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Synopsis

In this paper, we study boundary problems with dynamic boundary conditions, that is, with boundary
operators containing time derivatives. The equations under consideration are transformed into
abstract Cauchy problems x — Cx=f and x(0)=xo. Abstract theoretical results concerning the
operators C are obtained by the study of a naturally arising pseudodifferential operator. For existence
and uniqueness theorems concerning solutions of parabolic and hyperbolic equations, we then apply
the theory of semigroups in Banach spaces. Some examples of semilinear and quasilinear problems, to
which our results apply, are given.

0. Introduction

In this paper, we study differential equations with boundary conditions containing
time derivatives. Let Q be a bounded domain in W with smooth boundary dQ

and outer unit normal vector field v, and let A be the Laplace operator with
respect to the space variables. By dots we denote time derivatives and the given
functions / and g may depend on space, time or the solutions. We look for
existence and uniqueness results about equations of the following types:

(PI) M - A M = /

. du

in

on

M(0) = M0 in Q.

(P2) -Au=f i n Q x R + ,

du
u + — = g ondQxU+,

M(0) = MO on dQ.

(P3) -Au=f inQxlR + ,

du
u-\ = g on <9Q x IR + ,

M(0) = M0 on dQ,

M(0) = M] on dQ.

Problems of type (PI) are already mentioned in [9, appendix to par. 3]. We
find them again in heat transfer problems in a solid in contact with a fluid [18]. In
some recent publications, Sauer [22] and Grobbelaar-van Dalsen [14] treat heat
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44 Thomas Hintermann

transfer problems with dynamic boundary conditions by means of their theory of
"B-evolutions", which is applied to some semilinear and quasilinear problems in
Hilbert spaces.

Problem (P3) sometimes occurs in connection wtih gravity waves ([17, Chapter
9]). Some cases are treated by Garipov [12] and Friedman and Shinbrot [11]. The
latter authors also briefly discuss (P2).

Lions [19] and Diaz and Jimenez [10] use the theory of maximal monotone
operators to solve some special nonlinear equations of types (P2) and (P3).
Related problems with dynamic boundary conditions have been considered by
Groger (e.g. [13]) and Van Rensburg [26]; Rossouw [21] studied the physico-
mathematical origin of these conditions. Lewis, Marsden and Ratiu [27] and
Okamoto [28] use the Hamiltonian structure of perfect fluid dynamics to
investigate free boundary problems arising in this context (cf. also [29]).

In our approach to the solution of such problems, we use the theory of
semigroups in Banach spaces. To give an idea of our methods, let us look at the
formally easiest problem (P2). Observe that the operator of interest, here the
Neumann operator, maps functions defined on the domain Q to functions defined
on its boundary dQ, and therefore it is not a candidate for a generator of a
semigroup on any function space. To make semigroup theory applicable, our
problem must first be transformed.

We now use the notation A = — A and Bo = (u >-> u \ dQ) and assume that the
Dirichlet problem — Au(x) =f(x) in Q, u(x) =g(x) on 3Q is uniquely solvable,
that is, (A, Bo) e isom (X, Y X Z) for suitable function spaces X, Y, Z. Thus we
can decompose the space of solutions X into the direct sum

u = {A, Boy\Au, 0) + {A, Bo)-\0, Bou)

= : w + RoBou

= :w + Roz.

Setting B := d/dv, (P2) is equivalent to Aw = / i n Q x U+, i + BRoz=g- Bw =
g - B(A, B0)~\f, 0) on 3Qx[R + and z(0) = zo on 9Q. By obvious identifica-
tions, we now rewrite the last two lines as an abstract nonlinear Cauchy problem
x — Cx = F(x), x(0) = x0, and so the natural question arises as to whether the
operator C : = —BR0 is the generator of a semigroup. This question has already
been formulated in [19]. In the first part of this paper, we give a rather general
and positive answer, in that we allow much more general operators than the
Laplacian and the Neumann boundary operator.

The difficult part of the proof is the derivation of resolvent estimates. With this
aim, we represent BR0 for the case Q being the halfspace IR""1 X IR _,. as a
pseudodifferential operator, that is, BR0 = S?~L1EU0(^')S'n^l, where we denote
the Fourier transform in IR""1 by &n-i- The symbol BIR0(£'), a complex
Af X Af-matrix-valued map of IR", possesses certain homogeneity properties with
respect to the variables £', which enables us to apply the Michlin-Hormander
multiplier theorem. Once we have established the desired estimate in the
halfspace, we carry it over to the general situation by the well-known Korn trick
which involves localisation and perturbation arguments.
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Evolution equations 45

We then transform the problems under consideration as indicated above, and
apply some results from nonlinear functional analysis. There we profit from the
precise knowledge of the domains of the operators involved. Since we can work
in Lp-spaces, we can allow quite general nonlinearities. This paper contains a
summary of the author's doctoral thesis, which we refer to for additional
information about examples and details of proofs omitted or shortened here.

1. A priori estimates

1.1. Definitions and assumptions

Let n, m, N e N\ {0}, n ̂  2, and let Q <= R" be a bounded domain with smooth
boundary dQ. Given aa: Q - ^ C " ) , aeW, \a\^2m, and b'p: dQ^>Z£(CN, C),
fieN", \P\^Cj, 0 S c , - ^ 2 m - l , j = 1, . . . , mN, we form the differential
operators

M{x,D):= 2 aaD
a,

\a\S2m

&(x,D):= 2 blpP*,

®{x, D) := (3BX(*, D), . . . , ®mN{x, D)),

where the boundary operators are always understood in the trace sense. We
denote the principal parts by sdH(x, D) and ^H(x, D), respectively.

Throughout this paper, the system (st(x, D), $(x, D)) of operators is assumed
to have the following properties (cf. [7]):

(A) $&{x, D) is normally elliptic, that is o(MH(x, £)) <= [re z > 0]: =
{z e C | re z > 0} for all (x, f) e Q X S""1. Here we denote by o(MH(x, §)) the
set of eigenvalues of the complex N x JV-matrix siH(x, §), where sdH{x, §) is
the symbol of siH(x, D).

Let %(D) := (1A,, i(d/dv)lN, ..., (i(d/9v))m~l\N) be the Dirichlet operator,
where v is the outer unit normal vector field on dQ and let T(dQ) be the tangent
bundle of dQ.

(B) 98(JC, D) satisfies the uniform strong complementing condition with respect
to #?(x, D), that is: For all (x, | ) e T(dQ) and A, n e [re z S 0] with (£, A) ¥= (0, 0)
and (§, fi) ¥= (0, 0), the zero function is the only exponentially decaying solution
of the system of ordinary differential equations

[A + MH{x, I - v(x)D,)]u(t) = 0, t > 0,

0) = 0.

Additionally, the operator S80 is supposed to satisfy the normal complementing
condition with respect to M, that is, we have (B) for S8o with jU = 0.

Remarks 1.1. (i) (A) is implied by the uniform strong ellipticity, that is,
re {MH(x, g)ij | IJ) ^ a > 0 for all (x, ? ) e Q x S""1, fj € C", |r/| = 1.

(ii) (A) implies the strong root condition: For all (x, ^) e r(3Q), A e [re z §0] ,
(A, £) # (0, 0) the polynomial (z •-> det (A + $tH(x, § - v(x)z))) has exactly miV
roots in [im z > 0].
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46 Thomas Hintermann

EXAMPLES 1.2. The assumptions are fulfilled in the case of a uniformly very
strongly elliptic second order system (i.e. the differential operator satisfies the
uniform Legendre condition) with mixed conormal and Dirichlet boundary
conditions and for certain systems of separated divergence form (cf. [7]).

1.2. Representation of the pseudodifferential operator

In this section, we assume that the operators have constant coefficients and
derivatives of highest order only, that is,

\a\=2m

m'{D) := 2
l/3|=c,

, \a\=2m,

2{CN, C), |/3| = c,, j = l,...,mN.

e SnLet Sa := {z e C | |arg z| g or} U {0} and U+ := (0,«). We choose
satisfying r)2m = A and consider the problem

(A + .S#(£>))M(;C', 0 = 0 in H " : = R " " ' x K + ) (1.1)

®'(D)u(x', 0) = g V ) on R""1, j = \,...,mN, (1.2)

where gy e ^(R""1, C), the Schwartz space of rapidly decreasing functions.
Applying the Fourier transform with respect to the variable x', and fixing
I ' e R""1 = R""1 X {0} c R", we are led to the system of ordinary differential
equations of order 2m

(1.3)

(1.4)
in

where en:=(0, . . . , 1).
For each z e C w e define + enz) =: Ef^

', r)

and because of (A) we have a0 = si{en) e
complex N x A^-matrices. Moreover, we put
where

6/>c._M') = re'-'b,.^') V( | ' , r) e R"

The expressions

a, := ay(|') := -flo V ^ ' ) . /

(£')z*, where, obviously,

R"~1xlR + , (1.5)

, the group of invertible

+ e,,z)=:E,
c
L<Ac,-,(£V,

(1.6)

, 2m -

are then used to define the matrix-valued function

0 1

0 1

a2m-l

0 1

• • • fli

: 5 ,
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For every §' e W~\ let B(§') e ^(C2"1", CmN) be the matrix with rows

B(| ') := [*>,,,,.(§'), fty.cy-i(§'). • • • - M l ' ) , 0, . . . , 0]

e ^ C ^ . C ) , c,£cj Vigy, i,j = 1, . . . , mN.

Finally, we put

v:=(Vl,...,v2m)TeC2mN,

47

Then (1.3), (1.4) is equivalent to the first order system

LEMMA 1.3.

det
2m

+
k=0

* = det (a0) det (A - A).

Proof. The claim follows by expansion with respect to the last N rows of the
determinant of A — A and elementary matrix manipulations [15]. D

As implied by the statement above, the roots of the polynomial (z i-> det (A +
s&(%' + enz))) are exactly the eigenvalues of A(?j, £'). Hence, by the root
condition (Remark l.l(ii)), eiA(l»'r)' is a linear hyperbolic flow [3], the stable
(unstable) subspace of which we denote by E+(rj, | ')(£_(rj, ?')).

Remarks 1.4. (i) E+(r], ^') (respectively £-(rj, £')) is the direct sum of the
algebraic eigenspaces belonging to the eigenvalues of /A with real part in the left
(right) complex half plane [3, Theorem (13.4)].

(ii) As an obvious consequence of the root condition (Remark l.l(ii)) we have

dim E+(JI, £') = dim £_(rj, | ' ) = mN, | ' e R""1.

(iii) The operator 38 satisfies the normal complementing condition if and only if
B(lf') e isom (E+(rj, §'), CmN). This follows easily from the fact that the solutions
of (1.3) are given by the formula fi(rj, £', 0 =pr1(c'A(ri> r)'u(r/, §', 0)), where

:= «! for u = (w,, . . . , i/^,) e 2 N

For the operator S80(O) = (1^,, D,\N, ..., D?~llN) we have Bo(§') =
[lmA,, 0] e ^(C2m;v, CmN), for all §' e R""1. Because of our assumption (B) and
Remark 1.4(iii) we can define the operator IR0(r?, §') := (Bo | E+(r], k'))~x e
isom (CmN, E+(rj, | ' ) ) and also the matrix-valued function BR0(r?, | ' ) : =

The heart of this section is the following lemma.

LEMMA 1.5. (i) p + BR(IJ, | ' ) e »iP(ClllA') for all p e [Re p ^ 0 ] .
(ii) [BR0(?j, |')]*,/+i e ^ ( C , C) is positively homogeneous of degree ck — I

k = l,..., mN, I = 0, . . . , m - 1.

Proof Assumption (B) and Remark 1.4(iii) imply (i). In the case of a single
equation (N = 1), the proof of (ii) becomes much easier and, apart from simple
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48 Thomas Hintermann

alterations, can be found in [25]. In the system case, we decompose the matrix
A(r/, §') in canonical Jordan form, which leads to a useful matrix representation
of M0(ri, £'). The homogeneity property (ii) then follows from (1.5) and (1.6).
For details see Hintermann [15]. •

In the sequel, we always refer to the notations

N times

b := (bu ..., bmN) := (0,. . . , 0 , 1 , . . . , 1,. . . , m - 1, . . . , m - 1)
and

c:=(c1,...,cmN)eNmN.

The vector b (respectively c) gives the order of the operator 98O (respectively 58).

Remarks 1.6. (i) As the proof of Lemma 1.5(ii) shows, we always have
[UU0(ri, £')]«/ = 0 if c, - b,> 0, 1 ^ /, ; ^ mN.

(ii) We may always assume c^b. Indeed, if c,<fe,, ie {1, . . . , mN}, then
Cj = bi for all j^i and so, by the construction of B(£'), its rank is less than
maximal and BIRo(»?, £') is not invertible.

As a summary of this section, we have the following conclusions: for any g in,
say, the space of tempered distributions, the Dirichlet problem (A + M(D))u = 0
in H", 38q(Z))u(O) = g on W'1 has a solution given by the formula u := %(X)g =
pr1^-l1e'A("'5')'R0(»?, § ')$.-*• The operator S8^(A):g^^(£>)^(A)g is a
pseudodifferential operator, and its symbol is the matrix-valued function
BR0(ij, I '), that is, ^

1.3. A priori estimate I (constant coefficients, principal parts, halfspace)

We denote by &" := #"(0*", CN) the space of C^-valued tempered distributions
on R" and by SF the Fourier transform in 3".

We put

A i(rj )§):=(|»j|2+|g|2r /2; | e R " , seU, r,eC,

ACT(r/, | ) := diag [A«"(rj, § ) , . . . , A"-(IJ, §)]; a e Rr,

For Kp <°° and s e R w e define the Bessel potential spaces by

HS
P--HS

P(U") :=({«€ y | 5»« € LP(R", CN)}, || . ||,,p), \\u\\,.p:

and the Besov spaces by real interpolation, that is,

their norms we denote by || . \\SiPr For further information (interpolation, trace
theorems) we refer to [8,25].

For any o = (ox, . . . , amN) we define the "boundary spaces"

mN

.— dtfp(U ) . — [[ ttp
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Evolution equations 49

and we denote their norm again by || . \\aiPP, without causing confusion. It is not
hard to see that EU0(ri, .) eC"(U"-l\'{0}, %(CmN,CmN)) for all rieSx/4m.
Therefore, due to the compactness of K := {(?/, §') € Sa/4m x W~l1 A 1 ^ ' , r?) = 1},
the constant

M:= max max |3f.BR0(jj, | ' ) |

is well defined. As a consequence of Lemma 1.5(ii)
A"c(l, %')BM0(ri, | ' )A6(1, §') is homogeneous of degree 0 and hence by the
Michlin-Hormander multiplier theorem (e.g. [16,25]) we can establish the
following two lemmas.

LEMMA 1.7. For each r\ e 5Jt/4m, A~c(l, ^')UU0(rf, I ' ^ C 1 . I ') « « multiplier in
Lp(U"-\ CmN), \<p <oo, and

H^-ljA-^l, 5')BRo(i/, ?')A6(1, l')^.-ill*(i,(R"-.c^))^c(/i, JV.p, M, A).

LEMMA 1.8. Le? 1 </? <oo and rj e Sa/Am. There exists a constant [io>0 such that
for all fie[ten^Ho], A-"(l, | ' )0* + BR0(»?» i ' ) ) " ^ ^ , §') is a multiplier in
Lp(U"-\ CmN) and

We can now formulate the main result of this section.

THEOREM 1.9. Let s eU, \<p<<*>, keSM/2\{0}. Then there exists a constant
Ho > 0 such that for each //. e [re n ^ /*0] the following two assertions hold:

(i) n + S8^o(A) e isom (SBJ-^R""1, CmAr), d2JJ-c(R"-1, CmAr)).
(ii) T/iere existe a constant c(/z0, Af), SMCA that

\\g\l-b,PP + M WgWs-cpp^cQto, M)

for all g e SfiJ-^R""1, Cm/V).

Proof. We choose an arbitrary g € dBp'
c. The multiplier theorem and Lemma

1.8 yield

= H^-^A-^ l , §')(M + BR0(i?, I '))^AC(1, | ' )A-C(1, ?')^.-igll,,pp

Therefore we have

(p + ^^^o)-1 € i?(aBre> dBp~b)- (1-7)
Analogously, we find

p + ^S?o e £(dBp-
b, 3BP-C), (1.8)

which proves (i).
Now let g e dBs-b be arbitrary. (1.7) implies ||g||,_ft>pp^c ||0* + ®%)g\\s-c,pp.

Since
BK0(ju + BIRo)"1 = (-/x + n + BR0)(ju + BIRQ)"1

BRo)"1 + 1,
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50 Thomas Hintermann,
we have j

(/x + BIRQ)"1 = - (1 - BIRoO* + I

and so we deduce from (1.7) and (1.8)

+ ®®«rlg\\s-c,PP = I- (i - »«b0* +
II f* \\s-c,pp

— i i H£lU-c,pp-

Consequently, we see that

s-c,pp=\\(H

which establishes our assertion. D

1.4. A priori estimate II (variable coefficients, bounded domain, lower terms)

Our next goal is the extension of Theorem 1.9 to the general situation, that is,
we wish to replace the halfspace H" by a smooth bounded domain in IR".
Additionally, we wish to remove the restriction that the operators should have
constant coefficients and, finally, the operators should be allowed to have lower
order terms. This is done in the usual way via partition of the unity subordinate to
coordinate patches and perturbation arguments. For an example of a proof of this
kind, see [25]. In our situation, difficulties arise from the fact that we must split
up the pseudodifferential operator 383?o into the Dirichlet problem solution
operator £%o and the boundary operator 98 again. Now we need some restrictions
on s, which come from the fact that the trace operator fails to be bounded on
HS

P(Q), ifs^l/p.
Let QclR" be a bounded domain of class C°°. For s e l l and K p < o o w e

introduce the local Bessel potential and Besov spaces (HS
P(Q), ||M||S,P,Q) and

(BS
PP(3Q), ||M||s,pp>an), respectively, by restrictions (e.g. [25]). The boundary

spaces dB°(dQ), o = (ou . . . , omN) are denned by 9B£(3Q): =
Ui^iBpp~

l/p(dQ, C). We impose the following assumptions: s^lm and Kp <°°
are fixed,

si{x,D)u(x):= 2 aa(x)D"u(x),
\a\S2m

aa e CCT(Q, %(CN, CN)), o>s-2m,

&(x,D)u(x):= 2 b^

b'p e C'{3Q, £(CN, C)), oj>s-c,--, j , ,

(A) si is normally elliptic;
(B) 58 satisfies the uniform strong and S8Q the normal complementing condition

with respect to M.
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Evolution equations 51

In the sequel we will use the following theorem.

THEOREM 1.10. There exist constants Ao>0 and c > 0 such that for all
A e [re z = Ao] and u e HS

P(Q) the following assertions are true:
(i) (A + M(x, D), »{x, D)) € isom (HS

P(Q), Hp~
2m(Q) x 3Bp-%3Q));

(ii) 111*11,,,, +|A|||M||,_2m>J,sc[(i + |A|'

mN -i

(1 + lAI^-
1
^

2
"

1
) II^MlU^.!^ .

J

77ie constants Ao a«d c depend upon the quantities ||aa||c» 11̂ /3lies* m> n> N> P> &>
but not on A and u.

Proof. This follows essentially from the Lp -estimates for elliptic systems (cf. [2]
and Agmon's trick [1]; see also [4]). •

Because of (B) and Theorem 1.10, we may assume that {si, S80) €
isom (HS

P(Q), Hp'^iQ) x 3BP~b(3Q)), adding a positive multiple of the identity
to si(x, D), if necessary. Similarly as above, the operator £%o is given by
%(x):=(M(x, D), %Yl{Q, •) e £(3Bp-

b(dQ), HS
P(Q)). Finally we need the

following hypothesis (which is fulfilled in the case of example (1.2), [15])

(V) There exists a constant ;U*>0 such that {si, n%+ 01) e isom (HS
P(Q),

^ x 3Bp-
c(3Q)) for all fi e [re z ^ /**].

THEOREM 1.11. There are constants fi0, c > 0, such that for each fi e [re z ^ jU0]
the following assertions are true:

(i) n + MSfto e isom (3Bp-
b(3Ci), 3Bp-%dQ)),

(ii) \\g\\s-b,PP + M \\8\l-c,PP S c (|(A* + ®3t«)g\l-c,PP for all g e 3Bp-\dQ).
The constants /*„ and c depend on the quantities \\aa\\c<,, WpWcj, m, n, N, p, Q,
but not on n and u.

Proof. See introductory remarks to this section, and [15]. •

COROLLARY 1.12. The operator — 38£%o is the generator of an analytic semigroup
on 3Bs

p-
c(3Q).

Proof. Observe that the domain of the operator 58£%o, namely the space
dBp'^dQ), is dense in 3BP~C(3Q). In order to show the closedness of 380^,
consider a sequence (gn)nefSsi in 3Bs

p~
b(dQ), with gn^>g in 3BP~C(3Q) and

f in 3Bp~
c(3Q). Choose fi>n0 arbitrarily. Then we have (n +

Hg in 3BP-\3Q), hence gn^{(i + ®®oY\f + fig) e 3Bp-
b(3Q).

Finally we deduce (fi + d^%)~\f + fig) = ge 3Bs
p~

b(dQ) and therefore ®%g =
/. Now the claim follows from Theorem 1.11 and the characterisation of
generators of analytic semigroups (e.g. [20]). •

2. Dynamic boundary value problems

We now give some illustrations showing how the results of the first part can be
applied to (generalisations of) the problems formulated in the introduction.
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52 Thomas Hintermann

2.1. Problem (PI)

THEOREM 2.1. The differential operators s£(x, t, w, D) and $fo{x, t, w, D) are
given by

st(x, t, w, D)u(x) := 2 aa{x, t, w)Dau(x),

<${x, t, w, D)u(x) := 2 b'ff(x> l> w)Dpu(x), j = 1, . . . , mN, c^b + m,
\P\SCJ

where w eCN and t e [0, T] for some T>0. For every bounded set W cCN the
operators sd, $ are supposed to satisfy the hypotheses (A), (B) and (V) uniformly
with respect to (t, w) e [0, T]xW and, in addition:

(V) there exists so>0 such that %(t, w) e 2(dB%"-c(dQ), HS
P\Q)) for all

(t, w) e [0, T] x CN.
We assume without loss of generality (s£(t, w), %) € isom (Hl"*(Q), LP(Q) x

dB2
p

m-\dQ)) for all (t, w) e [0, T] x C". The coefficients are assumed to satisfy
(B(., .) stands for bounded mappings)

((t, w)^aa(., U w)) e B([0, T] x W, C(Q, %(CN))), \a\^2m, o>0;

((t, w) .-> bj,p(., t, w)) € B([0, T] x W, C>(3Q, <e(CN, C))), |jS| ̂  c,, a, > c,;

/ = 1 , . . . , mN;

(t~aa(., t, w)) e C([0, T], C(Q, 2(CN))), \<x\^2m;

(t>->b,,p(., t, w)) e C([0, T], C'(3Q, 2(CN, C))), \p\£cj, j = l,...,mN;

p > 0, (uniformly with respect to w e W);

(w~aa(.,t,w))eC1-(W,C°(Q, %(£"))), \a\^2m;

(w ~ bhft(., t, w)) € Cl~(W, C°i3Q, 2(CN, C))), HI § cj, j = \,...,mN;

{uniformly with respect to te [0, T]).

Let 1 » £ > 0, p > nl(2m - e) and

F e C01-([0, T] X H2m-%Q), He
p(Q))

G e C01-([0, T] x dB2m-b- 3Q), e(3Q)).

Then for each initial value u0 e H2
p
m(Q.), the quasilinear problem

u)m + 95(t, u)u = G on3Qx

«(0) = u0 on Q

(PI)

has an unique maximal solution. The maximal interval of existence J = /(«0) is
right open in [0, T] and u e C(J, H^Q)) D C\J, LP(Q)). If u(t), teJ, is
bounded in i/pm-e/2(Q) then u is a global solution.

Proof. We verify the hypotheses (Ql) and (Q2) of Amann [5, Theorem 7.1].
As indicated in the introduction, we first decompose the space HP

m(Q). For any
(t, w) e [0, T] X W we define the operator A(t, w) := sl(t, w)|ker <»: ker 38->
LP(Q); our assumptions imply A(t, w) € isom (Hp^^Q), LP(Q)), for all (t, w) e

tip fP

[0,T]xW, where tipa£Q) := {u eHf (Q) | %u = 0}. We now fix (t,w)e
[0, T] x W and omit it in our notation.
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Evolution equations 53

The operator P^A^sie %(H2
p
m(Q), Hp^(Q)) clearly satisfies P2 = P, hence

it is a continuous projection and so HP(Q) is the topological direct sum
= im P <$ker P = ker

unique way as

u = (si,

. We can write any u in an

= (si,

and we first consider the system

u + si(t, w)(u -

ou)'

u, 0) + (si,

4u, 0) + e ker ker si

, E1 := graph (%) is a closed subspace of

x
, w)(u - ®o(t, w)z), 9S(t, w)u)

ou)=F(t, u) in £2x0?

w)u = G(t, u)) on dQ X I

M(O) = M0 on Q,

instead of (PI).
Since %eg(H2

p
m(Q), 3B2

p
m-b{

Hp"1 X 3Bp
m~b(3Q) and so a Banach space with the induced topology.

We define the unbounded linear operator

A(t, w): Lp X dBl"1-' =) graph (%)-

(u,zy

and rewrite (*) as

v + A(r, w)v = H(v), H:= (F, G), t>0,

v(0) = v0,

where v := (u, z).

The domain Ex of the operator A is somewhat unusual. To fit our situation into
the framework of [6], we need some preparatory considerations. Since c^b + m,

there exists a right inverse ^ e 5£(dBP
m~c(Q), LP(Q)) D .

of the Dirichlet operator. We now introduce the spaces

E0:=Lp(Q)x3B2
p

m-c(3Q),

£ : = /f^"(Q) X dB^

and, by complex interpolation [., .]e> 0 ^ 6 ̂  1, the spaces

Ee:= [Eo, £ i ] e ,

Ee := [Eo, E*]g,

Eg:= [Eo, E]e.

The map q>: (u, z)>-»(« + %z, z) satisfies

cp e isom (E*, Ex) n aut (E) n aut (Eo),
and therefore

Indeed, the estimates

IK" +

(pesiUt(E0), 0^0 SI.

(2.1)

(2.2)

of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0308210500023945
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 11:55:10, subject to the Cambridge Core terms



54 Thomas Hintermann

hold, and an inverse q> x is given by (u, Z)>->(M — %z, z), which proves
q> e aut (E). The rest of (2.1) follows similarly, and (2.2) is a consequence of
interpolation properties. With a result of Seeley [27], it can be shown [4] that
[Lp, H^g = Hp"^ for all values of 0 < 9 < 1, k * 2md - 1/p, k = 0, . . . , m - 1,

^ i s ^ Up. Consequently, we have E% = E
e,

where Hs
p>Ski = Hp, provided

provided 0 < 6 < l/2mp.
Due to (2.1) and the properties of the complex interpolation functor, cp induces

an isomorphism of the spaces Ee = Eg*, O ^ 0 ^ 1 , and with (2.2) we see that
Eg = Eg for all values of 0 < 0 < \j2mp.

We deduce from the considerations above that by a suitable choice of
0 < y < P < a < 1 we can find a chain of inclusions Ex<^Ea<^Epci H^'^Q) x
3B%»-'-b(3Q) c He

p(Q) x dB2
p

m+e-c{dQ) cEY^E0 which proves [6, (Ql)].
Now we show (Q2). First we prove ((t, w)i-» A(f, w)) e C%i%(E0, £i)), that is,

{A(f, w), (t, w) e [0, T] x B} <= $f(E0, ^i) is a regularly bounded family of gener-
ators of analytic semigroups in Eo with domain Er.

Let (t, w) e [0, T] x B be fixed for a moment. Due to Theorems 1.10 and 1.11
there exists a constant Ao such that

(A + si,

(A +

e isom (H2
p
m(Q), LP(Q) X

isom

and, in particular, A + A e isom (//^^(Q), LP(Q)) for all values of A e [re A ^ Ao].
Let (x, y) e Eo, re A S Ao, and (w, z) e graph (3§o) satisfy the equations

= y.

(2.3)

(2.4)

Then

(2. ) + A(u - %>z) = x-

(A + A)"1^: - A(A + Ayx

= (A + i4)-xx + (1 - A(A + A 1

(2.5)

(2.6)
and

(2.4) => Xz + S8

4> z = (A +

(2.5) ^> z = (A +

+ (A +

These facts imply

(1 - A(A ^

y - (A

' - (A + ^ ^ " ^ ( A +

UaCA + A)-x<3U,z.

= (A xx). (2.7)

Without loss of generality, we may assume so<l/p; therefore we have
Hs

p
a

t9k! = Hp
0. By interpolating the estimates ||(A + A)~1||^(//^,9o)§c/|A| [6] and

Wii + Ay'W^M^c (Theorem 1.10), it follows that \\{k + Ayx

cl\X\Sor2m.
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Now, by Theorem 1.10 we can conclude that

55

l|2||2»-c.w.ao(dueto(V')),

so that, for sufficiently large A, (1 - A(A + ^9loYl^{X +A)'1^) e
aut (dBf"~c(dQ)), and there exists a constant Aj ^ 0 such that the norm of this
operator is bounded by \ independently of |A| ̂ Ax.

Theorems 1.10 and 1.11, together wtih (2.7), imply

(2.8)

In addition, from (2.6) we deduce the estimate

Sc( —

\\pM Hz||2m_c,Pp>3Q) (see(V'))

2m—c,p

Finally, making Ao bigger, if necessary, (2.8) and (2.9) yield

f x,

(2.9)

(2.10)

for all A e [re A ^ Ao]. Obviously A is densely defined. The proof of its closedness
is easy (see Corollary 1.12).

Since the function (t, w) •-» (c(f, w), ko(t, w)) is bounded on bounded sets by
Theorems 1.10 and 1.11, it follows that {/\(t, w), (t, w) e [0, T] x W} c
3€(E0, Ex) is regularly bounded. From our hypotheses on the coefficients, it
follows easily that A(., »v) e Cp([0, T), &(Elf Eo)), uniformly with respect to
weW.

Finally, it remains to show that ((f, w)<-̂ A(f, w)) e Cpl~([0, T] x
Ep, dK{Elt Eo)). Because of p > n/(2m - E) and the Sobolev embedding theorem,
H%"-e(Q)^C(Q), we have aa(x, t, .), bftx, t, .) e Cl-{Ep) for all values of
\a\ ^ 2m, |/3| ^ c,-, j = 1, . . . , mN, uniformly with respect to (x, t)eQx [0, T].

Thus the hypotheses of [6, Theorem 7.1] are fulfilled and so

f, v)v = H(v), t > 0,

v(0) = v0

possesses for each v0 e graph (S8Q) exactly one maximal solution. The stated
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regularity of the solution at t = 0 follows from [6, Theorem (5.3)]. Recalling the
definition of A, the assertions follow. •

COROLLARY 2.2. Let m = N = l, p>n, si = -A, 38 = d/dv, f, g e C2~(U). By
F and G we denote the substitution (Nemitskii) operators induced by f and g,
respectively. Then problem (PI) has for each u0 e HP(Q) a unique maximal
solution u e C(J, H2

P(Q)) n Cl(J, LP(QJ). If u(t), teJ, is bounded in Hp-e(Q),
the solution is global.

Proof. It is implied by [4, Proposition (15.4)] that F6C1~(#2"1~E(Q), H*(Q))
and GeC1-(Bpp

iVp)~e(dQ), BPP
(Vp)+e(3Q)) for a suitable £>0. Now the

assertion follows from Theorem 2.1. •

2.2. Problem (P2)

THEOREM 2.3. Let s ^2m. The operators si and 58 satisfy the hypotheses (A),
(B) and (V). Moreover, we are given 0 < e « l and functions fe
C1(U + ,Hs

p-
2m-e(Q)) and G e C1-(3Bp-

b-e(3Q), 3Bp-
c+e(3Q)). Then the semi-

linear problem

si(x,D)u=f inQxU+, ~)

u + S8(x, D)u = G(u) on3QxU + , > (P2)

u(0) = z0 on 3Q, J

possesses for each initial value zoe 3BP~b(3Q) a unique maximal solution
u e C([0, t+), Hp(£l)) n C\(0, t+), Hp~

m(Q)), t+ > 0.

Proof. Letting 38QM := z, (P2) is equivalent to the problem si(u — 3$oz) = / in
QxU+,

Z + iMcriQZ — ( J — c/S\U — WIQZ) ^ ( J — ziiySl, CIAQ) \J, U) OH Osi X KH

z(0) = z0 on 3Q.

The assumptions imply G - %(s&, SSo)"^/, 0) e C01"(IR+ x dBs~l

3BP'c+e(dQ)). For each z0 e dBp~
b(3Q), [6, Theorem (7.1)] guarantees the

existence of a unique maximal solution z € C([0, t+), 3Bs
p'

b(3Q)) H ^((O, t+),
3BP~C(3Q)) of the Cauchy problem (*). Hence u := (si, %)~l(f, z) satisfies the
assertion. •

COROLLARY 2.4. Let m = N = 1, p>n, f e C1(U + , H~e(£l)) and g e C^R). By
G we denote the substitution operator induced by g. Then for each initial value
z0 e B2

PP
 (Vp)(3Q), the problem

- A M = / inQxR + ,

3
u + — u = G(u) on3QxU + ,

3v

M(0) = z0 on 3Q,

has a unique maximal solution u e C([0, t+), //p(Q)) D C\(0, t+), Hl(Q)).

Proof. It is implied by [4, Proposition (15.4)] that the Nemitskii operator G
satisfies the hypotheses of Theorem 2.3. Since the constraints (A), (B) and (V)
are easily verified, the assertion follows from Theorem 2.3. •
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2.3. Problem (P3)

In this section, we occupy ourselves with the problem

-Au=f

_3_
U+'dvU~8

w(0) = Z0 on 3£1,

u(0) = zx on 3Q.

First of all we study the linear case. We are given an open interval / containing
zero and functions feC(J,L2(Q)) and g e C(J, L2(3Q)). We put si:=-A,

®:= 313v, %:=(M, 98o)~\0, .), z := %u. Then (P3) is equivalent to

on 3QX
(P3)

z +

= / in Q x / ,

•=g- ®{s4, ®o)-\f, 0) on 3Q x / ,

z(0)=zo on 3Q,

on 3Q.

(2.11)

Hence it is useful to study the operator 38£%o first.
We identify the dual space of L2(3Q) with L2(3Q) and denote by (•, • )3 Q the

duality pairing in L2(3Q). Let g, h e H\dQ), where Hs: = Hs
2: = Bs

22. Gauss'
theorem yields the estimate

and so 38S?o e i£{H^{3Q.), H~l*(3Q)). Because of Theorem 1.11, there exists a
constant /z >0 such that fi + 389?oe isom (if§(3Q), Hi(3Q)); hence, by
interpolation,

\ ) , L2(3Q)). (2.12)

Denoting the inner product in L2(3Q) by (•, • )a , it follows for all g € /^(SQ), by
Poincare's inequality, that

, g)a = f /i
Jan

Therefore ju + S8S?o is positive, symmetric, injective and has closed range. From
(2.12) it follows that R([A. + S8s4) = L2 and so /x + 9 8 ^ is self-adjoint. Hence
S83?o generates a C°-semigroup on L2 and we can apply the results of [5, Theorem
6 of the appendix] on semigroups in interpolation and extrapolation spaces. In
particular, for each fi>0 the //^(3Q)-realisation (SS^)^ of 9^0^ has domain
HP+1(3Q) and generates a C°-semigroup on HP(3Q).

We now rewrite the second order equation (2.11) as the first order system

\l t e L
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The operator

0.

generates a C0-semigroup on H?(d£i) x L2(dQ), and we have the corresponding
results in the interpolation spaces Hp+i(dQ) x Hp(dQ), 0 ^ 0.

In the following, let 5 ^ 1 . Given functions / e C(J, HS~1(Q)) and g e
C(J, Hs~i(3Q)), any function u e C(J, HS+1(Q)) with trace
C^/, Hs(dQ)) on the boundary, which satisfies the equations

-(«-T)A - \ AT t a 1 \"-">

i(0J Li(O)J Jo Lg(r)-S8(^, a^CAr ) , 0)J '
is called a miW solution of the problem (P3). A mild solution of (P3) need not be
a solution in the classical sense. Therefore we introduce the notion of weak
solutions. (Although the relation between mild solutions and weak solutions for
abstract linear evolution equations is well known, those results do not apply to
our situation, since it is not obvious how the operators appearing in the formula
for the mild solution are related to the original differential equation, that is, to
the terms appearing in the standard formulation of a weak solution for our
problem.)

Given / e C{J, L2(Q)) and g e C(J, L2(3Q)), any function u e C{J, H\(Q))

with trace z := 58O" e Cl{J, L2(dQ)) is said to be a weak solution of problem (P3),
provided

f Vu(t))3a-(<p(t), z{t))aadt+{cp{T), z{T))aa-(cp(0), i(0))
s n

•f
£>0 , TeJ.

This formula is obtained by multiplication (in the sense of the duality pairing) of
equations (P3) by q>, addition of the equations, integration over time and partial
integration.

LEMMA 2.5. Suppose that f e C(J, HS-\Q)), g e C(J, Hs~\dQ)), (z0, z,) e
Hs+>i(3Q) x H"(3Q), and that the function (z, v), defined by

\ ] e \ ] + f e \
Lu(0J U J Jo Lg(T)-9S(s4,960)-

l(f(T),0)
satisfies

(z, v) e C(J, Hs+\dQ)) x C(J, Hs(dQ)).

Then the following assertions are true:
(i) z e C\J, Hs(dQ)) and z = v, which means that u:={st, %)~\f, z) is a

mild solution o/(P3).
(ii) u is a weak solution of (P3).
(hi) Any weak solution u e C(J, Hs+l(Q)) with trace z := %u e C\J, Hs(dQ))

on 3Q of (P3) is a mild solution, provided the regularity assumptions on f and g

above hold.
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Proof. For the lengthy but straightforward proof we refer to [15]. •

THEOREM 2.6. Let s^l, f e C(U, HS~\Q)) and G e C " ( t f + i ( 3 Q ) ,
()), and suppose that f and G are bounded on bounded sets. Then for each

initial value (z0, zx) e Hs+\dQ) x Hs(dQ) there exists a maximal open interval
J = (T~, T+) with OeJand an unique weak solution u e C[(0, T+), HS+\Q)) with
trace z := %u e C\[0, T+), Hs(dQ)) of the semilinear problem

-A«=/ in Q x

•—-u = G(u) on dQx

dv

M(0) = z0 on 3Q,

ii(0) = z, on 3Q.

(P3)

/ / there exists a function k e C(U, U) such that ||z(0ll*+},2,sa + P(0lls,2,3Q = k(t)
for all t e [0, T+), then T+ = *> (analogous result for T~).

Proof. Banach iteration and usual continuation arguments (e.g. Pazy [20,
Chapter 6]) yield the interval / and a unique solution (z, v) e C(J, Hs+>i(dQ) x
HS(9Q)) of the equation

o
G(2(T» - ,,0,] dx

such that

if T+ < oo. We put g(t) := G(z(t)), teJ. Now the assertion follows from Lemma
1.7. •

Due to the poor regularisation property of the operator A, the hypotheses on
the nonlinearities are not easy to verify. A nontrivial example is given in the
following corollary.

COROLLARY 2.7. Let n = 3, 1< s < | , h e C2(U, R), f e C(R, HS~\Q)), and let
G be the Nemytskii operator induced by h. Then the assertions of Theorem 1.11
are true.

Proof. It merely remains to show that the substitution operator G = (M •-»
h(u)) e C^iH'+^dQ), H'-^dQ)) and is bounded on bounded sets. The bound-
ary dimension is 2 and so we have the Sobolev embeddings Hs+^(dQ)<->
B^pidQ) <-» H'-^dQ) if \ < s < \ and s - \ > 1 - 2/p > s - §. We choose 2 <p <
4/(3-2s) and observe that G e ^ " ( 5 ^ ( 3 0 ) , fl^p(dQ)), and is bounded on
bounded sets [24, Lemma 4a of the appendix]. •
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