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Abstract. Measurements of aerosol composition were

made with an Aerodyne High Resolution Time-of-Flight

Aerosol Mass Spectrometer (HR-ToF-AMS) on board the

NSF/NCAR C-130 aircraft as part of the Intercontinental

Chemical Transport Experiment Phase B (INTEX-B) field

campaign over the Eastern Pacific Ocean. The HR-ToF-AMS

measurements of non-refractory submicron aerosol mass are

shown to compare well with other aerosol instrumentation

in the INTEX-B field study. Two case studies are described

for pollution layers transported across the Pacific from the

Asian continent, intercepted 3–4 days and 7–10 days down-

wind of Asia, respectively. Aerosol chemistry is shown to

be a robust tracer for air masses originating in Asia, specif-

ically the presence of sulfate dominated aerosol is a distin-

guishing feature of Asian pollution layers that have been

transported to the Eastern Pacific. We examine the time

scales of processing for sulfate and organic aerosol in the

Correspondence to: E. Dunlea

(edward.dunlea@colorado.edu)

atmosphere and show that our observations confirm a con-

ceptual model for transpacific transport from Asia proposed

by Brock et al. (2004). Our observations of both sulfate and

organic aerosol in aged Asian pollution layers are consistent

with fast formation near the Asian continent, followed by

washout during lofting and subsequent transformation during

transport across the Pacific. Our observations are the first at-

mospheric measurements to indicate that although secondary

organic aerosol (SOA) formation from pollution happens on

the timescale of one day, the oxidation of organic aerosol

continues at longer timescales in the atmosphere. Compar-

isons with chemical transport models of data from the entire

campaign reveal an under-prediction of organic aerosol mass

in the MOZART model, but much smaller discrepancies with

the GEOS-Chem model than found in previous studies over

the Western Pacific. No evidence is found to support a previ-

ous hypothesis for significant secondary organic aerosol for-

mation in the free troposphere.
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1 Introduction

Aerosols play important roles in atmospheric processes that

affect global climate change (IPCC, 2007), stratospheric

ozone depletion (Solomon, 1999), regional visibility (Wat-

son, 2002), human health (Pope et al., 2002; Pope, 2000;

Schwartz, 1994), and ecological integrity via acid, toxic,

and nutrient deposition (Bytnerowicz et al., 1996; Schindler,

1988, 1999). Emissions of pollutants, including aerosols,

from Asia are significant on a global scale; they have in-

creased dramatically in the past two decades and will likely

continue to increase in the coming decades (Ohara et al.,

2007). For this study, the term “Asian” generally refers to

emissions that originated in China/East Asia. Changes in

Asian emissions are already reflected in increased sulfate

aerosol concentrations over the Pacific Ocean, which has

large implications for future climate change (Prospero et al.,

2003). Long range transport of aerosols is an important issue

for climate, and the International Global Atmospheric Chem-

istry (IGAC) Intercontinental Transport and Chemical Trans-

formation (ITCT) series of campaigns was designed to study

long-range transport in various regions of the world (http:

//www.igac.noaa.gov/ITCT.php). As part of IGAC-ITCT, the

Intercontinental Chemical Transport Experiment – Phase B

(INTEX-B) field campaign focused on in-situ measurements

from aircraft and ground sites of transported Asian pollu-

tion over the Eastern Pacific and west coast of North Amer-

ica (Singh et al., 2009). The campaign involved several re-

search airplanes, including the NSF/NCAR C-130 (referred

to as “C-130” hereafter), the NASA DC-8, and the Cana-

dian Cessna 207. The INTEX-B Pacific portion of the cam-

paign immediately followed the Megacity Initiative: Local

and Global Research Observations (MILAGRO) campaign,

which focused on the outflow from Mexico City (DeCarlo et

al., 2008; Molina et al., 2008), and the payload for the C-130

remained essentially the same between the two campaigns.

The Pacific portion of INTEX-B took place from 17 April

to 15 May 2006, with the intention of capturing the spring

time maximum in transpacific transport from Asia to North

America (Singh et al., 2009).

Of the various pathways for air masses transported out of

Asia, those that extend out over the Pacific towards North

America at mid-latitudes are largely determined by cyclones,

along with the westerly zonal wind, and seasonal convec-

tion processes (Wuebbles et al., 2007). Long-range trans-

port in this direction is driven by the persistent mid-latitude

westerlies that result in intercontinental transport of Asian air

masses from west to east. The high speed winds in the up-

per troposphere make the rapid transport of pollutants pos-

sible. A key aspect of long-range transport is the mecha-

nism for lofting of pollutants into the mid and upper tropo-

sphere. Lofting of pollutants in warm conveyer belts (WCB)

(Cooper et al., 2004) has been shown to be one of the more

important mechanisms for rapid intercontinental pollutant

transport (Liang et al., 2004). Much of the anthropogenic

aerosol transported across the Pacific is narrowly focused in

the lower free troposphere between 900–700 hPa (1–3 km)

(Heald et al., 2006; Uno et al., 2008). Low level transpacific

transport, below 2.2 km, does not contribute significantly to

air that reaches the west coast of North America (Holzer et

al., 2007). There is recent evidence that dry convection be-

hind cold fronts may play a significant role in lofting pollu-

tants over the Asian continent, but that warm conveyer belts

are the main mechanism for lofting over the ocean just off

the coast of Asia (Dickerson et al., 2007).

Many previous studies have examined transpacific trans-

port of Asian pollution (Berntsen et al., 1999; Chin et al.,

2007; Day et al., 2009; Heald et al., 2006; Jacob et al., 1999;

Jaffe et al., 1999, 2003; Keating et al., 2005; Liang et al.,

2004; Liu et al., 2007, 2008; Parrish et al., 1992; Pfister et

al., 2009; Reidmiller et al., 2008, 2009; Stohl et al., 2002;

Strode et al., 2008; Wolfe et al., 2007; Yu et al., 2008; Zhang

et al., 2008) (also see (Dickerson et al., 2007) and refer-

ences therein, and for a review see (Wuebbles et al., 2007)).

Specifically, several studies have included in-situ measure-

ments over the Eastern Pacific from aircraft (Andreae et al.,

1988; Brock et al., 2004; Jaeglé et al., 2003; Nowak et al.,

2004; Roberts et al., 2006). It is well established that Asian

pollution can reach North America after as little as a few days

of transport time with an average transit time of 0.5–2 weeks

(Holzer et al., 2003; Jaffe et al., 2003; Liang et al., 2007;

Yienger et al., 2000). Most well-known cases involve the

transport of Asian dust, which have caused large visibility

problems in various parts of the United States (Husar et al.,

2001; McKendry et al., 2001; Tang et al., 2004b; Thulasir-

aman et al., 2002; Vaughan et al., 2001; Zhao et al., 2008).

Long-range transport can significantly impact column values

of sulfate (Benkovitz et al., 2006) and the transport of pol-

lution and crustal material from Asia has been speculated to

have adverse effects on the marine and terrestrial ecosystems

downwind along the transport paths (Cahill, 2003; Duce et

al., 1980). However, one of the major scientific needs related

to the transport of Asian pollution is a better understanding

of the pathways and transformations of the pollutants (Wueb-

bles et al., 2007). While previous studies have examined the

amount of aerosol (Chin et al., 2007; Heald et al., 2006; Liu

et al., 2007; van Donkelaar et al., 2008; VanCuren, 2003,

2006) or black carbon (Hadley et al., 2007) that is carried

by intercontinental transport to North America, only a few

experimental studies have focused on the chemical transfor-

mations that Asian pollution undergoes as it is transported

across the Pacific as it pertains to aerosol loadings over the

Eastern Pacific ocean and North American continent (Brock

et al., 2004; Peltier et al., 2008), and there is still much that

remains to be understood.

Particles in the accumulation mode (Finlayson-Pitts et al.,

2000) (generally less than 1 µm in diameter) have the longest

lifetime in the atmosphere (days to weeks) and have been

implicated with adverse health effects (Pope et al., 2002;

Pope, 2000; Schwartz, 1994). Submicron aerosol in the free
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troposphere primarily consists of sulfate and organic mate-

rial (Murphy et al., 2006). Organic compounds make up a

large fraction of submicron aerosol mass at the surface in

most Northern Hemisphere mid-latitude locations (Zhang et

al., 2007), but there are situations where sulfate is the dom-

inant submicron aerosol component, including downwind of

coal-fired power plants (and thus downwind of certain re-

gions within Asia at the surface; Takami et al., 2005; Zhang

et al., 2007), downwind of volcanoes (Tu et al., 2004) and

in aged Asian pollution observed over the Eastern Pacific

(Brock et al., 2004). Until the INTEX-B campaign, this last

point has been primarily based on a limited number of obser-

vations from the ITCT-2k2 campaign (Brock et al., 2004).

A conceptual model for the transformation of aerosols dur-

ing transpacific transport was originally proposed by Brock

et al. (2004) and discussed further by Peltier et al. (2008).

Briefly, as air masses move downwind from Asian source re-

gions, gas phase organic precursors form secondary organic

aerosol (SOA) more rapidly than SO2 is converted to sul-

fate. When a polluted air mass is lifted out of the boundary

layer, which often occurs within the first 1–5 days downwind

of Asia (most likely in a WCB), the already formed aerosol

is washed out during lifting while the less-soluble gas phase

compounds such as SO2 are not entirely removed (wet scav-

enging removal of aerosol has also been discussed by (Lim

et al., 2003)). The resulting gas phase mixture is then rela-

tively enhanced in SO2 compared to SOA precursors. Con-

sequently, during the subsequent transpacific transport in the

free troposphere, sulfate forms in larger concentrations than

SOA. The result is an enhanced sulfate/organic aerosol ratio

over the Eastern Pacific.

During the INTEX-B campaign, we were able to inter-

cept more Asian pollution layers than in previous campaigns,

spending a significant fraction of the flight time sampling

Asian pollution (described below and; Pfister et al., 2009).

We examine the time scales of processing for sulfate and

organic aerosol in the atmosphere, including the oxidation

of organic aerosol, in the context of the conceptual model

described above. The INTEX-B campaign also included a

larger suite of instruments deployed onboard aircraft than in

previous campaigns, including an Aerodyne High Resolution

Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS).

This paper describes the deployment of the HR-ToF-AMS on

board the C-130 (Sect. 2), the observations of aerosol during

the INTEX-B campaign (Sect. 3) and the chemical transfor-

mation of sulfate and organic aerosols during the transport of

Asian aerosol across the Pacific, as well as comparisons of

observations with chemical transport models (Sect. 4).

2 Experimental methods

This study primarily focuses on data from the C-130 air-

craft; during INTEX-B, the C-130 was based at Paine

Field in Everett, Washington just outside of Seattle. The

Table 1. Dates for research flights of C-130 during INTEX-B.

Research Flight Date Research Flight Date

RF 01 4/17/2006 RF 07 5/3/2006

RF 02 4/21/2006 RF 08 5/5/2006

RF 03 4/24/2006 RF 09 5/8/2006

RF 04 4/26/2006 RF 10 5/9/2006

RF 05 4/28/2006 RF 11 5/11/2006

RF 06 5/1/2006 RF 12 5/15/2006

C-130 performed 12 research flights as part of INTEX-

B, including the transit flights between Washington and

Colorado, where the plane is normally stationed. Ta-

ble 1 lists the dates for the flights for the C-130 dur-

ing INTEX-B; flight tracks are shown in Supplemental

Figure S1: http://www.atmos-chem-phys.net/9/7257/2009/

acp-9-7257-2009-supplement.pdf. Most of these flights

were designed to intercept transported Asian pollution lay-

ers as identified by chemical transport models. In this sec-

tion, we describe the Aerodyne High Resolution Time-of-

Flight Aerosol Mass Spectrometer (HR-ToF-AMS, hereafter

referred to as “AMS”) instrument, the inlet system used for

the AMS, the other aerosol instruments deployed on board

the C-130 and comparisons amongst the aerosol instruments

on the C-130 and on board other aircraft in the INTEX-B

study.

2.1 HR-ToF-AMS instrument

The MILAGRO and INTEX-B field campaigns represented

the first deployment of a HR-ToF-AMS on board an air-

craft (DeCarlo et al., 2008). The HR-ToF-AMS has been

described in detail elsewhere (Canagaratna et al., 2007; De-

Carlo et al., 2006). The deployment of the AMS for INTEX-

B on the C-130 was carried out immediately after that for

the MILAGRO campaign (DeCarlo et al., 2008), and only

technical details that are different for the INTEX-B deploy-

ment are described here. Ionization efficiency (IE) cali-

brations were performed 24 times throughout the campaign

on 9 different days using monodisperse NH4NO3 particles

from 300–450 nm in diameter. There was no trend observed

throughout the campaign in the IE calibrations and the av-

erage value of the IE to air beam (AB) ratio for all calibra-

tions was: IE/AB=(5.29±0.99)×1013 Hz−1; this value was

used to calculate all mass concentrations for the INTEX-B

campaign. Two size calibrations were performed at the be-

ginning of campaign (used for the first half of flights) and the

end of campaign (used for the second half of flights); these

calibrations were different by <2%. The size range of trans-

mission of the AMS and the inlet line on the C-130 for the

AMS is described in the next section. The strength of the sig-

nal pulse produced by the detection of a single ion (DeCarlo
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Fig. 1. Panel (a) shows a cross sectional schematic of the C-130 AMS/PILS inlet system; various parts of the inlet are as follows: A=Diffuser

style inlet with 3 mm opening; B=1 inch outer diameter (OD) stainless steel tube smooth bends; C=Isokinetic flow splitter; D=1 inch OD

tube to PILS; E=3/8 inch OD copper inlet line through cabin floor; F=Y style splitter; G=Bypass flows; H=Pressure controlled inlet (PCI,

350 Torr); I=Flow to AMS. Panel (b) shows transmission efficiency as a function of vacuum aerodynamic particle diameter for the three

parts of the C-130 inlet system: the inlet tubing, the pressure controlled inlet, and the AMS critical orifice and aerodynamic lens (Jayne et

al., 2000); the AMS critical orifice and lens are the limiting part of the system.

et al., 2006) was measured on 20 separate days during the

campaign and an average value of 16.8±1.1 bits ns was de-

termined for the campaign, excluding the initial transit flight

where a different voltage was applied to the microchannel

plate detector (the detector voltage was increased after the

transit flight due to slight detector degradation with age). The

AMS collection efficiency (CE) was calculated based on the

acidity of the particles, where CE=0.5 for (NH4)2SO4 and

NH4HSO4, CE varies linearly below an ammonium to sul-

fate (NH+

4 to SO=
4 ) molar ratio of 1:1, and CE=1 for H2SO4.

This is based on previous work from several groups for sev-

eral different instruments and platforms showing that the CE

varies with particle acidity (Kleinman et al., 2007; Quinn et

al., 2006). We report concentrations of organics, sulfate, ni-

trate and ammonium from the AMS for the entire INTEX-B

campaign at 12 s intervals with >99% data coverage for the

94 h of flight time. Detection limits for the individual species

are determined as 3× the measured standard deviation of the

mass concentration of 12-s averaged measurements of fil-

tered ambient air. For INTEX-B, the measured detection lim-

its were: organics=0.35 µg sm3, sulfate=0.04 µg sm3, am-

monium=0.36 µg sm3 and nitrate=0.06 µg sm3 (sm−3 refers

to m−3 at standard temperature and pressure, STP, 1 atm and

273 K). Overall loadings of chloride were below the instru-

ment detection limit (0.05 µg sm3) for most of the campaign

except for a few cases in the marine boundary layer, and are

not discussed in this paper.

2.2 Shared inlet for AMS and PILS on C-130

The AMS and the Particle Into Liquid Sampler (PILS) instru-

ments shared an inlet line on the C-130; the PILS instrument

is described further in the next section. The inlet was located

on the belly of the C-130, off of the center axis on the port

(left) side of the aircraft, approximately 15 m (50 feet) aft

from the nose of the aircraft (see http://mirage-mex.acd.ucar.

edu/Measurements/C130/Images/C-130 layout.png). The

depth of the boundary layer of the plane at this location was

estimated at approximately 15 cm (6 inches) (based on rule of

thumb that boundary layer is approximately 1% of distance

from nose of aircraft), while the inlet tip was located 25 cm

(10 inches) from the skin of the plane, ensuring sampling of

unperturbed ambient air. Panel (a) of Fig. 1 shows the inlet

system, while Table 2 documents the flow rates and residence

times in each section. The inlet was a custom built diffuser

style inlet (Wilson et al., 2001) with a 3 mm (0.12 inches)

opening at the tip, expanding at an angle of 9.9 degrees over

5 cm (2 inches) to a 2.5 cm (1 inch) O.D. stainless steel tube

(I.D.=2.1 cm, 0.81 inches). The 2.5 cm (1 inch) tube included

two smooth 90 degree bends, one outside of the plane’s skin

and one just inside the plane’s skin, over a tube length of less

than 90 cm (36 inches). A 0.95 cm (3/8 inch) pick-off tube

was inserted in a 2.5 cm (1 inch) tee to isokinetically split

flow to the AMS (0.95 cm tube) and the PILS (2.5 cm tube).

The 0.95 cm tubing for the AMS line included three smooth

90 degree bends over a total length of approximately 120 cm

(48 inches). A “Y” splitter was used to divide the flow into

the pressure controlled inlet (PCI) in front of the AMS and

a bypass flow. The PCI has been described in detail else-

where (Bahreini et al., 2008). Briefly, the PCI consists of an

expansion chamber in which the pressure is maintained at a

constant pressure, 350 Torr for this study, by a variable open-

ing pressure controller using proportional-integral-derivative
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(PID) logic. The AMS sampled flow from this constant

pressure region, avoiding the need for flow corrections with

varying altitude up to ∼6.5 km (∼350 Torr) (Bahreini et al.,

2003). The residence time of air in the inlet line to the AMS

instrument was calculated to be 4 s (Table 2).

Losses for submicron particles in the inlet line were esti-

mated with empirical correlations (Baron et al., 2001; Hinds,

1999). Based on the Reynolds number for altitudes up to

8 km, flow was turbulent through the inlet tip, but was either

laminar or in the transition region between laminar and tur-

bulent (1000<Re<2500) for the remainder of the inlet line.

The calculated diffusional and inertial depositional losses

for particles between 0.02–1.5 µm in diameter were <3%.

Losses due to misalignment of the inlet tip with respect to

the direction of the plane’s flight were estimated to be neg-

ligible for submicron particles (see; Hinds, 1999; Fig. 10.3

and Eq. 10.5). The velocity ratio of the airplane speed to the

sampling velocity of air through the inlet tip was approxi-

mately 0.9, leading to minimal losses due to non-isokinetic

sampling (see; Hinds, 1999; Fig. 10.4 and Eq. 10.7). An es-

timated inlet transmission efficiency curve accounting for all

of these losses is shown in Fig. 1, panel (b), assuming typical

conditions for flight altitude (5 km), plane speed (210 kts),

velocity ratio in the AMS pick-off splitter (2), velocity ratio

at the inlet tip (0.9), and particle density (1.5 g cm3), as well

as assuming an upper limit of the misalignment of the in-

let (5 degrees). Laboratory tests were performed to measure

the particle transmission losses in the PCI and AMS inlet

(Bahreini et al., 2008). These losses in the PCI and AMS

inlet were minimal over the vacuum aerodynamic diameter

size range, dva=100 to 600 nm, in good agreement with the

modeling of the AMS inlet transmission (Jayne et al., 2000);

see Fig. 1, panel (b). The size cut of the AMS inlet (using a

critical orifice from the PCI to maintain a pressure of 1.4 Torr

in the aerodynamic lens) was the limiting factor in the trans-

mission size range for this inlet system.

The total heating of air in the inlet line from ram and cabin

heating ensured that the sampled aerosol was dry. Ram heat-

ing was estimated to raise the temperature of the sampled air

by ∼20◦C and cabin heating by an additional 5–35◦C. Lab-

oratory studies of evaporation of semivolatile materials from

particles upon heating, with at least twice the residence time

than in this inlet, show that this amount of heating leads to, at

most, 5–15% losses of organic aerosol (Huffman et al., 2008,

2009), assuming the organic aerosol is highly oxygenated,

which we show below is the case for INTEX-B. These pos-

sible evaporation losses could have potentially affected all

instruments sampling air into the C-130. The AMS/PILS in-

let system did not result in significant additional losses of

submicron particle mass, as confirmed by comparisons with

other particle instruments on board the C-130, as well as

those on board other aircraft with which the C-130 intercom-

pared (see next two sections).

Table 2. Flow rates and residence times of air in the C-130 AMS

inlet system.

Section of inlet line Flow rate (lpm at Residence

ambient conditions) Time (s)

Inlet tip to isokinetic splitter 38 0.5

Isokinetic splitter to PCI of AMS 8 0.3

Within PCI in front of AMS – 3.2

Total from inlet tip to AMS – 4.0

2.3 Descriptions of other instrumentation on board

C-130 aircraft and models in INTEX-B study

The Particle Into Liquid Sampler – Ion Chromatography in-

strument (PILS-IC) quantitatively captures particles into a

liquid stream that is subsequently analyzed by two ion chro-

matographs. The aerosol was passed through a non-rotating

multi-orifice impactor that had a nominal cut size of 1 µm

at 1 atmosphere, decreasing to about 0.9 µm at the maxi-

mum altitude (Peltier et al., 2008). The PILS reported 90 s

integrated measurements of cation concentrations, e.g. NH+

4 ,

K+, Ca+, every 2.45 min, and 60 s integrated measurements

of anion concentrations, e.g. SO=
4 , NO−

3 , Cl−, every 75 s.

Only concentrations of sulfate and nitrate are used in this

study.

The Texas A&M Scanning Mobility Particle Sizer (SMPS)

(Wang et al., 1990) reported dry size distributions for par-

ticles between 0.012 and 0.67 µm mobility diameter once

every 90 s. SMPS distributions recorded above 5 km were

discarded as post-project comparison with other datasets re-

vealed that an improperly seated o-ring caused a leak as the

pressure differential exceeded a certain threshold; this also

caused problems during sharp changes in altitude.

The University of Hawaii operated several aerosol instru-

ments, including a Differential Mobility Analyzer (DMA)

and an Optical Particle Counter (OPC) to measure the parti-

cle number size distribution. The DMA measurements cover

the size range of 20–150 nm and the OPC measurements

cover the aerosol diameter size range 150–750 nm. Thus,

the sum of the DMA+OPC provides a more accurate mea-

sure of the submicron volume than either measurement in-

dividually. Aerosol number concentrations were measured

with two TSI Condensation Particle Counters (TSI model

3010 and 3025) covering the size range of >10 nm (conden-

sation nuclei, CN) and >3 nm (ultra-fine condensation nu-

clei, UFCN). Two TSI model 3563 3-wavelength integrating

nephelometers (Anderson et al., 1996, 2003; Heintzenberg et

al., 1996) measured total and submicrometer aerosol scatter-

ing coefficients at 450, 550 and 700 nm.

The Single Particle Soot Photometer (SP2) instrument

http://www.dropletmeasurement.com/products/SP2.htm) is a

three-color incandescence measurement of individual light

absorbing particles, which is highly specific for black carbon

(soot). The nephelometers, SMPS and SP2 instruments all

shared an inlet.
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In this study, we use data from several other measurements

made on board the C-130 during INTEX-B. The C-130 in-

strumentation package included standard physical measure-

ments, such as latitude, longitude, altitude that are used

in this study (http://www.eol.ucar.edu/raf/). Methyl tertiary

butyl ether (MTBE) and halon H-1211 were measured by fast

gas chromatography (TOGA) (Apel et al., 2003) and whole

air canister sampling (Baker et al., 2007) respectively. Nitric

acid (HNO3) and sulfur dioxide (SO2) were measured with

a chemical ionization mass spectrometry technique (Crounse

et al., 2006). Ozone (O3) and reactive nitrogen (NOy) were

measured with the NCAR 4-channel chemiluminescence in-

strument (Ridley et al., 2004).

We use several modeling products to inform our analysis.

Back trajectory analyses from the FLEXPART particle dis-

persion model (http://zardoz.nilu.no/∼Eandreas/MILAGRO

ETC/index.html) and from the Global Forecast System (http:

//fuelberg.met.fsu.edu/research/nasa intexb.html) are used to

examine air mass history. We also include results from two

chemical transport models (MOZART-4 and GEOS-Chem)

to interpret our observations and test current understanding.

MOZART-4 (Model for OZone And Related chemical

Tracers, version 4) is a global chemical transport model

with 97 chemical species representing tropospheric chem-

istry with bulk aerosols (Emmons et al., 2008). For this anal-

ysis, MOZART-4 was driven by meteorological fields from

the National Centers for Environmental Prediction/Global

Forecast System (NCEP/GFS), with a horizontal resolution

of 1.4◦×1.4◦ longitude and a vertical grid of 42 sigma-levels

extending from the surface up to about 2 hPa (Horowitz et

al., 2003; Pfister et al., 2008). Anthropogenic emissions for

Asia are from the inventory by D. Streets (Argonne National

Laboratory) representing 2006, and for the rest of the globe

from the POET (Precursors of Ozone and their Effects in

the Troposphere) database for 2000 (Granier et al., 2004).

Biomass burning emissions are from the Global Fire Emis-

sions Database, version 2 (GFED-v2) (van der Werf et al.,

2006). Biogenic emissions for isoprene and terpenes are de-

termined online using the MEGAN algorithm (Guenther et

al., 2006). The representation of tropospheric aerosols in

MOZART-4 includes the calculation of sulfate, black car-

bon, primary organic, secondary organic (SOA), ammonium

nitrate, sea salt and dust particles (Lamarque et al., 2005).

Sulfate aerosols are determined from emissions of SO2 and

DMS. Black carbon and primary organic are emitted in a

combination of hydrophobic and hydrophilic forms (80%

and 50% hydrophobic, respectively), and are converted from

hydrophobic to hydrophilic with a 1.6 day time constant.

Secondary organic aerosols are linked to the gas-phase chem-

istry through the oxidation of atmospheric VOCs as in Chung

and Seinfeld (2002).

GEOS-Chem (v7-04, http://www.as.harvard.edu/ctm/

geos/) is driven by GEOS-4 assimilated meteorology from

the NASA Global Modeling and Assimilation Office. The

meteorological data have 6-h temporal resolution (3-h for

surface variables and mixing depth), 1◦×1.25◦ horizontal

resolution, and 55 layers in the vertical. Here we degrade the

resolution to 2◦×2.5◦ and 30 layers for input to GEOS-Chem

and spin the model up for 1 year to remove the influence

of initial conditions. GEOS-Chem includes detailed ozone-

NOx-VOC chemistry coupled to externally-mixed aerosols

(Bey et al., 2001; Park et al., 2004b, 2006). Anthro-

pogenic emissions are based on the EPA 1999 National

Emissions Inventory (http://www.epa.gov/ttn/chief/net/)

over the US, Streets et al. (http://www.cgrer.uiowa.edu/

EMISSION DATA new/index 16.html) over Asia, BRAVO

(Kuhns et al., 2005) over Mexico, EMEP (Auvray et al.,

2005) over Europe, and EDGAR (http://www.mnp.nl/edgar/)

elsewhere. Biogenic emissions of isoprene and terpenes

are from MEGAN (Guenther et al., 2006). Simulation

of POA and sulfate/nitrate/ammonium is as described

elsewhere (Park et al., 2003, 2004b), and SOA formation

from isoprene, monoterpenes, sesquiterpenes, and terpenoid

alcohols is simulated based on a previous gas-particle

portioning model (Chung et al., 2002; Heald et al., 2005;

Liao et al., 2007). Dry deposition of gases and aerosols uses

a resistance-in-series model (Wang et al., 1998; Wesely,

1989), and wet deposition is as described elsewhere (Liu et

al., 2001; Mari et al., 2000).

2.4 Aerosol instrument intercomparisons

All aerosol measurements presented here are reported as con-

centrations at standard temperature and pressure (STP), de-

fined as T =273 K and P =1013 mbar. For the AMS, the mea-

sured submicron mass was converted to volume using a den-

sity determined from the AMS chemical composition mea-

surements, assuming the following densities (in g cm3): Or-

ganics=1.27 (Cross et al., 2007), Sulfate=1.78, Nitrate=1.72,

and Ammonium=1.75, based on the densities of ammonium

sulfate and ammonium nitrate (Lide et al., 2007). The

initial flow rate calibration of the AMS was performed at

295 K and corrected to STP. Because the AMS sampled

through a PCI, which maintained a constant pressure within

5% for >90% of the measurement time, the measured flow

rates were corrected only for variations in sampling tem-

perature as measured at the AMS lens (periods where the

pressure in the PCI decreased by more than 5% were dur-

ing flight segments >23 000 ft where there was little sub-

micron aerosol mass). The black carbon (BC) mass mea-

surements from the SP2 instrument were converted to vol-

ume using a density of 1.77 g cm−3 from the literature (Bond

et al., 2006; Park et al., 2004a). The AMS measures the

mass of non-refractory material, thus summing together the

AMS and BC measurements provides a more accurate mea-

sure of total submicron volume. (As seen in later Supple-

mental Figure S3: http://www.atmos-chem-phys.net/9/7257/

2009/acp-9-7257-2009-supplement.pdf and Table 3, BC ac-

counts for a small percentage of the submicron mass, so the

comparisons of AMS+BC with other volume measurements
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Fig. 2. This example time series from INTEX-B research flight 09 shows measurements of submicron particle volume from the AMS, SMPS

and the sum of the DMA+OPC, and submicron light scattering signal from the nephelometer. The C-130 altitude is plotted for reference;

time is in UTC. Only SMPS data from altitudes below 5 km is shown (see text for explanation). The spike in the SMPS data at 05:56 p.

m. UTC is not shown to its fullest height (24.8 µm3 scm3).

here is primarily a comparison of the AMS). We note that

this quantity does not include submicron dust, but dust would

only contribute to the submicron volume during periods of

very high dust loading, since only a few percent of the dust

mass is in the submicron range (Maring et al., 2003). High

dust periods (submicron light scattering to total light scatter-

ing ratio of <0.3 (Anderson et al., 2003)) accounted for <6%

of the time during INTEX-B.

The data from the AMS is compared to other instruments

in Figs. 2, 3a and b. As an example, the time series com-

parisons of the submicron total light scattering measurement

and the three measurements of aerosol volume are shown

for research flight 09 in Fig. 2; these have been averaged

onto to the same time base as the SMPS (roughly every

90 s). Scatter plot comparisons for the whole campaign in

Fig. 3a and b show good agreement amongst the three mea-

surements of total submicron volume. Linear least squares

fits reveal slopes of 0.98 ±0.01 (1σ standard deviation of

linear fit; R2=0.83) and 1.02±0.02 (1σ standard deviation of

linear fit; R2=0.60) for the comparisons of (DMA+OPC) vs

(AMS+BC) and SMPS vs (AMS+BC) respectively. These

results are consistent with those from DeCarlo et al. (2008)

for the MILAGRO portion of this deployment.

Comparisons of the PILS-IC and AMS chemical species

measurements were carried out for sulfate and nitrate (am-

monium did not have enough points above detection limit

(0.1 µg sm3) in the PILS data for a proper comparison). The

AMS data for Fig. 3c and d have been averaged onto to the

same time base as the PILS-IC instrument, which reported

anion measurements every 75 s. The slopes of the regressions

for both inorganic species are within 20% and the regressions

are dominated by a few large plumes. The nitrate data is

relatively sparse owing to the low number of time periods

when the nitrate loadings were above the PILS detection limit

(0.02 µg sm3) during the INTEX-B campaign. This level of

agreement is consistent with the combined instrumental ac-

curacies of ±10% for the PILS and ±30% for the AMS, and

is similar to that obtained in recent ground-based field cam-

paigns with much longer integration times (1 h) and typically

higher concentrations (Takegawa et al., 2005; Zhang et al.,

2005b). The scatter is larger for the present study, mostly due

to the very short integration times (75 s); in the AMS and in

most other instruments the noise in the averaged concentra-

tions is reduced as the square root of the averaging time.

As an additional check on the AMS quantification, we

compared the total submicron scattering calculated from the

AMS concentrations and size distributions with the measured

submicron scattering value from the nephelometer. Refrac-

tive indices were calculated from the measured AMS chemi-

cal composition (Hand et al., 2002), assuming linear mixing

(d’Almeida et al., 1991). The agreement of the calculated

scattering from the AMS size distributions with the neph-

elometer measurements is good; this is presented elsewhere

(Fig. 2 in (DeCarlo, et al., 2008)).

Overall, the agreement amongst the various aerosol instru-

ments on board the C-130 was within 20%. This shows that

there were not significant differences between the particle

losses for any of the C-130 aerosol inlets in this study.

In addition to the instrument comparisons performed on

board the C-130, two intercomparisons of the C-130 and DC-

8 were performed, one on 4/17/2006 and one on 5/15/2006.

The results of these intercomparisons are described in

www.atmos-chem-phys.net/9/7257/2009/ Atmos. Chem. Phys., 9, 7257–7287, 2009
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Fig. 3. Scatter plot of measurements of submicron particle volume and particle anion species concentrations from instruments on board the

C-130 for the entire INTEX-B campaign. In panel (a), the SMPS submicron volume is plotted versus the sum of the AMS+BC instruments;

in panel (b), the sum of the DMA+OPC measurements is plotted versus the sum of the AMS+BC instruments; panel (c) shows the comparison

for aerosol sulfate between the PILS and AMS instruments; and panel (d) shows the comparison for aerosol nitrate between the PILS and

AMS instruments. Note that “scm3” stands for cm3 at STP and “sm3” stands for m3 at STP.

Supplemental Sect. S.1: http://www.atmos-chem-phys.net/

9/7257/2009/acp-9-7257-2009-supplement.pdf. Addition-

ally, two intercomparisons of the C-130 and Canadian

Cessna aircraft were performed, once on 5/3/2006 and once

on 5/9/2006. The two planes flew spirals in the same geo-

graphic location, separated in time by approximately an hour

in each case. The Canadian Cessna had a quadrupole AMS

(Q-AMS) on board. The comparisons of the Cessna Q-AMS

with the C-130 HR-ToF-AMS for four measured submicron

aerosol chemical species (organics, sulfate, nitrate and am-

monium) are in good agreement. This information is pre-

sented elsewhere (van Donkelaar et al., 2008).

3 Results

Most of the C-130 flight plans during INTEX-B involved

time spent attempting to intercept Asian pollution layers

that were predicted to have been transported to the Eastern

Pacific. The typical flight pattern involved frequent vertical

profiling between ∼0.6 km to above 6 km (maximum

altitude of 7.5 km). From this data set, we have defined

four separate categories of air masses: transported Asian

pollution layers, the free troposphere, the Central Valley

of California, and the Seattle region. These categories

and the selection criteria are discussed in Sects. 3.1 and

3.2 below. Overall campaign averages for the mass con-

centrations of non-refractory, submicron particle species

as measured by the AMS are listed in Table 3 and shown

in Supplemental Fig. S3: http://www.atmos-chem-phys.

net/9/7257/2009/acp-9-7257-2009-supplement.pdf; ver-

tical profiles are shown in Supplemental Fig. S4:

http://www.atmos-chem-phys.net/9/7257/2009/

acp-9-7257-2009-supplement.pdf.

3.1 Transported Asian pollution layers

Layers were identified as originating from Asia with sev-

eral complementary criteria, the most important of which

is the presence of sulfate above the free tropospheric back-

ground, as described below. First, meteorological model-

ing work from both FLEXPART and Global Forecast Sys-

tem (Sect. 2.3) was used to evaluate air masses with back

trajectories that extended to the Asian continent (see Peltier

et al., 2008, for examples). Additionally, CO, O3 and NOy,

which are indicative of anthropogenic pollution, were typi-

cally elevated in air masses with back trajectories originating
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from Asia. All of these factors were used in several test cases

(see Sect. 3.1.1 for example), establishing that elevated lev-

els of sulfate were also indicative of Asian pollution. Chem-

ical transport modeling carried out as part of the INTEX-B

study supports the association of elevated sulfate with Asian

pollution layers (van Donkelaar et al., 2008). We note that

elevated sulfate has been observed previously in transported

Asian pollution layers (Andreae et al., 1988; Brock et al.,

2004).

On board chemical tracer measurements were also used to

establish that air masses were from Asia. In particular, the

presence of MTBE is an indicator of Asian origin because

this compound is used as a gasoline additive in Asia, and no

longer in North America (West et al., 2007). MTBE has a

typical lifetime in the atmosphere of a few days with respect

to loss by reaction with the hydroxyl radical (OH) (Bonard

et al., 2002) (4 days at [OH]=1×106 molecule cm−3). Fig-

ure 4 shows the correlation of aerosol sulfate and MTBE. All

elevated sulfate time periods show elevated MTBE, confirm-

ing the Asian origin of the air masses with the highest sulfate

levels during this campaign.

Using this observation that Asian pollution contains el-

evated sulfate levels, we classify “Asian pollution layers”

that contain sulfate as those air masses that were intercepted

west of −125 longitude (over the sea slightly off the West-

ern US coast) and contained an aerosol sulfate loading of

>1 µg sm3 (where sm3 refers to m3 at STP) as measured by

the AMS. We used the measured potential temperature pro-

files to determine the height of the marine boundary layer

(MBL) and only used data for this category above the MBL.

This definition may ignore less concentrated Asian pollution

layers that have lower sulfate loadings, but should be restric-

tive enough to exclude other types of layers. Other types

of air masses with large sulfate loadings would most likely

originate from either North American pollution or MBL sul-

fate production. The use of data west of −125 longitude

excludes North American pollution layers, as does the use

of MTBE as a tracer (Fig. 4 shows no data with elevated

sulfate but no elevated MTBE). MBL sulfate production is

primarily from DMS oxidation and subsequent sulfate pro-

duction via sulfuric acid. Oxidation of DMS also produces

methanesulfonic acid (MSA), which condenses into the par-

ticle phase. Layers enhanced in MSA (as indicated by the

CH3O2S+ ion; Sun et al., 2008, 2009; Zorn et al., 2008) ac-

counted for < 1 minute’s worth of data within the category

of Asian (0.1% of the “Asian Layer” data points), indicating

that our definition for Asian is stringent enough to exclude air

influenced by the MBL. Figure 5 shows an example “Marine

Layer” that is slightly enhanced in sulfate (<1 µg m3) and

contains elevated MSA. This is important in establishing sul-

fate as a robust tracer of Asian pollution in this study, show-

ing that sulfate is not produced from DMS oxidation for the

layers in this study. This is consistent with previous results

over the Northeast Pacific showing that production of sul-

fate from DMS generally occurred in the boundary layer and

Fig. 4. Correlation plot of MTBE from the TOGA instrument versus

particulate phase sulfate from the AMS. Unclassified points are in

gray.

that sulfate in the free troposphere was mainly from Asian

transport (Andreae et al., 1988). Overall by this definition,

sampling of Asian pollution layers accounted for 8% of total

sampling time during the INTEX-B campaign; this amounts

to sampling of approximately a dozen Asian pollution lay-

ers, where the two case studies described below that account

for 17% of the Asian pollution air mass category. Our ap-

proach is complementary to that of Peltier et al. (2008), but

our approach is more restrictive.

On average, the INTEX-B campaign shows a larger per-

centage of sulfate compared to organic aerosol (Table 3).

This is presumably the result of the large degree of sam-

pling of Asian pollution layers, which are dominated by

sulfate. The processed Asian pollution aerosol is dis-

tinctly acidic, with an average NH+

4 :SO=
4 molar ratio of

1.0, consistent with ammonium bisulfate, NH4HSO4. An-

other study (Ooki et al., 2007) has shown that, within the

accumulation mode for anthropogenic aerosol transported

over the Pacific Ocean for 3 days and sampled in the

MBL, smaller particles (<0.22 µm) generally show a neu-

tral ion balance for ammonium compared to sulfate, but

that larger particles (>0.22 µm) show a deficit of ammo-

nium (equivalent ratio of NH+

4 /non-sea-salt-SO=
4 in the ac-

cumulation mode was 0.73). This is broadly consistent

with our measurements since the Asian aerosol in the MBL

is somewhat less acidic than in higher layers (Supplemen-

tal Fig. S4: http://www.atmos-chem-phys.net/9/7257/2009/

acp-9-7257-2009-supplement.pdf). Average vertical profiles

(Supplemental Fig. S4: http://www.atmos-chem-phys.net/

9/7257/2009/acp-9-7257-2009-supplement.pdf) of the vari-

ous air mass types reveal that most species are relatively

constant with altitude, with the exception of the expected

www.atmos-chem-phys.net/9/7257/2009/ Atmos. Chem. Phys., 9, 7257–7287, 2009
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Table 3. Average mass loadings as measured by the HR-ToF-AMS on board the C-130 for various types of air masses with maximum values

listed in parentheses. See text for definitions of air mass categories. a=concentration in µg sm−3; b=fraction of measured NH+

4
compared to

NH+

4
concentration necessary to neutralize anions; c=concentration in µg sm−3 as measured by SP2 instrument; d=gas phase concentration

of SO2 in ppbv as measured by CIMS instrument, no SO2 measurements were available for the Seattle flight.

NH+

4
Totala SO=a

4
Orga NO−a

3
NH+a

4
Measured/ BCc SOd

2
Neutralb

Campaign Average 1.70 0.73 0.55 0.05 0.18 0.63 0.14 0.21

(46.5) (10.8) (37.3) (3.8) (2.0) (2.8) (5.1)

Central Valley 4.85 1.04 2.35 0.28 0.33 0.72 0.57 0.36

(46.5) (3.3) (37.3) (3.8) (1.5) (2.8) (2.8)

Seattle region 2.25 0.61 0.93 0.06 0.19 0.79 0.40 NA

(7.8) (2.8) (4.4) (0.7) (0.5) (2.0)

Free Trop 0.76 0.35 0.18 0.01 0.12 0.92 0.09 0.07

(7.5) (1.0) (4.8) (0.9) (0.5) (1.1) (0.8)

Asian Pollution 3.50 2.02 0.85 0.06 0.38 0.50 0.13 0.58

(16.0) (9.4) (8.5) (0.6) (1.4) (1.2) (5.1)

Younger Asian Pollution Layer 8.47 5.36 2.61 0.13 0.36 0.20 0.03 2.36

(14.8) (9.5) (4.7) (0.4) (0.7) (0.3) (5.1)

Older Asian Pollution Layer 2.49 1.95 0.26 0.01 0.27 0.38 0.06 0.12

(4.3) (3.5) (1.2) (0.1) (0.5) (0.2) (0.3)

enhancement of all species in the boundary layer over the

Central Valley (see Sect. 3.2.2) and an enhancement of sul-

fate at ∼6 km in the Asian aerosol; this latter feature is driven

by the highly concentrated Asian pollution layer intercepted

on the 5/1/2006 research flight (see Sect. 3.1.1). As a re-

minder, these measurements are of submicron particles from

exported Asian pollution, which have been shown to be only

episodically influenced by dust in general, and only in spe-

cific episodes (Massling et al., 2007), because only a few

percent of the dust mass is below one micron (Maring et al.,

2003). As noted above, high dust periods accounted for <6%

of the sampling time during the entire INTEX-B campaign

and <4% of the sampling time during Asian pollution lay-

ers.

3.1.1 Case study of younger Asian pollution layer from

5/1/2006 flight

The flight plan for research flight 06 on 5/1/2006 was de-

signed to intercept a predicted Asian pollution layer off the

coast of Seattle. The C-130 did indeed intercept a distinct

layer at around 20 000 ft on two separate occasions during the

flight. The chemical composition of the aerosol in this layer

was heavily dominated by sulfate, as seen in Fig. 5. (Also see

Supplemental Fig. S5: http://www.atmos-chem-phys.net/

9/7257/2009/acp-9-7257-2009-supplement.pdf for the time

series of several species not displayed in Fig. 5.) Back

trajectories from FLEXPART (Fig. 6) indicate that this air

mass was lifted from near the surface just off of the coast of

China approximately 3 days prior to this flight and then trans-

ported rapidly at an altitude of approximately 5 km across

the Pacific. This layer was transported just ahead of a band

of clouds visible on satellite imagery from GOES (Fig. 7),

moving from Asia to North America in 3 days, which is

typical of a warm conveyor belt lifting event (Cooper et

al., 2004). MTBE and H-1211 are chemical tracers for

Asian pollution. MTBE (shown in Fig. 5) is greatly en-

hanced in this pollution layer; the lifetime of MTBE in

the atmosphere is only several days, consistent with the

rapid transport of this layer. Halon-1211 (Supplemen-

tal Fig. S5: http://www.atmos-chem-phys.net/9/7257/2009/

acp-9-7257-2009-supplement.pdf) is generally indicative of

emissions from developing countries, including China (Bar-

letta et al., 2006; Montzka et al., 2003) and is also en-

hanced in this pollution layer. This Asian pollution layer

also shows an enhancement of CH3I (shown in Supplemen-

tal Fig. S5 http://www.atmos-chem-phys.net/9/7257/2009/

acp-9-7257-2009-supplement.pdf), which is most likely

from emissions from rice paddies that are highly localized

in southeast Asia (Bell et al., 2002). This layer is also en-

hanced in CO, O3, NOy, ethyne, C2Cl4 (shown in Supple-

mental Fig. S5: http://www.atmos-chem-phys.net/9/7257/

2009/acp-9-7257-2009-supplement.pdf), and all classes of

gas-phase organics measured on board the C-130, including
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Fig. 5. Time series of measured species during 5/1/2006 research flight. Two intercepts of the Younger Asian Layer (YAL), several intercepts

of the Older Asian Layer (OAL) and the one Marine Layer (ML) that are discussed in the text are labeled. The time is in UTC; trace for

MSA has been smoothed with 2 min boxcar smoothing.

 

Fig. 6. FLEXPART (http://zardoz.nilu.no/∼andreas/MILAGRO ETC/index.html) back trajectories for example time periods during the

Younger Asian Layer (18:44:35 to 18:46:47 UTC) on the left and the Older Asian Layer (21:13:13 to 21:14:07 UTC) on the right. Dashed

boxes on the maps and arrows on the time lines indicate where back trajectories pass at lower altitudes over Asian continent. See text for

discussion of these case studies.
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Fig. 7. Satellite imagery from GOES (http://www.goes.noaa.gov/) showing several days prior to research flight on 5/1/2006 (measurements

from this flight shown in Fig. 5 above). The solid blue line is a representation of the C-130 flight track for this flight; the pink dashed circles

denote the area where the Younger Asian Layer (YAL) was detected; the black dashed circles denote the cloud band ahead of which the YAL

was transported.

aromatics, alkanes, alkenes, aldehydes and alcohols. The

NOy within this layer was comprised primarily of PAN (60–

70%) and HNO3 (15–30%); this was only a slightly larger

percentage of PAN than the campaign average (55%). The

NOx/NOy ratio was slightly lower in this layer (9%) than

the campaign average (11%), indicating that this layer does

not consist of very recent emissions. Overall, the conclusion

is that this layer contains Asian anthropogenic pollution that

has been transported across the Pacific over the course of 3–4

days.

Further confirmation of the timescale for transport of this

Asian pollution layer comes from chemical tracer data. The

observed benzene to toluene (B/T) and propane to ethane

(P/E) ratios in this Asian layer confirm this time scale (Par-

rish et al., 1992). We use starting B/T (1.1) and P/E (0.5) ra-

tios from the RETRO emissions inventory (http://retro.enes.

org/) for China for the sum of anthropogenic plus fire emis-

sions. We also assume a typical 24-hour average value for

the hydroxyl radical concentration, [OH]=1×106 molecule

cm3 (supported by OH measurements on board the C-130),

and an average temperature of 250 K, which is typical for an

altitude of 5 km. Using the rate coefficients for the reactions

of these aromatics with OH (Sander et al., 2006), we calcu-

lated a lifetime after emission for this pollution of 3.9 days

using the B/T ratio and 4.2 days using the P/E ratio. Over-

all, it appears that this layer consists of pollution that was

freshly emitted ∼4 days prior and was lifted through a con-

vective system ∼3 days prior. We refer to this layer, which

was sampled twice, for the rest of the paper as the “younger

Asian layer” (YAL).

In order to determine the extent that this pollution layer

was influenced by cloud processing, we look at convec-

tive influence modeling and chemical tracer information.

Convective influence modeling as part of the back trajec-

tory calculations shows that both intercepts of the younger

Asian pollution layer were influenced by convection over

the Pacific Ocean, off the coast of Asia, and not influenced

by convection near North America (http://fuelberg.met.fsu.

edu/research/nasa intexb.html). Additionally, very recent

washout can be excluded because the layer contains 180–

400 ppt of HNO3; much lower values would be expected for

an air parcel that had been recently cloud processed (Bertram

et al., 2007). Lastly, the ratio of hydrogen peroxide to methyl

hydrogen peroxide (H2O2/MHP) can be indicative of cloud

processing because H2O2 is more water soluble than MHP

(Snow et al., 2007). H2O2 and MHP were measured on

board the C-130 (Crounse et al., 2006) and the H2O2/MHP

ratio sharply increases in the younger Asian layer, mainly

due to a decrease in the MHP mixing ratio (see Supplemen-

tal Fig. S5: http://www.atmos-chem-phys.net/9/7257/2009/

acp-9-7257-2009-supplement.pdf). This again suggests a

lack of very recent cloud processing of this air mass. We

conclude that this layer was likely influenced by cloud pro-

cessing early in its transit across the Pacific.

The loading of submicron particles in this layer was one

of the highest encountered during the entire campaign, and

easily the highest encountered away from the continental US

The AMS shows that the submicron composition was heavily

dominated by sulfate. While there was a substantial contribu-

tion of organics as well, the ratio of sulfate/organic aerosol

Atmos. Chem. Phys., 9, 7257–7287, 2009 www.atmos-chem-phys.net/9/7257/2009/
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Fig. 8. Correlation plot of measured aerosol sulfate (SO=
4

) levels converted to equivalent gas phase ppbv versus the total sulfur from the

measured sulfate plus the measured gas phase SO2; 12 s measurements shown for all data points in left panel and only for the case studies

(YAL and OAL) in the right panel. There were no SO2 measurements from the Seattle flight; unclassified points are in gray.

in this layer was much larger than unity and, as such, very

different than that for North American pollution over either

the Central Valley of California or the Seattle region (see be-

low). There was not a significant concentration of nitrate.

The aerosol in this layer was distinctly acidic, with an av-

erage composition indicating the sulfate was in the form of

NH4HSO4. The ratio of aerosol sulfate to total sulfur (de-

fined as the sum of gas phase SO2 and aerosol sulfate) is

approximately 0.5 for this layer; see Fig. 8. The moderate

enhancement in particle number (CN ∼2000–3000 cm3) ob-

served by the CPC and the measured size distribution from

the AMS show no indication that this layer contains freshly

nucleated particles. The AMS sulfate size distribution is

shown in Fig. 9, where the peak of the size distribution

is dva∼200 nm (volume equivalent diameter, dve∼130 nm),

within the accumulation mode but lower than observed for

typical aged distributions at many other locations (Allan et

al., 2003; Jimenez et al., 2003; Takegawa et al., 2005; Zhang

et al., 2005b), including in recent Asian outflow (Fig. 9)

(Bahreini et al., 2003; Topping et al., 2004), and for more

aged layers in this campaign (Fig. 9). This fact, together

with a tail below 100 nm is suggestive of new particle for-

mation a few days prior to sampling (Zhang et al., 2004) fol-

lowed by condensational growth, after scavenging of the pre-

existing accumulation mode during cloud processing as ob-

served previously (Brock et al., 2004). Measurements from

the SP2 instrument show very little black carbon (BC) in this

layer (<0.1 µg sm3), suggesting that primary particles may

have been mostly scavenged by the cloud processing (Brock

et al., 2004). The mass spectrum of the organic aerosol in

this layer shows that it is highly oxygenated in nature (see

Sect. 4.3 for further discussion). Additionally, the measured

mass scattering efficiency is a factor of 2–3 lower than the

campaign average, consistent with the lower than typical size

for the accumulation mode as discussed above.

3.1.2 Case study of older Asian pollution layer from

5/1/2006 flight

During this same research flight on 5/1/2006, the C-130 in-

tercepted another pollution layer on four separate occasions

between the altitudes of approximately 10 000–18 000 ft. It is

possible that there was more than one layer present here, but

all intercepts of this layer showed a consistent chemical na-

ture and were in the same geographical location, so we refer

to it as a single layer. FLEXPART back trajectory analysis

shows that this layer passed over the Asian continent more

than a week prior to this flight (Fig. 6). Possible convec-

tive influence on this layer cannot be gauged by any of the

gas phase tracers discussed in the last section (reactive nitro-

gen compounds or peroxides), because those gas-phase com-

pounds have sufficiently short lifetimes in the atmosphere

that their concentrations are below their respective detection

limits in this layer by the time the C-130 sampled it. The NOy

loading in this layer was not significantly higher than back-

ground levels for the rest of the flight, consistent with previ-

ous studies of aged Asian pollution over the Eastern Pacific

(Tang et al., 2004a). The gas phase NOy budget in this layer

was very similar to both the younger Asian pollution layer

and the background reactive nitrogen budget measured over

the Eastern Pacific. Other tracers of the layer’s Asian ori-

gin, such as MTBE and H-1211, have also become too dilute

to be distinguished from the background by the instrumenta-

tion on the C-130. Although there were no distinguishable

www.atmos-chem-phys.net/9/7257/2009/ Atmos. Chem. Phys., 9, 7257–7287, 2009
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Fig. 9. Sulfate size distributions for Asian pollution layers as measured during various times of transpacific transport. ACE Asia data is from

Bahreini et al. (2003), the Younger and Older Asian pollution layers are from this study and the Whistler Peak data is from an even older

Asian pollution layer (>10 days old) measured atop Whistler Peak as part of the INTEX-B study (Sun et al., 2009). Transmission above

700 nm begins to decrease, see Fig. 1 for the transmission curves for the AMS and the inlet system. Note that there may also be some effect

of slow vaporization of some larger particles that creates the appearance of more mass above a micron (i.e. the AMS transfer function is

right-tailed).

enhancements of gas phase aromatic or alkane compounds,

we use the average B/T and P/E ratios measured during this

portion of the flight to roughly estimate an atmospheric life-

time for this layer. Using the same method described in the

previous section and observed values in the layer for B/T of

∼40 and P/E of ∼0.3, the age of the layer is estimated to

be ∼7 and ∼9 days, respectively from the two ratios. Based

on the combination of higher sulfate concentration, back tra-

jectory modeling, and gas-phase tracer information, we con-

clude that this layer originated in Asia 7–10 days prior to

interception by the C-130; we refer to this layer as the “older

Asian layer” (OAL) for the remainder of the paper.

In contrast to most of the gas phase tracers, enhanced

aerosol mass loading and in particular the sulfate loading,

was found in sufficient concentration to be detected by the

AMS. This is facilitated to the longer atmospheric lifetime

of particulate sulfate and the high sensitivity of the AMS.

Very little black carbon, very little organic aerosol and al-

most no other inorganic aerosol species were measured in

this layer. The ratio of aerosol sulfate to total sulfur is ap-

proximately 0.9 for this layer indicating that almost all of

the gas phase SO2 has been converted to aerosol sulfate; see

Fig. 8. The particle number was relatively low (<500 cm3)

and the AMS size distribution showed a peak of dva∼400 nm

(dve∼225 nm), consistent with the aerosol distribution in this

layer being more aged than the younger Asian layer.

We note in conclusion that the identification of pollution

layers from Asia as observed over the Eastern Pacific after

more than a week of processing is more difficult with the gas

phase tracers traditionally used for looking at urban pollu-

tion, such as hydrocarbons or NOy. However, the submicron

aerosol has a longer lifetime and its chemical composition

carries a signature of a high sulfate/organic aerosol ratio that

persists in the atmosphere long enough (>1 week) to be mea-

sured over the Eastern Pacific. This is one of a limited num-

ber of studies to observe polluted layers aged for >1 week in

the atmosphere.

3.2 Seattle region, central Valley and free troposphere

Three other air mass types are defined in this section, and

they serve to contrast the Asian pollution layers described in

the previous section.

Seattle region

The flight pattern for research flight 03 for the C-130

on 4/24/2006 was primarily limited to various passes over

the Seattle metropolitan area; most of this flight is used

as the definition of the “Seattle region” air mass category.

The lowest flight leg was done at an altitude of ∼2000 ft

(∼600 m). The vertical profiles of the potential temperature

for the take-off and landings within the Seattle metropolitan

area on this day show this lowest flight leg was just above

the planetary boundary layer. The implication is that this

air mass is more representative of the entire region around

Atmos. Chem. Phys., 9, 7257–7287, 2009 www.atmos-chem-phys.net/9/7257/2009/
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Seattle and not just the metropolitan area. We use the lowest

measured B/T and P/E ratios in the Seattle region air mass in

the same manner as in Sect. 3.1 to estimate an atmospheric

lifetime for this Seattle region air mass category. Assuming

a typical 24-h average value for [OH]=1×106 molecule cm3

(consistent with measurements onboard the C-130 during

this flight) and T=270 K and using values for the emission

ratios from the RETRO emissions inventory for the Seattle

region (B/T=0.32 and P/E=0.5) leads to lifetime estimates of

>0.9 days and >4 days from the benzene/toluene ratio and

propane/ethane ratio respectively. The signal to noise ratio

for the propane and ethane measurements is sufficiently low

that the uncertainty in this estimate is large, but it is clear

that this air mass has been processed for approximately 1

day at the least; again, this air mass type is representative of

the region around Seattle.

As seen in Table 3 (and Supplemental Fig. S3:

http://www.atmos-chem-phys.net/9/7257/2009/

acp-9-7257-2009-supplement.pdf), this air mass type

has a larger relative fraction of organics and black carbon as

compared to the free tropospheric average; this is expected,

given that it is primarily influenced by a North American

urban center. The balance between ammonium and the

sulfate and nitrate anions reveals that on average the Seattle

region aerosols are close to neutralized.

Central Valley

The C-130 made two low altitude passes over the Cen-

tral Valley of California during research flight 07 on

5/3/2007, generally near the Fresno and Sacramento regions;

for this categorization of air masses, we define “Central

Valley” as the air masses sampled during this three hour

segment of this one flight. Examination of the vertical

profiles of the potential temperature shows that this Central

Valley air mass was contained within the planetary boundary

layer. We did similar atmospheric lifetime calculations based

on hydrocarbon ratios to that done in the previous sections

using initial ratios from the RETRO emissions inventory for

California (B/T=0.37, P/E=0.84) and assumed values for the

[OH]=5× 106 (consistent with measurements onboard the

C-130 during this flight) and T=295 K. These calculations

give atmospheric lifetimes for this air mass of >0.5 days

(B/T) and >2.5 days (P/E); these estimates are heavily

dependent on the assumed starting concentration for the

specific region, where the B/T ratio is largely driven by gaso-

line emissions, the P/E ratio from emissions may be more

variable. We conclude that this air mass, although in the

boundary layer, was not dominated by very fresh emissions,

but had likely undergone at least a half a day of processing

in the atmosphere. We encountered the largest total, organic,

and nitrate mass concentrations of the campaign for this

Central Valley air mass. The aerosol in the Central Valley

is slightly acidic with an average balance of NH+

4 ions with

SO=
4 and NO−

3 ions equivalent to a composition between

NH4HSO4 and (NH4)2SO4. Gas phase HCN measurements

and the enhancement of m/z 60 (a biomass burning marker)

in the AMS show the likely influence of biomass burning

for only two short-duration plumes (less than two minutes

of flight time) during the Central Valley air mass (shown

in Supplemental Fig. S6: http://www.atmos-chem-phys.

net/9/7257/2009/acp-9-7257-2009-supplement.pdf), so the

large majority of the OA in this air mass does not appear to

originate from BB sources.

Free Troposphere

In order to examine air masses that are not recently in-

fluenced by either Asian or North American urban areas,

we defined a Free Troposphere category of air masses as

everything sampled by the C-130 west of −125 longitude

and above the marine boundary layer that had a sulfate

loading of <1 µg sm3. This background aerosol, as defined

here, is also heavily influenced by sulfate, which may

be the result of the category definition allowing more

dilute Asian pollution layers in this category. The overall

mass loadings for this category were low (Supplemental

Fig. S3: http://www.atmos-chem-phys.net/9/7257/2009/

acp-9-7257-2009-supplement.pdf); the balance between

ammonium and the anions, sulfate and nitrate, reveals that

on average the free tropospheric aerosols are neutralized

within our ability to determine this given the overall smaller

mass loadings for these air mass types. This category is

mainly defined to provide contrast with the other categories,

and provides a limited insight into the composition of

the background aerosol over the Eastern Pacific (which is

still somewhat influenced by very aged and diluted Asian

pollution).

4 Discussion

In this section we use our observations to discuss the at-

mospheric transformation of aerosols as they are transported

from Asia across the Pacific. This is separated into the trans-

formation of sulfate aerosol (Sect. 4.1), the transformation of

organic aerosol (Sect. 4.2), and comparisons of observations

with chemical transport models (Sect. 4.3).

4.1 Atmospheric transformation of sulfate

In Sect. 1, we described a conceptual model for the transfor-

mation of aerosol during transpacific transport described by

Brock et al. (2004) and Peltier et al. (2008). In this section,

we discuss our observations of sulfate in the context of this

conceptual model.

Our observations from the C-130 over the Eastern Pacific

during this campaign show that transported Asian pollution

is heavily dominated by sulfate aerosol relative to organics

www.atmos-chem-phys.net/9/7257/2009/ Atmos. Chem. Phys., 9, 7257–7287, 2009
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(see Supplemental Fig. S3: http://www.atmos-chem-phys.

net/9/7257/2009/acp-9-7257-2009-supplement.pdf). This is

consistent with the removal of sulfate and organic aerosol

near Asia followed by sulfate formation during transpacific

transport. We have analyzed Asian pollution layers on multi-

ple timescales: 3–4 days in age and 7–10 days. Additionally,

observations from a ground site at Whistler Peak in British

Columbia show an Asian pollution layer that had spent >10

days in transit (Sun et al., 2009), which is also heavily dom-

inated by sulfate aerosol. All of these show the continued

transformation of SO2 to sulfate (discussed further below) in

the different aged Asian air masses without a corresponding

increase in organic aerosol (OA) mass.

The measured particle mass size distributions in Fig. 9

show a decrease in the average particle diameter from a layer

that was 1–2 days downwind of Asia (measured as part of

ACE-Asia; Bahreini et al., 2003) to the Younger Asian Pol-

lution layer from this study that was 3–4 days downwind of

Asia. This is consistent with washout of particulate matter

during lifting near Asia, followed by particle formation dur-

ing transport over the Pacific (see discussion of conceptual

model in Sect. 1). There is then an increase in the aver-

age particle diameter with processing time during transpa-

cific transport for the two Asian pollution layers that are part

of this study and a case study from Whistler Peak described

in Sun et al. (2009) as part of INTEX-B. The loadings for

the three layers from the INTEX-B study shown in Fig. 9

(Sect. 3.1 and Sun et al., 2009) are heavily dominated by

sulfate with almost no nitrate or chloride, so the implication

is that sulfate is the primary driver of the growth of these

particles. Additionally, the AMS data show an increase in

particle acidity with processing time, where the older lay-

ers show an ion balance that is more acidic than NH4HSO4,

indicating that particles are primarily comprised of a mix

of NH4HSO4 and H2SO4. We note that cloud processing

is an efficient mechanism for accumulating sulfate mass for

aerosols in the accumulation mode in the remote marine at-

mosphere (Feingold et al., 2002; Hoppel et al., 1986) but it

is unclear whether this mechanism plays a role here. Over-

all, our conclusion is that our observations are consistent

with washout of sulfate aerosol near the Asian continent fol-

lowed by the conversion of SO2 to sulfate aerosol during

transpacific transport leading to overall particle growth in

these Asian pollution layers.

The atmospheric processing of SO2 has been studied with

field observations previously, and we discuss several rele-

vant studies here. Brock et al. (2008) observed the con-

version of SO2 to sulfate over the Western Atlantic for pro-

cessing times up to 3 days downwind of the urban centers

in the Northeast United States. They show a 1/e lifetime for

SO2 to sulfate conversion of ∼3.5 days, which is based on

a combination of the reaction with OH and cloud process-

ing. Previous studies (Takami et al. 2007; Takiguchi et al.,

2008) measured SO2 and sulfate concentrations in the China

Sea and used back trajectory calculations to show that air

masses reaching their measurement location had been pro-

cessed for ∼24–55 h. Their results indicate a 1/e lifetime

for SO2 conversion <1 day for pollution transported from

the coast of China, which is significantly faster than that for

the Western Atlantic, and is likely more strongly influenced

by cloud processing. Measurements from Sapporo, Japan

(Kaneyasu et al., 1995) established that atmospheric process-

ing, i.e. not sea salt, was responsible for a significant portion

of the sulfate aerosol in the area. SO2 and sulfate measure-

ments from a ground site in Tokyo, Japan (Miyakawa et al.,

2007) showed that the fraction of sulfate/total sulfur varies

with the season, with average values of 0.18 in summer and

0.03 in winter; this is driven mainly by the photochemical

processing by the hydroxyl radical.

For Fig. 8, we calculated the aerosol sulfate in an equiv-

alent ppbv mixing ratio and then compare this to total sul-

fur defined as the sum of gas phase SO2 plus aerosol sul-

fate. There is a trend of an increasing fraction of sulfate/total

sulfur with processing time in the atmosphere: Central

Valley<younger Asian pollution layer (∼0.5)<older Asian

pollution layer (∼0.9). Note, there was no SO2 data for the

Seattle region flight on 4/24/2006. We plot these data points

of sulfate / total sulfur as a function of atmospheric process-

ing time in Fig. 10. For the purposes of this figure, we do

not distinguish between transport age and photochemical age

based on gas phase chemical clocks because the estimates

for both are similar for the Asian layers in this study. The

increase in sulfate fraction between the two Asian pollution

layers from 0.5 to 0.9 is generally about that which would be

expected for the processing of SO2 to sulfate by the gas phase

reaction with OH over the course of several days assuming an

OH concentration ∼1.5×106 molecule cm3 (based on mea-

sured [OH] on C-130). Also in this figure, we draw a time

line of the fraction of sulfate/total sulfur that corresponds to

this conceptual model, showing a fast increase in the first day

or so, consistent with observations near Asia (Miyakawa et

al., 2007; Takami et al., 2007), followed by washout during

lifting and subsequent sulfate formation. Our observations

from this study are consistent with this conceptual model out

to 7–10 days of processing.

There are a number of previous studies that support this

conceptual model in a variety of ways. Several studies have

shown the prevalence of both sulfate and organic aerosol be-

ing exported from Asia (Igarashi et al., 2006; Takegawa et

al., 2006a; Wang et al., 2006). Measurements with an AMS

on board the CIRPAS Twin Otter during ACE-Asia showed

significant concentrations of sulfate in air masses downwind

of China (Bahreini et al., 2003). The vertical transport of

pollutants over Asia is known to be fast (Stohl et al., 2002)

and the enhancement of total sulfur at altitudes of 2–4 km

was observed over Asia as part of the ACE-Asia field cam-

paign (Park et al., 2005). Cloud processing may play a role

in the formation of sulfate during lofting (Jaeglé, 2007). Ad-

ditionally, a recent study has shown significant scavenging

of aerosol over the Western Pacific, observed for polluted air
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Fig. 10. Summary plot for sulfate and organic processing as a function of processing time in the atmosphere. In the top panel, the fraction

of sulfate out of the total sulfur (gas phase SO2+sulfate) is plotted for this study and several previous studies downwind of Asia (Miyakawa

et al., 2007; Takami et al., 2007; Takiguchi et al., 2008). In the next panel, the ratio of organic aerosol over excess gas phase CO (CO values

enhanced over background) is plotted for this study and previous studies downwind of Asia (Miyazaki et al., 2007; Takami et al., 2007;

Takegawa et al., 2006b); additionally, a curve from a study off the coast of the Northeast US is shown for reference (de Gouw et al., 2008).

TOOC is Total Observable Organic Carbon; see Sect. 4.2. In both cases, a sketch of the conceptual model for transpacific transport of Asian

pollution described in the text is included. In the next panel, the ratio of OC/TOOC is plotted for the studies listed in Table 4. In the bottom

panel, the O/C ratios for organic aerosol for the studies listed in Table 5 are plotted along with a line to guide the eye.

masses as they are lifted into the free troposphere (Roberts,

2008). New particle formation has been observed in anthro-

pogenic plumes advecting from Asia (McNaughton et al.,

2004; Weber et al., 2003). As discussed, the observation of

sulfate dominated aerosol over the Eastern Pacific was shown

previously (Brock et al., 2004) and is currently reproduced

by global models (Heald et al., 2006).

However, there are a few previous studies that are not con-

sistent with this conceptual model of Asian transport. First,

measurements from Mt. Bachelor (2.7 km a.s.l.) (Jaffe et al.,

2005) near Bend, Oregon, have shown a prevalence of organ-

ics in transported Asian air masses, more so than sulfate, in

contrast with our INTEX-B observations of Asian pollution

layers (see Table 3). It is possible that other types of Asian

air mass transport not sampled during INTEX-B may explain

the Mt. Bachelor observations, for example an export mecha-

nism of pollution from Asia where cloud scavenging has had

a much reduced impact. We do note that these authors were

unable to separate air masses classified as “marine” from

those classified as “Asian”. This introduces the possibility

that a source of organics from the ocean which has been ob-

served in the Northeast Pacific previously (Kaku et al., 2006)

as well as elsewhere (O’Dowd et al., 2004; Spracklen et al.,

2008; Vaattovaara et al., 2006), may contribute to the Jaffe

et al. (2005) observations. Our observations from INTEX-

B are more definitively shown to be of Asian origin through

the use of back trajectory modeling and chemical tracers for

Asian, anthropogenic and marine marker compounds.

www.atmos-chem-phys.net/9/7257/2009/ Atmos. Chem. Phys., 9, 7257–7287, 2009
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An additional apparent discrepancy with the conceptual

model comes from observations from the ACE-Asia field

campaign over the Northwest Pacific in 2001 that show sig-

nificant loadings of organic aerosol (OA), and high OA to

sulfate ratios in the free troposphere (altitudes up to 5 km)

near Asia (Heald et al., 2005; Huebert et al., 2004). These

observations, combined with the general consensus that air

lifted to the free troposphere has undergone washout, led

to the conclusion that there is large source of organics

in free troposphere missing from global chemistry models

(Heald et al., 2005). Average vertical profiles (Supplemen-

tal Fig. S4: http://www.atmos-chem-phys.net/9/7257/2009/

acp-9-7257-2009-supplement.pdf) of the various air mass

types measured during INTEX-B reveal that most species are

relatively constant with altitude over the Eastern Pacific. A

ratio of organic carbon/sulfate of ∼5 in the free troposphere

over the Western Pacific as suggested by the ACE-Asia ob-

servations should be apparent in measurements over the East-

ern Pacific, but it is not. The version of GEOS-Chem used in

this study includes SOA production from isoprene photooxi-

dation (Henze et al., 2006) that was not included in Heald et

al. (2005), but that would not be enough to account for the

discrepancy observed off of Asia in the Heald et al. (2005)

study. Dickerson et al. (2007) recently described the different

mechanisms for lifting pollution up from the Asia continent,

in particular dry convection and warm conveyer belt lifting

could potentially involve much reduced washout for aerosol.

It is possible that the ACE-Asia organic carbon/sulfate data

points represented only one type of lifting event. In sum-

mary, we observe no evidence for this large source of organ-

ics in the free troposphere over the Eastern Pacific.

Recent studies (Leaitch et al., 2009; McNaughton et al.,

2009) have examined the role of dust in transpacific trans-

port during the INTEX-B study. Our data from the C-130

indicate that for our Asian pollution category, the supermi-

cron mode accounts for half of the total aerosol volume for

20% of the data, and accounts for a third of the total aerosol

volume for 60% of data. In other words, for Asian pollution

layers in this study, more than half of the data has some influ-

ence from the supermicron mode, which is presumably dust.

Researchers on the DC-8 aircraft (McNaughton et al., 2009)

have shown that competition between supermicrometer dust

and accumulation mode aerosol for condensing secondary

aerosol lead to a 25% smaller number median diameter for

the accumulation mode aerosol. If we examine the size dis-

tributions in Fig. 9, we see that there is more than a factor

of two reduction in the median diameter for the accumula-

tion mode aerosol in going from aerosol near Asia to that in

the YAL case study in this paper (the large mean diameter of

the accumulation mode size distribution measured in ACE-

Asia is confirmed by other studies near Asia (Takami et al.,

2005, 2007). Alone, coagulation of accumulation mode par-

ticles with dust cannot account for large reductions in parti-

cle mean diameter seen between ACE-Asia observations and

INTEX-B observations; this is best explained by washout

and subsequent new particle formation as described in the

Brock et al. (2004) conceptual model.

Overall, we feel that this conceptual model of Asian trans-

port of aerosol can be viewed as a likely framework for

explaining prevalent transport patterns from Asia. Yet it is

clear that more definitive measurements of aerosol compo-

sition are needed in the free troposphere over the Western

Pacific, specifically studying the scavenging of aerosol mass

during air mass lifting.

4.2 Atmospheric transformation of organics

4.2.1 Organic aerosol to carbon monoxide ratios

(OA/1CO)

In a similar manner to the previous section on sulfate, we

now turn our attention to the atmospheric processing of or-

ganic aerosol. It has been established in several recent stud-

ies (Brock et al., 2008; Cubison et al., 2006; de Gouw et

al., 2008, 2005; DeCarlo et al., 2008; Kleinman et al., 2008)

that the formation of SOA downwind from urban areas pro-

ceeds with a timescale in the atmosphere on the order of 1

day. Rapid secondary organic aerosol (SOA) formation has

been observed within the metropolitan area of and down-

wind of Tokyo (Takegawa et al., 2006a, b), and significant

OA concentrations downwind of source regions in China

have been observed on the Korean peninsula (Miyazaki et

al., 2007) and in the East China Sea (Takami et al., 2007).

As discussed in Sect. 3, there is little data from the INTEX-

B campaign for air masses on these shorter time scales. We

put our data from the two polluted Asian layers from this

study in a larger context using data from other previous stud-

ies by plotting the ratio of organic aerosol mass/excess gas

phase CO (OA/1CO, where 1CO is CO minus background

CO; background CO values taken from average CO concen-

trations on either side of enhancements in Asian pollution

layer case studies) as a function of processing time in the

atmosphere in Figure 10. Previous studies from both the

Northeast US (de Gouw et al., 2005) and Mexico (Klein-

man et al., 2008) show the evolution of the ratio of organic

aerosol mass to gas phase CO (OA/1CO) as a function of

processing time for the first 3 days downwind of urban ar-

eas in North America, where OA/1CO increases over the

first 1.5 days of atmospheric processing up to an asymp-

totic value of ∼65–90 µg sm3 ppmv−1; we place a growth

curve for OA/1CO from de Gouw et al. (2005) in Fig. 10

for reference. From our observations, both Asian pollution

layer case studies in this study both have an average value

for OA/1CO of 20 µg sm3 ppmv−1, which is lower than the

OA/1CO measured in Asia (Takami et al., 2007; Takegawa

et al., 2006a, b). OA/1CO ratios from these previous stud-

ies were estimated from average and background concen-

trations presented in those references for CO (in agreement

with other studies on regional CO concentrations; Kim et al.,

2008) and organic mass (or organic carbon using a value of
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2.1 to convert OC to OA), assuming no background OA and

using an approximate correction factor of 10% to account for

the conversion to OA concentrations at STP. The first conclu-

sion that we draw from this is that significant OA formation

does not occur at timescales out to ∼ 10 days for cloud-

processed pollution plumes and the indication is that loss of

OA must have occurred during the export of these pollution

layers.

The assumption is that OA loss during transport is due

to cloud scavenging, but we explore that further here. OA

measured off the coast of Asia (Bahreini et al., 2003)

and in this study over the Eastern Pacific (Supplemen-

tal Fig. S7: http://www.atmos-chem-phys.net/9/7257/2009/

acp-9-7257-2009-supplement.pdf) have been shown to be

highly oxidized. Recent results (Huffman et al., 2009) show

that highly oxidized organic aerosol is less volatile than

fresher, reduced organic aerosol, such that direct evaporation

of organic aerosol upon dilution is unlikely to account for a

major loss of OA during transport from Asia. Additionally,

field observations indicate that the timescale for significant

loss of OA mass from the accumulation mode in the atmo-

sphere due to heterogeneous processing of OA may be as

slow as several months (Murphy et al., 2007); it is unlikely

that this could account for the losses of OA observed in this

study. One other possibility for a significant loss of submi-

cron OA is loss on dust particles near the Asian source re-

gion (Leaitch et al., 2009), which could be important given

that Asian dust transport, was substantially greater in 2006

than in previous years (Reidmiller et al., 2009), but as de-

scribed in the previous section, dust is not likely to have been

a major influence on the submicron aerosol in our study. We

conclude that the most likely explanation for the loss of OA

during transpacific transport is cloud scavenging, presum-

ably during lifting near Asia, which preferentially removed

OA while preserving CO. Consistent with the sulfate pro-

cessing, we draw a time line of this conceptual model for

the change in the ratio of OA/1CO with processing time in

Fig. 10, showing that our observations are consistent with

OA formation during the first day or so of transport, washout

of OA during lifting near Asia, followed by very little OA

formation during the remaining transpacific transport.

Further support for the influence of washout of aerosol

during transpacific transport comes from comparing of or-

ganic aerosol versus Ox (the sum of O3 and NO2). For

shorter photochemical ages the different slopes of these com-

parisons are indicative of the different SOA formation effi-

ciencies in these regions, primarily due to different precur-

sor gas mixes, and OA removal processes that have affected

these air masses (Herndon et al., 2008). Supplemental Figure

S8 shows that the Asian pollution layers in this study have

lower ratios of OA to Ox than other locations in this study

and in other studies in Tokyo, Mexico City and Pittsburgh;

is consistent with washout of OA during transport of Asian

aerosols.

Table 4. Ratios of OC/TOOC for various studies; A=This study,

all slopes derived from the same fit; B=See Heald et al. (2008) for

details on other studies; uncertainty for OC/TOOC derived from R2

value of linear correlation plot. Data presented in Fig. 10.

Location Study Ref Age (hr) OC/TOOC

Pittsburgh Summer PAQS B 0–24 0.11±0.055

Mexico City, C-130 MILAGRO B 12–36 0.12±0.031

Thompson Farm, N.H. ICARTT B 12–60 0.20±0.080

NE Atlantic, WP-3 ICARTT B 24–72 0.30±0.072

Chebogue Point ICARTT B 36–84 0.36±0.209

N Atlantic, BAe-146 ICARTT B 72–120 0.13±0.130

Younger Asian Layer INTEX-B A 48–96 0.11±0.035

Older Asian Layer INTEX-B A 168–240 0.11±0.035

Central Valley INTEX-B A 12–36 0.11±0.035

Trinidad Head ITCT-2k2 B 168–240 0.08±0.080

4.2.2 Aerosol organic carbon to total observed organic

carbon ratios (OC/TOOC)

A recent study (Heald et al., 2008) has introduced the con-

cept of Total Observed Organic Carbon (TOOC) as the sum

of all measured gas phase organic species plus particle phase

organic carbon (OC). In Table 4, we list the particulate OC

versus TOOC for all of the studies described in (Heald et

al., 2008) as an indicator of how much organic aerosol has

formed compared to the maximum potential organic aerosol

available in an air mass, similar to the sulfate/total sulfur

ratio discussed in Sect. 4.1 (although unlike in the sulfur

case, OC/TOOC never reaches 1 in practice, as many TOOC

species are too volatile). Table 4 lists the slopes of these vari-

ous OC/TOOC plots as well as the average OC/TOOC ratios

from air masses in this study. All points from the INTEX-B

campaign fall along a similar slope of ∼ 0.1, meaning that

OC comprises ∼10% of TOOC by mass.

If we estimate atmospheric processing ages for the various

studies in Table 4 and plot the OC/TOOC ratio as a func-

tion of processing time, we see in Figure 10 that the shape

of the processing profile for OC/TOOC is generally the same

as that for OA/1CO and sulfate/total sulfur. Uncertainties

for OC/TOOC ratios are based on the uncertainties in the lin-

ear regression fits. From the data in Heald et al. (2008), it

appears that the OC/TOOC ratio has a maximum observed

value in the atmosphere of ∼40%. We note that placing all

of these OC/TOOC measurements from different field cam-

paigns on the same time line is only qualitative and very diffi-

cult to interpret further; the different regions sampled in these

campaigns had widely varying mixes of organic precursor

gases (both biogenic and anthropogenic), as well as having

varying processing mechanisms, including different oxidiz-

ing conditions and the potential presence or absence of cloud

processing, with sampling dictated by differing campaign ob-

jectives. Additionally, the TOOC value itself is inherently

limited by the available suite of instrumentation deployed in
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Table 5. Oxygen-to-Carbon ratios for various studies; UMR indicates studies where Unit Mass Resolution data from the AMS was used

to estimate the O/C ratio using the ratio of signal at m/z 44 to total organic aerosol; HR indicates studies where the O/C ratio was directly

calculated from the high resolution AMS mass spectra. Uncertainties are a combination of O/C variation during measurement period and

uncertainty in O/C ratio calculation technique (31%) (Aiken et al., 2008)

Location Reference Method Age (hr) O/C

Tokyo (Takegawa et al., 2006b) UMR 0–24 0.39±0.23

East China Sea (Takami et al., 2007) UMR 25–45 0.61±0.20

Younger Asian Layer This Study, 2008 HR 48–96 0.63±0.20

Older Asian Layer This Study, 2008 HR 158–254 0.80±0.25

Central Valley This Study, 2008 HR 12–36 0.52±0.17

each field study. Although these differences exist, the slope

in each campaign is dominated by the points with higher

concentrations, which tend to be those close to the strongest

sources (local or transported) that influence each geograph-

ical region. These results suggest that the OC/TOOC ratio

increases with processing time in the atmosphere up until the

point where washout removes a large portion of the organic

aerosol, and then the OC/TOOC ratios remain low after that,

dominated by long-lived organic gases. Further interpreta-

tion of the OC/TOOC time line would best be done with a

consistent data set from the same region of the world, ideally

with a pseudo-lagrangian study of the same air mass trans-

ported downwind of a single source region for several days.

4.2.3 Organic aerosol mass spectra

As expected, high-resolution mass spectra of the two Asian

pollution layers show a much larger contribution from

the fragment ions containing carbon, hydrogen and oxy-

gen (CxHyO+
z ) compared to fragment ions containing only

carbon and hydrogen (CxH+
y ), indicating increased aging

of the OA with increased processing time in the atmo-

sphere. This is discussed in the Supplemental Information

Sect. S.2: http://www.atmos-chem-phys.net/9/7257/2009/

acp-9-7257-2009-supplement.pdf.

As a side note, we attempted to use positive matrix factor-

ization (PMF) (Ulbrich et al., 2009) on this data set; however,

we were unable to sufficiently define separate factors from

within the organic aerosol mass spectra. This was owing to

a combination of low overall signal levels, highly oxidized

nature of the aerosol with little spectral variation, and the

nature of aircraft sampling of concentrated pollution layers,

where the loadings of all types of organic aerosol increase

and decrease in time together making it difficult for PMF

to distinguish different factors in time. No reduced aerosol

(Hydrocarbon-like Organic Aerosol or HOA; Zhang et al.,

2005a) was discernable.

4.2.4 Oxygen to carbon ratios (O/C)

Lastly, we can estimate the atomic oxygen-to-carbon (O/C)

ratio for the total organic aerosol in each airmass by counting

individual oxygen and carbon atoms from the fragment ions

in each spectrum. The method for this is described elsewhere

(Aiken et al., 2007, 2008). Low signal-to-noise in the low

concentration mass spectra leads to increased uncertainty in

the high resolution fitting procedure and therefore in the anal-

ysis of the O/C ratios. Averaging the mass spectra into 1 min

time bins (up from 12 s) before the O/C ratio analysis was

sufficient to reduce the uncertainty in the O/C ratio analysis

and produce a consistent result with longer averaging times.

The O/C ratios for the two Asian pollution layers (Sect. 3.1)

and Central Valley (Sect. 3.2) were consistent within each

layer (see Fig. 5) and the average O/C ratio values are listed

in Table 5. Additionally, we include the O/C ratios from

other previous studies employing a Q-AMS; the O/C ratios

can be estimated from the measured m/z 44/total organics ra-

tio using a relationship determined from field work with the

HR-ToF-AMS in the Mexico City region (Aiken et al., 2008).

These O/C values are plotted in Fig. 10 as a func-

tion of processing time. The O/C ratios for the two

Asian pollution layers are higher than those in most

other studies, consistent with the idea that these lay-

ers are highly aged in the atmosphere; additionally, the

older Asian pollution layer has a higher O/C ratio than

the younger Asian layer, consistent with the observations

from the individual mass spectra described in Supplemen-

tal Sect. S2: http://www.atmos-chem-phys.net/9/7257/2009/

acp-9-7257-2009-supplement.pdf. The time trend of O/C

ratios in Fig. 10 is noticeably different than the profiles of

the OA/1CO or OC/TOOC profiles; where OA/1CO and

OC/TOOC increase quickly within the first several days and

decrease due to washout, the O/C ratio continues to increase

out to the time scale of a week. A linear trend line of increas-

ing O/C ratio with increasing processing time is included

in Fig. 10 to guide the eye. The actual trend may be more

exponential, but cannot be stated more definitively because,

again, we are combining data from multiple locations. The
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major lesson is that although the SOA formation from pollu-

tion has nearly reached completion on the order of 1 day, the

OA continues to become more oxidized through longer time

scales in the atmosphere. This study provides evidence for

this finding directly from atmospheric observations, and is

consistent with similar results for biomass burning aerosols

measured over time scales of several days over West Africa

(Capes et al., 2008). This result needs to be further confirmed

by additional in situ observations, ideally with observations

of the same air mass at multiple times over the course of ∼1

week of processing in the atmosphere.

Since the OA/1CO does not increase, this suggests that

some carbon is being lost from the aerosol during this pro-

cess. The continued oxidation and small loss of carbon may

be due to heterogeneous reactions, which may have time

scales on the order of ∼1 week (Molina et al., 2004; Mur-

phy et al., 2007; Schauer et al., 1996; Zhang et al., 2005c),

or to gas-phase oxidation of semivolatile species. DeCarlo et

al. (2008) recently compared the O/C gain in photochemical

aging in the first day of pollution outflow from Mexico City

with what could be expected from heterogeneous oxidation

and found that this mechanism was 7–135 times too slow to

explain the observed gain of oxygen. This implied that the

O must have been gained through SOA formation and/or re-

actions of semi-volatile species in the gas phase. We have

done the same calculation for the addition of oxygen to the

organic aerosol between the younger and older Asian layers

observed here. Unlike for the results of DeCarlo et al. (2008),

in our study heterogeneous oxidation with the upper limit as-

sumptions (uptake coefficient γ =1, gain of 2 O atoms per

OH reaction) can produce a gain of oxygen similar to that

observed in the measurements, while the lower limit assump-

tions (γ =0.1, 1 O added per OH reaction) can explain ∼8%

of the observed O gain. While a significant uncertainty range

remains, it is clear that heterogeneous oxidation can play a

larger role for very long OA aging timescales such as those

observed here than during the first day after emission of OA

and SOA precursors. This is consistent with the results of

the recent George et al. (2008) study where ambient particles

were aged in the laboratory by OH oxidation.

4.3 Comparisons with chemical transport models

Here we compare observed tracer ratios to chemical trans-

port model (CTM) predictions over the domain of the C-130

flight tracks. (Comparisons of observations with the Sul-

fur Transport and dEposition Model (STEM) model are pre-

sented elsewhere (Adhikary et al., 2009).) We focus on en-

semble characteristics rather than individual plumes, which

are not well resolved at the coarse (∼200 km) CTM reso-

lution and which may be displaced geographically in the

model owing to uncertainty in the meteorological fields. Fig-

ure 11 shows the correlations of organic aerosol versus sul-

fate aerosol for the AMS measurements from the C-130 at

two time resolutions (12 s and 15 min), and for the MOZART

and GEOS-Chem model outputs (15 min). Figure 12 shows

the same correlations for organic aerosol from the AMS ver-

sus gas phase CO. Air mass categories for the models were

defined as the same time periods as those from the measure-

ments.

This is the first attempt of which we are aware to use

aerosol data to do this kind of tracer-tracer correlation. This

has been done with gas phase species previously (see Parrish

et al., 2004, for example), but aerosol chemical composition

instrumentation with sufficient time resolution has not been

deployed on aircraft until recently. The high time resolution

data (12 s) provided by the AMS in Figs. 11 and 12 show fea-

tures that are not evident when the AMS data is averaged to

a much lower time resolution of 15 min.

We briefly comment here on several overall trends. First,

the ratios of SO=
4 /(SO2+SO=

4 ) can be interpreted as a qual-

itative photochemical/processing age of the sulfur species,

and are generally captured well by both models (measure-

ments shown in Fig. 8, model results shown in Supplemen-

tal Fig. S9: http://www.atmos-chem-phys.net/9/7257/2009/

acp-9-7257-2009-supplement.pdf). As expected, they show

lower values for the Central Valley than for Asian pollution

due to the longer processing times for the Asian pollution

layers.

Next, ratios of organic aerosol/sulfate provide insights on

the relative strengths of the emissions of both precursors and

POA, and the efficiency of SOA formation. MOZART gen-

erally shows less organics relative to sulfate when compared

to the measurements, while GEOS-Chem shows more simi-

lar and even higher ratios than the observations. The mod-

eled ratios of organic aerosol/sulfate for the various air mass

types are mostly qualitatively correct in comparison to each

other, i.e. the Central Valley organic aerosol/sulfate ratio is

larger than that for Asian pollution layers. It is noted that the

MOZART Seattle region values for organic aerosol/sulfate

show about the same slope as the measurements (Fig. 12),

while MOZART shows significantly lower ratios for the Cen-

tral Valley. This is likely due to the higher fraction of POA

in the Seattle area, as indicated with the lower OA/BC ratio,

which is better captured by MOZART than SOA.

Several recent studies have reported good correlations of

total organic mass with excess CO (CO minus background

CO) (DeCarlo et al., 2008; Kleinman et al., 2008), and ra-

tios of these species have been used to quantify POA emis-

sions and assess the efficiency of SOA formation. Ratios

of the order of 2–10 µg sm−3 ppm−1 are typical of traf-

fic/urban combustion emissions in the US (Docherty et al.,

2008; Zhang et al., 2005c), while higher ratios can be due

to SOA formation and/or biomass burning (de Gouw et al.,

2008; DeCarlo et al., 2008; Kleinman et al., 2008). The

C-130 measurements show very high ratios for the Central

Valley indicative of extensive SOA formation, while the val-

ues for the Asian pollution layers are relatively low, again

consistent with scavenging of much of the SOA formed over

Asia upon cloud processing (Brock et al., 2004). For the
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Fig. 11. Scatter plots of organic aerosol mass versus sulfate aerosol mass for AMS measurements on board the C-130 and the MOZART and

GEOS-Chem chemical transport models for the entire INTEX-B campaign. The chemical transport model points are classified based on the

measurement classification for the same time during the flight. For the Central Valley, the green dashed line shows a slope of 3:1, based on

a large mode of Central Valley 12-s data points that are centered around that line; similarly, the pink dashed line shows a slope of 1:2 based

on the Asian pollution 12-s data points. (No fit is shown for the Seattle or free troposphere data.) The same lines are shown in all 4 plots for

comparison. Unclassified points are in gray.

ratios of OA/1CO, GEOS-Chem generally shows higher

ratios and MOZART generally shows lower ratios com-

pared to measurements. The MOZART OA/1CO ratios

are very low for the Central Valley air masses, likely due

to SOA formation that is too low in the model. All three

sets of data span a similar range of OA concentrations (0–

4 µg sm−3, for 15-min averages), but the CO ranges are very

different, with GEOS-Chem clearly lower than the measure-

ments while MOZART is more similar. This may be due

to an overestimation of the OH concentration by GEOS-

Chem (Zhang et al., 2008) (see Fig. 12 and Supplemen-

tal Figs. S10 and S11: http://www.atmos-chem-phys.net/9/

7257/2009/acp-9-7257-2009-supplement.pdf) and may sug-

gest that the SOA formation mechanisms may be much more

efficient in GEOS-Chem than in MOZART.

Figure 13 shows the vertical profiles of modeled values

from GEOS-Chem and MOZART for aerosol OC and sul-

fate compared with the measurements from the AMS on

board the C-130 aircraft for Asian pollution layers (with

OC estimated as OA/2.1). In general, MOZART predicts

lower OC and sulfate concentrations than were measured

and GEOS-Chem slightly over-predicts the amount of OC.

It is noted that the discrepancies shown here are significantly

less than those determined for measurements made from air-

craft over the Western Pacific during ACE-Asia (Heald et al.,

2005). Overall the model/measurement comparison is com-

plex, but only MOZART shows a clear underestimation of or-

ganics. This is distinguished from previous studies over the

Western Pacific where large discrepancies between GEOS-

Chem and aircraft measurements of OC were reported (Heald

et al., 2005).

5 Conclusions

In conclusion, in this study we have described the deploy-

ment of a HR-ToF-AMS on board the C-130 aircraft during

the INTEX-B field campaign over the Northeast Pacific in
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Fig. 12. Similar to Fig. 11 above, scatter plots of organic aerosol mass versus gas phase CO for the same measurements and models as in the

upper panel. Dashed lines indicate linear fitted slopes derived from the 12-s AMS measurements on the C130; the green dashed line indicates

the linear fit (slope=100 µg sm3 ppm1) to the Central Valley data points, the light blue line is for Seattle region (slope=32 µg sm3 ppm1) and

the pink dashed line is for the Asian pollution layers (slope=20 µg sm3 ppm1); the same lines are shown in all 4 plots in the lower panel.

Fig. 13. Average vertical profiles of aerosol species for Asian pollution layers measured during the INTEX-B campaign for measurements

from the AMS from the C-130 aircraft and modeled values for the C-130 flight tracks from the GEOS-Chem and MOZART chemical

transport models. The OC signal from the AMS was derived form the AMS organic mass divided by 2. Uncertainties shown are one standard

deviation for the standard error resulting from the averaging with 0.5 km altitude bins.
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the spring of 2006. Comparisons amongst several submi-

cron aerosol instruments on board the C-130 and with in-

struments on board the DC-8 during intercomparison flights

show generally good agreement indicating that there were no

significant losses for any of the aerosol inlets used. The mea-

surements of aerosol chemical composition from the AMS

were used to describe several air mass types (“Asian pollu-

tion layers”, “Seattle region”, “Central Valley”, and “free tro-

posphere”).

We have provided further evidence to support the concep-

tual model for the transpacific transport of Asian aerosols in

the free troposphere put forth by Brock et al. (2004). This

involves the relatively faster processing of gas phase organic

precursors to form organic aerosol compared to the process-

ing of gas phase SO2 to form sulfate aerosol. The subsequent

washout of aerosol during the lifting of Asian air masses

out of the boundary layer, which is the first step for rapid

transport across the Pacific, leaves the air mass relatively

enhanced in gas phase SO2 compared to gas phase organic

precursors. Subsequent processing during transport yields a

larger sulfate aerosol than organic aerosol, which is what was

observed in this study over the Eastern Pacific. The end re-

sult is similar to the conclusion by Brock et al. (2008) that

over the oceans, sulfate determines the aerosol mass load-

ing because of the potential sulfate, i.e. SO2, available as the

polluted air mass moves off shore, while the SOA precur-

sors have been mostly depleted. Our observations show the

increased fraction of sulfate compared to total sulfur and in-

creased sulfate particle size distribution with increasing age

in the atmosphere. This implies a general pattern of sulfate

dominated aerosol over much of the Pacific because of the

continual transport of Asian pollution eastward over the Pa-

cific.

Our measurements of Asian pollution layers are some of

the first at atmospheric processing timescales of >1 week.

Enhancements of gas phase compounds present in younger

Asian pollution layers are not detectable in layers that have

been aged for a week or longer. However, aerosol sulfate

concentrations are still present in detectable levels in layers

as old as 7–10 days, indicating that aerosol chemistry serves

as a robust tracer of Asian pollution for these longer time

scales.

Our observations of the processing times of organic

aerosol in the atmosphere are generally consistent with the

conclusion that organic aerosol formation takes place within

the time frame of ∼1 day. In contrast, our measurements are

the first to show the continued oxidation of organic aerosol

through one week of atmospheric processing directly from

in-situ observations.

Two of the largest discrepancies found in comparing our

AMS measurements with two chemical transport models,

MOZART and GEOS-Chem, are an overall under-prediction

of organic aerosol by MOZART and an over-prediction of

CO by GEOS-Chem. Our observations over the Eastern Pa-

cific show no evidence for the large source of organics in

the free troposphere proposed in earlier studies (Heald et al.,

2005).
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