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Abstract. We study the final/initial behavior of a dust Universe with
spatial spherical symmetry. This study is done in proximity of the col-
lapse/generation times by an expansion in fractional Puiseux series. Even
if the evolution of the universe has different behaviours depending on the
initial data (in particular on the initial spatial curvature), we show that,
in proximity of generation or collapse time, the Universe expands or col-
lapses with the same behavior.
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1 Introduction

In this paper we consider an Universe with spatial spherical symmetry
around a physical point O and we analyze its behavior in proximity of the
collapse/generation times. In this analysis we use an expansion of the exact
solution of evolution equations in fractional power series (Puiseaux series).1

In particular we introduce the first principal curvature ω1 of the initial spatial
manifold V3 into the evolution equations and we consider these equations in the
three different cases of null, positive and negative principal curvature.

In other words, in a short range of times, it is impossible to distinguish the
evolution of the Universe from the Euclidean case (where ω1 = 0).

Moreover this result allows the generalization of some of the results found
in the previous papers [4], [8] in the spatially euclidean case (at least in an a
suitable interval of time), also to the not euclidean case.

2 Evolution Equations

Since in the following we are going to consider dust universes with spatial spher-
ical symmetry, we want to briefly summarize the previous main results in a form
inspired by [3,4].

1 A formal series of the form Σ∞
n=manzn/k where m and k are integers such that k ≥ 1

is called a Puiseux series or a fractional power series (see e. g. [5,6,7]).
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We will consider a dust systemC which generates, during its evolution, a
riemannian manifold, which has locally spatial spherical symmetry around a
physical point O;2 the metric can then be given the form [1,2]:3

ds2 = gαβ dxα dxβ = A2(t, r)dr2 + B2(t, r)(dθ2 + sin2 θdϕ2) − c2 dt2 , (1)

where t is the proper time of each particle, r, θ, ϕ are co–moving spherical
coordinates and we can interpret B(t, r) as the intrinsic radius of the O–sphere
S(r) at time t [1, Chap. XII, §11 p.411].4

We consider now the initial space-like hypersurface V3 (with equation t = 0)
and call r–shells the set of particles with co–moving radius r (i.e. the dust initially
distributed on the surface of the geodesic sphere with center at O and radius r
(O–sphere) S(r)); in accordance with [3,4] we assign each particle of an r–shell
the initial intrinsic radius B(0, r) as radial co–moving coordinate r

B(0, r) = r . (2)

If we put a(r) = A(0, r), the metric of the initial O–sphere V3 takes the form:

dσ2 = γij dxi dxj = a2(r)dr2 + r2(dθ2 + sin2 θ dϕ2) , (3)

where γij ≡ gij is the metric tensor of V3. If we introduce the first principal

curvature of V3, ω1(r) = 1
r2

(
1 − 1

a(r)2

)
(see [1, Chap.VII §12 (43) p.205]), into

the Tolmann–Bondi evolution equations [2,4], they become (see [9,10]):5

⎧
⎪⎪⎨
⎪⎪⎩

A(t, r) = B′(t,r)
1−r2 ω1(r)

Ḃ(t, r)2 = −ω1(r) r2 c2 + 2 GN m(r)
B(t,r)

μ(t, r) = μ0(r)r2

B′(t,r)B2(t,r)

(4)

where μ(t, r) is the mass density, μ0 = μ(0, r) is the initial mass density, and
m(r) is the so–called ”Euclidean mass” [3,4]

m(r) = 4π

∫ r

0
μ0(s) s2 ds . (5)

The first principal curvature is very important for studying the geometrical
property of V3 in fact, as underlined in the paper [9,10], it completely determines
its curvature properties.
2 See [1, Chap. XII, §11 p.408] for a precise definition of spherical symmetry around

a point O.
3 In accordance with [1] (but differently from [3,4]) the latin indices will vary from 1

to 3, whereas the greek indices will vary from 1 to 4.
4 At any point 1

B2 represents the gaussian curvature of the geodesic sphere with its
centre at the centre of symmetry O and passing through the point [1, Chap. XII,
§11 p.410].

5 Hereafter a dot will denote differentiation with respect to t and a prime differentia-
tion with respect to r.



Evolution of a Spherical Universe 999

Remark 1. In [4] it was demonstrated that given a spherical dust universe, for
each material r–shell there exists a corresponding time T (r) at which the dust
distributed on the r–shell is collapsed into the symmetry center, so that we have
a function t = T (r) which satisfies B(T (r), r) = 0.6

3 Exact Solutions of Evolution Equations in Three
Different Cases

Now we will focus our attention on a given single r-shell (that is we will consider
r as a given fixed parameter), so we can regard the intrinsic radius B = B(t; r) as
a function of time only, and r , ω1(r) , m(r) as constants. By introducing the new
adimensional function Y (t) = B(t;r)

r and the function k(r) = GN m(r)
r3 (which we

will consider constant being r is a given fixed parameter), equation (4)2 becomes

Ẏ 2(t) = −ω1 c2 +
2 k

Y (t)
. (6)

In the following we will put � = |ω1| and will consider separately the three
cases ω1 = 0, ω1 = � > 0 and ω1 = −� < 0, to get the corresponding exact
solutions. The case ω1 = 0 corresponds to the Euclidean case a2(r) = 1, already
studied in [4]; it is the only case where it is possible to solve (4)2 explicitly for
B. Since ω1(r) = 0, equation (4)2 becomes

Ḃ2 =
2 GNm(r)

B(t, r)
⇒ Ẏ 2(t) =

2 k

Y (t)
. (7)

We can solve the previous equation by separating the variables:

√
2 k dt = ±

√
Y dY ⇒ t − τ(r) = ±1

3

√
2
k

Y
3
2 (8)

where we have to choose the plus sign if Universe is initially expanding (Ḃ(0; r) >
0), the minus sign if Universe is initially contracting (Ḃ(0; r) < 0) and τ(r) is
an arbitrary function of the parameter r.

Remark 2. For t = τ(r) ⇒ Y = 0 ⇒ B = 0 and we know, from remark 2,
that for each r exists a unique instant T (r) which satisfies B(r, T (r)) = 0, where
T (r) is the time at which the dust distributed on the r-shell is collapsed into the
symmetry center, so we have t = T (r) and consequently τ(r) ≡ T (r).

We can calculate the function τ(r) ≡ T (r) through the initial values B(0; r) =
r → Y (0) = 1

T (r) = ∓1
3

√
2

k(r)
= ∓1

3

√
2 r3

GN m(r)
. (9)

6 If the initial mass density is constant, T (r) is also constant.
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It is possible to solve equation (8)2 with respect to Y and we can write the
solutions of equations (7) in the form [4]:

Y (t, r) =
(

1 − t

T (r)

) 2
3

⇒ B(t, r) = r

(
1 − t

T (r)

) 2
3

. (10)

If ω1(r) = �(r) > 0, equation (4) becomes

Ẏ 2 = −� c2 +
2 k

Y
. (11)

Now we can write

Ẏ 2 = 2 k

(
1
Y

− 1
h

)
⇒ dY

dt
= ±

√
2 k

h

√
h − Y

Y
, (12)

where h(r) = 2 k(r)
�(r)c2 > 0. We can solve (12) by separating the variables:

√
2 k

h
dt = ±

√
Y

h − Y
dY ⇒ (13)

⇒ t − τ(r) = ±
√

h

2 k

[
−

√
(h − Y )Y + h arctan

( √
Y√

h − Y

)]
(14)

where we have to choose the plus sign if Universe is initially expanding (Ḃ(0; r) >
0), the minus sign if Universe is initially contracting (Ḃ(0; r) < 0) and τ(r) is
an arbitrary function of r.

Remark 3. Also in this case for t = τ(r) ⇒ Y = 0 ⇒ B = 0 then, from Remark
2, t = T (r) and consequently τ(r) ≡ T (r).

By substituting Bmax = h(r) r and
√

h
2k = 1√

c2 �
we find

t − T (r) = ± 1√
� r2 c2

[
−

√
(Bmax − B)B + Bmax arctan

(√
B

Bmax − B

)]
.

(15)
We can calculate the function τ(r) ≡ T (r) from the initial values B(0; r) = r

T (r) = ∓ 1√
� r2 c2

[
−

√
(Bmax − r)r + Bmax arctan

(√
r

Bmax − r

)]
. (16)

Finally, when ω1(r) = −�(r) < 0, equation (4) becomes

Ẏ 2 = � c2 +
2 k

Y
⇒ Ẏ 2 =

� c2 Y + 2k

Y
(17)

⇒ dY

dt
= ±

√
2k

√
1 + c2 �

2 k Y

Y
. (18)

We can solve equation (18) separating the variables:
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dt = ± 1√
2k

√
Y√

1 + c2�
2k Y

⇒ (19)

t − τ(r) = ±
c
√

k
√

Y �
√

2 k + c2 Y � − 2 k arcsinh( c
√

Y �√
2 k

)

c3 �
3
2

(20)

where we have to choose the plus sign if Universe is initially expanding (Ḃ(0; r) >
0), the minus sign if Universe is initially contracting (Ḃ(0; r) < 0) and τ(r) is
an arbitrary function of r.

Remark 4. Also in this case for t = τ(r) ⇒ Y = 0 ⇒ B = 0 then, from
Remark 2, t = T (r) and consequently τ(r) ≡ T (r).

So we can calculate the function τ(r) from the initial value B(0; r) = r

T (r) = ∓
c
√

k �
√

2 k + c2 � − 2 k arcsinh( c
√

�√
2 k

)

c3 �
3
2

(21)

4 Study of the Behaviour of the Universe in Proximity
of the Collapse/Generation Times by an Expansion in
Fractional Power Series

Now we want to study the behaviour of the universe in proximity of the col-
lapse/expansion times by an expansion in fractional (Puiseux) series.7

Remark 5. In proximity of the times of generation or collapse the evolution has
the same behaviour apart from its initial geometry. In addition the function
T (r) has approximately the same form in all of the three different cases ω1 = 0,
ω1 > 0 and ω1 < 0.

4.1 Initial Principal Curvature ω1 Positive

We already remarked that it is not possible to solve (14) explicitly with respect
to B, but we can approximate the exact solution by an opportune fractional
power series (or Puiseux series):8

√
h

2 k

[
−

√
(h − Y )Y + h arctan

( √
Y√

h − Y

)]
= (22)

7 In [11] the approximate explicit solution was obtained through an expansion in power
series of the parametric equations, therefore by a double expansion in power series.

8 It is not possible to expand the second member of (14) in a simple power series with
respect to Y , but we can develop it in Mac Lauren series with respect to

√
Y thus

obtaining a fractional power series. As it is known the fractional power series are
particular cases of Puiseux series (see e.g. [5]).



1002 I. Bochicchio and E. Laserra

=
√

2
3

√
k

Y
3
2 +

1
5 h

√
2 k

Y
5
2 +

3
28 h2

√
2 k

Y
7
2 + · · · (23)

By truncating the fractional series to the first term (with precision 3/2),
we find

t − τ(r) = ±1
3

√
2
k

Y
3
2 . (24)

So in our approximation we found the same expression (8) that characterizes
the case ω1 = 0: in proximity of the generation or collapse times, the r-shells
expand or collapse with the same behaviour as in the case ω1 = 0 and the
function T (r) has, approximately, the form (9), in agreement with [11].

4.2 Initial Principal Curvature ω1 Negative

Also in this case, being not possible to solve (20) explicitly with respect to B,
we can approximate the exact solution by a Puiseux series:

c
√

Y �
√

2 k + c2 Y �
√

k − 2 k arcsinh( c
√

Y �√
2 k

)

c3 �
3
2

= (25)

=
√

2Y
3
2

3
√

k
− c2 ω Y

5
2

10
√

2 k
3
2

+
3 c4 ω2 Y

7
2

112
√

2 k
5
2

+ · · · (26)

By truncating the fractional series to the first term (with precision 3
2 ), we find

t − τ(r) = ±1
3

√
2
k

Y
3
2 (27)

So in our approximation we found again the same equation that characterizes
the case ω1 = 0: in proximity of the generation or collapse times, the r-shells
expand or collapse with the same behavior that in the case ω1 = 0. More-
over, also in this case, the function T (r) has, approximately, the form (9) (see
also [11]).
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