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Abstract: The advent of computed tomography (CT) has revolutionized radi-
ology. Starting as head-only scanners, modern CT systems are now capable of
performing whole-body examinations within a couple of seconds in isotropic
resolution. Technical advancements of scanner hardware and image recon-
struction techniques are reviewed and discussed in their clinical context.
These improvements have led to a steady increase of CT examinations in all
age groups for a number of reasons. On the one hand, it is very easy today
to obtain whole-body data for oncologic staging and follow-up or for trauma
imaging. On the other hand, new examinations such as cardiac imaging, vir-
tual colonoscopy, gout imaging, and whole-organ perfusion imaging have
widened the application profile of CT. The increasing awareness of risks as-
sociated with radiation exposure triggered the development of a variety of
dose reduction techniques. Effective dose values below 1 mSv, less than the an-
nual natural background radiation (3.1 mSv/year on average in the United
States), are now routinely possible for a number of dedicated examinations, even
for coronary CT angiography.
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S ir Godfrey Hounsfield, a British electrical engineer at EMI, and
Alan MacLeod Cormack, a South African–born physicist were

jointly awarded the Nobel Prize in Medicine in 1979 for their contri-
butions to developing computed tomography, although they had
worked independently from each other.1 Johann Radon, an Austrian
mathematician, had published much of the theoretical foundation of
computed tomographic (CT) image reconstruction as early as 1917
(Radon transform).2 In 1971, the first patient was imaged at
Atkinson Morley's Hospital, London. The new insights into brain
morphology possible with CT in patients received immediate world-
wide scientific and media attention. This point in time is considered
the beginning of a new era in clinical neuroscience. Early (first-
generation) CT systems used a translate/rotate method, where the
x-ray source, that only generated a pencil beam, and the detector
moved laterally to cover the complete field of view, followed by a
1-degree rotation of the gantry. This process continued until 180 de-
grees were scanned. Such systems required 4 to 5 minutes to obtain
the data for a single axial slice. Second-generation CT systems using
a small x-ray fan beam were introduced in 1972; they still used the

translate/rotate method. Both first- and second-generation systems
were head-only scanners. Third-generation systems with a full
x-ray fan beam that covered the complete field of view, and a simul-
taneously rotating tube and detector array were introduced in 1975.
The geometry of modern CT systems is still similar to this setup.
Fourth-generation systems with a full 360-degree detector ring and
a rotating x-ray tube as well as electron beam CT were eventually
both replaced by further developments of third-generation-type CT
systems. In 1987, continuously rotating systems based on slip-ring
technology were introduced with a gantry rotation time of 1 second.
Spiral or helical CTwas introduced in 19893 and led to a breakthrough
in truly 3-dimensional (3D) CT imaging and in CTangiography (CTA).
Cardiac CTwas already announced in the 1970s4,5 but was based on
dedicated systems such as electron beam CT6 and the dynamic spatial
reconstructor.7 It finally entered clinical routine and became widely
available by combining the spiral trajectory on standard third-
generation systems with a dedicated reconstruction approach.8,9 In
addition to the development of larger detector arrays with more detec-
tor rows, dual-source CT (DSCT) was introduced in 2005 with the
aim of further increasing scan speed and double temporal resolution.
High scan speed and temporal resolution had a strong impact on the
technical development of CT and was particularly important for car-
diac CT. The topic of cardiac CT is more completely covered in
Wintersperger et al.10

SLICE WAR
In medical imaging, the x-y plane denominates the patient’s

cross section, whereas the z-direction denominates the longitudinal
axis. A typical detector array consists of 800 to 1000 detector elements
in-plane and of up to 320 detector rows in the z-direction. The general
advantage of more rows is the simultaneous acquisition of more data
along the patient’s longitudinal axis, which mainly allows increased
scan speed. In 1992, Elscint introduced the first third-generation CT
systemwith two detector rows.With the availability of solid-state detec-
tors based on scintillating ceramics,11 the other CT vendors followed
with 4-row detector arrays in 1998. Since then, a steady race for the
highest number of active detector rows (or later slices per rotation)
broke out, culminating in 2007 in 320 detector rows in the Toshiba
Aquilion One (Table 1). The number of detector rows and slices
acquired per rotation were equivalent until the introduction of 64-
slice scanners. Whereas General Electric (GE), Philips, and Toshiba
mounted 64-detector row panels, Siemens went a different way. Sie-
mens implemented a double read-out technique called double z-
sampling, which uses a periodic motion of the focal spot not only
in the x-y (to double the number of rays per detector row) but also
in the z-direction with the goal of doubling the number of indepen-
dent slices acquired in the z-direction.12,13 Philips later shared this
concept when introducing their 256-slice system. Although the
number of slices nominally doubles with this technique, the total
width of the detector panel (and number of detector rows) does not
change. Challenges associated with large detector panels are increased
scatter, cone beam artifacts, heel effect, and a potential tradeoff in im-
age quality.14 On the other hand, broader detector panels cover more
anatomy in a single rotation, optimally the whole organ of interest.
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Such detector panels facilitate interventional CT-guided procedures and
expands the coverage in dynamic (“perfusion”) CT.

GANTRY TECHNOLOGY
The introduction of slip-ring technology for the transport of data

and energy to and from the gantry enabled continuous rotation of x-ray
tube and detector. This was an essential prerequisite for the development
of spiral CT scanners.3,15 Most recent CT systems with gantry ro-
tation times down to 0.25 s use noncontact data and energy transfer
between the rotating and stationary parts of the gantry and some of
them even friction-free air bearings. Tremendous centrifugal forces in
the order of 40 g act on the rotating hardware, which weighs up to
1 ton and more. This has a significant impact on the x-ray tube design
for mechanical reasons. Larger patient body sizes and the desire to
perform whole-body scans also demand new patient table technology.
To realize fast and particularly high-pitch scanning (table speeds of up
to 74 cm/s are currently in use) the acceleration and deceleration
range of the table needs to be taken into account to assure patient's
comfort. The capacity of the CT table has been adapted to increasing
patient's body weight, with special tables allowing 300 kg and more.
Larger patients require not only increased table capacity but also
greater gantry diameter (up to 90 cm in dedicated systems), extended
reconstruction field of view, and higher tube output. In addition, a
larger bore diameter provides more space for CT-guided interventions.

TUBE TECHNOLOGY
Despite the permanent struggle to reduce radiation exposure, in-

creasingly powerful x-ray tubes have been developed to meet clinical
needs. To perform a CT scan of chest and abdomen or an aortic CTA
in heavy patients within a scan time short enough for the patients to
comfortably hold their breath requires faster rotation times and table
speeds, and therefore higher tube output is necessary. Typical maximum
tube power is in the order of 100 kW or more. With dual-source sys-
tems, these values double. Since scan times significantly decreased
during the past decades, the latest generation of x-ray tubes is optimized
for very short exposure times at high exposure levels (Fig. 1A). Among
vendors, a significant variation in maximum tube power performance
can be observed (Fig. 1B).

Higher tube power does not mean higher patient's dose, but in
contrast, it is potentially the basis of measures that significantly reduce
the patient's dose. More x-ray power for instance allows using stronger
prefiltration, which removes undesired low-energy photons from the
spectrum, photons that would otherwise mainly contribute to the pa-
tient's dose but not to the CT image.

Higher output is also required if low-kilovolt scanning (see the
“dose reduction techniques-low-kilovolt scanning” section below) is
performed. Whereas the tube current can be selected freely in a rel-
atively wide range, the tube voltage is typically limited to a few settings,

although some recent systems allow operation at voltages ranging from
70 kV to 150 kV at 10 kV increments.16–26 A flexible choice of tube
voltages, including the possibility to go below 80 kV, is of importance
for patient's dose reduction and contrast optimization and, in particular,
for pediatric examinations.

In addition to allowing higher tube power values, x-ray tubes
have also been optimized with the aim of minimizing cooling delays.
This is possible by introducing direct (or active) cooling instead of
using indirect cooling. One example of direct cooling is rotating enve-
lope tubes where the anode is in contact with the envelope and where
the envelope is in contact with a cooling medium: anode, cathode, and
housing rotate together as a unit.27 Another implementation of active
cooling is to use spiral groove bearing technology, which replaces the
conventional ball bearings and where liquid metal is used not only for
lubrication (nonabrasive contact) but also to actively cool the anode.28

DETECTOR TECHNOLOGY
Since the late 1990s, CT detectors are indirect converters, where

the x-ray energy is first converted into visible light, which then is cap-
tured by a photodiode and converted into an electric current (Fig. 2,
left). Indirectly converting detectors in clinical CT systems are based
on gadolinium oxysulfide (Gd2O2S, also called GOS or Gadox) ce-
ramic scintillators. The scintillator material is optimized for high-dose
usage, for high light output, for low crosstalk, and for low afterglow
or ghosting. During the past years, detectors were further optimized
with respect to electronic noise. This noise is intrinsic to the detector,
showing up especially in the dark image (no x-ray exposure). Electronic
noise is a noise source in addition to the x-ray quantum noise. Whereas
quantum noise cannot be avoided, electronic noise can be reduced by
decreasing the distance between the photodiode and the analog-to-
digital converter electronics. This is achieved by designing more com-
pact electronics that can be placed closer to the detector pixels and that
require shorter analog wires. The latest step includes fully integrated
electronics that have become possible with new contacting technol-
ogy, the so-called through silicon vias.29,30 With such a technology,
the analog distance can be reduced to a few millimeters. Less electronic
noise implies significantly lower image noise in those situations, where
only few x-ray quanta reach the detector (obese patients, or very low
milliampere second [mAs] settings as desirable for pediatric scans or
screening programs).

Currently, semiconductor-based direct converting detectors are
under development for CT imaging (Fig. 2, right).31–33With such a tech-
nology, a detected x-ray photon generates a very short pulse, short
enough to count each photon. In addition, the area under the pulse,
and thus the pulse height, is proportional to the photon energy. The
aim is to design these photon-counting detectors with energy discrimi-
nation capabilities based on pulse height analysis to gather spectral
x-ray information without the need to apply to different x-ray tube

TABLE 1. Data Sheet of Up-to-Date High-End CT Systems

CT System Vendor Configuration Collimation (mm) Cone (Degree) Rotation (Second) Max Power

Revolution CT GE 256 � 0.625 mm Gemstone Clarity 160 15 0.28 103 kW Performix HDw
Brilliance ICT Philips 2 · 128 � 0.625 mm NanoPanel3D 80 7.7 0.27 120 kW iMRC
IQon Philips 2 · 64 � 0.625 mm NanoPanel Prism 40 3.9 0.27 120 kW iMRC
Definition Edge Siemens 2 · 64 � 0.6 mm Stellar 38.4 3.7 0.28 100 kW Straton
Definition Flash Siemens 2 · 2 · 64 � 0.6 mm Stellar 38.4 3.7 0.28 2·100 kW Straton
Somatom Force Siemens 2 · 2 · 96 � 0.6 mm StellarInfinity 57.6 5.5 0.25 2·120 kW Vectron
Aquilion ONE Vision Toshiba 320 � 0.5 mm Quantum 160 15 0.275 100 kW MegaCool Vi

Names of detector and x-ray tube systems in Table 1 are trademarks. The notation of the detector configuration is the number of active detector rows � the slice
thickness. An additional factor of 2 indicates that a z flying focal spot is used to double the number of slices. Another factor of 2 indicates that a dual-source dual-
detector configuration is implemented. The collimation refers to the active width of the detector. All length values are scaled to the isocenter (z-axis).
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voltages. These detectors are expected to improve tissue contrast and re-
duce image noise.33 The latter is possible not only because the photon
counters have zero electronic noise but also because the energy bin
measurements can be combined in a statistically optimal way.34 Dose
reduction,35 decreased beam hardening artifacts,34 accurate K-edge im-
aging,36,37 simultaneous multicontrast agent imaging,38,39 and true
quantitative imaging40 are further potential benefits of this new detector
generation. However, as of today, the technology is not yet mature, and
only a few experimental systems exist that are not (yet) approved for pa-
tient examinations.

DOSE REDUCTION TECHNIQUES

Tube CurrentModulation/Automatic Exposure Control
The technical basis for tube current adaption dates back to

1981.41 Angular tube current modulation (TCM) resulted in 15% to
50% dose reduction, depending on the anatomical region in the x-y
plane.42 Online tube current modulation did not only reduce patient
exposure but also homogenized noise distribution and therefore im-
proved image quality.43 The logical advancement of in-plane TCM
was longitudinal or z-axis TCM. In analogy to angular modulation that
considers different attenuation, in-plane (transverse projection vs

anteroposterior projection at the level of the shoulders) longitudinal
TCM aims to homogenize noise, taking into account the different atten-
uations, for example, of the chest as compared to the abdomen or pelvis.
Different solutions from the major vendors became available using
either a sinusoidal or attenuation-based online modulation algorithm.
Automatic exposure control (AEC) consists of a group of algorithms,
which incorporate (3D) TCM and aim to deliver a predefined image
quality across a range of patient sizes derived from the topogram, in-
creasing the volume CT dose index (CTDIvol) for large and decreasing
CTDIvol for small patients. Because AEC algorithms assume that the
patient center is in the isocenter, correct centering is of importance. If
the scan range goes beyond the range of the topogram, CT systems
may act differently using either maximum or minimum mAs setting
or something in between (standard mAs setting or mAs setting at the
last calculated position). The image quality is defined differently for
CT systems of different manufacturers: GE's AutomA uses a noise
index that refers to the standard deviation of the CT value within a spe-
cific water phantom, which is converted to the individual patient;
Philips' DoseRight uses a reference image, whereas Siemens' CareDose
4D uses reference mAs that defines the image quality in a “standard
adult” of 70 kg body weight. Toshiba's SUREExposure 3D offers at least
three quality settings based on the target standard deviation of image
noise. To allow comparison of protocols between different platforms,

FIGURE 1. The available tube power is a function of the desired exposure time. Themaximal tube power (eg, 120 kW) is available only for very short scans
to avoid thermal damage to the anode. A, Twoof the tubes are from the same vendor (blue, second last generation; green, latest generation). The trend
to focus on shorter exposure times with high power levels is clearly visible. B, Tube performance across vendors at 80 kV. C, Tube performance across
vendors at 120 kV. Plotted values are those available for routine spiral scanning at the scanner's console. Figure 1 can be viewed online in color at
www.investigativeradiology.com.
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not only the AEC setting or noise level but also the milliampere second
and CTDIvol should be given.

Electrocardiogram (ECG)-correlated TCM reduces the tube out-
put in phases of the cardiac cycle not intended for image reconstruc-
tion in retrospectively ECG-gated cardiac CTA. The shorter the time
window with full tube output, the higher the dose reduction for the pa-
tient, at the cost of limited flexibility in image reconstruction of high-
quality CTA data. Image reconstruction in those phases with very low
x-ray exposure is still possible, which maintains the option to perform
functional ventricular assessment.44–48 A similar technique is available
for prospectively gated scans, where the gating window can be chosen
larger than necessary, and the full tube current will only be given to the
minimum required range.

Dynamic Collimators
Detector panel width and pitch influence the z-overscanning

effect, which is inherent to spiral CT. Spiral image reconstruction re-
quires data from above and below each image position; therefore, at
least one additional half-rotation (180 degrees in parallel ray geometry)
is necessary at both ends of the spiral scan. As a result, additional tissue
is exposed to radiation outside the imaged volume. For single–detector
row scanners, z-overscanning may be considered irrelevant. However,
the effect increases with the number of detector rows and becomes
significant with large area detectors and cone-beam geometry. To min-
imize the z-overscanning effect, special dynamic collimators have
been introduced that asymmetrically open and close at the edges of
the scan range.49

Low-Kilovolt Scanning
Scanning at low-kilovolt setting increases the attenuation of

contrast material (CM). For example, iodine attenuation increases by
a factor of 1.97 (70 kV) and 1.44 (90 kV), respectively, compared with
the one at 120 kV. Thus, the iodine dosage can be reduced by roughly
50% (70 kV) and 30% (90 kV) while maintaining identical attenua-
tion.19 The increased iodine attenuation can be used to reduce either
the volume of CM,50–52 or the radiation exposure (compensating higher
image noise by higher contrast), or a combination of both. Operating

the CT system at low-kilovolt at a fixed tube current minimizes the
x-ray exposure of the patient but also increases image noise because
fewer photons reach the detectors. In clinical practice, a change of
the tube voltage setting requires a simultaneous adjustment of the tube
current to keep image quality high. Therefore, low-kilovolt scanning,
historically, was not popular in CT, except for perfusion CT, although
the benefits in cardiac CTA,21,53–57 aortic CTA,58–60 and pediatric
CT23,61–63 have been demonstrated. Automatic selection of the tube
voltage and adaption of the tube current, using information on the
patient's attenuation from the localizer scan, and accounting for the
planned examination type (nonenhanced scan, contrast-enhanced pa-
renchymal scan, and CTA) translated this technology into routine use.
Depending on the examination type, a dose reduction between
10% and 30% is possible.16,17,25The restricted x-ray tube output limited
the automated selection of 80 kV or 100 kV in larger patients or
with very fast scan modes. The recent availability of new high-
performance x-ray tubes that provide very high tube currents at low
tube voltages, however, makes low-kilovolt scanning routinely possible
for a wide range of patients. Additional prefilters are in use for some
protocols to remove undesired low-energy radiation from the low-
kilovolt spectrum to maximize image quality and to minimize patient
dose down to the level of conventional radiography.18,22,26

FAST SCANNING
The scan speed increases with an increased number of detector

rows, although in some implementations, not all detector rows are avail-
able for spiral scanning. For dual-source CT systems, there is a special
high-pitch mode, which is a very fast spiral scan mode that uses pitch
values up to 3.2 to 3.4 and table speed of up to 737mm/s. The data gaps
occurring with single-source CT systems at pitch values greater than
1.5 are closed by the data from the second source in DSCT systems.
Since the cone angle of DSCT is only half as large as the cone angle
of single-source systems of twice the detector width, the same scan
speed can be achieved with less cone beam artifacts (with the remain-
ing cone beam artifacts being corrected by the iterative image recon-
struction). The high pitch mode was originally designed to improve
cardiac CTA.53,56,64–76 All CT data of the heart are acquired in a

FIGURE 2. Conventional CT detectors (left) and future photon counters (right). Photon counting becomes possible owing to the very short signal peak
generated by each x-ray photon, such that adjacently arriving photons typically generate two separate peaks. This is not the case for the indirect
converters. Figure 2 can be viewed online in color at www.investigativeradiology.com.
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fraction of a single heartbeat (usually late diastole); thus, compared to a
conventional low-pitch scan mode for cardiac CT with retrospective
gating, no redundant data are acquired, which makes the scan mode
very dose effective. In CT examinations that use all data for image re-
construction, the dose reduction effect vanishes, equal dose distribution
within the scan range assumed.61,66 Powerful tubes (Table 1) are neces-
sary to deliver the required dose within that very short time, especially
if low-kilovolt scanning is performed. Axial scanning with a large de-
tector panel (up to 160 mm) covering the object of interest (eg, heart
and brain) is an alternative77–81 that does not require fast table speed
with acceleration and deceleration but is limited in the length of z-
coverage and faces some severe image quality challenges.14

Fast scanning offers a variety of advantages in daily practice; for
example, the option to perform dose-effective ECG-triggered chest
CTA (“triple-rule-out”),58,82–85 to reduce the amount of CM in patients
with renal impairment,50,86–88 and to achieve a very homogeneous en-
hancement pattern. Scan times in the order of a second or less effec-
tively help to suppress motion, for example, in patients who are not
able to hold their breath or are unable to cooperate (small children, un-
conscious patients, severely impaired patients). In many cases, sedation
is not necessary any more (Fig. 3).20,58,61,89,90

IMAGE RECONSTRUCTION
Filtered back projection (FBP) has been the reconstruction algo-

rithm of choice during the recent decades. Filtered back projection is an
analytical image reconstruction algorithm, that is, an inversion formula
for a simplified measurement model. Filtered back projection is a reli-
able and robust algorithm that can be implemented with high computa-
tional performance. It has desirable properties such as linearity and
translational invariance that make image quality easily understandable
and facilitate image quality assessment (the image of the sum of
two objects equals the sum of the object's individual images). However,
owing to the simplicity of the measurement model, FBP cannot opti-
mally account for a number of physical effects, such as the photon sta-
tistics, beam polychromaticity, or finite width x-ray beams. To account
for the photon statistics empirical sinogram restoration approaches, so-
called adaptive filters have been used for decades.With the introduction
of multirow detector CT, the efficiency of such adaptive filtering im-
proved tremendously owing to the possibility of filtering across detector
rows or even across projections.91Adaptive filtering approaches are still
in use today, and not just in combination with the FBP algorithm.

During the past decade, new classes of image reconstruction
algorithms have become commercially available. Iterative image recon-
struction approaches have been in use for a long time in nuclear medi-
cine, but the lack of sufficient computing power prohibited their early
implementation in CT (although Hounsfield’s CT system was actually
running an iterative reconstruction algorithm). Iterative reconstruction
allows making use of more complicated measurement models than

FBP and thereby promises images of lower artifact content and lower
image noise. In contrast to FBP, this inversion is not based on finding
a reconstruction formula but rather on iteratively estimating an image
that best fits to the acquired raw data. This iterative estimation requires
a series of iterations, however. Every iteration step consists of a forward
projection, followed by a comparison of the forward-projected datawith
the measured raw data, followed by a back projection. This explains its
high computational demands. Although a long list of publications fo-
cusing on iterative reconstruction techniques exists, insufficient data
are published about the specific algorithmic implementation of the
commercially available solutions.

The first iterative image reconstruction algorithms that became
available commercially-adaptive statistical iterative reconstruction
(ASIR; GE), adaptive iterative dose reduction (AIDR) and AIDR 3D
(Toshiba), iterative reconstruction in image space (IRIS; Siemens), and
iDose (Philips)-were purely image based (Fig. 3). These image post-
processing algorithms can be thought of being edge-preserving filtering,
aiming at noise reduction in homogeneous regions and at preservation
or improvement of spatial resolution at edges. In fact, the term image
restoration would be more appropriate for these types of algorithms
than the term image reconstruction.

In the meantime, vendors have provided “fully iterative image re-
construction algorithms” in the sense that the reconstructed image un-
dergoes a forward projection to be compared with the measured raw
data with the aim of minimizing the residual errors. This procedure is
necessary to minimize artifacts such as cone beam or spiral artifacts.
These raw data iterations can also be used to minimize image noise
(for dose reduction) and to model the finite width and the exact shape
of the x-rays (for resolution recovery). However, it can be shown that
if an exact inverse of the forward projector exists, the iterative process
can be converted into one that entirely operates in the image domain.92

Furthermore, it can be shown that the effect of ray modeling in CT can
also be converted to an image domain operation, given that this filtering
is applied to a master image with rather small voxels.93,94 These two
observations justify minimizing the number of (computationally de-
manding) iterations between image domain and raw data domain in fa-
vor of performing more (computationally efficient) iterations in image
domain (Fig. 4; Table 2).

Adaptive statistical iterative reconstruction (ASIR) is an iterative
reconstruction algorithm of GE. Image noise is reduced by raw data
preprocessing, FBP of the preprocessed raw data, modeling of the
statistical system properties, and loop wise image regularization. The
model incorporates statistical information from the CT system (includ-
ing photon statistics and electronic noise) and details of the system op-
tics (including the size of each detector cell, dimensions of the focal
spot, shape, and size of each image voxel). The iterative procedure
mainly involves the image data domain. The reconstruction time for
this technique is only slightly longer than that for the FBP, therefore
being well suited for the workflow of a busy imaging center. The

FIGURE 3. High-pitch pediatric CTA showing a 5-month-old boy with Kawasaki syndrome and multiple aneurysms; 70 kV; scan speed, 73 cm/s; pitch,
3.2; ADMIRE 2, CTDIvol (32 cm reference phantom), 0.27 mGy; dose length product, 4.5 mGy cm; effective dose, 0.47 mSv; no sedation required.
Figure 3 can be viewed online in color at www.investigativeradiology.com.
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regularization steps in the image domain affect not only the noise level
but also the image texture, sometimes called “plastic-like” appearance.
To improve acceptability and to restore the more familiar texture, ASIR
images are typically linearly blended with FBP images. Zero percent
ASIR corresponds to an FBP image, whereas 100% ASIR provides
the highest level of noise reduction at the cost of an altered image tex-
ture. Increasing the blending ratio significantly decreases measured
noise levels and increases signal-to-noise ratio (SNR) and contrast-to-
noise ratio (CNR), but this does not necessarily translate into a signifi-
cant improvement in diagnostic confidence and specificity.96 In ab-
dominal CT, weighting factors of 25% to 60% are frequently used.96

With ASIR 40%, a dose reduction in abdominal CT of 25% has been
realized.97 In another study, body mass index (BMI) adapted dose re-
duction of 23% to 66% were reported, but the mean CTDIvol of the ref-
erence protocol in this study was very high (21 mGy for BMI < 20
kg/m2 to 27mGy for BMI > 25 kg/m2).98 Similar dose reduction poten-
tial was reported in cardiac CTA (44% dose reduction),99 chest CT
(25% dose reduction),100 and head CT (31% dose reduction).101

Model-based iterative reconstruction (MBIR or VEOTM, GE)
is a computationally highly demanding “true” iterative reconstruction
scheme; MBIR incorporates not only modeling of photon and noise

statistics but also modeling of system optics.26Originally, blending with
FBP images was not performed, and no specific reconstruction kernels
were provided.102–104 Dose reduction values of 50% and more with-
out sacrificing image quality in abdominal CT were reported using
MBIR.105–108 When image qualities of abdominal CTwere compared,
MBIR images acquired at half (50%) standard-dose had less noise
and better quality than half-dose ASIR and half-dose FBP, and also less
noise and similar image quality compared with standard-dose FBP.105

In another study of the abdomen and pelvis, subjective image quality
of low-dose MBIR scans (76% dose reduction) was found to be supe-
rior compared to standard-dose FBP and ASIR.107 In small liver lesions
(<10 mm), detection and conspicuity were significantly higher with
MBIR than with ASIR.109 In low-dose chest CT, intraindividually com-
paring image quality of a 120 kV/50 mAs and 120 kV/4 mAs protocol,
MBIR was criticized for blotchy pixelated appearance and reduced im-
age sharpness compared to FBP. However, the performance of MBIR
was significantly superior to that of FBP for the detection of non-
calcified pulmonary nodules at the same dose level.110 Submillisievert
images (CTDIvol, 2 mGy) were found to be diagnostically acceptable
for the evaluation of lung parenchyma (not the mediastinum) even with
FBP, but MBIR images at that dose were rated suboptimal because of

FIGURE 4. Classification of image reconstruction algorithms providedby the vendors (adapted fromKachelriess95). The algorithms aremostly a black box
to the scientific community and users of the CT systems, with few details published. Two algorithms cannot be classified because the corresponding
vendors do not disclose sufficient information (IMR [Philips], ASIR-V [GE]). Figure 4 can be viewed online in color at www.investigativeradiology.com.

TABLE 2. Properties of the Iterative Reconstruction Techniques Used in CT Today

Vendor Reconstruction Algorithm Additional Parameters Recon Time rel. to FBP Sinogram Iterations Image Iterations Full Iterations

All FBP — 1 √ — —

GE ASIR, ASIR-V 0%–100% (eg, ASIR, 30%) 2 √ √ —

MBIR/VEO — 30–50 — — √

Philips iDose Levels 1–7 2 √ √ —

IMR Soft, Routine, or SharpPlus 5 ? ? ?
Siemens IRIS Strength 1–5 1–2 √ √ —

SAFIRE Strength 1–5 1–2 √ √ √

ADMIRE Strength 1–5 1–2 √ √ √

Toshiba AIDR, AIDR 3D Mild, standard, or strong 1 √ √ —

The reconstruction time varies with different reconstruction hardware.
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a loss of conspicuity of normal pulmonary structures despite showing
the lowest image noise.111 No significant differences in sensitivity be-
tween ASIR images (CTDIvol, 1.77 mGy) and MBIR images (CTDIvol,
0.39 mGy) were reported for ground glass opacities and nodules.112

Filtered back projection, ASIR, andMBIR resulted in different emphy-
sema indices and wall thickness measurements, which needs to be
taken into account, when images from different sites and CT units
are compared in the follow-up.113 In head CT, MBIR was reported to
be superior to ASIR in image quality and artifact reduction at equiva-
lent dose level but at the cost of a mean reconstruction time of
32 minutes.114 Higher resolution and lower noise have been reported
at the cost of significantly longer reconstruction times (ranging from
10 to 90 minutes, depending on the number of slices to be recon-
structed). Because the long reconstruction times significantly interfere
with clinicalworkflow, a hybrid with ASIR (ASIR-V) is currently avail-
able instead of MBIR.

iDose 4 (Philips) is a hybrid iterative reconstruction algorithm
with two denoising components: an iterative maximum likelihood-
type sinogram restoration based on Poisson noise distribution and a local
structure model fitting on image data that iteratively decreases the noise.
The level of noise reduction in the images can be selected in 7 levels;
the higher levels indicate greater noise reduction, also at the cost of in-
creasing image texture alteration (blotchy pixilated appearance) com-
pared to FBP images. Image reconstruction is fast enough not to
delay the clinical workflow (approximately 20 frames per second).115

Fifty-five percent dose reduction was reported using iDose in retrospec-
tively ECG-gated coronary CTA using 256-multidetector computed
tomography (MDCT).116

Iterative model reconstruction (IMR; Philips) is a more advanced
algorithm, but very little detail has been published until now. The visi-
bility of peripheral lung vessels on low-dose images (CTDIvol, 1.8mGy)
reconstructed with iDose (levels 2 and 4) and standard-dose images
(CTDIvol, 5.6 mGy) reconstructed with FBP was considered optimal,
but the visibility of small peripheral blood vessels on low-dose images
reconstructed with IMR in a prototypic setting was compromised in
some cases, although the overall noise level was lowest.115 Intravascu-
lar noise reduction up to 88% in cardiac CTAwas reported, with image
noise amplitude within the left main coronary artery reduced by a fac-
tor of 1.3 from FBP to iDose 4 and by a factor of 2.6 from iDose 4 to
IMR117; no correlation with invasive coronary angiography was per-
formed, so the impact on stenosis grading could not be assessed.

Iterative reconstruction in image space (IRIS; Siemens) is an ap-
proach combining adaptive sinogram postprocessing, analytical image
reconstruction, and iterative image processing. Similar to the other res-
toration type image reconstruction techniques, an initial FBP image
containing all frequencies is used for subsequent iterative processing
loops to enhance sharpness and reduce noise taking into account the
physical properties of the scanner system and the reconstruction param-
eters. Repetitive correction loops account for noise reduction while pre-
serving edge information and low-contrast structures.118,119 The effect
of IRIS could be elegantly assessed with DSCT, which allows acqui-
sition of full-dose and half-dose CT data simultaneously by using data
for image reconstruction from both or only one tube detector array.
No statistically significant differences in diagnostic confidence or arti-
facts between full-dose FBP and 50% dose IRIS images of the abdomen
were reported, except an altered image noise pattern with IRIS.118 An
identical setup was used to test the effects in chest CTwith similar re-
sults.120 Iterative reconstruction in image space significantly improved
image quality compared to FBP images at the same dose level (CTDIvol,
45mGy) in head CTand at least matched the objective and subjective im-
age quality parameters of standard FBP images (CTDIvol, 60 mGy).

119

Sinogram-affirmed iterative reconstruction (SAFIRE; Siemens)
and the advanced modeled iterative reconstruction (ADMIRE; Siemens)
are fully iterative. A few iterations between image and raw data domain
are conducted to reduce artifacts. Noise reduction is conducted in

sinogram and image domain. This combines high computational per-
formance with high image quality.92

A similar DSCT approach as in reference118 was used to assess
image quality, diagnostic performance and the optimal strength setting of
SAFIRE in abdominal CT. Sinogram-affirmed iterative reconstruction
strength 2 (strength values ranging from 1 to 5 are available) at 50%
dose was considered noninferior to FBP at full dose, although sensi-
tivity for small lesions (<1 cm) was reduced using 50% SAFIRE (sen-
sitivity, 55%) instead of 100% FBP (sensitivity, 70%; P = 0.08).121

Acceptable image quality in cardiac CTA at very low dose (<0.1 mSv)
became possible in selected patient groups using SAFIRE.122 Chest
CTA using low-kilovolt scan protocols and SAFIRE provided diag-
nostic image quality at low dose (<1.5 mSv).123 Phantom (COPDGene
2 test object) measurements demonstrated accurate quantitative chest CT
images with acceptable image noise at very low dose levels (CTDIvol,
0.15 mGy) using ADMIRE.124 Lower image noise, higher diagnostic
confidence, and higher sensitivity for nodule detection was reported
for ADMIRE compared to SAFIRE and FBP in low-dose chest CT
(down to CTDIvol, 0.14 mGy).18

The AIDR and AIDR 3D (Toshiba) are sinogram domain and
image domain-based iterative reconstruction algorithms without a for-
ward projection from image domain to sinogram domain.

METAL ARTIFACT REDUCTION
Artifacts from strongly attenuating objects like metallic implants,

dental fillings, or highly concentrated contrast material (CM) are a prob-
lem frequently encountered in CT. They lead to severe image artifacts
due to photon starvation, to beam hardening and, in particular, to scat-
ter. Sometimes, such artifacts can be reduced using a physics-based
approach.125 In most cases, however, such severe artifacts require a
dedicated metal artifact reduction (MAR) software.

The first algorithms for MAR, as well as many of the algorithms
proposed since then are pure sinogram inpainting methods.126,127 No
matter how sophisticated the inpainting algorithm is, the original arti-
facts are removed, whereas significant new artifacts are introduced.
The resulting images are rarely of diagnostic quality.

A decisive step toward diagnostic MAR images was the intro-
duction of a so-called prior image, that is obtained from the initial
uncorrected images by soft thresholding with the thresholds being
set to represent the tissue classes air, soft tissue and bone, for example,
with 3 predefined CT values. The normalized metal artifact reduction
(NMAR) algorithm uses this prior image for normalization and de-
normalization. Forward projecting this prior image yields the prior
sinogram, which is used to normalize the original raw data (Fig. 5).
The normalized raw data are very homogeneous outside the metal trace;
and thus, the metal trace can be safely replaced by linear interpolation or
any other kind of inpainting approach. The inpainted raw data are then
denormalized by pixelwise multiplication with the prior sinogram. The
corrected raw data are reconstructed by FBP, the metal image is inserted,
and, in some cases, high frequencies of the initial uncorrected images
are added to obtain the final corrected images.44,45 An iterative version
of the NMAR algorithm, called IMAR is commercially being imple-
mented on Siemens systems.128 Another approach similar to the NMAR
algorithm is the orthopedic metal artifact reduction (O-MAR) algorithm
used commercially by Philips.129 These new classes of MAR algo-
rithms have been successfully used to improve image quality by sup-
pressing metal artifacts in patients with dental130–132 and orthopedic
hardware.133,134

Virtual monochromatic imaging using dual-energy CT (DECT)
(see the “Dual-Energy CT” section below) has been proposed as an al-
ternative approach for MAR, but it has been demonstrated that DECT
provides suboptimal image quality in patients with bilateral prostheses
or in those with dental hardware.135,136 Nevertheless, in cases where
no dedicated MAR software is available, artifact reduction using such
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monochromatic DECT images may be a valuable alternative.137,138

Flat-panel CT and cone-beam CT are considered alternative modalities
in bone imaging, especially in the presence of metallic hardware, but
MDCT has been demonstrated to provide sufficient image quality for
postoperative imaging of internally fixated wrist fractures even without
dedicated MAR algorithms.139

DUAL-ENERGY CT (DECT)
With the introduction of DSCT systems, DECT celebrated a re-

vival from initial efforts of the 1980s.140–143Dual-energy CTmakes use
of the fact that attenuation can be decomposed into two linearly indepen-
dent functions of energy, for example, into water and bone, into water
and iodine, or, more physically, into photo and Compton effect. To allow
for such decomposition, DECT performs a scan using two different x-ray
spectra. Achieving optimal separation between the low- and the high-
energy spectra is important in DECT because the quality of mate-
rial decomposition depends on how different the two spectra are: the
larger the difference between the two spectra, the smaller the noise level.

There are several implementations of DECT in routine clinical
use (Fig. 6). Using two tubes, operating at different potentials, each
tube's x-rays can be selectively prefiltered to minimize patient's dose
and to improve spectral separation.144 The additional prefilter on the

high-energy x-ray source removes the undesired low-energy photons
before they reach the patient. Another advantage of DSCT is that both
x-ray tubes can be operated separately with individual tube currents and
with individual tube current modulation curves (the low-energy thread
requires larger modulation amplitudes than the high-energy thread).

Another implementation is based on fast tube voltage switching
such that every other projection is performed at either the low- or the
high-kilovolt value. This requires a dedicated x-ray tube and x-ray power
generator, but selective prefiltering of the high-kilovolt x-rays is impossi-
ble. Owing to the finite rise and fall times of the tube voltage, the spectral
separation is limited. In addition, the tube current cannot be switched ow-
ing to the temporal inertia of the filament and the required differences in
mAs product for the low- and the high-kilovolt raw data can only partially
be realized by setting the dwell times accordingly. An advantage of the
kilovolt switching technology is that DECT can be provided in the full
50 cm field of measurement; and therefore, patient positioning is not as
critical as with smaller field of measurements (26–35 cm), as it is the case
with DSCT owing to space limitations.

Dual-layer, or sandwich, detectors are another alternative to real-
ize full-field DECT. The first detector layer prefilters the x-rays; and
thereby, the second layer sees the prefiltered x-rays that passed the first
layer. Thus, the second layer measures the high-energy spectrum,

FIGURE 5. Dedicatedmetal artifact reduction algorithms either use simple inpainting (red), add prior information to normalize the data (red and blue), or
additionally perform a frequency split to restore the noise texture (red, blue, and green). Figure 5 can be viewed online in color at www.
investigativeradiology.com.
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whereas the first layer mainly captures low-energy photons. The spec-
tral separation cannot be adjusted with such systems, and separation
will be limited, resulting in more noise. Sandwich detector DECT in-
formation provides geometrically fully consistent low- and high-
energy data, which is not the case with the other implementations.
Raw data-based DECT processing rather than image-based material
decomposition is possible, and the user can retrospectively decide to
use conventional single-energy CT or DECT information.

Recently, a split-filter technique was introduced in single-source
CT, using a prefilter that is split along the z-direction such that (in the
case of a 64-detector row system) the first 32 detector rows are pre-
filtered differently than the last 32 detector rows. A spiral pitch value
below 0.5 needs to be chosen to ensure that each voxel is scanned with
each of the two different spectra. The spectral separation achievable

with such an approach is comparable to the sandwich detector and the
tube voltage switching concepts. The system also provides spectral in-
formation throughout the full 50 cm field of measurement.

As previously mentioned, photon counting detectors are a highly
promising technique for future diagnostic CT systems. Since these detectors
can discriminate two or more energy windows, they are intrinsically suited
forDECTapplications. It should be noted that DSCT systems can potentially
be equipped with one photon counting detector and one conventional
energy integration detector, or with two photon counting detectors.

Typical clinical applications of DECT are virtual nonenhanced
imaging,145–147 automated bone removal,148–151 urinary stone classifi-
cation,152–155 gout imaging,80,156–162metal artifact reduction,135–138,163,164

cardiac165–170 and pulmonary perfusion imaging,171–183 and “mono-
energetic” imaging (Figs. 7 and 8).136,143,184–188 The very high CNR

FIGURE 7. Typical examples of DECT. A, A 62-year-old patient with multiple urate deposits (coded in green color). Calcifications are coded in gray or
purple (i.e, vessel walls). B, A 47-year-old patient after treatment of lymphoma. Persistent enlarged mediastinal lymph node (arrow) without contrast
enhancement (upper row, 120-kV equivalent image; middle row, virtual nonenhanced image; bottom row, iodine map). C, A 68-year-old patient with
acute pulmonary embolism. Embolic material (arrow) in CTA and the resulting perfusion defect (white arrow) in the color-coded iodine map (bottom
row) can be visualized. Figure 7 can be viewed online in color at www.investigativeradiology.com.

FIGURE 6. Today's dedicated DECT implementations and a potential future systemwith photon counting CT detectors. Not shown here is the option to
do two subsequent scans with different tube voltages, as it is available for some mid-range CT systems. Figure 6 can be viewed online in color at
www.investigativeradiology.com.
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in low–kiloelectron volt images can be used to either enhance the image
contrast or to reduce the volume of CM while maintaining the CNR of
a 120-kV image.

DYNAMIC CONTRAST-ENHANCED CT
Dynamic contrast-enhanced CT (DCE-CT) or perfusion CT

(PCT) aims to assess the blood supply of tissue through analysis of
the temporal enhancement pattern after CM injection. Rapid repetitive
sampling of a specific tissue volume is performed while injecting a
small volume of CM at a high injection speed.189–191 The concentration
of iodine within blood vessels and tissue is linearly proportional to the
increase in attenuation; and therefore, the time-attenuation curve (TAC)
can be analyzed for each voxel using a kinetic model. Hemodynamic pa-
rameters can be calculated from the distribution of CM in the intravascu-
lar and extracellular compartments: Mean transit time (MTT, time the
tracer needs to travel through tissue vasculature), regional blood flow
(BF, blood flow per tissue unit), blood volume (BV, fraction of blood

per tissue unit), extraction fraction (E, fraction of tracer that is extracted
to extracellular space during first pass), flowextraction product or perme-
ability (FE or Ktrans, tracer flow from intravascular into extracellular space
per tissue unit), permeability surface area product (PS). Different tech-
niques have been developed to postprocess the DCE data: for brain perfu-
sion imaging, the deconvolution and maximum-slope approach; for tumor
perfusion imaging, the deconvolution, Patlak method (BV, FE), and maxi-
mum slope. The limited volume coverage of older CT systems restricted
the clinical use of DCE-CT predominantly to stroke imaging,192–198 but
the advent of high-frequency spiral techniques (variable pitch spiral) and
very large area detectors191,199–202 facilitated DCE-CT in whole-organ im-
aging. Lesion characterization, response prediction, and assessment are in
the center of interest in oncologic imaging and extend the insights in tu-
mor biology and treatment.143,203–215 Dynamic contrast-enhanced CT
is also used to assess physiological and pathophysiological organ func-
tion, for example, kidney function190,199,212,216–225 or myocardial
perfusion.200,202,226–233Myocardial perfusion imaging faces further chal-
lenges owing to the fast heart motion and the increased susceptibility to

FIGURE 8. Energy dependence of iodine enhancement: monoenergetic imaging of a portal venous DECT realized with the split-filter technique. Very
bright iodine contrast on 45-keV image (left) is gradually decreasing with increasing kiloelectron volt values.

FIGURE 9. A 60-year-oldmanwith HCC: upper row, before; bottom row, after therapy (TACE). Parametermaps demonstrate complete devascularization
of the tumor after chemoembolization. From left to right, arterial liver perfusion, portal-venous liver perfusion, and hepatic perfusion index. Figure 9 can
be viewed online in color at www.investigativeradiology.com.
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artifacts. The heart motion can be compensated to some extent by syn-
chronizing the acquisition with the ECG signal. However, this introduces
strong limitations in the temporal resolution, which is often too low to fol-
low the tracer dynamics, which are typically much faster in the heart than
in other organs. For these reasons, further assumptions and efforts have to
bemade in the modeling step. Furthermore, beam hardening artifacts due
to iodine or bone tend to change the CT values in the surrounding tis-
sue.234 Partial scan reconstruction used in cardiac CT to maximize the
temporal resolution introduces CT value variations as a function of the
start angle of the partial scan segment.235 Dedicated algorithms to com-
pensate for these inconsistencies need to be applied.236–238 Chest perfu-
sion imaging is discussed in more detail in Goo et al.239

Hepatic perfusion imaging191,206,240–245 has gained special atten-
tion in a variety of clinical scenarios (tumor classification and grading,
and therapy response assessment). Unlike most other organ systems, the
liver (and lung) has a dual blood supply, necessitating adapted data
postprocessing and modeling (Fig. 9).

Dynamic contrast-enhanced CT implies repetitive scanning of
the same organ while the CM is passing the tissue of interest. Total scan
times of 40 seconds up to several minutes have been proposed. This has
two implications: patients are not able to hold their breath for such a long
time, and radiation exposure increases. Registration and motion correc-
tion algorithms are used to cope with the first problem, low-kilovolt
scanning, and all other means of dose reduction as previously described
need to be considered for the second. Specific data such as the extra-
cellular volume fraction and arterial enhancement fraction, which signif-
icantly correlate with hepatic fibrosis and cirrhosis, can also be
determined with conventional multiphasic liver CT,246,247 simplifying
the process of data acquisition at moderate radiation exposure. As indi-
cated in the previous section, DECT can provide iodine maps, which
are often regarded as perfusion images, but it is important to recognize
that DECT images do not reflect dynamic information but rather the io-
dine distribution inside an organ or a lesion at a specific time point.

CONCLUSIONS
Although repeatedly declared dead, CT has celebrated an amaz-

ing comeback within the past decade. Computed tomography is the
workhorse in daily practice, spreading into new applications like cardiac
and quantitative imaging, and shifting indications from radiography
to CTwith major clinical impact. Progress is seen with increased spa-
tial resolution, faster scan speed, lower CM and radiation dose, and
morphological and functional information. In 2014, approximately
81.2 million CT procedures were performed in the United States,248

which on the one hand highlights the role of CT but on the other hand
emphasizes the need for an intelligent dose management.
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