
Evolution-Guided Policy Gradient in Reinforcement
Learning

Shauharda Khadka Kagan Tumer
Collaborative Robotics and Intelligent Systems Institute

Oregon State University
{khadkas,kagan.tumer}@oregonstate.edu

Abstract

Deep Reinforcement Learning (DRL) algorithms have been successfully applied to
a range of challenging control tasks. However, these methods typically suffer from
three core difficulties: temporal credit assignment with sparse rewards, lack of
effective exploration, and brittle convergence properties that are extremely sensitive
to hyperparameters. Collectively, these challenges severely limit the applicability
of these approaches to real-world problems. Evolutionary Algorithms (EAs), a
class of black box optimization techniques inspired by natural evolution, are well
suited to address each of these three challenges. However, EAs typically suffer
from high sample complexity and struggle to solve problems that require optimiza-
tion of a large number of parameters. In this paper, we introduce Evolutionary
Reinforcement Learning (ERL), a hybrid algorithm that leverages the population of
an EA to provide diversified data to train an RL agent, and reinserts the RL agent
into the EA population periodically to inject gradient information into the EA. ERL
inherits EA’s ability of temporal credit assignment with a fitness metric, effective
exploration with a diverse set of policies, and stability of a population-based ap-
proach and complements it with off-policy DRL’s ability to leverage gradients for
higher sample efficiency and faster learning. Experiments in a range of challenging
continuous control benchmarks demonstrate that ERL significantly outperforms
prior DRL and EA methods.

1 Introduction

Reinforcement learning (RL) algorithms have been successfully applied in a number of challenging
domains, ranging from arcade games [35, 36], board games [49] to robotic control tasks [3, 31]. A
primary driving force behind the explosion of RL in these domains is its integration with powerful non-
linear function approximators like deep neural networks. This partnership with deep learning, often
referred to as Deep Reinforcement Learning (DRL) has enabled RL to successfully extend to tasks
with high-dimensional input and action spaces. However, widespread adoption of these techniques to
real-world problems is still limited by three major challenges: temporal credit assignment with long
time horizons and sparse rewards, lack of diverse exploration, and brittle convergence properties.

First, associating actions with returns when a reward is sparse (only observed after a series of actions)
is difficult. This is a common occurrence in most real world domains and is often referred to as the
temporal credit assignment problem [54]. Temporal Difference methods in RL use bootstrapping
to address this issue but often struggle when the time horizons are long and the reward is sparse.
Multi-step returns address this issue but are mostly effective in on-policy scenarios [10, 45, 46]. Off-
policy multi-step learning [34, 48] have been demonstrated to be stable in recent works but require
complementary correction mechanisms like importance sampling, Retrace [37, 59] and V-trace [14]
which can be computationally expensive and limiting.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Secondly, RL relies on exploration to find good policies and avoid converging prematurely to local
optima. Effective exploration remains a key challenge for DRL operating on high dimensional
action and state spaces [41]. Many methods have been proposed to address this issue ranging from
count-based exploration [38, 55], intrinsic motivation [4], curiosity [40] and variational information
maximization [26]. A separate class of techniques emphasize exploration by adding noise directly to
the parameter space of agents [20, 41]. However, each of these techniques either rely on complex
supplementary structures or introduce sensitive parameters that are task-specific. A general strategy
for exploration that is applicable across domains and learning algorithms is an active area of research.

Finally, DRL methods are notoriously sensitive to the choice of their hyperparamaters [25, 27] and
often have brittle convergence properties [24]. This is particularly true for off-policy DRL that utilize
a replay buffer to store and reuse past experiences [5]. The replay buffer is a vital component in
enabling sample-efficient learning but pairing it with a deep non-linear function approximator leads
to extremely brittle convergence properties [13, 24].

One approach well suited to address these challenges in theory is evolutionary algorithms (EA)
[19, 50]. The use of a fitness metric that consolidates returns across an entire episode makes EAs
indifferent to the sparsity of reward distribution and robust to long time horizons [44, 53]. EA’s
population-based approach also has the advantage of enabling diverse exploration, particularly when
combined with explicit diversity maintenance techniques [9, 30]. Additionally, the redundancy
inherent in a population also promotes robustness and stable convergence properties particularly
when combined with elitism [2]. A number of recent work have used EA as an alternative to DRL
with some success [8, 22, 44, 53]. However, EAs typically suffer with high sample complexity and
often struggle to solve high dimensional problems that require optimization of a large number of
parameters. The primary reason behind this is EA’s inability to leverage powerful gradient descent
methods which are at the core of the more sample-efficient DRL approaches.

Figure 1: High level schematic of ERL high-
lighting the incorporation of EA’s population-
based learning with DRL’s gradient-based op-
timization.

In this paper, we introduce Evolutionary Reinforce-
ment Learning (ERL), a hybrid algorithm that incor-
porates EA’s population-based approach to generate
diverse experiences to train an RL agent, and trans-
fers the RL agent into the EA population periodically
to inject gradient information into the EA. The key
insight here is that an EA can be used to address the
core challenges within DRL without losing out on the
ability to leverage gradients for higher sample effi-
ciency. ERL inherits EA’s ability to address temporal
credit assignment by its use of a fitness metric that
consolidates the return of an entire episode. ERL’s
selection operator which operates based on this fit-
ness exerts a selection pressure towards regions of the
policy space that lead to higher episode-wide return.
This process biases the state distribution towards re-
gions that have higher long term returns. This is a
form of implicit prioritization that is effective for do-
mains with long time horizons and sparse rewards.
Additionally, ERL inherits EA’s population-based ap-
proach leading to redundancies that serve to stabilize
the convergence properties and make the learning
process more robust. ERL also uses the population to combine exploration in the parameter space
with exploration in the action space which lead to diverse policies that explore the domain effectively.

Figure 1 illustrates ERL’s double layered learning approach where the same set of data (experiences)
generated by the evolutionary population is used by the reinforcement learner. The recycling of the
same data enables maximal information extraction from individual experiences leading to improved
sample efficiency. Experiments in a range of challenging continuous control benchmarks demonstrate
that ERL significantly outperforms prior DRL and EA methods.

2

2 Background
A standard reinforcement learning setting is formalized as a Markov Decision Process (MDP) and
consists of an agent interacting with an environment E over a number of discrete time steps. At each
time step t, the agent receives a state st and maps it to an action at using its policy π. The agent
receives a scalar reward rt and moves to the next state st+1. The process continues until the agent
reaches a terminal state marking the end of an episode. The return Rt =

∑∞
n=1 γ

krt+k is the total
accumulated return from time step t with discount factor γ ∈ (0, 1]. The goal of the agent is to
maximize the expected return. The state-value function Qπ(s, a) describes the expected return from
state s after taking action a and subsequently following policy π.

2.1 Deep Deterministic Policy Gradient (DDPG)

Policy gradient methods frame the goal of maximizing return as the minimization of a loss function
L(θ) where θ parameterizes the agent. A widely used policy gradient method is Deep Deterministic
Policy Gradient (DDPG) [31], a model-free RL algorithm developed for working with continuous high
dimensional actions spaces. DDPG uses an actor-critic architecture [54] maintaining a deterministic
policy (actor) π : S → A, and an action-value function approximation (critic) Q : S × A → R.
The critic’s job is to approximate the actor’s action-value function Qπ. Both the actor and the critic
are parameterized by (deep) neural networks with θπ and θQ, respectively. A separate copy of the
actor π′ and critic Q′ networks are kept as target networks for stability. These networks are updated
periodically using the actor π and critic networks Q modulated by a weighting parameter τ .

A behavioral policy is used to explore during training. The behavioral policy is simply a noisy
version of the policy: πb(s) = π(s) +N (0, 1) where N is temporally correlated noise generated
using the Ornstein-Uhlenbeck process [58]. The behavior policy is used to generate experience in the
environment. After each action, the tuple (st, at, rt, st+1) containing the current state, actor’s action,
observed reward and the next state, respectively is saved into a cyclic replay buffer R. The actor
and critic networks are updated by randomly sampling mini-batches fromR. The critic is trained by
minimizing the loss function:

L = 1
T

∑
i(yi −Q(si, ai|θQ))2 where yi = ri + γQ′(si+1, π

′(si+1|θπ
′
)|θQ′

)

The actor is trained using the sampled policy gradient:

∇θπJ ∼ 1
T

∑
∇aQ(s, a|θQ)|s=si,a=ai∇θππ(s|θπ)|s=si

The sampled policy gradient with respect to the actor’s parameters θπ is computed by backpropagation
through the combined actor and critic network.

2.2 Evolutionary Algorithm

Evolutionary algorithms (EAs) are a class of search algorithms with three primary operators: new
solution generation, solution alteration, and selection [19, 50]. These operations are applied on a
population of candidate solutions to continually generate novel solutions while probabilistically
retaining promising ones. The selection operation is generally probabilistic, where solutions with
higher fitness values have a higher probability of being selected. Assuming higher fitness values
are representative of good solution quality, the overall quality of solutions will improve with each
passing generation. In this work, each individual in the evolutionary algorithm defines a deep neural
network. Mutation represents random perturbations to the weights (genes) of these neural networks.
The evolutionary framework used here is closely related to evolving neural networks, and is often
referred to as neuroevolution [18, 33, 43, 52].

3 Motivating Example

Consider the standard Inverted Double Pendulum task from OpenAI gym [6], a classic continuous
control benchmark. Here, an inverted double pendulum starts in a random position, and the goal of
the controller is to keep it upright. The task has a state space S = 11 and action space A = 1 and is
a fairly easy problem to solve for most modern algorithms. Figure 2 (left) shows the comparative
performance of DDPG, EA and our proposed approach: Evolutionary Reinforcement Learning

3

Figure 2: Comparative performance of DDPG, EA and ERL in a (left) standard and (right) hard
Inverted Double Pendulum Task. DDPG solves the standard task easily but fails at the hard task. Both
tasks are equivalent for the EA. ERL is able to inherit the best of DDPG and EA, successfully solving
both tasks similar to EA while leveraging gradients for greater sample efficiency similar to DDPG.

(ERL), which combines the mechanisms within EA and DDPG. Unsurprisingly, both ERL and DDPG
solve the task under 3000 episodes. EA solves the task eventually but is much less sample efficient,
requiring approximately 22000 episodes. ERL and DDPG are able to leverage gradients that enable
faster learning while EA without access to gradients is slower.

We introduce the hard Inverted Double Pendulum by modifying the original task such that the
reward is disbursed to the controller only at the end of the episode. During an episode which can
consist of up to 1000 timesteps, the controller gets a reward of 0 at each step except for the last one
where the cumulative reward is given to the agent. Since the agent does not get feedback regularly on
its actions but has to wait a long time to get feedback, the task poses an extremely difficult temporal
credit assignment challenge.

Figure 2 (right) shows the comparative performance of the three algorithms in the hard Inverted
Double Pendulum Task. Since EA does not use intra-episode interactions and compute fitness only
based on the cumulative reward of the episode, the hard Inverted Double pendulum task is equivalent
to its standard instance for an EA learner. EA retains its performance from the standard task and
solves the task after 22000 episodes. DDPG on the other hand fails to solve the task entirely. The
deceptiveness and sparsity of the reward where the agent has to wait up to 1000 steps to receive
useful feedback signal creates a difficult temporal credit assignment problem that DDPG is unable to
effectively deal with. In contrast, ERL which inherits the temporal credit assignment benefits of an
encompassing fitness metric from EA is able to successfully solve the task. Even though the reward
is sparse and deceptive, ERL’s selection operator provides a selection pressure for policies with high
episode-wide return (fitness). This biases the distribution of states stored in the buffer towards states
with higher long term payoff enabling ERL to successfully solve the task. Additionally, ERL is
able to leverage gradients which allows it to solve the task within 10000 episodes, much faster than
the 22000 episodes required by EA. This result highlights the key capability of ERL: combining
mechanisms within EA and DDPG to achieve the best of both approaches.

4 Evolutionary Reinforcement Learning
The principal idea behind Evolutionary Reinforcement Learning (ERL) is to incorporate EA’s
population-based approach to generate a diverse set of experiences while leveraging powerful gradient-
based methods from DRL to learn from them. In this work, we instantiate ERL by combining
a standard EA with DDPG but any off-policy reinforcement learner that utilizes an actor-critic
architecture can be used.

A general flow of the ERL algorithm proceeds as follow: a population of actor networks is initialized
with random weights. In addition to the population, one additional actor network (referred to as rlactor
henceforth) is initialized alongside a critic network. The population of actors (rlactor excluded)
are then evaluated in an episode of interaction with the environment. The fitness for each actor is
computed as the cumulative sum of the reward that they receive over the timesteps in that episode. A
selection operator then selects a portion of the population for survival with probability commensurate
on their relative fitness scores. The actors in the population are then probabilistically perturbed
through mutation and crossover operations to create the next generation of actors. A select portion of
actors with the highest relative fitness are preserved as elites and are shielded from the mutation step.

EA→ RL: The procedure up till now is reminiscent of a standard EA. However, unlike EA which
only learns between episodes using a coarse feedback signal (fitness score), ERL additionally learns

4

Algorithm 1 Evolutionary Reinforcement Learning
1: Initialize actor πrl and critic Qrl with weights θπ and θQ, respectively
2: Initialize target actor π′rl and critic Q′rl with weights θπ

′
and θQ

′
, respectively

3: Initialize a population of k actors popπ and an empty cyclic replay buffer R
4: Define a a Ornstein-Uhlenbeck noise generator O and a random number generator r() ∈ [0, 1)
5: for generation = 1,∞ do
6: for actor π ∈ popπ do
7: fitness, R = Evaluate(π, R, noise=None, ξ)
8: end for
9: Rank the population based on fitness scores

10: Select the first e actors π ∈ popπ as elites where e = int(ψ*k)
11: Select (k−e) actors π from popπ , to form Set S using tournament selection with replacement
12: while |S| < (k − e) do
13: Use crossover between a randomly sampled π ∈ e and π ∈ S and append to S
14: end while
15: for Actor π ∈ Set S do
16: if r() < mutprob then
17: Mutate(θπ)
18: end if
19: end for
20: _, R = Evaluate(πrl,R, noise = O, ξ = 1)
21: Sample a random minibatch of T transitions (si, ai, ri, si+1) from R
22: Compute yi = ri + γQ′rl(si+1, π

′
rl(si+1|θπ

′
)|θQ′

)
23: Update Qrl by minimizing the loss: L = 1

T

∑
i(yi −Qrl(si, ai|θQ)2

24: Update πrl using the sampled policy gradient

∇θπJ ∼ 1
T

∑
∇aQrl(s, a|θQ)|s=si,a=ai∇θππ(s|θπ)|s=si

25: Soft update target networks: θπ
′ ⇐ τθπ + (1− τ)θπ′

and θQ
′ ⇐ τθQ + (1− τ)θQ′

26: if generation mod ω = 0 then
27: Copy the RL actor into the population: for weakest π ∈ popπ : θπ ⇐ θπrl

28: end if
29: end for

Algorithm 2 Function Evaluate
1: procedure EVALUATE(π, R, noise, ξ)
2: fitness = 0
3: for i = 1:ξ do
4: Reset environment and get initial state s0
5: while env is not done do
6: Select action at = π(st|θπ) + noiset
7: Execute action at and observe reward rt and new state st+1

8: Append transition (st, at, rt, st+1) to R
9: fitness← fitness+ rt and s = st+1

10: end while
11: end for
12: Return fitness

ξ , R
13: end procedure

from the experiences within episodes. ERL stores each actor’s experiences defined by the tuple
(current state, action, next state, reward) in its replay buffer. This is done for every interaction, at every
timestep, for every episode, and for each of its actors. The critic samples a random minibatch from
this replay buffer and uses it to update its parameters using gradient descent. The critic, alongside the
minibatch is then used to train the rlactor using the sampled policy gradient. This is similar to the
learning procedure for DDPG, except that the replay buffer has access to the experiences from the
entire evolutionary population.

5

Algorithm 3 Function Mutate
1: procedure MUTATE(θπ)
2: for Weight MatrixM∈ θπ do
3: for iteration = 1, mutfrac ∗ |M| do
4: Randomly sample indices i and j fromM′s first and second axis, respectively
5: if r() < supermutprob then
6: M[i, j] =M[i, j] * N (0, 100 ∗mutstrength)
7: else if r() < resetprob then
8: M[i, j] = N (0, 1)
9: else

10: M[i, j] =M[i, j] * N (0, mutstrength)
11: end if
12: end for
13: end for
14: end procedure

Data Reuse: The replay buffer is the central mechanism that enables the flow of information from the
evolutionary population to the RL learner. In contrast to a standard EA which would extract the fitness
metric from these experiences and disregard them immediately, ERL retains them in the buffer and
engages the rlactor and critic to learn from them repeatedly using powerful gradient-based methods.
This mechanism allows for maximal information extraction from each individual experiences leading
to improved sample efficiency.

Temporal Credit Assignment: Since fitness scores capture episode-wide return of an individual, the
selection operator exerts a strong pressure to favor individuals with higher episode-wide returns. As
the buffer is populated by the experiences collected by these individuals, this process biases the state
distribution towards regions that have higher episode-wide return. This serves as a form of implicit
prioritization that favors experiences leading to higher long term payoffs and is effective for domains
with long time horizons and sparse rewards. A RL learner that learns from this state distribution
(replay buffer) is biased towards learning policies that optimizes for higher episode-wide return.

Diverse Exploration: A noisy version of the rlactor using Ornstein-Uhlenbeck [58] process is used
to generate additional experiences for the replay buffer. In contrast to the population of actors which
explore by noise in their parameter space (neural weights), the rlactor explores through noise in
its action space. The two processes complement each other and collectively lead to an effective
exploration strategy that is able to better explore the policy space.

RL → EA: Periodically, the rlactor network’s weights are copied into the evolving population
of actors, referred to as synchronization. The frequency of synchronization controls the flow of
information from the RL learner to the evolutionary population. This is the core mechanism that
enables the evolutionary framework to directly leverage the information learned through gradient
descent. The process of infusing policy learned by the rlactor into the population also serves to
stabilize learning and make it more robust to deception. If the policy learned by the rlactor is good, it
will be selected to survive and extend its influence to the population over subsequent generations.
However, if the rlactor is bad, it will simply be selected against and discarded. This mechanism
ensures that the flow of information from the rlactor to the evolutionary population is constructive,
and not disruptive. This is particularly relevant for domains with sparse rewards and deceptive local
minima which gradient-based methods can be highly susceptible to.

Algorithm 1, 2 and 3 provide a detailed pseudocode of the ERL algorithm using DDPG as its policy
gradient component. Adam [29] optimizer with gradient clipping at 10 and a learning rate of 5e−5
and 5e−4 was used for the rlactor and rlcritic, respectively. The size of the population k was set to
10, while the elite fraction ψ varied from 0.1 to 0.3 across tasks. The number of trials conducted to
compute a fitness score, ξ ranged from 1 to 5 across tasks. The size of the replay buffer and batch size
were set to 1e6 and 128, respectively. The discount rate γ and target weight τ were set to 0.99 and
1e−3, respectively. The mutation probability mutprob was set to 0.9 while the syncronization period
ω ranged from 1 to 10 across tasks. The mutation strength mutstrength was set to 0.1 corresponding
to a 10% Gaussian noise. Finally, the mutation fraction mutfrac was set to 0.1 while the probability
from super mutation supermutprob and reset resetmutprob were set to 0.05.

6

(a) HalfCheetah (b) Swimmer (c) Reacher

(d) Ant (e) Hopper (f) Walker2D

Figure 3: Learning curves on Mujoco-based continous control benchmarks.

5 Experiments

Domain: We evaluated the performance of ERL1 agents on 6 continuous control tasks simulated
using Mujoco [56]. These are benchmarks used widely in the field [13, 25, 53, 47] and are hosted
through the OpenAI gym [6].

Compared Baselines: We compare the performance of ERL with a standard neuroevolutionary
algorithm (EA), DDPG [31] and Proximal Policy Optimization (PPO) [47]. DDPG and PPO are
state of the art deep reinforcement learning algorithms of the off-policy and and on-policy variety,
respectively. PPO builds on the Trust Region Policy Optimization (TRPO) algorithm [45]. ERL
is implemented using PyTorch [39] while OpenAI Baselines [11] was used to implement PPO and
DDPG. The hyperparameters for both algorithms were set to match the original papers except that a
larger batch size of 128 was used for DDPG which was shown to improve performance in [27].

Methodology for Reported Metrics: For DDPG and PPO, the actor network was periodically
tested on 5 task instances without any exploratory noise. The average score was then logged as its
performance. For ERL, during each training generation, the actor network with the highest fitness
was selected as the champion. The champion was then tested on 5 task instances, and the average
score was logged. This protocol was implemented to shield the reported metrics from any bias of the
population size. Note that all scores are compared against the number of steps in the environment.
Each step is defined as an instance where the agent takes an action and gets a reward back from the
environment. To make the comparisons fair across single agent and population-based algorithms, all
steps taken by all actors in the population are cumulative. For example, one episode of HalfCheetah
consists of 1000 steps. For a population of 10 actors, each generation consists of evaluating the actors
in an episode which would incur 10, 000 steps. We conduct five independent statistical runs with
varying random seeds, and report the average with error bars logging the standard deviation.

Results: Figure 3 shows the comparative performance of ERL, EA, DDPG and PPO. The per-
formances of DDPG and PPO were verified to have matched the ones reported in their original
papers [31, 47]. ERL significantly outperforms DDPG across all the benchmarks. Notably, ERL
is able to learn on the 3D quadruped locomotion Ant benchmark where DDPG normally fails to
make any learning progress [13, 23, 24]. ERL also consistently outperforms EA across all but the
Swimmer environment, where the two algorithms perform approximately equivalently. Considering

1Code available at https://github.com/ShawK91/erl_paper_nips18

7

https://github.com/ShawK91/erl_paper_nips18

that ERL is built primarily using the subcomponents of these two algorithms, this is an important
result. Additionally, ERL significantly outperforms PPO in 4 out of the 6 benchmark environments2.

Figure 4: Ablation experiments with the
selection operator removed. NS indi-
cates ERL without the selection operator.

The two exceptions are Hopper and Walker2D where ERL
eventually matches and exceeds PPO’s performance but
is less sample efficient. A common theme in these two en-
vironments is early termination of an episode if the agent
falls over. Both environments also disburse a constant
small reward for each step of survival to encourage the
agent to hold balance. Since EA selects for episode-wide
return, this setup of reward creates a strong local mini-
mum for a policy that simply survives by balancing while
staying still. This is the exact behavior EA converges to
for both environments. However, while ERL is initially
confined by the local minima’s strong basin of attraction,
it eventually breaks free from it by virtue of its RL com-
ponents: temporally correlated exploration in the action
space and policy gradient-based on experience batches
sampled randomly from the replay buffer. This highlights the core aspect of ERL: incorporating the
mechanisms within EA and policy gradient methods to achieve the best of both approaches.

Ablation Experiments: We use an ablation experiment to test the value of the selection operator,
which is the core mechanism for experience selection within ERL. Figure 4 shows the comparative
results in HalfCheetah and Swimmer benchmarks. The performance for each benchmark was
normalized by the best score achieved using the full ERL algorithm (Figure 3). Results demonstrate
that the selection operator is a crucial part of ERL. Removing the selection operation (NS variants)
lead to significant degradation in learning performance (∼80%) across both benchmarks.

Elite Selected Discarded

Half-Cheetah 83.8± 9.3% 14.3± 9.1% 2.3± 2.5%

Swimmer 4.0± 2.8% 20.3± 18.1% 76.0± 20.4%
Reacher 68.3± 9.9% 19.7± 6.9% 9.0±6.9%

Ant 66.7± 1.7% 15.0± 1.4% 18.0± 0.8%
Hopper 28.7± 8.5% 33.7± 4.1% 37.7± 4.5%

Walker-2d 38.5± 1.5% 39.0± 1.9% 22.5± 0.5%

Table 1: Selection rate for synchronized rlactor

Interaction between RL and EA: To
tease apart the system further, we ran
some additional experiments logging
whether the rlactor synchronized peri-
odically within the EA population was
classified as an elite, just selected, or
discarded during selection (see Table
1). The results vary across tasks with
Half-Cheetah’s and Swimmer standing
at either extremes: rlactor being the
most and the least performant, respec-
tively. The Swimmer’s selection rate is consistent with the results in Figure 3b where EA matched
ERL’s performance while the RL approaches struggled. The overall distribution of selection rates
suggest tight integration between the rlactor and the evolutionary population as the driver for suc-
cessful learning. Interestingly, even for HalfCheetah which favors the rlactor most of the time, EA
plays a critical role with ‘critical interventions.’ For instance, during the course of learning, the
cheetah benefits from leaning forward to increase its speed which gives rise to a strong gradient in
this direction. However, if the cheetah leans too much, it falls over. The gradient-based methods
seem to often fall into this trap and then fail to recover as the gradient information from the new state
has no guarantees of undoing the last gradient update. However, ERL with its population provides
built in redundancies which selects against this deceptive trap, and eventually finds a direction for
learning which avoids it. Once this deceptive trap is avoided, gradient descent can take over again
in regions with better reward landscapes. These critical interventions seem to be crucial for ERL’s
robustness and success in the Half-Cheetah benchmark.

Note on runtime: On average, ERL took approximately 3% more time than DDPG to run. The
majority of the added computation stem from the mutation operator, whose cost in comparison to
gradient descent was minimal. Additionally, these comparisons are based on implementation of ERL
without any parallelization. We anticipate a parallelized implementation of ERL to run significantly
faster as corroborated by previous work in population-based approaches [8, 44, 53].

2Videos of learned policies available at https://tinyurl.com/erl-mujoco

8

6 Related Work

Using evolutionary algorithms to complement reinforcement learning, and vice versa is not a new
idea. Stafylopatis and Blekas combined the two using a Learning Classifier System for autonomous
car control [51]. Whiteson and Stone used NEAT [52], an evolutionary algorithm that evolves both
neural topology and weights to optimize function approximators representing the value function
in Q-learning [60]. More recently, Colas et.al. used an evolutionary method (Goal Exploration
Process) to generate diverse samples followed by a policy gradient method for fine-tuning the policy
parameters [7]. From an evolutionary perspective, combining RL with EA is closely related to
the idea of incorporating learning with evolution [1, 12, 57]. Fernando et al. leveraged a similar
idea to tackle catastrophic forgetting in transfer learning [17] and constructing differentiable pattern
producing networks capable of discovering CNN architecture automatically [16].

Recently, there has been a renewed push in the use of evolutionary algorithms to offer alternatives
for (Deep) Reinforcement Learning [43]. Salimans et al. used a class of EAs called Evolutionary
Strategies (ES) to achieve results competitive with DRL in Atari and robotic control tasks [44]. The
authors were able to achieve significant improvements in clock time by using over a thousand parallel
workers highlighting the scalability of ES approaches. Similar scalability and competitive results
were demonstrated by Such et al. using a genetic algorithm with novelty search [53]. A companion
paper applied novelty search [30] and Quality Diversity [9, 42] to ES to improve exploration [8]. EAs
have also been widely used to optimize deep neural network architecture and hyperparmaters [28, 32].
Conversely, ideas within RL have also been used to improve EAs. Gangwani and Peng devised a
genetic algorithm using imitation learning and policy gradients as crossover and mutation operator,
respectively [22]. ERL provides a framework for combining these developments for potential further
improved performance. For instance, the crossover and mutation operators from [22] can be readily
incorporated within ERL’s EA module while bias correction techniques such as [21] can be used to
improve policy gradient operations within ERL.

7 Discussion

We presented ERL, a hybrid algorithm that leverages the population of an EA to generate diverse
experiences to train an RL agent, and reinserts the RL agent into the EA population sporadically
to inject gradient information into the EA. ERL inherits EA’s invariance to sparse rewards with
long time horizons, ability for diverse exploration, and stability of a population-based approach and
complements it with DRL’s ability to leverage gradients for lower sample complexity. Additionally,
ERL recycles the date generated by the evolutionary population and leverages the replay buffer to
learn from them repeatedly, allowing maximal information extraction from each experience leading
to improved sample efficiency. Results in a range of challenging continuous control benchmarks
demonstrate that ERL outperforms state-of-the-art DRL algorithms including PPO and DDPG.

From a reinforcement learning perspective, ERL can be viewed as a form of ‘population-driven guide’
that biases exploration towards states with higher long-term returns, promotes diversity of explored
policies, and introduces redundancies for stability. From an evolutionary perspective, ERL can be
viewed as a Lamarckian mechanism that enables incorporation of powerful gradient-based methods
to learn at the resolution of an agent’s individual experiences. In general, RL methods learn from an
agent’s life (individual experience tuples collected by the agent) whereas EA methods learn from an
agent’s death (fitness metric accumulated over a full episode). The principal mechanism behind ERL
is the capability to incorporate both modes of learning: learning directly from the high resolution
of individual experiences while being aligned to maximize long term return by leveraging the low
resolution fitness metric.

In this paper, we used a standard EA as the evolutionary component of ERL. Incorporating more
complex evolutionary sub-mechanisms is an exciting area of future work. Some examples include
incorporating more informative crossover and mutation operators [22], adaptive exploration noise
[20, 41], and explicit diversity maintenance techniques [8, 9, 30, 53]. Other areas of future work
will incorporate implicit curriculum based techniques like Hindsight Experience Replay [3] and
information theoretic techniques [15, 24] to further improve exploration. Another exciting thread of
research is the extension of ERL into multiagent reinforcement learning settings where a population
of agents learn and act within the same environment.

9

References
[1] D. Ackley and M. Littman. Interactions between learning and evolution. Artificial life II, 10:

487–509, 1991.

[2] C. W. Ahn and R. S. Ramakrishna. Elitism-based compact genetic algorithms. IEEE Transac-
tions on Evolutionary Computation, 7(4):367–385, 2003.

[3] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
O. P. Abbeel, and W. Zaremba. Hindsight experience replay. In Advances in Neural Information
Processing Systems, pages 5048–5058, 2017.

[4] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying
count-based exploration and intrinsic motivation. In Advances in Neural Information Processing
Systems, pages 1471–1479, 2016.

[5] S. Bhatnagar, D. Precup, D. Silver, R. S. Sutton, H. R. Maei, and C. Szepesvári. Convergent
temporal-difference learning with arbitrary smooth function approximation. In Advances in
Neural Information Processing Systems, pages 1204–1212, 2009.

[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[7] C. Colas, O. Sigaud, and P.-Y. Oudeyer. Gep-pg: Decoupling exploration and exploitation in
deep reinforcement learning algorithms. arXiv preprint arXiv:1802.05054, 2018.

[8] E. Conti, V. Madhavan, F. P. Such, J. Lehman, K. O. Stanley, and J. Clune. Improving exploration
in evolution strategies for deep reinforcement learning via a population of novelty-seeking
agents. arXiv preprint arXiv:1712.06560, 2017.

[9] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret. Robots that can adapt like animals. Nature,
521(7553):503, 2015.

[10] K. De Asis, J. F. Hernandez-Garcia, G. Z. Holland, and R. S. Sutton. Multi-step reinforcement
learning: A unifying algorithm. arXiv preprint arXiv:1703.01327, 2017.

[11] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor,
and Y. Wu. Openai baselines. https://github.com/openai/baselines, 2017.

[12] M. M. Drugan. Reinforcement learning versus evolutionary computation: A survey on hybrid
algorithms. Swarm and Evolutionary Computation, 2018.

[13] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforcement
learning for continuous control. In International Conference on Machine Learning, pages 1329–
1338, 2016.

[14] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,
I. Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner
architectures. arXiv preprint arXiv:1802.01561, 2018.

[15] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills
without a reward function. arXiv preprint arXiv:1802.06070, 2018.

[16] C. Fernando, D. Banarse, M. Reynolds, F. Besse, D. Pfau, M. Jaderberg, M. Lanctot, and
D. Wierstra. Convolution by evolution: Differentiable pattern producing networks. In Proceed-
ings of the Genetic and Evolutionary Computation Conference 2016, pages 109–116. ACM,
2016.

[17] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu, A. Pritzel, and D. Wier-
stra. Pathnet: Evolution channels gradient descent in super neural networks. arXiv preprint
arXiv:1701.08734, 2017.

[18] D. Floreano, P. Dürr, and C. Mattiussi. Neuroevolution: from architectures to learning. Evolu-
tionary Intelligence, 1(1):47–62, 2008.

10

https://github.com/openai/baselines

[19] D. B. Fogel. Evolutionary computation: toward a new philosophy of machine intelligence,
volume 1. John Wiley & Sons, 2006.

[20] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih, R. Munos, D. Has-
sabis, O. Pietquin, et al. Noisy networks for exploration. arXiv preprint arXiv:1706.10295,
2017.

[21] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. arXiv preprint arXiv:1802.09477, 2018.

[22] T. Gangwani and J. Peng. Genetic policy optimization. arXiv preprint arXiv:1711.01012, 2017.

[23] S. Gu, T. Lillicrap, R. E. Turner, Z. Ghahramani, B. Schölkopf, and S. Levine. Interpolated
policy gradient: Merging on-policy and off-policy gradient estimation for deep reinforcement
learning. In Advances in Neural Information Processing Systems, pages 3849–3858, 2017.

[24] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

[25] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep reinforcement
learning that matters. arXiv preprint arXiv:1709.06560, 2017.

[26] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel. Vime: Variational
information maximizing exploration. In Advances in Neural Information Processing Systems,
pages 1109–1117, 2016.

[27] R. Islam, P. Henderson, M. Gomrokchi, and D. Precup. Reproducibility of benchmarked deep
reinforcement learning tasks for continuous control. arXiv preprint arXiv:1708.04133, 2017.

[28] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue, A. Razavi, O. Vinyals,
T. Green, I. Dunning, K. Simonyan, et al. Population based training of neural networks. arXiv
preprint arXiv:1711.09846, 2017.

[29] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[30] J. Lehman and K. O. Stanley. Exploiting open-endedness to solve problems through the search
for novelty. In ALIFE, pages 329–336, 2008.

[31] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[32] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu. Hierarchical representa-
tions for efficient architecture search. arXiv preprint arXiv:1711.00436, 2017.

[33] B. Lüders, M. Schläger, A. Korach, and S. Risi. Continual and one-shot learning through neural
networks with dynamic external memory. In European Conference on the Applications of
Evolutionary Computation, pages 886–901. Springer, 2017.

[34] A. R. Mahmood, H. Yu, and R. S. Sutton. Multi-step off-policy learning without importance
sampling ratios. arXiv preprint arXiv:1702.03006, 2017.

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529, 2015.

[36] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In International Conference on
Machine Learning, pages 1928–1937, 2016.

[37] R. Munos. Q (λ) with off-policy corrections. In Algorithmic Learning Theory: 27th Interna-
tional Conference, ALT 2016, Bari, Italy, October 19-21, 2016, Proceedings, volume 9925,
page 305. Springer, 2016.

11

[38] G. Ostrovski, M. G. Bellemare, A. v. d. Oord, and R. Munos. Count-based exploration with
neural density models. arXiv preprint arXiv:1703.01310, 2017.

[39] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in pytorch. 2017.

[40] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-
supervised prediction. In International Conference on Machine Learning (ICML), volume 2017,
2017.

[41] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen, T. Asfour, P. Abbeel, and
M. Andrychowicz. Parameter space noise for exploration. arXiv preprint arXiv:1706.01905,
2017.

[42] J. K. Pugh, L. B. Soros, and K. O. Stanley. Quality diversity: A new frontier for evolutionary
computation. Frontiers in Robotics and AI, 3:40, 2016.

[43] S. Risi and J. Togelius. Neuroevolution in games: State of the art and open challenges. IEEE
Transactions on Computational Intelligence and AI in Games, 9(1):25–41, 2017.

[44] T. Salimans, J. Ho, X. Chen, and I. Sutskever. Evolution strategies as a scalable alternative to
reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

[45] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization.
In International Conference on Machine Learning, pages 1889–1897, 2015.

[46] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous
control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

[47] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[48] C. Sherstan, B. Bennett, K. Young, D. R. Ashley, A. White, M. White, and R. S. Sutton. Directly
estimating the variance of the {\lambda}-return using temporal-difference methods. arXiv
preprint arXiv:1801.08287, 2018.

[49] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484–489, 2016.

[50] W. M. Spears, K. A. De Jong, T. Bäck, D. B. Fogel, and H. De Garis. An overview of
evolutionary computation. In European Conference on Machine Learning, pages 442–459.
Springer, 1993.

[51] A. Stafylopatis and K. Blekas. Autonomous vehicle navigation using evolutionary reinforcement
learning. European Journal of Operational Research, 108(2):306–318, 1998.

[52] K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies.
Evolutionary computation, 10(2):99–127, 2002.

[53] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune. Deep neuroevo-
lution: Genetic algorithms are a competitive alternative for training deep neural networks for
reinforcement learning. arXiv preprint arXiv:1712.06567, 2017.

[54] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, volume 1. MIT press
Cambridge, 1998.

[55] H. Tang, R. Houthooft, D. Foote, A. Stooke, O. X. Chen, Y. Duan, J. Schulman, F. DeTurck, and
P. Abbeel. # exploration: A study of count-based exploration for deep reinforcement learning.
In Advances in Neural Information Processing Systems, pages 2750–2759, 2017.

[56] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages
5026–5033. IEEE, 2012.

12

[57] P. Turney, D. Whitley, and R. W. Anderson. Evolution, learning, and instinct: 100 years of the
baldwin effect. Evolutionary Computation, 4(3):iv–viii, 1996.

[58] G. E. Uhlenbeck and L. S. Ornstein. On the theory of the brownian motion. Physical review, 36
(5):823, 1930.

[59] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and N. de Freitas. Sample
efficient actor-critic with experience replay. arXiv preprint arXiv:1611.01224, 2016.

[60] S. Whiteson and P. Stone. Evolutionary function approximation for reinforcement learning.
Journal of Machine Learning Research, 7(May):877–917, 2006.

13

