16pe 2lðpþ eÞ4 ¼ 0; ð7Þ

where

4 :¼ V 2 v ð8Þ

represents the angular velocity of the fluid relative to the local inertial frame. In the language of the ADM formalism, we have to express the

background metric (5) in terms of lapse, (covariant) shift and the 3-metric, which we denote by A, Bi and gij, respectively. Explicitly, we have

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B iBi 2 g00

p
¼ e n þ Oðv 2Þ; ð9Þ

Bi ¼ ð0; 0;2vr 2 sin2uÞ; ð10Þ

gij ¼

e 2l 0 0

0 r 2 0

0 0 r 2 sin2u

0BB@
1CCA: ð11Þ

The extrinsic curvature of the space-like hypersurface described by gij can be computed using

Kij ¼
1

2A
ðB k›kgij þ gki›jB

k þ gkj›iB
kÞ; ð12Þ

yielding the only non-vanishing components

K13 ¼ K31 ¼ 2
1

2
v0e 2nr 2 sin2u: ð13Þ

The perturbations of the background lapse A, shift Bi, 3-metric gij, extrinsic curvature Kij, 4-velocity Ui, energy density e and pressure p will

be denoted by a, bi, hij, kij, ui, de and dp, respectively. The twelve evolution equations for hij and kij are obtained by linearizing the non-linear

ADM equations (1) and (2). Working in the slow-rotation approximation, we keep only terms up to order V (or v). The background quantities

B k and Kij are first order in V, hence we can neglect any products thereof. The trace of the background extrinsic curvature g ijKij vanishes as

well and the perturbation equations reduce to:

›thij ¼ ›ibj þ ›jbi 2 2ðAkij þ Kijaþ Gk
ijbk þ BkdG

k
ijÞ; ð14Þ
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›tkij ¼ a½Rij þ 4pðp 2 eÞgij�2 ›i›jaþ Gk
ij›kaþ dGk

ij›kAþ A{dRij þ Kijk 2 2ðKk
i kjk þ Kk

j kikÞ þ 4p½ðp 2 eÞhij þ gijðdp 2 deÞ

2 2ðpþ eÞðuiduj þ ujduiÞ�}þ B k›kkij þ ð›kKij 2 Kl
i›jgkl 2 Kl

j›igklÞb
k þ kik›jB

k þ kjk›iB
k þ Kk

i ›jbk þ Kk
j ›ibk ð15Þ

where

k :¼ g ijkij; ð16Þ

dGk
ij :¼

1

2
g kmð›ihmj þ ›jhmi 2 ›mhij 2 2Gl

ijhlmÞ; ð17Þ

dRij :¼ ›kdG
k
ij 2 ›jdG

k
ik þ Gl

ijdG
k
lk þ Gk

lkdG
l
ij 2 Gl

ikdG
k
lj 2 Gk

ljdG
l
ik: ð18Þ

To obtain a closed set of evolution equations, we will also use the four evolution equations for the fluid perturbations that follow from the

linearized conservation law dTmn
;m ¼ 0. Finally we need the four linearized constraint equations, which allow us to construct physically valid

initial data and to monitor the accuracy of the numerical evolution:

g ijdRij 2 h ijRij 2 2K ijkij ¼ 16p½de þ 2e 2nðpþ eÞðV 2 vÞdu3�; ð19Þ

28p½ðpþ eÞdui þ uiðdpþ deÞ� ¼ g jkð›ikjk 2 ›jkik 2 Gl
ikkjl þ Gl

jkkil 2 dGl
ikKjl þ dGl

jkKilÞ2 h jkð›iKjk 2 ›jKik 2 Gl
ikKjl þ Gl

jkKilÞ: ð20Þ

We assume the oscillations to be adiabatic, so that the relation between the Eulerian pressure perturbation dp and energy density perturbation

de is given by

dp ¼
G1p

pþ e
de þ p0j r G1

G
2 1

� �
; ð21Þ

where G1 represents the adiabatic index of the perturbed configuration, G is the background adiabatic index

G ¼
pþ e

p

dp

de
; ð22Þ

and j r is the radial component of the fluid displacement vector j m. The latter is related to the (covariant) 4-velocity perturbations dum through

dum ¼ ðgmn þ umunÞLuj
n þ

1

2
umukulhkl þ u nhmn; ð23Þ

where Lu denotes the Lie derivative along u m. For the r component, this gives us

ð›t þV›fÞj
r ¼ e 22lðe ndur 2 br 2 VhrfÞ: ð24Þ

Next, we expand the complete set of perturbation variables into spherical harmonics Ylm ¼ Ylmðu;fÞ. This will enable us to eliminate the

angular dependence and obtain a set of equations for the coefficients, which only depend on t and r. It is only then that we can finally choose

our gauge. In principle, choosing the gauge amounts to providing prescriptions for the lapse function and shift vector. In perturbation theory,

the gauge can be used to set some of the ten metric perturbations to zero. We could, for instance, set a ¼ bi ¼ 0, and we would be left with

only the six components hij. Note that setting a to zero is possible, since this quantity is only the perturbation of the background lapse A, and

the latter does not vanish.

However, our actual goal is to set some of the spatial perturbation components hij to zero, namely the angular components hab with

a; b ¼ {u;f}. In principle we need prescribe the values of hij only once for the initial data, and not during the evolution. The only way to keep

hab zero throughout the evolution is to choose our gauge such that the evolution equations for hab become trivial, i.e. we have to enforce

›thab ¼ 0; a; b ¼ {u;f}: ð25Þ

We will see that this requirement leads to a unique algebraic condition for the shift vector bi. With the definitions

Xlm :¼ 2ð›u 2 cot uÞ›fYlm; ð26Þ

Wlm :¼ ›2
uu 2 cot u›u 2

›2
ff

sin2u

 !
Ylm ¼ ½2›2

uu þ lðlþ 1Þ�Ylm; ð27Þ
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we expand the metric as follows. For the polar part we choose

a ¼ 0; ð28Þ

b
polar
i ¼

l;m

X
ðe 2lSlm

2 ;Vlm
1 ›u;V

lm
1 ›fÞYlm; ð29Þ

h
polar
ij ¼

l;m

X e 2lSlm
3 Vlm

3 ›u Vlm
3 ›f

P 0 0

P 0 0

0BB@
1CCAYlm; ð30Þ

and the axial part is

baxial
i ¼

l;m

X
0;2Vlm

2

›f

sin u
;Vlm

2 sin u›u

� �
Ylm; ð31Þ

haxial
ij ¼

l;m

X 0 2Vlm
4

›f

sin u
Vlm

4 sin u›u

P 0 0

P 0 0

0BBB@
1CCCAYlm: ð32Þ

The asterisks stand for symmetric components. For the extrinsic curvature we have no vanishing components

k
polar
ij ¼

1

2
e 2n

l;m

X e 2lKlm
1 Ylm e 2lKlm

2 ›uYlm e 2lKlm
2 ›fYlm

P ðrKlm
4 2 LKlm

5 ÞYlm þ Klm
5 Wlm Klm

5 Xlm

P Klm
5 Xlm sin2u½ðrKlm

4 2 LKlm
5 ÞYlm 2 Klm

5 Wlm�

0BB@
1CCA; ð33Þ

kaxial
ij ¼

1

2
e 2n

l;m

X 0 2e 2lKlm
3

›fYlm

sin u
e 2lKlm

3 sin u›uYlm

P 2Klm
6

Xlm

sin u
Klm

6 sin uWlm

P Klm
6 sin uWlm Klm

6 sin uXlm

0BBBBB@

1CCCCCA: ð34Þ

Here and throughout the whole paper, we use the shorthand notation

L :¼ lðlþ 1Þ: ð35Þ

We note that the somewhat peculiar expansions for the coefficient Klm
5 can actually be written as

Wlm 2 LYlm ¼ 2›2
uuYlm; ð36Þ

2sin2uðWlm þ LYlmÞ ¼ 2ðcos u sin u›u þ ›2
ffÞYlm; ð37Þ

which are essentially the diagonal terms of the Regge–Wheeler tensor harmonic Clm
ab (cf. equation 20 of Ruoff 2001). However, we prefer to

write them in terms of Wlm and Ylm because it is only for these quantities that simple orthogonality relations apply. Furthermore, we note that

in the definition of the polar components of the extrinsic curvature, we differ from the notation of Ruoff (2001), where the meaning of K4 and

K5 is reversed (cf. equation 24). Also, the expansion for the axial perturbations slightly differs from that of Ruoff & Kokkotas (2001, 2002).

In their original paper, Battiston et al. (1971) did not use the ADM formalism to fix the gauge but instead defined their gauge by directly

setting htt, huu, huf and hff to zero. The relation between htt and the lapse a is given by

htt ¼ 2Aaþ 2B ibi ¼ 2e na 2 2vhtf; ð38Þ

so that in the rotating case htt – 0 although the lapse a vanishes. In the non-rotating case bi ¼ 0 and both a and htt vanish. If we insisted on

keeping a vanishing htt also in the rotating case, we would obtain a non-vanishing lapse, leading to the undesired second r derivatives in the

perturbation equations.
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Finally, the fluid perturbations are decomposed as

du
polar
i ¼ 2e n

l;m

X
ðulm

1 ; ulm
2 ›u; u

lm
2 ›fÞYlm; ð39Þ

duaxial
i ¼ 2e n

l;m

X
0;2ulm

3

›f

sin u
; ulm

3 sin u›u

� �
Ylm; ð40Þ

de ¼
l;m

X
r lmYlm; ð41Þ

dp ¼ ðpþ eÞ
l;m

X
H lmYlm; ð42Þ

j r ¼ n0 1 2
G1

G

� �� �21

l;m

X
j lmYlm: ð43Þ

From equation (21), we obtain the relation

r lm ¼
ðpþ eÞ2

G1p
ðH lm 2 j lmÞ: ð44Þ

With the above expansion, the evolution equations for hij read

ð›t þ imvÞSlm
3 Ylm ¼ ½2ðS

lm
2 Þ
0 þ 2l0Slm

2 2 Klm
1 �Ylm þ 2ve 22l½ðVlm

3 Þ
0 2 l0Vlm

3 �›fYlm þ 2ve 22l½ðVlm
4 Þ
0 2 l0Vlm

4 �sin u›uYlm; ð45Þ

›t Vlm
3 ›u 2 Vlm

4

›f

sin u

� �
Ylm ¼ ðVlm

1 Þ
0 2

2

r
Vlm

1 þ e 2lðSlm
2 2 Klm

2 Þ

� �
›uYlm 2 ðVlm

2 Þ
0 2

2

r
Vlm

2 2 e 2lKlm
3

� �
›fYlm

sin u
2 vLVlm

4 sin uYlm; ð46Þ

›tðV
lm
3 ›f þ Vlm

4 sin u›uÞYlm ¼ ðVlm
1 Þ
0 2

2

r
Vlm

1 þ e 2lðSlm
2 2 Klm

2 Þ

� �
›fYlm þ ðVlm

2 Þ
0 2

2

r
Vlm

2 2 e 2lKlm
3

� �
sin u›uYlm; ð47Þ

0 ¼ 2Slm
2 2

L

r
Vlm

1 2 Klm
4 þ

L

r
Klm

5

� �
Ylm þ 2ve 22lðVlm

3 ›fYlm þ Vlm
4 sin u›uYlmÞ; ð48Þ

0 ¼ ðVlm
1 2 Klm

5 ÞWlm þ ðV
lm
2 2 Klm

6 Þ
Xlm

sin u
; ð49Þ

0 ¼ ðVlm
1 2 Klm

5 ÞXlm 2 ðVlm
2 2 Klm

6 Þ sin uWlm: ð50Þ

In every equation a sum over all l and m is still implied. From equations (49) and (50) we immediately obtain our condition for the shift

components:

Vlm
1 ¼ Klm

5 ; ð51Þ

Vlm
2 ¼ Klm

6 ; ð52Þ

and from equation (48) it follows, after multiplication with Y*
lm and integration over the 2-sphere, that

Slm
2 ¼

1

2
Klm

4 2 ve 22lðimVlm
3 þ L^1

1 Vlm
4 Þ; ð53Þ

where we have defined the operator L^1
1 , which couples the equations of order l to the equations of order lþ 1 and l 2 1, according to

L^1
1 A lm :¼

l0m0

X
A l0m0

ð
S2

Y*
lm sin u›uYl0m0 dV ¼ ðl 2 1ÞQlmA l21m 2 ðlþ 2ÞQlþ1mA lþ1m; ð54Þ

with

Qlm :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl 2 mÞðlþ mÞ

ð2l 2 1Þð2lþ 1Þ

s
: ð55Þ

Below we will also need

L^1
2 A lm :¼

l0m0

X
A l0m0

ð
S2

›uY*
lm sin uYl0m0 dV ¼ 2ðlþ 1ÞQlmA l21m þ lQlþ1mA lþ1m ð56Þ
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and

L^1
3 A lm :¼

l0m0

X
A l0m0 l0ðl0 þ 1Þ

ð
S2

Y*
lm cos uYl0m0 dVþ

ð
S2

Y*
lm sin u›uYl0m0 dV

� �
¼ ðl 2 1Þðlþ 1ÞQlmA l21m þ lðlþ 2ÞQlþ1mA lþ1m: ð57Þ

The operator L^1
3 can actually be expressed in terms of L^1

1 and L^1
2 :

L^1
3 ¼ 2

1

2
½L^1

1 ðL 2 2Þ þ L^1
2 L�: ð58Þ

For notational simplicity, we will from now on omit the indices l and m for the perturbation variables. By making use of the above relations

we can eliminate the spherical harmonics and obtain the following simple set of evolution equations for the metric perturbations:

ð›t þ imvÞS3 ¼ K 04 2 K1 þ l0K4 2 2v0e 22lðimV3 þ L^1
1 V4Þ; ð59Þ

ð›t þ imvÞV3 ¼ K 05 2 e 2lK2 þ
1

2
e 2lK4 2

2

r
K5; ð60Þ

ð›t þ imvÞV4 ¼ K 06 2 e 2lK3 2
2

r
K6: ð61Þ

In a similar way, we obtain the evolution equations for the six extrinsic curvature components:

ð›t þ imvÞK1 ¼ e 2n22l n0 þ
2

r

� �
S03 2 2

L

r 2
V 03 þ 2l0

L

r 2
V3 þ 2

n0

r
2

l0

r
2

e 2l 2 1

r 2
þ e 2l L

2r 2

� �
S3

� �

þ 8pe 2nð pþ eÞC22
s ½ðC

2
s 2 1ÞH þ j�2 2e 22lv0 im K 05 2

2

r
K5

� �
þ L^1

1 K 06 2
2

r
K6

� �� �
; ð62Þ

ð›t þ imvÞK2 ¼ e 2n22l n0 þ
1

r

� �
S3 2

2

r 2
V3

� �

þ
imr 2

2L
e 22l v0 K 04 2 K1 þ l0K4 2 4

L 2 1

r 2
K5

� �
2 16p4ð pþ eÞðe 2lK4 þ 2e 2nu1Þ

� �
2

v0e 22l

L
L^1

1 ½ðL 2 2ÞK6�; ð63Þ

ð›t þ imvÞK3 ¼ e 2n22l L 2 2

r 2
V4 þ e 22l v

0

L
½2imK6 þ ðL 2 2ÞL^1

2 K5�

2
r 2

2L
e 22lL^1

2 ½v
0ðK 04 2 K1 þ l0K4Þ2 16p4ðpþ eÞðe 2lK4 þ 2e 2nu1Þ�; ð64Þ

ð›t þ imvÞK4 ¼ e 2n22l S03 þ 2 n0 2 l0 þ
1

r

� �
S3 2

2L

r 2
V3

� �
þ 8pre 2nðpþ eÞC22

s ½ðC
2
s 2 1ÞH þ j�

þ rðL^1
1 2 L^1

2 Þ½v
0K3 þ 16pe 2n4ð pþ eÞu3�; ð65Þ

ð›t þ imvÞK5 ¼ e 2n22l V 03 þ ðn
0 2 l0ÞV3 2

1

2
e 2lS3

� �

þ
r 2

L
im v0

1

2
K4 2 K2

� �
2 16pe 2n4ðpþ eÞu2

� �
2 L^1

2 ½v
0K3 þ 16pe 2n4ð pþ eÞu3�

� �
; ð66Þ

ð›t þ imvÞK6 ¼ e 2n22l½V 04 þ ðn
0 2 l0ÞV4�2

r 2

L
im½v0K3 þ 16pe 2n4ðpþ eÞu3� þ L^1

2 v0
1

2
K4 2 K2

� �
2 16pe 2n4ðpþ eÞu2

� �� �
: ð67Þ

It is worth pointing out the symmetry between the polar and axial equations. Each pair V3 and V4, K2 and K3, and K5 and K6 represents the

polar and axial counterparts of a metric or extrinsic curvature perturbation. Thus, each associated pair of equations (60) and (61), (63) and

(64), and (66) and (67) has basically the same structure, with only the polar equations containing additional terms as there are more polar

variables than axial ones.
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The final set of evolution equations is that for the fluid quantities, resulting from dðTmn
m Þ ¼ 0 and equation (24):

ð›t þ imVÞH ¼ C2
s

"
e 2n22l u01 þ 2n0 2 l0 þ

2

r

� �
u1 2 e 2l L

r 2
u2

� �
þ

1

2
K1 þ

1

r
K4 2

L

r 2
K5

þ4e 22l im V 03 þ
2

r
2 l0

� �
V3 þ e 2l H 2

1

2
S3

� �� �
þ L^1

1 V 04 þ
2

r
2 l0

� �
V4

� �� �#

2 n0 e 2n22lu1 þ
1

2
K4 þ4e 22lðimV3 þ L^1

1 V4Þ

� �
; ð68Þ

ð›t þ imVÞu1 ¼ H 0 þ
p0

G1p

G1

G
2 1

� �
H þ j

� �
2 im e 22n4 K 05 2

2

r
K5

� �
þ v0 þ 24 n0 2

1

r

� �� �
u2

� �

2 L^1
1 e 22n4 K 06 2

2

r
K6

� �
þ v0 þ 24 n0 2

1

r

� �� �
u3

� �
; ð69Þ

ð›t þ imVÞu2 ¼ H þ
4

L
{im½2u2 2 e 22nðL 2 2ÞK5� þ 2L^1

3 u3 2 e 22nL^1
1 ½ðL 2 2ÞK6�} 2

imr 2

L
A; ð70Þ

ð›t þ imVÞu3 ¼ 2
4

L
½imðu3 þ e 22nK6Þ2 L^1

3 ðu2 þ e 22nK5Þ� þ
r 2

L
L^1

2 A; ð71Þ

ð›t þ imVÞj ¼ n0
G1

G
2 1

� �
e 2n22lu1 þ

1

2
K4 þ4e 22lðimV3 þ L^1

1 V4Þ

� �
; ð72Þ

where

A ¼ 4C2
s e 22l u01 þ 2n0 2 l0 þ

2

r

� �
u1 2 e 2l L

r 2
u2

� �
þ e 22n 1

2
K1 þ

1

r
K4 2

L

r 2
K5

� �� �
þ 4 n0 2

2

r

� �
þ v0

� �
e 22lu1 þ

1

2
e 22nK4

� �
;

ð73Þ

and the sound speed Cs is defined by

C2
s ¼

G1

G

dp

de
: ð74Þ

The evolution equations comprise fourteen equations in total: four axial and ten polar. In the non-rotating case, they can be reduced to four

wave equations, one for the axial and two for the polar metric perturbations plus one wave equation for the fluid variable H. The fluid equation

for the axial velocity perturbation u3 vanishes in the non-rotating case, whereas equation (72) for the displacement variable j does so in the

barotropic case.

Finally we have our constraint equations: the Hamiltonian constraint

8pr 2e 2lr ¼ rS03 2 LV 03 þ 1 2 2rl0 þ
1

2
e 2lL

� �
S3 þ L l0 2

1

r

� �
V3

þ r 2e 2l im
1

2
v0e 22nK2 þ 16p4ð pþ eÞu2

� �
þ L^1

1

1

2
v0e 22nK3 þ 16p4ðpþ eÞu3

� �� �
; ð75Þ

and the three momentum constraints

8pre 2nðpþ eÞu1 ¼ K 04 2
L

r
K 05 2 K1 þ e 2l L

2r
K2 2 n0K4 þ

L

r 2
ð1þ rn0ÞK5 þ

im

4
rv0S3 2 ½8prðpþ eÞ4þ 2e 22lv0�ðimV3 þ L^1

1 V4Þ;

ð76Þ

16pre 2nðpþ eÞu2 ¼ 2rK 02 þ rK1 þ ðrn
0 2 rl0 2 2ÞK2 þ K4 2

2

r
K5 þ e 22l rv0

L
½2imV3 2 ðL 2 2ÞL^1

2 V4�

þ
imr 3

L

1

2
e 22lv0S03 2 16p4ð pþ eÞ{S3 þ C22

s ½ðC
2
s þ 1ÞH 2 j�}

� �
; ð77Þ

16pre 2nðpþ eÞu3 ¼ 2rK 03 þ ðrn
0 2 rl0 2 2ÞK3 þ

L 2 2

r
K6 þ e 22l rv0

L
½2imV4 þ ðL 2 2ÞL^1

2 V3�

2
r 3

L
L^1

2

1

2
e 22lv0S03 2 16p4ð pþ eÞ{S3 þ C22

s ½ðC
2
s þ 1ÞH 2 j�}

� �
: ð78Þ

Without the coupling terms to the polar perturbations, the axial equations (61), (64), (67), (71) and (78) are equivalent to equations (7)–(10)

and (12) of Ruoff & Kokkotas (2002).
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3 T H E N O N - R OTAT I N G L I M I T

The non-rotating limit is obtained by letting V ! 0. As is well known, in this case the polar and axial parts of the equations completely

decouple and the equations can be cast into a set of wave equations (Allen et al. 1998; Ruoff 2001). Nevertheless, it is instructive to consider it

in the BCL gauge. For barotropic perturbations ðG1 ¼ GÞ, the polar evolution equations can then be easily transformed into three wave

equations for the rescaled metric variables S ¼ e n2lS3 and V ¼ e n2lV3/r and the rescaled fluid variable ~H ¼ e 2n2lH/r:

›2S

›t 2
¼

›2S

›r*
2
þ e 2n22l n0ðn0 2 l0Þ þ 3

n0

r
þ

l0

r
2

3

r 2
2 e 2l L 2 1

r 2
2 l00

� �
Sþ

4L

r 2
ð1 2 rn0ÞV

� �

þ 8pe 2n ðC2
s 2 1Þ ~r0 þ n0 2

1

r

� �
~r

� �
þ ðC2

s Þ
0 ~r

� �
; ð79Þ

›2V

›t 2
¼

›2V

›r*
2
þ e 2n22l n0

r
2

l0

r
þ 2

e 2l 2 1

r 2
2 e 2l L

r 2

� �
V 2 e 2l n0

r
þ

l0

r
2

1

r 2

� �
S

� �
þ 4pe 2nðC2

s 2 1Þ ~r; ð80Þ

›2 ~H

›t 2
¼ e 2n22l C2

s

›2 ~H

›r 2
2 ½C2

sl
0 þ n0�

› ~H

›r
þ C2

s l0
3

r
þ l0

� �
þ

e 2l 2 1

r 2
2 l00 2 e 2l L

r 2

� �
þ
l0

r
þ 2

n0

r
þ

n0

C2
s

½n0 þ l0�

� �
~H

� �

þ e 2n rn0

2
½C2

s 2 1�
›S

›r
þ C2

s

n0

2
ðrl0 2 rn0 þ 6Þ þ l0 2

e 2l 2 1

r

� �
þ

n0

2
½rl0 2 rn0 2 2�

� �
S 2 n0L½C2

s 2 1�V

� �
: ð81Þ

In equations (79) and (80), r* is the well-known tortoise coordinate, which is related to r through

d

dr*
¼ e n2l d

dr
: ð82Þ

Furthermore, one can express the energy density r̃ in terms of H̃, which in the barotropic case reduces to

~r ¼
pþ e

C2
s

~H: ð83Þ

Although the equations in the first-order form are quite simple, the above set of wave equations is more complicated than the equivalent set in

the Regge–Wheeler gauge (equations 14, 15 and 16 of Allen et al. 1998). However, there is a clear advantage if one is interested in computing

the gauge-invariant Zerilli function Z in the exterior. Following Moncrief (1974), the definition of the Zerilli function is

Z ¼
r 2ðLk1 þ 4e 24lk2Þ

rðL 2 2Þ þ 2M
ð84Þ

with

k1 ¼ 22e 2l2nV ð85Þ

and

k2 ¼
1

2
e 3l2nS: ð86Þ

In terms of S and V this gives us

Z ¼
2r 2e 2l2n

rðL 2 2Þ þ 2M
ðS 2 LVÞ; ð87Þ

which is a simple algebraic relation in contrast with the equations in the Regge–Wheeler gauge, which includes a spatial derivative of one of

the metric perturbations (see equation 20 of Allen et al. 1998, or equation 60 of Ruoff 2001). In the Regge–Wheeler gauge, the two metric

variables (S and F in the notation of Allen et al. 1998, and S and T in the notation of Ruoff 2001) have different asymptotic behaviour at

infinity, in particular one (F or T) is linearly growing with r. It is only through the delicate cancellation of the growing terms that the Zerilli

function remains finite at infinity. However, this cancellation can only occur if both metric variables exactly satisfy the Hamiltonian

constraint. Any (numerical) violation leads to an incomplete cancellation, and the Zerilli function starts to grow at large radii. As a result it

could be rather difficult in the numerical time evolution to extract the correct amount of gravitational radiation emitted from the neutron star.

With the above relation (87), we do not expect such difficulties to occur.

4 C O N C L U S I O N S

We have presented the derivation of the perturbation equations for slowly rotating relativistic stars using the BCL gauge, which was first used

by Battiston et al. in 1971. This gauge is defined by setting the metric perturbations a, huu, huf and hff to zero. In the non-rotating case, the
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condition of zero lapse leads to a complete vanishing of htt. However, in the rotating case htt becomes non-zero (see also the appendix). For

the axial perturbations the BCL gauge coincides with the Regge–Wheeler gauge; it is only for the polar perturbations that the two gauges

differ. The advantage of the BCL gauge over the Regge–Wheeler gauge is that in the ADM formalism, the evolution equations do not a priori

contain any second-order spatial derivatives. Instead, one is immediately lead to a hyperbolic set of first-order evolution equations, which can

be used for the numerical time evolution without major modifications. Even though it is also possible to derive a hyperbolic set in the Regge–

Wheeler gauge, the procedure is rather tedious and requires the introduction of carefully-chosen new variables in order to replace the second-

order derivatives.

The perturbation equations for slowly rotating relativistic stars form a set of fourteen evolution equations plus four constraints. In the

non-rotating barotropic case, it is possible to cast the polar equations into a system of three wave equations – as it is with the Regge–Wheeler

gauge. Although these wave equations are not simpler than the corresponding ones in the Regge–Wheeler gauge, the first-order system

actually is. Moreover, we have a simple algebraic relation between the metric variables and the Zerilli function. It was demonstrated by Ruoff

(2001) that the accurate numerical evaluation of the Zerilli function in the Regge–Wheeler gauge is somewhat difficult and requires high

resolution because a small numerical violation of the Hamiltonian constraint can lead to very large errors in the Zerilli function. This should

not be the case in the BCL gauge as relation (87) does not involve any derivatives.

A further advantage of these evolution equations is that the inclusion of the source terms describing a particle orbiting the star can be

accomplished in a straightforward way. This is not the case for the Regge–Wheeler gauge, as, even for the non-rotating case, one is forced to

include second-order derivatives of the polar source terms (Ruoff, Laguna & Pullin 2001). Since the source terms contain d-functions, one

has to deal with second-order derivatives. In the axial case, no derivatives appear, and the perturbation equations with the source terms are

quite simple (Ruoff et al. 2001). We expect the same to be the case for the polar equations in the BCL gauge, where it should be possible to

plug the source terms into the equations for the extrinsic curvature without generating any derivatives.

In subsequent papers, we will present results from the numerical evolution of the perturbation equations of slowly rotating relativistic

stars in the BCL gauge, with a particular focus on oscillation modes that are unstable with respect to gravitational radiation. We also plan to

include the contribution of a test particle acting as a source of excitation for the stellar oscillations.
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Kojima (1992) derived the perturbation equations in the Regge–Wheeler gauge directly from the linearized Einstein equations without

resorting to the ADM formalism. In this section we repeat this calculation using the BCL gauge. In order to facilitate the comparison with
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Kojima’s equations, which use the more familiar notation of Regge & Wheeler (1957), we switch to a similar notation. In the Regge–

Wheeler gauge, the quantities h0 and h1 denote the axial perturbations of ht{f,u} and hr{f,u}, respectively, whereas the corresponding polar

perturbations are set to zero. Since in the BCL gauge the latter do not vanish, we denote them by h0,p and h1,p, respectively, and, in order to

avoid confusion, we denote the axial ones by h0,a and h1,a. The remaining non-zero polar perturbations are then H1 and H2. Thus, the

expansion of the metric in the BCL gauge reads:

hmn ¼
lm

X 22vðhlm
0;p›f þ hlm

0;a sin u›uÞ Hlm
1 hlm

0;p›u 2 hlm
0;a/sin u›f hlm

0;p›f þ hlm
0;a sin u›u

P e 2lHlm
2 hlm

1;p›u 2 hlm
1;a/sin u›f hlm

1;p›f þ hlm
1;a sin u›u

P P 0 0

P P 0 0

0BBBBB@

1CCCCCAYlm: ðA1Þ

Note that the component htt is not zero, which is a consequence of the relation between the perturbation of the lapse a and htt given by

equation (38). The relation between the above variables and the ones used in the previous sections is as follows (we again omit the indices l

and m):

H1 ¼ e 2lK4 2 vðimV3 þ L^1
1 V4Þ; ðA2Þ

H2 ¼ S3; ðA3Þ

h0;p ¼ K5; ðA4Þ

h0;a ¼ K6; ðA5Þ

h1;p ¼ V3; ðA6Þ

h1;a ¼ V4; ðA7Þ

R ¼ 2u1; ðA8Þ

V ¼ 2u2; ðA9Þ

U ¼ 2u3: ðA10Þ

The extrinsic curvature components can be expressed as

K1 ¼ 2e 22l{H 01 2 l0H1 þ v½imðh01;p 2 l0h1;pÞ þ L^1
1 ðh

0
1;a 2 l0h1;aÞ�2 _H2 2 imvH2; ðA11Þ

K2 ¼ e 22l h00;p 2
2

r
h0;p þ H1 2 _h1;p þ vL^1

1 h1;a

� �
; ðA12Þ

K3 ¼ e 22l h00;a 2
2

r
h0;a þ _h1;a 2 imvh1;a

� �
: ðA13Þ

A frequently occurring combination of variables in the perturbation equations is h00 2 _h1 for both the axial and polar cases, which we

abbreviate with the following functions:

Za ¼ h00;a 2 _h1;a; ðA14Þ

Zp ¼ h00;p 2 _h1;p: ðA15Þ

The equations belonging to the (tt), (tr), (rr) and the addition of the (uu) and (ff) components can be written as

AðIÞlm þ imCðIÞlm þ L^1
2 BðIÞlm þ L^1

4
~A
ðIÞ

lm ¼ 0; ðA16Þ

with

L^1
4 Alm :¼ 2

1

2
ðL^1

1 þ L^1
2 ÞAlm ¼ QlmAl21m þ Qlþ1mAlþ1m ðA17Þ
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and

A ðttÞ ¼
2e 2n

r 2
rH 02 2 Lh01;p 2 16pr 2e 2lC22

s ðH 2 jÞ þ L l0 2
1

r

� �
h1;p þ 1 2 2rl0 þ

Le 2l

2

� �
H2

� �
; ðA18Þ

~A ðttÞ ¼ 0; ðA19Þ

B ðttÞ ¼ 2vZ 0a þ v0 2 2v l0 þ n0 2
2

r

� �� �
Za

4v

r
h00;a 2 32pVð pþ eÞe 2nþ2lU þ

2

r
2v0 þ v 2n0 þ 2l0 2

2

r
2 e 2l L 2 2

r

� �� �
h0;a; ðA20Þ

C ðttÞ ¼ 2vðZ 0p 2 H 01 þ e 2l _H2Þ þ ½v
0 2 2vðl0 þ n0Þ�h00;p 2

2

r
v0 2 2v n0 þ l0 2

e 2l 2 1

r

� �� �
h0;p 2 v0 2 2v n0 þ l0 2

2

r

� �� �
_h1;p

þ ½v0 þ 2vðl0 2 n0Þ�H1 2 32pVe 2nþ2lð pþ eÞV ; ðA21Þ

A ðtrÞ ¼
2

r
_H2 þ

L

r 2
ðZp þ H1 2 2h00;p þ 2n0h0;pÞ þ 16pðpþ eÞðe 2nR 2 H1Þ; ðA22Þ

~A ðtrÞ ¼
2Lv

r 2
h1;a; ðA23Þ

B ðtrÞ ¼
Lv

r 2
2 16pVðpþ eÞ

� �
h1;a; ðA24Þ

C ðtrÞ ¼
2v

r
þ

v0

2

� �
H2 2 16pVð pþ eÞh1;p; ðA25Þ

A ðrrÞ ¼ _H1 þ e 2n L

2r
l0 þ

1

r

� �
h1;p 2 4pre 2nþ2lðpþ eÞH 2

e 2n

2r
ð2rn0 þ 1Þ2

L

2
e 2l

� �
H2 2 e 2n L

2r
h01;p; ðA26Þ

~A ðrrÞ ¼ 0; ðA27Þ

B ðrrÞ ¼ vh00;a þ
v0

2
h0;a 2 vþ

rv0

4

� �
Za; ðA28Þ

C ðrrÞ ¼ vh00;p 2 vþ
rv0

4

� �
Zp þ

v0

2
2 e 2l Lv

r

� �
h0;p þ vþ

rv0

4

� �
H1; ðA29Þ

A ðuuþffÞ ¼ 2 €H2 þ 2e 22l _H01 þ
1

r
2 l0

� �
_H1

� �
2 e 2n22l n0 þ

1

r

� �
H 02 2

L

r 2
ð_h0;p 2 e 2n22lh01;pÞ

2 16pe 2nð pþ eÞH 2 e 2n L

2r 2
þ 16pp

� �
H2 þ

L

r 2
e 2n22lðn0 2 l0Þh1;p; ðA30Þ

~A ðuuþffÞ ¼ 0; ðA31Þ

B ðuuþffÞ ¼ 2ve 22l h00;a
0 2 Z 0a þ

1

r
2 l0

� �
ðh0;a 2 ZaÞ

� �
þ 2v0e 22l h00;a 2

2

r
h0;a

� �
2 16pe 2n4ðpþ eÞU; ðA32Þ

C ðuuþffÞ ¼ 2ve 22l h00;p
0 2 Z 0pþH 01 2 e 2l _H2 þ

L

r 2
h0;p

� �
þ

1

r
2 l0

� �
ð_h1;p þ H1Þ

� �
þ e 22lv0 H1 þ 2h00;p 2

4

r
h0;p

� �
2 16p4e 2nðpþ eÞV :

ðA33Þ

The (tu) and (ru) components are

LaðIÞlm þ imdðIÞlm þ L^1
3 ~aðIÞlm þ L^1

2 h
ðIÞ
lm ¼ 0; ðA34Þ

with

a ðtuÞ ¼ 2 _H2 þ e 22l H 01 2 Z 0p þ
2

r
h00;p þ l0 þ n0 2

2

r

� �
Zp þ ðn

0 2 l0ÞH1 2
2

r 2
ðrl0 2 rn0 þ e 2l 2 1Þh0;p

� �
þ 16pe 2nðpþ eÞV ; ðA35Þ

d ðtuÞ ¼ e 22l 2Lv h01;p þ
1

r
2 n0

� �
h1;p

� �
þ v0

r 2

2
H 02 þ 2h1;p

� �� �
2 16pr 24ðpþ eÞ½H2 þ ð1þ C22

s ÞH þ C22
s j�; ðA36Þ

~a ðtuÞ ¼ 2v0e 22lh1;a; ðA37Þ

h ðtuÞ ¼ 2Lve 22l½h01;a þ ðn
0 2 l0Þh1;a�; ðA38Þ
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a ðruÞ ¼ 2 _Zpþ
1

r
2e 2n22l 2

L

2

� �
h01;p 8pe 2nðpþeÞþ

L

2r 2
ð1þ rl0Þ2

2

r 2
e 2n

� �
h1;p þ n0ðe 2n 2 1Þ þ

1

2r

L

2
e 2l 2 1

� �� �
H2 2 4pre 2lð pþ eÞH;

ðA39Þ

d ðruÞ ¼ 16pr 24ð pþ eÞðH1 þ e 2nRÞ2 vLðH1 þ Zp 2 h0;pÞ þ v0
r 2

2
_H2 2 2ðLþ 2Þh0;p

� �
; ðA40Þ

~a ðruÞ ¼ 2v0h0;a; ðA41Þ

h ðruÞ ¼ L½vðh00;a 2 ZaÞ þ v0h0;a�: ðA42Þ

From the (tf) and (rf) components we get

LbðIÞlm þ imcðIÞlm þ L^1
3

~b
ðIÞ

lm þ L^1
2 z

ðIÞ
lm ¼ 0; ðA43Þ

with

b ðtfÞ ¼ 2Z 0a þ n0 þ l0 2
2

r

� �
Za þ

2

r
h00;a þ 16pe 2nþ2lðpþ eÞU 2

2

r
n0 þ l0 2

1

r

� �
2 e 2l L 2 2

r 2

� �
h0;a; ðA44Þ

c ðtfÞ ¼ 23Lvh01;a þ Lv 3l0 2 n0 2
2

r

� �
2 ðL 2 2Þv0

� �
h1;a; ðA45Þ

~b ðtfÞ ¼ 22e 22lv0h1;p; ðA46Þ

z ðtfÞ ¼ 2vL½e 2lH2 þ ðn
0 2 l0Þh1;p� þ v0 Lh1;p 2

r 2

2
H 02

� �
þ 16pr 2e 2l4ðpþ eÞ½H2 þ ð1þ C22

s ÞH þ C22
s j�; ðA47Þ

b ðrfÞ ¼ _Za 2
2

r
e 2n22lh01;a 2 e 2n L 2 2

r 2
þ

2

r
e 22lðn0 2 l0Þ

� �
h1;a; ðA48Þ

c ðrfÞ ¼ Lvh00;a þ 2 ðLþ 1Þv0 2
Lv

r

� �
h0;a; ðA49Þ

~b ðrfÞ ¼ 2v0h0;p; ðA50Þ

z ðrfÞ ¼ v0 Lh0;p 2
r 2

2
_H2

� �
2 16pr 24ðpþ eÞðe 2nRþ H1Þ: ðA51Þ

From the (uf) and the subtraction of (uu) and (ff) components we get

Lslm 2 imf lm þ L^1
2 glm ¼ 0; ðA52Þ

Ltlm þ imglm þ L^1
2 f lm ¼ 0; ðA53Þ

with

f ¼ v0r 2e 22l Zp 2
2

r
h0;p

� �
2 16pr 24e 2nðpþ eÞV ; ðA54Þ

g ¼ 2v0r 2e 22l Za 2
2

r
h0;a

� �
þ 16pr 24e 2nð pþ eÞU; ðA55Þ

s ¼ 2_h0;p þ e 2n22l½h01;p þ ðn
0 2 l0Þh1;p�2

e 2n

2
H2 2 imvh0;p; ðA56Þ

t ¼ 2_h0;a þ e 2n22l½h01;a þ ðn
0 2 l0Þh1;a�2 imvh0;a: ðA57Þ

These equations are fully equivalent to those derived within the ADM formalism. Although they still contain some second-order derivatives,

they can be easily converted into first-order or even characteristic form by introducing a few auxiliary variables.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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