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Abstract

Intelligence pertains to the ability to make appropriate decisions in light of specific goals
and to adapt behavior to meet those goals in a range of environments. Mathematical
games provide a framework for studying intelligent behavior in models of real-world
settings or restricted domains. The behavior of alternative strategies in these games is
defined by each individual’s stimulus-response mapping. Limiting these behaviors to
linear functions of the environmental conditions renders the results to be little more than
a façade: Effective decision making in any complex environment almost always requires
nonlinear stimulus-response mappings. The obstacle then comes in choosing the
appropriate representation and learning algorithm. Neural networks and evolutionary
algorithms provide useful means for addressing these issues. This paper describes efforts
to hybridize neural and evolutionary computation to learn appropriate strategies in zero-
and nonzero-sum games, including the iterated prisoner’s dilemma, tic-tac-toe, and
checkers. With respect to checkers, the evolutionary algorithm was able to discover a
neural network that can be used to play at a near-expert level without injecting expert
knowledge about how to play the game. The implications of evolutionary learning with
respect to machine intelligence are also discussed. It is argued that evolution provides the
framework for explaining naturally occurring intelligent entities and can be used to
design machines that are also capable of intelligent behavior.

Keywords: evolutionary computation, neural networks, artificial intelligence,
computational intelligence, prisoner’s dilemma, tic-tac-toe, checkers

I. INTRODUCTION

One of the fundamental mathematical constructs is the game. Formally, a game is
characterized by sets of rules that govern the “behavior” of the individual players. This
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behavior is described in terms of stimulus-response: The player allocates resources in
response to a particular situation. Each opportunity for a response is alternatively called a
move in the game. Payoffs accrue to each player in light of their allocation of available
resources, where each possible allocation is a play in the game. As such, the payoffs
determine whether the game is competitive (payoffs for players vary inversely),
cooperative (payoffs for players vary directly), or neutral (payoffs for players are
uncorrelated). This last category is often used to describe the moves of a single player
acting against nature, where nature is not considered to have any intrinsic purpose and
indeed the meaning of a payoff to nature is not well defined. Thus the concept of gaming
is very flexible and can be used to treat optimization problems in economics [1],
evolution [2], social dilemmas [3], and the more conventional case where two or more
players engage in competition (e.g., chess, bridge, or even tank warfare).

Whereas the rules dictate what allocations of resources are available to the players,
strategies determine how those plays in the game will be undertaken. The value of a
strategy depends in part on the type of game being played (competitive, cooperative,
neutral), the strategy of the other player(s), and perhaps exogenous factors such as
environmental noise or observer error (i.e., misinterpreting other players' plays).

The fundamentals of game theory were first laid out in [1]. There are many subtleties to
the concept of a game and for sake of clarity and presentation we will focus here on the
rather simplified case where two players engage in a series of moves and face a finite
range of available plays at each move. In addition, all of the available plays will be
known to both players. These are considerable simplifications as compared to real-world
settings, but the essential aspects of the game and its utility as a representation of the
fundamental nature of purpose-driven decision makers that interact in an environment
should be clear.

In zero-sum games, where the payoff that accrues to one player is taken away from the
other (i.e., the game is necessarily competitive), a fundamental strategy is to minimize the
maximum damage that the opponent can do on any move. In other words, the player
chooses a play such that they guarantee a certain minimum expected payoff. When
adopted by both players, this minimax strategy [1] corresponds to the value of a play, or
the value of the game. This is an essential measure for if the value of a game is positive
for one player in a zero-sum game then they will always be able to assure a minimum
expected payoff that is greater than their opponent's corresponding negative value.

But what if the strategies adopted are not minimax? Certainly not all players seek to
minimize the maximum damage that an opponent can do. Some players are risk takers,
rather than being risk adverse. Consider the case where you play a game against an
opponent where you each have two plays: A or B. If you both play A then you will
receive $1. If you play A and they play B, you will receive $2. Alternatively, if you play
B and they play A you will receive $100, but if you both play B you will receive nothing.
By adopting the minimax strategy, you will choose to play A knowing that you will never
do worse than receive $1. But you will also never have the chance to earn $100, and the
difference between the worst you can do with B and the worst you can do with A is only
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$1. The conservative minimax strategy seems to almost work against common sense in
this case.

The situation can be shown to be much worse than this with very little effort. Suppose
that the value of a play is not dependent on any single play, but rather on a series of plays
in a game. For instance, the final outcome of a game of chess might be a move that
checkmates the opponent, but the value of the final checkmate is really a function of all
of the plays of the game up to that point. In this case, there are no explicit payoffs for the
intermediate moves and this poses a credit assignment problem. The temptation is to
attribute part of the value of the final move to each of the preceding moves, but to do so
implicitly treats the intervening steps from beginning to end in a linear sum-of-the-parts
fashion. Real-world games are rarely decomposable into these sorts of building blocks
and it is a fundamental mistake to treat nonlinear problems as if they were linear. In the
absence of intermediate values for alternative plays, the minimax strategy can only be
treated by estimating a value for each play, something that must be calculated online as
the game is played. This poses a significant challenge.

And what if the game is not zero-sum, or not competitive? It makes little sense to speak
of minimizing the maximum expected damage from another player that is friendly, even
actively seeking to bolster your payoff.

The speed of modern computers has opened a new opportunity in simulating games and
searching for optimal strategies. Moreover, the advent of evolutionary computation now
allows us to use the computer as a tool to discover strategies where heuristics may be
unavailable. A limitation of the approach is that these strategies must be represented as
data structures within the evolutionary algorithm. As such, the constraints that are
imposed on these structures can affect the results that are observed. For example, if
strategies are constrained to linear functions of previous plays this might impose a severe
limitation on the resulting behaviors. Thus the utility of implementing neural networks as
models for generating strategies in complex games becomes apparent: As nonlinear
universal functions, they offer flexible models for abstracting the behavior of any
measurable strategy. The combination of evolutionary computation and neural networks
appears well suited for discovering optimal strategies in games where classic game theory
is incapable of providing answers.

This paper surveys some recent efforts to evolve neural networks in two different game
settings: 1) the iterated prisoner’s dilemma, a nonzero-sum game of imperfect
information, and 2) more standard two-player zero-sum games of perfect information
such as tic-tac-toe and checkers. The evidence presented indicates that there is a
profitable synergy in utilizing neural networks to represent complex behaviors and
evolution to optimize those behaviors, particularly in the case where no extrinsic
evaluation function is available to assess the quality of performance. The paper concludes
with a discussion regarding the implications of evolutionary search to learning and
machine intelligence.

II. EVOLVING NEURAL STRATEGIES IN THE ITERATED PRISONER’S DILEMMA
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The conditions that foster the evolution of cooperative behaviors among individuals of a
species are rarely well understood. In intellectually advanced social animals, cooperation
between individuals, when it exists, is often ephemeral and quickly reverts to selfishness,
with little or no clear indication of the specific circumstances that prompt the change.
Simulation games such as the prisoner's dilemma have, for some time, been used to gain
insight into the precise conditions that promote the evolution of either decisively
cooperative or selfish behavior in a community of individuals. Even simple games often
generate very complex and dynamic optimization surfaces. The computational problem is
to reliably determine any ultimately stable strategy (or strategies) for a specific game
situation.

The prisoner's dilemma is an easily defined nonzero-sum, noncooperative game. The
term nonzero-sum indicates that whatever benefits accrue to one player do not necessarily
imply similar penalties imposed on the other player. The term noncooperative indicates
that no preplay communication is permitted between the players. The prisoner's dilemma
is classified as a "mixed-motive" game in which each player chooses between alternatives
that are assumed to serve various motives [4].

The typical prisoner's dilemma involves two players each having two alternative actions:
cooperate (C) or defect (D). Cooperation implies increasing the total gain of both players;
defecting implies increasing one's own reward at the expense of the other player. The
optimal policy for a player depends on the policy of the opponent [5, p. 717]. Against a
player who always defects, defection is the only rational play. But it is also the only
rational play against a player who always cooperates for such a player is a fool. Only
when there is some mutual trust between the players does cooperation become a
reasonable move in the game.

The general form of the game is represented in Table I (after [6]). The game is conducted
on a trial-by-trial basis (a series of moves). Each player must choose to cooperate or
defect on each trial. The payoff matrix that defines the game is subject to the following
constraints:

2γ1 > γ2 + γ3

γ3 > γ1 > γ4 > γ2

The first constraint ensures that the payoff to a series of mutual cooperations is greater
than a sequence of alternating plays of cooperate-defect against defect-cooperate (which
would represent a more sophisticated form of cooperation [7]). The second constraint
ensures that defection is a dominant action, and also that the payoffs accruing to mutual
cooperators are greater than those accruing to mutual defectors.

In game-theoretic terms, the one-shot prisoner's dilemma (where each player only gets to
make one move: cooperate or defect) has a single dominant strategy (Nash equilibrium)
(D,D), which is Pareto dominated by (C,C). Joint defection results in a payoff, γ4, to each
player that is smaller than the payoff, γ1, that could be gained through mutual
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cooperation. Moreover, defection appears to be the rational play regardless of the
opponent's decision because the payoff for a defection will either be γ3 or γ4 (given that
the opponent cooperates or defects, respectively), whereas the payoff for cooperating will
be γ1 or γ2. Since γ3 > γ1 and γ4 > γ2, there is little motivation to cooperate on a single
play.

Defection is also rational if the game is iterated over a series of plays under conditions in
which both players' decisions are not affected by previous plays. The game degenerates
into a series of independent single trials. But if the players' strategies can depend on the
results of previous interactions then “always defect” is not a dominant strategy. Consider
a player who will cooperate for as long as his opponent, but should his opponent defect,
will himself defect forever. If the game is played for a sufficient number of iterations, it
would be foolish to defect against such a player, as least in the early stages of the game.
Thus cooperation can emerge as a viable strategy [8].

The iterated prisoner's dilemma (IPD) has itself emerged as a standard game for studying
the conditions that lead to cooperative behavior in mixed-motive games. This is due in
large measure to the seminal work of Robert Axelrod. In 1979, Axelrod organized a
prisoner's dilemma tournament and solicited strategies from game theorists who had
published in the field [9]. The 14 entries were competed along with a 15th entry: On each
move, cooperate or defect with equal probability. Each strategy was played against all
others over a sequence of 200 moves. The specific payoff function used is shown in
Table II. The winner of the tournament, submitted by Anatol Rapoport, was "Tit-for-
Tat":

1. Cooperate on the first move.
2. Otherwise, mimic whatever the other player did on the previous move

Subsequent analysis in [3], [5, pp. 721-723] and others indicated that this Tit-for-Tat
strategy is robust because it never defects first and is never taken advantage of for more
than one iteration at a time. Boyd and Lauberbaum [10] showed that Tit-for-Tat is not an
evolutionarily stable strategy (in the sense of [2]). Nevertheless, in a second tournament,
reported in [11], Axelrod collected 62 entries and again the winner was Tit-for-Tat.

Axelrod [3] noted that 8 of the 62 entries in the second tournament can be used to
reasonably account for how well a given strategy did with the entire set. Axelrod [12]
used these eight strategies as opponents for a simulated evolving population of policies
by considering the set of strategies that are deterministic and use outcomes of the three
previous moves to determine a current move. Because there were four possible outcomes
for each move, there were 43 or 64 possible sets of three possible moves. The coding for a
policy was therefore determined by a string of 64 bits, where each bit corresponded with
a possible instance of the preceding three interactions, and six additional bits that defined
the player's move for the initial combinations of under three iterations. Thus there were
270 (about 1021) possible strategies.

The simulation was conducted as a series of steps:
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1. Randomly select an initial population of 20 strategies.
2. Execute each strategy against the eight representatives and record a weighted average

payoff.
3. Determine the number of offspring from each parent strategy in proportion to their

effectiveness.
4. Generate offspring by recombining two parents’ strategies, and, with a small

probability, effect a mutation by randomly changing components of the strategy.
5. Continue to iterate this process.

Recombination and mutation probabilities averaged one crossover and one-half a
mutation per generation. Each game consisted of 151 moves (the average of the previous
tournaments). A run consisted of 50 generations. Forty trials were conducted. From a
random start, the technique created populations whose median performance was just as
successful as Tit-for-Tat. In fact, the behavior of many of the strategies actually
resembled Tit-for-Tat [12].

Another experiment in [12] required the evolving policies to play against each other,
rather than the eight representatives. This was a much more complex environment: The
opponents that each individual faced were concurrently evolving. As more effective
strategies propagated throughout the population, each individual had to keep pace or face
elimination through selection (this protocol of coevolution was offered as early as [13-
15], see [16]). Ten trials were conducted with this format. Typically, the population
evolved away from cooperation initially, but then tended toward reciprocating whatever
cooperation could be found. The average score of the population increased over time as
“an evolved ability to discriminate between those who will reciprocate cooperation and
those who won't” was attained [12].

Several similar studies followed [12] in which alternative representations for policies
were employed. One interesting representation involves the use of finite state automata
(e.g., finite state machines (FSMs)) [17, 18]. Figure 1 shows a Mealy machine that
implements a strategy for the IPD from [19]. FSMs can represent very complex Markov
models (i.e., combining transitions of zero-order, first-order, second-order, and so forth)
and were used in some of the earliest efforts in evolutionary computation [20, 21]. A
typical protocol for coevolving FSMs in the IPD is as follows:

1. Initialize a population of FSMs at random. For each state, up to a prescribed
maximum number of states, for each input symbol (which represents the moves of
both players in the last round of play) generate a next move of C or D and a state
transition.

2. Conduct IPD games to 151 moves with all pairs of FSMs. Record the mean payoff
earned by each FSM across all rounds in every game.

3. Apply selection to eliminate a percentage of FSMs with the lowest mean payoffs.
4. Apply variation operators to the surviving FSMs to generate offspring for the next

generation. These variation operators include: i) alter an output symbol, ii) alter a
next-state transition, iii) alter the start state, iv) add a state, randomly connected, v)
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delete a state and randomly reassign all transitions that went to that state, and vi) alter
the initial move.

5. Proceed to step 2 and iterate until the available time has elapsed.

Somewhat surprisingly, the typical behavior of the mean payoff of the surviving FSMs
has been observed to be essentially identical to that obtained in [12] using strategies
represented by lookup tables. Figure 2 shows a common trajectory for populations
ranging from 50 to 1000 FSMs taken from [19]. The dynamics that induce an initial
decline in mean payoff (resulting from more defections) followed by a rise (resulting
from the emergence of mutual cooperation) appear to be fundamental.

Despite the similarity of the results of [12] and [19], there remains a significant gap in
realism between real-world prisoner's dilemmas and the idealized model offered so far.
Primary among the discrepancies is the potential for real individuals to choose
intermediate levels of cooperating or defecting. This severely restricts the range of
possible behaviors that can be represented and does not allow intermediate activity
designed to engender cooperation without significant risk or intermediate behavior
designed to quietly or surreptitiously take advantage of a partner [22, 23]. Hence, once
behaviors evolve that cannot be fully taken advantage of (those that punish defection),
such strategies enjoy the full and mutual benefits of harmonious cooperation. Certainly,
many other facets must also be considered, including 1) the potential for observer error in
ascertaining what the other player did on the last move (i.e., they may have cooperated
but it was mistaken for defecting), 2) tagging and remembering encounters with prior
opponents, and 3) the possibility of opting out of the game altogether (see [24, 25]). The
emphasis here will be on the possibility for using neural networks to represent strategies
in the IPD and thereby generate a continuous range of behaviors.

Harrald and Fogel [26] replaced the FSMs with multilayer feedforward perceptrons
(MLPs). Specifically, each player's strategy was represented by a MLP that possessed six
input nodes, a prescribed number of hidden nodes, and a single output node. The first
three inputs corresponded to the previous three moves of the opponent, while the second
three corresponded to the previous three moves of the network itself (Figure 3). The
length of memory recall was chosen to provide a comparison to Axelrod [12]. The
behavior on any move was described by the continuous range [−1, 1], where −1
represented complete defection and 1 represented complete cooperation. All nodes in the
MLP used sigmoidal filters that were scaled to yield output between −1 and 1. The output
of the network was taken as its move in the current iteration.

For comparison to prior work, the payoff matrix of Axelrod [12] was approximated by a
planar equation of both players' moves. Specifically, the payoff to player A against player
B was given by:

f(α,β) = −0.75α + 1.75β + 2.25
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Where α and β are the moves of the players A and B, respectively. This function is shown
in Figure 4. The basic tenor of the one-shot prisoner's dilemma is thereby maintained:
Full defection is the dominant move, joint payoffs are maximized by mutual full
cooperation.

An evolutionary algorithm was implemented as follows:

1. A population of a given number of MLPs was initialized at random. All of the
weights and biases of each network were initialized uniformly over [−0.5, 0.5].

2. A single offspring MLP was created from each parent by adding a standard Gaussian
random variable to every weight and bias term.

3. All networks played against each other in a round-robin competition (each met every
other one time). Encounters lasted 151 moves and the fitness of each network was
assigned according to the average payoff per move.

4. All networks were ranked according to fitness, and the top half were selected to
become parents of the next generation.

5. If the preset maximum number of generations, in this case 500, was met, the
procedure was halted; otherwise it proceeded to step 2.

Two sets of experiments were conducted with various population sizes. In the first, each
MLP possessed only two hidden nodes (denoted as 6-2-1, for the six input nodes, two
hidden nodes, and one output node). This architecture was selected because it is a
minimum amount of complexity that requires a hidden layer. In the second, the number
of hidden nodes was increased by an order of magnitude to 20. Twenty trials were
conducted in each setting with population sizes of 10, 20, 30, 40, and 50 parents.

Table III provides the results in five behavioral categories. The assessment of apparent
trends or instability was admittedly subjective, and in some cases the correct decision was
not obvious (e.g., Figure 5a). But in general the results showed:

1. There was no tendency for cooperative behavior to emerge when using a 6-2-1 MLP
regardless of the population size.

2. Above some minimum population size, cooperation was likely when using a 6-20-1
MLP.

3. Any cooperative behavior that did arise did not tend toward complete cooperation.
4. Complete and generally unrecoverable defection was the likely result with the 6-2-1

MLPs, but could occur even when using 6-20-1 MLPs.

Figure 5 presents some of the typical observed behavior patterns.

The results suggest that the evolution of mutual cooperation in light of the chosen payoff
function and continuous behaviors requires a minimum complexity (in terms of
behavioral freedom) in the policies of the players. A single hidden layer MLP is capable
of performing universal function approximation if given sufficient nodes in the hidden
layer. Thus the structures used to represent player policies in the current study could be
tailored to be essentially equivalent to the codings in which each move was a



9

deterministic function of the previous three moves of the game [12]. While previous
studies observed stable mutual cooperation [12], cooperative behavior was never
observed with the 6-2-1 MLPs, but was fairly persistent with the 6-20-1 MLPs. But the
level of cooperation that was generated when using the 6-20-1 neural networks was
neither complete nor steady. Rather, the mean payoff to all parents tended to peak below
a value of 3.0 and decline, while complete mutual cooperation would have yielded an
average payoff of 3.25.

The tendency for cooperation to evolve with sufficient complexity should be viewed with
caution for at least three reasons. First, very few trials with 6-20-1 MLPs exhibited an
increase in payoff as a function of the number of generations. The more usual result was
a steady decline in mean payoff, away from increased cooperation. Second, cooperative
behavior was not always steady. Figure 6 indicates the results for trial 10 with 20 parents
using 6-20-1 neural networks executed over 1500 generations. The behavior appeared
cooperative until just after the 1200th generation, at which point it declined rapidly to a
state of complete defection. A recovery from complete defection was rare, regardless of
the population size or complexity of the networks. It remains to be seen if further
behavioral complexity (i.e., a greater number of hidden nodes) would result in more
stable cooperation. Finally, the specific level of complexity in the MLP that must be
attained before cooperative behavior emerges is not known, and there is no a priori
reason to believe that there is a smooth relationship between the propensity to generate
cooperation and strategic complexity.

The striking result of these experiments is that the emergent behavior of the complex
adaptive system in question relies heavily on the representation for that behavior and the
dynamics associated with that representation. The fortuitous early choice of working with
models that allow only the extremes of complete cooperation or defection happened to
lead to models of social interaction which imbued "the evolution of cooperation" [3]. We
can only speculate about what interpretation would have been offered if this earlier
choice had instead included the option of a continuum of behaviors. Would Axelrod's
seminal book [3] have been titled "The Evolution of Unstable Cooperation that Often
Leads to Total Catastrophe"?

In this case, the combination of evolutionary computation and neural networks offers a
distinctly useful approach to modeling complex adaptive systems. There are no training
algorithms for such systems because the desired behavior must emerge from the model,
rather than be programmed into it. Thus evolution provides a basis for allowing that
emergence. It is perhaps difficult to envision another reasonable alternative. Further, the
behaviors of the individuals that are modeled must be sufficiently flexible to provide
confidence that they provide sufficient fidelity. The inclusion of a continuous range of
behaviors, as can be accomplished using neural networks, provides an advantage not
found in simpler classic models of the IPD and one that could be carried over to versions
that involve an arbitrary number of players [51].

III. EVOLVING NEURAL STRATEGIES IN TIC-TAC-TOE
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In contrast to the nonzero-sum IPD, attention can be given to evolving strategies in zero-
sum games of perfect information. One simple example of such a game is tic-tac-toe
(also known as naughts and crosses). The game is well known but will be described in
detail for completeness. There are two players and a three-by-three grid (Figure 7).
Initially the grid is empty. Each player moves in turn by placing a marker in an open
square. By convention, the first player's marker is "X" and the second player's marker is
"O." The first player moves first. The object of the game is to place three markers in a
row. This results in a win for that player and a loss for the opponent. Failing a win, a
draw may be earned by preventing the opponent from placing three markers in a row. It
can be shown by enumerating the game tree that at least a draw can be forced by the
second player.

The game is sufficiently complex to demonstrate the potential for evolving neural
networks as strategies, with particular attention given to devising suitable tactics without
utilizing expert knowledge. That is, rather than rely on the common artificial intelligence
approach of programming rules of behavior or weighted features of the problem that are
deemed important by a human expert, neural networks can be evolved simply on the
basis of the information contained in their “win, lose, and draw” record against a
competent player.

Fogel [27, p. 232] devoted attention to evolving a strategy for the first player (an
equivalent procedure could be used for the second player). A suitable coding structure
was required. It had to receive a board pattern as input and yield a corresponding move as
output. The coding structure utilized in these experiments was a MLP (Figure 8). Each
hidden or output node performed a sum of the weighted input strengths, subtracted off an
adaptable bias term, and passed the result through a sigmoid nonlinearity, (1 + e−x)−1.
Only a single hidden layer was incorporated. This architecture was selected because:

1. Variations of MLPs are universal function approximators.
2. The response to any stimulus could be evaluated rapidly.
3. The extension to multiple hidden layers is obvious.

There were nine input and output units. Each corresponded to a square in the grid. An
"X" was denoted by the value 1.0, an "O" was denoted by the value −1.0, and an open
space was denoted by the value 0.0. A move was determined by presenting the current
board pattern to the network and examining the relative strengths of the nine output
nodes. A marker was placed in the empty square with the maximum output strength. This
procedure guaranteed legal moves. The output from nodes associated with squares in
which a marker had already been placed was ignored. No selection pressure was applied
to drive the output from such nodes to zero.

The initial population consisted of 50 parent networks. The number of nodes in the
hidden layer was chosen at random in accordance with a uniform distribution over the
integers [1, …, 10]. The initial weighted connection strengths and bias terms were
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randomly distributed according to a uniform distribution ranging over [−0.5, 0.5]. A
single offspring was copied from each parent and modified by two modes of mutation:

1. All weight and bias terms were perturbed by adding a Gaussian random variable with
zero mean and a standard deviation of 0.05.

2. With a probability of 0.5, the number of nodes in the hidden layer was allowed to
vary. If a change was indicated, there was an equal likelihood that a node would be
added or deleted, subject to the constraints on the maximum and minimum number of
nodes (10 and one, respectively). Nodes to be added were initialized with all weights
and the bias term being set equal to 0.0.

A rule-based procedure that played nearly perfect tic-tac-toe was implemented to
evaluate each contending network (see below). The execution time with this format was
linear with the population size and provided the opportunity for multiple trials and
statistical results. The evolving networks were allowed to move first in all games. The
first move was examined by the rule base with the eight possible second moves being
stored in an array. The rule base proceeded as follows:

1. From the array of all possible moves, select a move that has not yet been played.
2. For subsequent moves:

a) With a 10 percent chance, move randomly, else
b) If a win is available, place a marker in the winning square, else
c) If a block is available, place a marker in the blocking square, else
d) If two open squares are in line with an "O," randomly place a marker in either of

the two squares, else
e) Move randomly in any open square.

3. Continue with step 2 until the game is completed.
4. Continue with step 1 until games with all eight possible second moves have been

played.

The 10 percent chance for moving randomly was incorporated to maintain a variety of
play in an analogous manner to a persistence of excitation condition [28, 29, pp. 362-
363]. This feature and the restriction that the rule base only looks one move ahead makes
the rule base nearly perfect, but beatable.

Each network was evaluated over four sets of these eight games. The payoff function
varied in three sets of experiments over {+1, −1, 0}, {+1, −10, 0}, and {+10, −1, 0},
where the entries are the payoff for winning, losing, and playing to a draw, respectively.
The maximum possible score over any four sets of games was 32 under the first two
payoff functions and 320 under the latter payoff function. But a perfect score in any
generation did not necessarily indicate a perfect algorithm because of the random
variation in play generated by step 2a, above. After competition against the rule base was
completed for all networks in the population, a second competition was held in which
each network was compared with 10 other randomly chosen networks. If the score of the
chosen network was greater than or equal to its competitor, it received a win. Those
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networks with the greatest number of wins were retained to be parents of the successive
generations. Thirty trials were conducted with each payoff function. Evolution was halted
after 800 generations in each trial.

The learning rate when using {+1, −1, 0} was generally consistent across all trials (Figure
9). The 95 percent confidence limits around the mean were close to the average
performance. The final best network in this trial possessed nine hidden nodes. The
highest score achieved in trial 2 was 31. Figure 10 indicates the tree of possible games if
the best-evolved neural network were played against the rule-based algorithm, omitting
the possibility for random moves in step 2a. Under such conditions, the network would
force a win in four of the eight possible branches of the tree and has the possibility of
losing in two of the branches.

The learning rate when using {+1, −10, 0} was considerably different (Figure 11) from
that indicated in Figure 9. Selection in light of the increased penalty for losing resulted in
an increased initial rate of improvement. Strategies that lose were quickly purged from
the evolving population. After this first-order condition was satisfied, optimization
continued to sort out strategies with the greatest potential for winning rather than
drawing. Again, the 95 percent confidence limits around the mean were close to the
average performance across all 30 trials. Figure 12 depicts the tree of possible games if
the best network from trial 1 were played against the rule-based player, omitting random
moves from step 2a. It would not force a win in any branch of the tree, but it would also
never lose. The payoff function was clearly reflected in the final observed behavior of the
evolved network.

The learning rate when using {+10, −1, 0} appeared similar to that obtained when using
{+1, −1, 0} (Figure 13). The 95 percent confidence limits were wider than was observed
in the previous two experiments. The variability of the score was greater because a win
received 10 more points than a draw, rather than only a single point more. Strategies with
a propensity to lose were purged early in the evolution. By the 800th generation, most
surviving strategies lost infrequently and varied mostly by their ability to win or draw.
The tree of possible games against the rule-based player is shown in Figure 14. The best-
evolved network in trial 1 could not achieve a perfect score except when the rule-based
procedure made errors in play through random perturbation (step 2a).

These experiments indicate the ability for evolution to adapt and optimize neural
networks that represent strategies for playing tic-tac-toe. But more importantly, no a
priori information regarding the object of the game was offered to the evolutionary
algorithm. No hints regarding appropriate moves were given, nor were there any attempts
to assign values to various board patterns. The final outcome (win, lose, draw) was the
only information available regarding the quality of play. Further, this information was
only provided after 32 games had been played; the contribution to the overall score from
any single game was not discernible. Heuristics regarding the environment were limited
to the following:

1. There were nine inputs.
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2. There were nine outputs.
3. Markers could only be placed in empty squares.

Essentially then, the procedure was only given an appropriate set of sensors and a means
for generating all possible behaviors in each setting, and was restricted to act within the
"physics" of the environment (i.e., the rules of the game). Nowhere was the evolutionary
algorithm explicitly told in any way that it was playing tic-tac-toe. The evidence suggests
the potential for learning about arbitrary games and representing the strategies for
allocating resources in neural networks that can represent the nonlinear dynamics
underlying those decisions.

IV. COEVOLVING NEURAL STRATEGIES IN CHECKERS

One limitation of the preceding effort to evolve neural networks in tic-tac-toe was the use
of a heuristic program that acted as the opponent for each network. Although no explicit
knowledge was programmed into the competing networks, a requirement for an existing
knowledgeable opponent is nearly as limiting. The ultimate desire is to have a population
of neural networks learn to play a game simply by playing against themselves, much like
the strategies in [12, 19] learned to play the IPD through coevolution. Before describing
the method employed here to accomplish this with the framework of the game of
checkers, we must first describe the rules of the game.

Checkers is traditionally played on an eight-by-eight board with squares of alternating
colors (e.g., red and black, see Fig. 15). There are two players, denoted as “red” and
“white” (or “black” and “white,” but here for consistency with a commonly available
website on the internet that allows for competitive play between players who log in, the
notation will remain with red and white). Each side has 12 pieces (checkers) that begin in
the 12 alternating squares of the same color that are closest to that player’s side, with the
right-most square on the closest row to the player being left open. The red player moves
first and then play alternates between sides. Checkers are allowed to move forward
diagonally one square at a time, or, when next to an opposing checker and there is a space
available directly behind that opposing checker, by jumping diagonally over an opposing
checker. In the latter case, the opposing checker is removed from play. If a jump would in
turn place the jumping checker in position for another jump, that jump must also be
played, and so forth, until no further jumps are available for that piece. Whenever a jump
is available, it must be played in preference to a move that does not jump; however, when
multiple jump moves are available, the player has the choice of which jump to conduct,
even when one jump offers the removal of more opponent’s pieces (e.g., a double jump
vs. a single jump). When a checker advances to the last row of the board it becomes a
king, and can thereafter move diagonally in any direction (i.e., forward or backward). The
game ends when a player has no more available moves, which most often occurs by
having their last piece removed from the board, but it can also occur when all existing
pieces are trapped, resulting in a loss for that player with no remaining moves and a win
for the opponent (the object of the game). The game can also end when one side offers a
draw and the other accepts.1
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A. Method

Each board was represented by a vector of length 32, with each component corresponding
to an available position on the board. Components in the vector could take on elements
from {−K, −1, 0, +1, +K}, where K was the evolvable value assigned for a king, 1 was
the value for a regular checker, and 0 represented an empty square. The sign of the value
indicated whether or not the piece in question belonged to the player (positive) or the
opponent (negative). A player’s move was determined by evaluating the presumed
quality of potential future positions. This evaluation function was structured as a feed
forward neural network with an input layer, three hidden layers, and an output node. The
second and third hidden layers and the output layer had a fully connected structure while
the connections in the first hidden layer were specially designed to possibly capture
spatial information from the board. The nonlinearity function at each hidden and output
node was the hyperbolic tangent (tanh, bounded by ±1) with a variable bias term,
although other sigmoidal functions could undoubtedly have been chosen. In addition, the
sum of all entries in the input vector was supplied directly to the output node.

Previous efforts in [30] used neural networks with two hidden layers, comprising 40 and
10 units respectively, to process the raw inputs from the board. Thus the 8 × 8 checkers
board was interpreted simply as a 1 × 32 vector, and the neural network was forced to
learn all of the spatial characteristics of the board. So as not to handicap the learning
procedure in this manner, the neural network used here implemented a series of 91
preprocessing nodes that covered n × n square overlapping subsections of the board.
These n x n subsections were chosen to provide spatial adjacency or proximity
information such as whether two squares were neighbors, or were close to each other, or
were far apart. All 36 possible 3 × 3 square subsections of the board were provided as
input to the first 36 hidden nodes in the first hidden layer. The following 25 4 × 4 square
subsections were assigned to the next 25 hidden nodes in that layer, and so forth. Figure
16 shows a sample 3 × 3 square subsection that contains the states of positions 1, 5, 6,
and 9. Two sample 4 × 4 subsections are also shown. All possible square subsections of
size 3 to 8 (the entire board) were given as inputs to the 91 nodes of the first hidden layer.
This enabled the neural network to generate features from these subsets of the entire
board that could then be processed in subsequent hidden layers (of 40 and 10 hidden
units, following [30]). Figure 17 shows the general structure of the “spatial” neural
network. At each generation, a player was defined by their associated neural network in
which all of the connection weights (and biases) and king value were evolvable.

It is important to note immediately that (with one exception) no attempt was made to
offer useful features as inputs to a player’s neural network. The common approach to
designing superior game-playing programs is to use a human expert to delineate a series
of board patterns or general features that are weighted in importance, favorably or
unfavorably. In addition, entire opening sequences from games played by grand masters
and look-up tables of end game positions can also be stored in memory and retrieved
when appropriate. Here, these sorts of “cheats” were eschewed: The experimental
question at hand concerned the level of play that could be attained simply by using
evolution to extract linear and nonlinear features regarding the game of checkers and to
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optimize the interpretation of those features within the neural network.2 The only feature
that could be claimed to have been offered is a function of the piece differential between
a player and its opponent, owing to the sum of the inputs being supplied directly to the
output node. The output essentially sums all the inputs which in turn offers the piece
advantage or disadvantage. But this is not true in general, for when kings are present on
the board, the value K or −K is used in the summation, and as described below, this value
was evolvable rather than prescribed by the programmers a priori. Thus the evolutionary
algorithm had the potential to override the piece differential and invent a new feature in
its place. Absolutely no other explicit or implicit features of the board beyond the
location of each piece were implemented.

When a board was presented to a neural network for evaluation, its scalar output was
interpreted as the worth of that board from the position of the player whose pieces were
denoted by positive values. The closer the output was to 1.0, the better the evaluation of
the corresponding input board. Similarly, the closer the output was to −1.0, the worse the
board. All positions that were wins for the player (e.g., no remaining opposing pieces)
were assigned the value of exactly 1.0 and likewise all positions that were losses were
assigned −1.0.

To begin the evolutionary algorithm, a population of 15 strategies (neural networks), Pi, i

= 1, ..., 15, defined by the weights and biases for each neural network and the strategy’s
associated value of K, was created at random. Weights and biases were generated by
sampling from a uniform distribution over [−0.2,0.2], with the value of K set initially to
2.0. Each strategy had an associated self-adaptive parameter vector σσi, i = 1, ..., 15, where

each component corresponded to a weight or bias and served to control the step size of
the search for new mutated parameters of the neural network. To be consistent with the
range of initialization, the self-adaptive parameters for weights and biases were set
initially to 0.05.

Each parent generated an offspring strategy by varying all of the associated weights and
biases, and possibly the value of K as well. Specifically, for each parent Pi, i = 1, ..., 15

an offspring P′i, i = 1, ..., 15, was created by:

σ′i(j) = σi(j)exp( τNj (0,1) ), j = 1, ..., Nw
w′i(j) = wi(j) + σ′i(j)Nj(0,1), j = 1, ..., Nw

where Nw is the number of weights and biases in the neural network (here this is 5046), τ
= 1/sqrt(2sqrt(Nw)) = 0.0839, and Nj(0,1) is a standard Gaussian random variable

resampled for every j. The offspring king value K′ was obtained by:

K′i = Ki + d



16

where d was chosen uniformly at random from {−0.1, 0, 0.1}. For convenience, the value
of K′i was constrained to lie in [1.0, 3.0] by resetting to the limit exceeded when
applicable.

All parents and their offspring competed for survival by playing games of checkers and
receiving points for their resulting play. Each player in turn played one game against each
of five randomly selected opponents from the population (with replacement). In each of
these five games, the player always played red, whereas the randomly selected opponent
always played white. In each game, the player scored −2, 0, or +1 points depending on
whether it lost, drew, or won the game, respectively (a draw was declared after 100
moves for each side). Similarly, each of the opponents also scored −2, 0, or +1 points
depending on the outcome. These values were somewhat arbitrary, but reflected a
generally reasonable protocol of having a loss be twice as costly as a win was beneficial.
In total, there were 150 games per generation, with each strategy participating in an
average of 10 games. After all games were complete, the 15 strategies that received the
greatest total points were retained as parents for the next generation and the process was
iterated.

Each game was played using a fail-soft alpha-beta search [31] of the associated game tree
for each board position looking a selected number of moves into the future. The minimax
move for a given ply was determined by selecting the available move that affords the
opponent the opportunity to do the least damage as determined by the evaluation function
on the resulting position. The depth of the search, d, was set at four to allow for
reasonable execution times (30 generations on a 400 MHz Pentium II required about
seven days, although no serious attempt was made to optimize the run-time performance
of the algorithm). In addition, when forced moves were involved, the search depth was
extended (let f be the number of forced moves) because in these situations the player has
no real decision to make. The ply depth was extended by steps of two, up to the smallest
even number that was greater than or equal to the number of forced moves f that occurred
along that branch. If the extended ply search produced more forced moves then the ply
was once again increased in a similar fashion. Furthermore, if the final board position
was left in an "active" state, where the player has a forced jump, the depth was once again
incremented by two ply. Maintaining an even depth along each branch of the search tree
ensured that the boards were evaluated after the opponent had an opportunity to respond
to the player's move. The best move to make was chosen by iteratively minimizing or
maximizing over the leaves of the game tree at each ply according to whether or not that
ply corresponded to the opponent’s move or the player’s move. For more on the
mechanics of alpha-beta search, see [31].

This evolutionary process, starting from completely randomly generated neural network
strategies, was iterated for 230 generations (approximately eight weeks of evolution). The
best neural network (from generation 230) was then used to play against human
opponents on an internet gaming site (www.zone.com). Each player logging on to this
site is initially given a rating, R0, of 1600 and a player’s rating changes according to the
following formula (which follows the rating system of the United States Chess Federation
(USCF)):
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  RNew = ROld + C Outcome – W
(1)

where
  W = 1

1 + 10
ROpp – ROld

400

   Outcome ∈ 1 if Win, 0.5 if Draw, 0 if Loss

ROpp is the rating of the opponent, and C = 32 for ratings less than 2100.4

Over the course of one week, 100 games were played against opponents on this website.
Games were played until (1) a win was achieved by either side, (2) the human opponent
resigned, or (3) a draw was offered by the opponent and (i) the piece differential of the
game did not favor the neural network by more than one piece and (ii) there was no way
for the neural network to achieve a win that was obvious to the authors, in which case the
draw was accepted. A fourth condition occurred when the human opponent abandoned
the game without resigning (by closing their graphical-user interface) thereby breaking
off play without formally accepting defeat. When an opponent abandoned a game in
competition with the neural network, a win was counted if the neural network had an
obvious winning position (one where a win could be forced easily in the opinion of the
authors) or if the neural network was ahead by two or more pieces; otherwise, the game
was not recorded. There was a fifth condition which occurred only once wherein the
human opponent exceeded the four minute per move limit (imposed on all rated games on
the website) and as a result forfeited the game. In this special case, the human opponent
was already significantly behind by two pieces and the neural network had a strong
position. In no cases were the opponents told that they were playing a computer program,
and no opponent ever commented that they believed their opponent was a computer
algorithm.

Opponents were chosen based primarily on their availability to play (i.e., they were not
actively playing someone else at the time) and to ensure that the neural network
competed against players with a wide variety of skill levels. In addition, there was an
attempt to balance the number of games played as red or white. In all, 49 games were
played as red. All moves were based on a ply depth of d = 6 and infrequently 8,
depending on the perceived time required to return a move (less than 30 seconds was
desired). The vast majority of moves were based on d = 6.

B. Results

Figure 18 shows a histogram of the number of games played against players of various
ratings along with the win-draw-loss record attained in each category. The evolved neural
network dominated players rated 1800 and lower, and had a majority of wins vs. losses
against opponents rated between 1800 and 1900. Figure 19 shows the sequential rating of
the neural network and the rating of the opponents played over all 100 games. Table IV
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provides a listing of the class intervals and designations of different ratings accepted by
the USCF.

Given that the 100 independent games played to evaluate the player could have been
played in any order (since no learning was performed by the neural network during the
series of games played on the website), an estimate of the network's true rating can be
obtained by sampling from the population of all possible orderings of opponents. (Note
that the total number of orderings is 100! ≈ 9.33 × 10157, which is too large to enumerate.)
The network's rating was calculated over 5000 random orderings drawn uniformly from
the set of all possible orderings using Eq. (1). Figure 20 shows the histogram of the
ratings that resulted from each permutation. The corresponding mean rating was 1929.0,
with a standard deviation of 32.75. The minimum and maximum ratings obtained were
1799.48 and 2059.47. Figure 21 shows the rating trajectory averaged over the 5000
permutations as a function of the number of games played. The mean rating starts at 1600
(the standard starting rating at the website) and steadily climbs above 1850 by game 40.
As the number of games reaches 100, the mean rating curve begins to saturate and
reaches 1929.0 which places it subjectively as an above-average Class A player.

The neural network’s best result was recorded in a game where it defeated a player who
was rated 2210 (master level). At the time, this opponent was ranked 29th on the website
out of more than 40,000 registered players. The sequence of moves is shown in the
Appendix. Certain moves are annotated, but note that these annotations are not offered by
an expert checkers player (instead being offered here by the authors). Undoubtedly, a
more advanced player might have different comments to make at different stages in the
game. Selected positions are also shown in accompanying figures. Also shown is the
sequence of moves of the evolved network in a win over an expert rated 2024, who was
ranked 174th on the website.

This is the first time that a checkers-playing program that did not incorporate
preprogrammed expert knowledge was able to defeat a player at the master level. Prior
efforts in [30] defeated players at the expert level and played to a draw against a master.

C. Discussion

The results indicate the ability for an evolutionary algorithm to start with essentially no
preprogrammed information in the game of checkers (except the piece differential) and
learn, over successive generations, how to play at a level that is just below what would
qualify as “expert” by a standard accepted rating system. The most likely reason that the
best-evolved neural network was not able to achieve a higher rating was the limited ply
depth of d = 6 or 8. This handicap is particularly evident in two phases of the game:

1. In the end game, where it is common to find pieces separated by several open
squares, a search at d = 6 may not allow pieces to effectively “see” that there are other
pieces within eventual striking distance.

2. In the middle of the game, even if the neural network could block the opponent from
moving a piece forward for a king, it would often choose not to make this block. The
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ply depth was sufficient to see the opponent getting the king, but insufficient to see
the damage that would come as a result several moves after that.

The first of these two flaws resulted in some games that could have been won if a larger
ply were available, and it is well known that some end game sequences in checkers can
require a very high ply (e.g., 20-60 [32]). But the second flaw was more devastating
because this “Achilles heel” allowed many weaker yet aggressive players (rated 1600-
1800) the opportunity to get an early king. All of the losses to players rated below 1800
can be traced to this flaw. Whereas weaker players tend to have the objective of getting a
king as quickly as possible, better players tend to play for position and set up
combination moves that will capture pieces. Thus this pitfall was rarely exploited by
superior opponents.

The current world champion checkers program is Chinook [32-34]. The program uses
alpha-beta search with a preprogrammed evaluation function based on features of the
board, opening moves from games between grand masters, and a complete endgame
database for all positions with eight or fewer pieces remaining on the board (440 billion
possibilities). It is this level of knowledge that is required to play at the world champion
level (2814 rating). Everything that Chinook “knows” represents human expertise that
was programmed into it by hand. The algorithm is deterministic, no different than a
calculator in its process, computing each next move with exacting immutable precision.

It must be quickly admitted that the best-evolved spatial neural network cannot compete
with Chinook; however, recall that this was not the intention of the experimental design.
The hypothesis in question was whether or not there was sufficient information simply in
the final results from a series of games for evolution to design strategies that would
defeat humans. Not only was this answered affirmatively but also the level of play was
sufficient to defeat several expert-level players and one master-level player.

It is of interest to assess the significance of this result in comparison with other methods
of machine learning applied to checkers. Undoubtedly the most widely known such effort
is due to Arthur Samuel from 40 years ago [35]. Samuel’s method relied on a polynomial
evaluation function that comprised a sum of weighted features of a checkers board. All of
the features were chosen by Samuel rather than designed de novo by his program (as
performed here). The coefficients of the polynomial were determined using a simple
updating procedure that was based on self-play. For each game, one side would use the
polynomial that won the prior game and the other would use a variant of this polynomial.
The variation was made deterministically. The winner would continually replace the
loser, and occasionally some of the features with low weight would be replaced by others.
By 1956, Samuel’s program had learned to play well enough to defeat novice players [34,
p. 93].

There is, however, a misconception regarding the quality of play that was eventually
obtained by Samuel’s program. When played against humans of championship caliber,
the program performed poorly. It did have one early win in 1962 against Robert Nealey,
an eventual Connecticut state champion. This win received considerable publicity but in
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fact the game itself can be shown to have been poorly played on both sides (Schaeffer
[34] analyzed the moves of the game using Chinook and identified many mistakes in play
for both Nealey and Samuel’s program). It would be more accurate to assert that Nealey
lost the game than to say that Samuel’s program earned the win. In a rematch the
following year, Nealey defeated Samuel’s program in a six-game match. Later, in 1966,
Samuel played his program against the contenders for the world championship (Walter
Hellman and Derek Oldbury). Both Hellman and Oldbury defeated the program four
straight times each [34]. These negative results are rarely acknowledged.

After watching Samuel’s program lose to another program developed with the support of
Duke University in 1977, the American Checkers Federation Games Editor Richard
Fortman was quoted as stating “There are several thousand just average Class B players
who could beat either computer without difficulty” [34, p. 97]. The true level of
competency for Samuel’s program remains unclear, but there is no doubt that the
common viewpoint that Samuel “solved” the game of checkers, or that his results have
yet to be surpassed [36, p. 19], are in error.

Nevertheless, there is also no doubt that Samuel’s use of self-play was innovative. Even
after the highly visible publication of [35], there were only four other (known) efforts in
evolutionary computation over the next decade to coevolve strategies in settings where no
extrinsic evaluation function was used to judge the quality of behavior [13-15, 37].
Samuel might have easily envisioned embarking on the course that has been laid out in
this paper, extending the number of competitors beyond only two, and using random
variation to change coefficients in the polynomial evaluation function. It might have even
been obvious as something to consider.

The immediate limitation facing Samuel, and this is an important point to reckon when
considering the recent resurgence of interest in evolutionary computation, would have
been the available computing power. The IBM 7094 machine that he used to play Nealey
could perform six million multiplications per minute. By comparison, the Pentium II 400
MHz computer we used can exceed this by three orders of magnitude. We required about
1440 hours (60 days) of CPU time to evolve the spatial neural network that was tested
here. For Samuel, this would have translated into about 165 years! But this number could
be lowered to about 20 years by recognizing the rate at which computer speeds increased
over this timeframe. Had Samuel started in 1959 with the approach offered here, he might
have had a tangible result in 1979. Even then, it would have been difficult to assess the
level of play of the neural network because there were no internet gaming sites where
players of various skill levels could be challenged. The neural network’s ability would
have had to be assessed in regulation match play.

It is enticing to speculate on the effect that a nearly expert-rated checkers-playing neural
network would have had on the artificial intelligence community and the end of the
1970s, particularly one that was evolved without any extrinsic knowledge incorporated in
features to evaluate the board (with the exception of piece differential). Regardless, it is
clear that the computer technology for applying evolutionary algorithms to significant
problems in machine learning has only recently caught up with the concept. All of the
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pioneers who worked on evolutionary computation from the early 1950s to 1970s [16]
were 20-40 years ahead of their time.

V. INTELLIGENCE IN DECISION MAKING

Neural networks provide a versatile representation for complex behaviors in games
because they are universal function approximators. They do not present the only possible
choice for such functions, but their modularity, ease of design, and the relatively simple
processing that takes place at each node make them a suitable selection. The experiments
illustrated here in the iterated prisoner's dilemma, tic-tac-toe, and checkers show that
neural networks can generate useful strategies in both zero- and nonzero-sum games.
More importantly, the combination of evolutionary computation and neural networks
provides a means for designing solutions to games of strategy where there are no existing
experts and no examples that could serve as a database for training. The ability to
discover novel, high-performance solutions to complex problems through coevolution
mimics the strategy that we observe in nature where there is no extrinsic evaluation
function and individuals can only compete with other extant individuals, not with some
presumed “right answer.”

The evolution of strategies in games relates directly to the concept of intelligence in
decision making. The crux of intelligent behavior is the ability to predict future
circumstances and take appropriate actions in light of desired goals [21]. Central to this
ability is a means for translating prior observations into future expectations. Neural
networks provide one possibility for accomplishing this transduction; evolution provides
a means for optimizing the fidelity of the predictions that can be generated and the
corresponding actions that must be taken by varying potentially both the weights and
structure of the network. For example, in each game of checkers, the neural network
evaluation function served as a measure of the worth of each next possible board pattern
and was also used to anticipate the opponent's response to actions taken. The combination
of evolution and neural networks enabled a capability to both measure the worth of
alternative decisions and optimize those decisions over successive generations.

The recognition of evolution as an intelligent learning process has been offered many
times ([38, 39] and others). In order to facilitate computational intelligence, it may be
useful to recognize that all learning reflects a process of adaptation. The most important
aspect of such learning processes is the “development of implicit or explicit techniques to
accurately estimate the probabilities of future events” [40] (also see [41]). Ornstein [40]
suggested that as predicting future events is the “forte of science,” it is reasonable to
examine the scientific method for useful cues in the search for effective learning
techniques. Ref. [21, p. 112] went further and developed a specific correspondence
between natural evolution and the scientific method (later echoed in [42]). In nature,
individual organisms serve as hypotheses concerning the logical properties of their
environment. Their behavior is an inductive inference concerning some as yet unknown
aspects of that environment. The validity of each hypothesis is demonstrated by its
survival. Over successive generations, organisms generally become better predictors of
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their surroundings. Those that fail to predict adequately are “surprised,” and surprise
often has lethal consequences.

In this paper, attention has been given to representing hypotheses in the form of neural
networks, but evolution can be applied to any data structure. Prior efforts have included
the evolution of finite state machines [21], autoregressive moving-average (ARMA)
models [43], and multiple interacting programs represented in the form of symbolic
expressions [44] to predict a wide range of environments. The process of evolution
provides the means for discovering, rejecting, and refining models of the world (even in
the simplified cases of the “worlds” examined in this paper). It is a fundamental basis for
learning in general [41, 45, 46].

Genesereth and Nilsson [47] offered “Artificial intelligence is the study of intelligent
behavior. Its ultimate goal is a theory of intelligence that accounts for the behavior of
naturally occurring intelligent entities and that guides the creation of artificial entities
capable of intelligent behavior.” Yet research in artificial intelligence has typically passed
over investigations of the primal causative factors of intelligence to more rapidly obtain
the immediate consequences of intelligence [41]. Efficient theorem proving, pattern
recognition, and tree searching are symptoms of intelligent behavior. But systems that
can accomplish these feats are not, simply by consequence, intelligent. Certainly, these
systems have been applied successfully to specific problems, but they do not generally
advance our understanding of intelligence. They solve problems, but do not solve the
problem of how to solve problems.

Perhaps this is so because there is no generally accepted definition of the intelligence that
the field seeks to create. A definition of intelligence would appear to be prerequisite to
research in a field termed artificial intelligence, but such definitions have only rarely
been provided (the same is true for computational intelligence). And when they have
been offered, they have often been of little operational value.

For example, Minsky [48, p. 71] suggested “Intelligence ... means ... the ability to solve
hard problems.” But how hard does a problem have to be? Who is to decide which
problems are hard? All problems are hard until you know how to solve them, at which
point they become easy. Such a definition is immediately problematic. Schaeffer [34, p.
57] described artificial intelligence as the field of “making computer programs capable of
doing intelligent things,” which begs the question of what in fact are intelligent things?
Just two pages later, Schaeffer [34, p. 59] defined artificial intelligence as “AI creates the
illusion of intelligence.” Unfortunately, this definition requires an observer and
necessarily provokes the question of just who is being fooled? Does a deterministic world
champion checkers program like Chinook give the “illusion of intelligence”? And what if
it does? No amount of trickery, however clever, is going to offer an advance on the
problem of how to solve problems. Faking intelligence can never be the basis of a
scientific theory that accounts for the behavior of naturally intelligent organisms (cf.
[38]).
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Intelligence involves decision making. Decisions occur when there is the selection of one
from a number of alternative ways of allocating the available resources. For any system
to be intelligent, it must consistently select appropriate courses of action under a variety
of conditions in light of a given purpose. The goals (purpose) of biological organisms
derive from their competition for the available resources. Selection eliminates those
variants that do not acquire sufficient resources. Thus, while evolution as a process is
purposeless, the primary purpose of all living systems is survival. Those variants that do
not exhibit sufficiently suitable behavior are stochastically culled. The genetically
programmed and learned behaviors of the survivors (and thus the goal of survival) are
reinforced in successive generations through intense competition.

This basic idea has been suggested many times ([49, p. 3], [41], and others). But the
definition of intelligence need not be restricted to biological organisms. Intelligence can
be a property of any purpose-driven decision maker. It must apply equally well to
humans, colonies of ants, robots, social groups, and so forth. Thus, more generally,
intelligence may be defined as the capability of a system to adapt its behavior to meet its
goals in a range of environments, [20, 21, p. 2]. For a species, survival is a necessary
goal in any given environment; for a machine, both purpose and environments may be
specified by the machine's designer.

Evolution then is the process that accounts for intelligent behavior in “naturally occurring
entities,” and this process of population-based search with random variation and selection
can be simulated and used for the creation of intelligent machines. A population is
required because single point-to-point searches are often insufficiently robust to
overcome local pathologies. Selection is required because without a fitness criterion
(implicit or extrinsic) and a procedure for eliminating poor solutions, the search would
degenerate into a purely random walk. And randomness is required because deterministic
searches cannot learn to meet any unforeseen change in the environment. Hofstadter [50,
p. 115] offered, “to a program that exploits randomness, all pathways are open, even if
most have very low probabilities; conversely, to a program whose choices are always
made by consulting a fixed deterministic strategy, many pathways are a priori completely
closed off. This means that many creative ideas will simply never get discovered....”
Randomness is a fundamental aspect of intelligence. Indeed, the life process itself
provides the most common form of intelligence [41]. The experiments presented here
will have served the authors’ purpose if they encourage others to pursue the limits of
evolution’s ability to discover new solutions in new ways.

Footnotes

1. The game can also end in other ways: 1) by resignation, 2) a draw may be declared
when no advancement in position is made in 40 moves by a player who holds an
advantage, subject to the discretion of an external third party, and if in match play, 3)
a player can be forced to resign if they run out of time, which is usually limited to 60
minutes for the first 30 moves, with an additional 60 minutes for the next 30 moves,
and so forth.
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2. It might be argued that providing nodes to process spatial features is a similar
“cheat.” Note, however, that the spatial characteristics of a checkers board are
immediately obvious, even to a person who has never played a game of checkers. It is
the invention and interpretation of alternative spatial features that requires expertise,
and no such information was preprogrammed here.
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