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Abstract 
 

Phylogenetic analyses using molecular data were used to investigate biogeographic 

and evolutionary patterns of Australasian Plantago. The Internal Transcribed Spacers 

(ITS) from nuclear DNA, ndhF-rpl32 from chloroplast DNA and cox1 from 

mitochondrial DNA were selected from a primer assay of 24 primer pairs for further 

phylogenetic analyses. Phylogenetic reconstruction and molecular dating of a dataset 

concatenated from these regions comprising 20 Australasian Plantago species 

rejected a hypothesis of Gondwanan vicariance for the Australasian group. The 

phylogeny revealed three independent dispersal events from Australia to New Zealand 

that match expected direction because of West Wind Drift and ocean currents. 

Following this study, a dataset with 150 new ITS sequences from Australasian 

Plantago, combined with 89 Plantago sequences from previous studies, revealed that 

the New Zealand species appear to have a recent origin from Australia, not long after 

the formation of suitable habitats formed by the uplift of the Southern Alps (about 5 

mya), followed by radiation. The ITS phylogeny also suggests that a single migration 

event of alpine species to lowland habitats has occurred and that recurrent polyploidy 

appears to be an important speciation mechanism in the genus. Species boundaries 

between New Zealand Plantago were unclear using both morphological and 

molecular data, which was a result of low genetic divergences and plastic morphology. 

The taxonomy of several New Zealand Plantago species need revision based on the 

ITS phylogeny.  
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Chapter One: General Introduction 

 

1.1 Plant phylogenetics  

Ever since its conception, molecular phylogenetics has been increasingly used as a 

means of elucidating evolutionary histories and refining taxonomy where other means 

fail (e.g. the study group has ambiguous morphological data or an incomplete fossil 

record). Methods of obtaining molecular data (such as the quantity of sample needed 

and the amount of time needed to process the sample through to the sequencing stage) 

have consequently improved to the point that molecular data are now as easy to obtain 

for phylogenetic purposes as any other type of data. The use of molecular data for 

phylogenetic studies is more common in the animal kingdom, whereas its utility has 

only been recently applied to plant studies. However, molecular phylogenies are 

extremely useful for plants, for which processes such as interbreeding species 

complexes, hybridisation, introgression and polyploidy are fairly common (Soltis et al. 

2004; Hegarty and Hiscock 2005; Vriesendorp and Bakker 2005).  

 

In New Zealand, phylogenetic analyses using molecular data have been effectively 

employed for many different purposes such as dating lineages (Barker et al. 2007; 

Knapp et al. 2007; Perrie and Brownsey 2007), clarifying taxonomy (Albach et al. 

2005a; Heenan et al. 2006; de Lange et al. 2007; Tripp 2007), investigating 

biogeography (Wagstaff et al. 2002; Meudt and Simpson 2006; Sanmartín et al. 2007; 

Shepherd et al. 2007), and investigating patterns of evolution (Meudt and Bayly 2008).  
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Table 1.1. Recent molecular phylogenetic studies that have investigated biogeography of New Zealand plant groups. 

 

Family or genus Long Distance 

Dispersal 

(LDD) vs. 

vicariance 

Sequencing 

regions 

References Notes 

Abrotanella LDD  ITS, trnK-

matK 
Wagstaff et al. 
2006  

Split between sister groups in Australia and South America was 
dated to about 3.1 million years ago (mya). 

Agathis Vicariance rbcL Stöckler et al. 2002 Closest relative of Agathis australis (the New Zealand species) 
is not one of the three extant Australian species of Agathis. I.e. 
presence of this species is not LDD from Australia therefore 
vicariance was inferred. 

Asplenium LDD trnL-F Perrie and 
Brownsey 2005 

Multiple dispersals to New Zealand. Estimated divergence time 
was 43mya for the oldest pair of New Zealand and non-New 
Zealand group. One frequently hybridizing austral group was 
found. 

Atherospermataceae LDD  rbcL, rpl16, 
trnL-trnF, 
trnT-trnL, 
psbA-trnH, 
atpB-rbcL 

Renner et al. 2000 Short fossil record and small genetic divergence indicate that the 
New Zealand species probably arrived by LDD from Australia 
or Antarctica during the last 30-50 million years (my). 

Blechnaceae LDD  trnL-trnF Shepherd et al. 
2007 

Identical sequences between species from: New Zealand and 
Australia, New Zealand and Chile, and Australia and Hawaii. 

Caltha Vicariance ITS, atpB-

rbcL, trnL-F 

Schuettpelz and 
Hoot 2004  

Northern Hemisphere to South America and then to 
Australia/New Zealand.  
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Table 1.1. Recent molecular phylogenetic studies that have investigated biogeography of New Zealand plant groups. 

 

Family or genus Long Distance 

Dispersal 

(LDD) vs. 

vicariance 

Sequencing 

regions 

References Notes 

Chloranthaceae LDD  rbcL, rpl20-

rps12, trnL, 
trnL-F 

Zhang and Renner 
2003  

Estimated time of divergence among extant Ascarina was 18-
19mya. 

Coriaria LDD rbcL, matK Yokoyama et al. 
2000  

LDD was inferred from North America to the Pacific Islands, 
and from New Zealand to South America. 

Craspedia LDD ITS, ETS, 
psbA-trnH 

Ford et al. 2007  Low sequence divergence between Australia and New Zealand 
(1.5, 1.7, 3.0%; respectively). One trans-Tasman dispersal from 
Australia to New Zealand, followed by species radiation.  

Elaeocarpaceae LDD ITS, trnL-trnF Crayn et al. 2006  LDD for Aristotelia (New Zealand and Australian species form 
sister clades, with South American species sister to the 
Australasian clade). Divergence of South American and New 
Zealand lineages were dated to 24-27 and 3 mya, respectively.  

Gentianella LDD ITS, matK, 
morphology 

von Hagen and 
Kadereit 2001  

Australian and New Zealand species probably dispersed only 
once and probably from South America (suggested by 
morphology; the relationships were not resolved with molecular 
data). New Zealand and Australian clade diverged about 2.7 
mya. 

Gentianella LDD ITS 1, ITS 2 Glenny 2004 Gentianella appears to have arrived in New Zealand from South 
America either once or twice, and probably dispersed once to 
Australia. First arrived in the South Island with subsequent 
northward expansion. 
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Table 1.1. Recent molecular phylogenetic studies that have investigated biogeography of New Zealand plant groups. 

 

Family or genus Long Distance 

Dispersal 

(LDD) vs. 

vicariance 

Sequencing 

regions 

References Notes 

Gleicheniaceae LDD rbcL, trnL-F Perrie et al. 2007 All three genera have undergone LDD to/from New Zealand 
less than 55mya. Tasmanian and New Zealand Gleichenia share 
identical rbcL sequences.  

Gnaphalieae LDD ITS Breitwieser et al. 
1999 

Most Gnaphalieae groups have relatively recent arrival in New 
Zealand, followed by rapid radiation in the group and have close 
affinities with Australian and New Guinean taxa. 

Gunnera Vicariance ITS, rbcL, 
rps16 

Wanntorp and 
Wanntorp 2003  

Vicariance of the group, with recent LDD of one species from 
New Zealand to Tasmania. 

Herbertus Short distance 
dispersal 

ITS, trnL-F Feldberg et al. 
2007  

Distribution cannot be explained by Gondwanan vicariance. 
Could be a combination of short distance dispersal and several 
rare LDDs. 

Korthalsella LDD  ITS, trnL-F Molvray et al. 1999 Possibly from Malesia (where sister genus is found) outward. 
Direction of LDD within Australasia was unclear. 

Lyallia and 
Hectorella 

LDD rbcL, trnK-

matK 

Wagstaff and 
Hennion 2007 

Divergence of sister genera from sub-Antarctic Islands and New 
Zealand was estimated to be about 18.6 mya. 

Microseris LDD AFLP Vijverberg et al. 
2002 

Dispersals in south-east Australia, Tasmania, New Zealand, and 
the Australian mainland. Morphological differentiation is not 
evident in the nuclear DNA. 
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Table 1.1. Recent molecular phylogenetic studies that have investigated biogeography of New Zealand plant groups. 

 

Family or genus Long Distance 

Dispersal 

(LDD) vs. 

vicariance 

Sequencing 

regions 

References Notes 

Myosotis LDD ITS, psbA-

trnA, matK, 
ndhF 

Winkworth et al. 
2002a 

Multiple long distance dispersals events; most of these were in a 
direction opposite to predictions of the West Wind Drift. 

Nothofagus Vicariance rbcL Linder and Crisp 
1995 

Vicariance followed by extensive extinctions. 

Nothofagus LDD + 
vicariance 

ITS , rbcL, 
atpB-rbcL  

Swenson et al. 
2001 

LDD of one species to Tasmania and one to New Zealand. 
Several species in New Zealand and Australia have much less 
variation than expected from Gondwanan vicariance.  

Nothofagus LDD + 
vicariance 

atpB-psaI, 
trnL-trnF 

Knapp et al. 2005 Vicariance can explain some transoceanic relationships among 
Nothofagus but the relationships between the trans-Tasman 
species (in Lophozonia and Fucospora) can only be explained 
by mid- to late-Tertiary transoceanic dispersal. 

Oreobolus LDD ITS, trnL, 
trnL-F 

Chacón et al. 2006 Australasian (and Malesian, which is the closest relative) 
relationships unclear but hypothesized LDD from 
Australasia/Malesia to Hawaii, and from Australia to South 
America. 

Oreomyrrhis LDD  ITS Chung et al. 2005  ITS phylogeny shows that the New Zealand Oreomyrrhis group 
is closely related to a group that is mostly distributed in the 
Northern Hemisphere. A molecular clock estimate is fairly 
recent (about 1.06mya). 
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Table 1.1. Recent molecular phylogenetic studies that have investigated biogeography of New Zealand plant groups. 

 

Family or genus Long Distance 

Dispersal 

(LDD) vs. 

vicariance 

Sequencing 

regions 

References Notes 

Ourisia LDD ITS, ETS, 
matK, rps16 

Meudt and 
Simpson 2006  

Tasmanian species are sister to a New Zealand clade. Ancestor 
dispersed to Australasia from South America. 

Pachycladon LDD ITS Heenan et al. 2002 Recent dispersal between New Zealand and Tasmania (1 species 
is endemic to Tasmania, while all others endemic to South 
Island, New Zealand). Origin of Pachycladon was estimated to 
be about 1.0 to 3.5 mya.  

Pittosporum LDD ITS Gemmill et al. 
2002  

Mostly about the Hawaiian lineages but LDD is suggested for 
the group, which includes one New Zealand species. 
Relationships to and from New Zealand are unclear. 

Plagiochila Vicariance 
cannot be 
refuted.  

ITS, rps4 Heinrichs et al. 
2006 

Current distribution is a mixture of short distance dispersal, rare 
long distance events and extinction/recolonization as a result of 
climate changes. 

Polystichum LDD rps4-trnS, 
AFLP 

Perrie et al. 2003 Appears to be from Australia to New Zealand within the last 20 
my. 

Proteaceae LDD + 
vicariance 

rbcL, atpB, 
atpB-rbcL 

Barker et al. 2007  Gondwanan vicariance with more recent LDD. Split between 
New Zealand and Australian species was dated to about 45.4 
mya. 

Pteridophytes LDD rbcL Perrie and 
Brownsey 2007  

Molecular dating shows that most ferns have undergone LDD. 
Many of the New Zealand and non New Zealand pteridophyte 
pairs had relatively small differences. 
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Table 1.1. Recent molecular phylogenetic studies that have investigated biogeography of New Zealand plant groups. 

 

Family or genus Long Distance 

Dispersal 

(LDD) vs. 

vicariance 

Sequencing 

regions 

References Notes 

Ranunculus LDD ITS, JSA 
(chloroplast) 

Lockhart et al. 
2001 

Dispersal from New Zealand to Australia and to New Guinea. 
Dispersal origin of New Zealand species is unclear from but the 
group arose about 5mya.  

Scaevola LDD ITS Howarth et al. 
2003  

New Zealand species (shared by Tonga) is nested within an 
Australian lineage. 

Scleranthus LDD  ITS 1, ITS 2 Smissen et al. 2003 Lack of ITS sequence divergence between Australian and New 
Zealand populations of two species. Divergence between 
Australasian and Eurasian clade was estimated to be less than 35 
mya.  

Sophora LDD atpB-rbcL  Hurr et al. 1999 Long distance dispersal from Tuvalu to Lord Howe Island to 
New Zealand and across the South Pacific within the last 2-5 
my.  

Stylidiaceae LDD ITS, rbcL Wagstaff and Wege 
2002 

Two dispersal events: one from Australia and the other from 
either South America or Australia. 

sunflower alliance 
of families 

Vicariance  rbcL Bremer and 
Gustafsson 1997  

Simple molecular dating estimated the age of the sunflower 
alliance to be about 96 mya. 

Tetrachondra LDD rbcL Wagstaff et al. 
2000  

Either long-distance dispersal of Tetrachondra hamiltonii to 
New Zealand, or short distance dispersal via stepping stones. 
East to west direction of LDD, opposite to the direction 
predicted by West Wind Drift. 
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Table 1.1. Recent molecular phylogenetic studies that have investigated biogeography of New Zealand plant groups. 

 

Family or genus Long Distance 

Dispersal 

(LDD) vs. 

vicariance 

Sequencing 

regions 

References Notes 

Veronica (Hebe) LDD ITS Wagstaff and 
Garnock-Jones 
1998 

Recent origin and rapid radiation of the New Zealand Hebe 

group. This is followed by dispersal to the Chatham Islands, and 
South America (at least twice). 

Veronica 

(Chionohebe, 
Parahebe) 

LDD ITS Wagstaff and 
Garnock-Jones 
2000 

LDD from New Zealand to Australia and New Guinea, and also 
from New Zealand to South America and Rapa Island. Origin of 
New Zealand species is equivocal between Australia and 
Northern Hemisphere 

Veronica (Hebe) LDD ITS, rbcL Wagstaff et al. 
2002 

One ancestor followed by diversification in New Zealand. 
Two LDD events to South America, at least one to Australia and 
one to New Guinea; plus six others across the Pacific, including 
to Chatham Island and the subantarctic islands. 
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1.1.1 Genetic markers for plant phylogenetics 

When working on molecular phylogenies, choosing genetic markers is an important 

process. Genetic markers need to be chosen based on their ability to differentiate 

between taxa at the level that the research requires. Currently, the most common 

genetic marker used for phylogenetic studies in plants is the Internal Transcribed 

Spacer (ITS) region, found in the nuclear genome of plants, fungi and animals. This 

refers to the region of 18S, 5.8S and 26S ribosomal genes, along with two internal 

transcribed spacers. It is widely applied in phylogenetic studies, from fungi to higher 

land plants (White et al. 1990; Álvarez and Wendel 2003) and recently to animals 

(Jorgensen et al. 2007; Kuriiwa et al. 2007). In fact, it was found that out of 244 

papers published between the years 1998-2004, 66% utilized ITS data and 34% of 

phylogenies were published based on ITS data alone (Álvarez and Wendel 2003). The 

trend of utilizing ITS as a marker for reconstructing plant phylogenies is also found in 

New Zealand plant studies (Table 1.1), where 27 of 44 (61%) recent phylogenetic 

studies investigating biogeography used ITS as a marker. 

 

The ITS region has various advantages as a marker, such as high genetic variation for 

most groups, concerted evolution of the region, and low functional constraints 

(Álvarez and Wendel 2003). In addition, the entire ribosomal DNA array region is 

easily amplified with universal primers (Hillis and Dixon 1991) and as a consequence 

of frequent use, there is a wide array of ITS sequences readily available on Genbank 

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=nucleotide). However, markers 

from other regions may prove to be more useful than ITS, especially at lower 

taxonomic levels (Mort et al. 2007; Shaw et al. 2007). Markers from independent 

regions can also be used in combination with each other as long as they have gene 
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histories that do not conflict. Increasing sequence length in a dataset may allow 

phylogenetic trees to be more accurate, whereas sampling sites from independent 

regions increases the power of the phylogenetic inference (Cummings et al. 1995). 

Additionally, the use of more than one (independent) marker will allow visualization 

of processes such as hybridisation, introgression, reticulation and incomplete lineage 

sorting if these have occurred in the past (Vriesendorp and Bakker 2005). For events 

such as hybridisation, parental lineages may also be revealed based on the 

phylogenies of the different markers (e.g. Albach and Chase 2004; Smissen et al. 

2004). 

 

Markers from different genomes are useful in this respect because the nuclear DNA 

(nrDNA) is independent of the organellar DNA and they have different mechanisms 

of inheritance. Moreover, given that organellar DNA is generally maternally inherited 

and non-recombining in most plant groups, DNA from the chloroplast DNA (cpDNA) 

and mitochondrial DNA (mtDNA) may be able to show genetic relatedness and 

geographic structure of genetic variation better than nrDNA, which is biparentally 

inherited and undergoes recombination (Mort et al. 2007). Recently, the development 

of markers other than ITS have shown that many previously unexplored regions are 

useful for plant phylogenetics (e.g. chloroplast markers developed by Shaw et al. 

2007). While mtDNA is commonly used in animal studies, it is usually not a suitable 

marker for plant phylogenetics because it is known to evolve at an extremely slow 

rate (Wolfe et al. 1987) and is therefore highly conserved even at the species level. 

However, an unusually high rate of mtDNA evolution has been found in a few plant 

groups, including Plantago (Cho et al. 2004), Silene (Mower et al. 2007) and 

Geraniaceae (Parkinson et al. 2005). Therefore, mtDNA may have some utility for 
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phylogenetic analyses within these genera and possibly other plant groups. At the 

population level, studies often use microsatellites, a string of one to six nucleotide 

sequences that are repeated multiple times (Zane et al. 2002), because they have 

frequent length polymorphism when compared among individuals in a population.  

 

1.2 Biogeography of Southern Hemisphere plants 

Molecular data have been increasingly used to reconstruct phylogenies for 

investigating plant biogeography. Molecular phylogenies allow for large-scale studies 

that would otherwise be too complex using other types of characters, such as 

morphology (e.g. Renner 2004; Sanmartín and Ronquist 2004; Sanmartín et al. 2007). 

For example, by plotting distribution information on 23 phylogenies for different 

Southern Hemisphere plant groups, Sanmartín et al. 2007 were able to infer that 

plants in the Southern Hemisphere are more likely to disperse in an eastward direction 

between Australia and South America, whereas they are more likely to disperse in a 

westward direction between South America and New Zealand.  

 

Plant biogeography in the Southern Hemisphere has garnered much attention (Table 

1.1, Setoguchi et al. 1998; Muñoz et al. 2004; Sanmartín and Ronquist 2004; Sytsma 

et al. 2004; Sanmartín et al. 2007). Since the conception of plate tectonics in the 

1960’s, distribution of Southern Hemisphere flora has been believed to be the result of 

vicariance from the supercontinent Gondwana (Pole 1994; de Queiroz 2005; McGlone 

2005), which broke up to form the landmasses in the Southern Hemisphere. However, 

studies using molecular data suggest that recent long distance dispersal in Southern 

Hemisphere plant groups are more prevalent than previously thought (Winkworth et 

al. 1999; Winkworth et al. 2002b; de Queiroz 2005; McGlone 2005) (see Table 1.1).  
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The New Zealand landmass has been isolated by a distance of at least 1500km from 

its closest landmass, Australia, after the break-up of Gondwana 80 million years ago 

(mya) (Cooper and Cooper 1995). Recent phylogenetic analyses (Table 1.1) have 

revealed that divergence dates for many plant groups on different continents are too 

recent to be explained by vicariance (e.g. Wagstaff and Garnock-Jones 1998; Hurr et 

al. 1999; Lockhart et al. 2001; Radford et al. 2001; Swenson et al. 2001; von Hagen 

and Kadereit 2001; Heenan et al. 2002; Zhang and Renner 2003; Perrie and Brownsey 

2005; Barker et al. 2007; Perrie and Brownsey 2007; Perrie et al. 2007). Evidence of 

long distance dispersal has also been found in plant lineages that are considered 

typical examples of Gondwanan relicts, such as Nothofagus (Swenson et al. 2001; 

Knapp et al. 2005).  Some authors have gone so far as to say that the entire New 

Zealand flora has arrived by long distance dispersal (Pole 1994) but there is still 

evidence that some plant groups have origins that date back to a Gondwanan origin, 

e.g. Agathis (Stöckler et al. 2002; Knapp et al. 2007). Thus, the origins of the New 

Zealand flora may be a mixture of older vicariance and more recent long distance 

dispersal events.  

 

Within Australasia, dispersal from Australia to New Zealand is commonly found in 

molecular studies (Wagstaff and Garnock-Jones 1998; Wagstaff et al. 1999; Wagstaff 

and Wege 2002; Ford et al. 2007). Dispersal in this direction is consistent with the 

prevailing West Wind Drift (Raven 1973; Winkworth et al. 2002b; Muñoz et al. 2004; 

Sanmartín et al. 2007). While not as common, there is also evidence of dispersal in 

the opposite direction (New Zealand to Australia) (Wagstaff and Garnock-Jones 2000; 

Lockhart et al. 2001; Wagstaff et al. 2002; Wanntorp and Wanntorp 2003). Other 

dispersal patterns can also be found, e.g. in Veronica, there has been evidence of 
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dispersals from Australia to New Zealand; New Zealand to Australia; New Zealand to 

Papua New Guinea; New Zealand to South America; and New Zealand to Rapa 

(Wagstaff et al. 2002). Additionally, New Zealand plant groups are often found to 

have established in New Zealand following one single long distance dispersal event 

(Wagstaff and Garnock-Jones 1998; Winkworth et al. 1999; Perrie et al. 2003; Albach 

et al. 2005b; Meudt and Simpson 2006). While molecular phylogenies have been able 

to reveal biogeographic patterns in many New Zealand plant groups, the 

biogeography of many more lineages remain to be tested.  

 

1.3 Patterns of evolution in New Zealand plants 

Overall evolutionary patterns within New Zealand plants are not well studied and in 

particular, the evolution of alpine species is not well-known (Lockhart et al. 2001). 

Evidence for rapid radiation in many New Zealand plant groups has been found in 

many molecular phylogenetic studies to date (Wagstaff and Garnock-Jones 1998; 

Winkworth et al. 1999; Heenan et al. 2002; Perrie et al. 2003; Murray et al. 2004; 

Albach et al. 2005b; Meudt and Simpson 2006). These radiations are often associated 

with speciation after recent long distance events (Breitwieser et al. 1999), adaptation 

to new habitats after the uplift of the Southern Alps (Wagstaff and Garnock-Jones 

1998; Lockhart et al. 2001; Trewick and Morgan-Richards 2005), and climate 

fluctuations (Raven 1973; Lockhart et al. 2001; Winkworth et al. 2002a). Speciation 

in New Zealand plant groups may also have followed separation of populations due to 

uplift of Southern Alps (Haase et al. 2007), adaptation to different habitats (McBreen 

and Heenan 2006), disruption during glacial periods, or displacement along the alpine 

fault (Haase et al. 2007). Cook Strait, which separates the North and South Islands of 

New Zealand, could act as a barrier as well, although there may have been land 
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bridges connecting the North and South Islands during the glacial cycles of the 

Pliocene (Lewis et al. 1994). Older lineages may also have experienced population 

fragmentation as a result of almost total submersion of the New Zealand landmass 

during the Oligocene (Cooper and Cooper 1995). Additionally, a recurrent pattern 

within New Zealand is the dispersal of plants from the South Island to the North 

Island (e.g. Lockhart et al. 2001; Meudt and Simpson 2006). 

 

Hybridisation is common in many New Zealand plant groups (Heenan et al. 2001; 

Lockhart et al. 2001; Albach and Chase 2004; Smissen et al. 2004), along with 

recurrent polyploidy (Groves and Hair 1971). Recurrent polyploidy is probably 

associated with hybridisation because it allows instant speciation where one or several 

polyploid hybrids arise sympatrically with both of (or one of) the parent populations 

(Petit et al. 1999).  

 

1.4 Taxonomy in New Zealand plant groups 

Species boundaries in New Zealand plants may be unclear using morphological 

characters due to recent or incomplete speciation associated with recent and rapid 

radiations. This often results in taxonomic problems. Many New Zealand groups are 

large and have high morphological variation both within and among species, such as 

Myosotis (Winkworth et al. 1999; Winkworth et al. 2002a) and Gnaphalieae 

(Smissen et al. 2004). However, these, along with many other New Zealand plant 

groups often have low genetic diversity (Hurr et al. 1999; Winkworth et al. 1999; 

Heenan et al. 2002; Mitchell and Heenan 2002; Vijverberg et al. 2002; Winkworth et 

al. 2002a), which makes species delimitations difficult. 
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Molecular phylogenies have been used for improving plant taxonomy within New 

Zealand. For example, molecular data revealed that the five or six genera of the Hebe 

complex have evolved within Veronica, and are therefore paraphyletic (Albach and 

Chase 2001). Circumscription of Veronica was subsequently enlarged to include all 

Southern Hemisphere Hebe species (Garnock-Jones et al. 2007). Molecular 

phylogenies can also be used to efficiently investigate species complexes (e.g. two 

species of Crassula were found to have frequent interbreeding and could not be 

separated based on genetic, morphological or karyological data (de Lange et al. 2007).  

 

1.5 Introduction to study group: Plantago 

In this thesis, a phylogeny of Plantago is reconstructed using molecular data. 

Plantago is a large genus (ca. 210 species) with a worldwide distribution in the family 

Plantaginaceae (Rahn 1996). The plants are mostly small rosettes but also form 

woody shrubs in the Hawaiian and Juan Fernández Islands (Rock 1920). Plants in this 

genus are wind-pollinated. The genus has three basic chromosome numbers, x = 4, 5, 

and 6 (Rahn 1996; Dhar et al. 2006); diploid chromosome numbers range from 2n = 8 

(P. ovata) to 2n = 96 (P. correae and P. “sylvester”).  

 

Chemical properties and diverse breeding systems (e.g. self-incompatible or self-

compatible; dichogamy; cosexuality; gynodioecy or dioecy; unisexual females or 

hermaphrodites) within the genus have captured the attention of many researchers 

(see Wolff and Schaal 1992; VanDijk and Bakx-Schotman 1997; Rønsted et al. 2000; 

Squirrell and Wolff 2001; Hale and Wolff 2003; Rønsted et al. 2003; Nilsson and 

Ågren 2006; Nilsson et al. 2006). Recently, Plantago has also garnered attention as a 
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result of the high evolutionary rate of mtDNA found in the genus (Cho et al. 2004; 

Bakker et al. 2006). 

 

1.5.1 Previous phylogenetic studies 

One phylogenetic study using morphological characters and two using genetic 

sequences have been performed on the genus so far. 

 

Morphological phylogeny 

Rahn (1996) reconstructed a phylogeny of the genus using morphological characters. 

Most Australasian species were included (one New Zealand and four Australian 

species were not included). Based on the morphological phylogeny, the ca. 210 

Plantago species were classified into six subgenera, including Littorella (previously 

described as a genus). This morphological phylogeny suggested that the Australasian 

species do not form a monophyletic group. The Australasian species were grouped 

with species from South America, Asia, Europe, New Guinea and Tonga Islands 

(Rahn 1996). 

 

Molecular phylogenies 

Ronsted et al. (2002) obtained ITS and trnL-F sequences from 57 Plantago species 

(including two New Zealand species: P. spathulata, P. raoulii; and one from Australia: 

P. debilis). Phylogenetic analyses revealed that subg. Albicans was paraphyletic and 

circumscription of subg. Psyllium was revised to include those species. In a combined 

ITS and trnL-F phylogeny, the Australasian species did not form a monophyletic 

group and were separated by P. stauntonii from the Amsterdam & St. Paul Islands 

(located in the Indian Ocean). 
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Finally, Hoggard et al. (2003) used ITS data from 23 Plantago species (including one 

New Zealand species: P. triandra; and five Australian species: P. tasmanica, P. 

daltoni, P. euryphylla, P. hispida, P. paradoxa) to investigate whether Littorella 

should be included within Plantago or considered a separate genus. Littorella was 

found to form the sister clade to a clade of all the other Plantago species. The 

Plantago phylogeny (i.e., excluding Littorella) resolved in this study was similar to 

that resolved by Rønsted et al. 2002.  

 

1.5.2 Biogeography of Plantago 

Biogeography is interesting within Plantago because the genus is widely distributed. 

Some species are endemic to certain areas like the Australasian species (there are 

even species that are native to recently formed islands, such as Amsterdam & St. Paul 

Islands), whereas many species are cosmopolitan (see Rahn 1996). Based on a 

morphological phylogeny, Rahn (1996) invoked a vicariance model with subsequent 

mass extinctions to explain Plantago distribution in the Southern Hemisphere. In 

contrast, Rønsted et al. (2002) suggested a prevalence of long distance dispersal 

worldwide based on the molecular phylogeny. However, the molecular phylogenies 

have only included a maximum of six Australasian species (out of a total 32). South 

American Plantago are represented by 13 species that have published sequences. 

Thus, inclusion of Australasian Plantago species in the phylogeny is crucial for 

understanding biogeographic patterns of Southern Hemisphere plants. A molecular 

phylogeny including more Australasian species can be used to compare the 

biogeographic hypotheses of the Southern Hemisphere species as suggested by Rahn 

(1996) and Rønsted et al. (2002) and may also shed light on several lineages of the 

phylogeny that are unclear.  
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1.5.3 Taxonomy of Plantago in New Zealand 

Plantago is placed in the family Plantaginaceae, which was traditionally classified 

with three genera: Bougueria Decne., Littorella P. Bergius and Plantago L. These 

were combined to form a monogeneric family based on morphology (Rahn 1996), 

although a molecular phylogeny has since shown evidence for recognizing Littorella 

at the generic level (Hoggard et al. 2003). Individuals within the genus have high 

morphological plasticity, which results in difficulties when circumscribing the plants 

into taxonomic groups, particularly at the species level (Sykes in Webb et al. 1988, 

Rahn 1996). While relationships of subgenera and sections within Plantago are 

reasonably well-resolved (in Rønsted et al. 2002), inter-specific relationships are still 

largely unclear. 

 

In this thesis, I focus on the taxonomy of Plantago species that are native to New 

Zealand. So far there have been several taxonomic treatments for the New Zealand 

species (e.g. Moore in Allan 1961; Sykes in Webb et al. 1988) but no recent, 

comprehensive taxonomic monograph. Eight species of Plantago were accepted in the 

most recent Flora of New Zealand: P. raoulii, P. spathulata, P. triandra, P. obconica, 

P. lanigera, P. unibracteata, P. aucklandica and P. triantha (Sykes in Webb et al. 

1988). In addition, there is a purported polyploid of 2n=96 given the tag name P. 

“sylvester” (Groves and Hair 1971), which is still undescribed. Like the rest of the 

genus, morphological differences between New Zealand species are not easily defined, 

resulting in problems with species delimitation and identification. Thus, genetic data 

may be more useful in elucidating species boundaries and relationships in the New 

Zealand species of Plantago. Discrepancies between the five most recent taxonomic 

treatments (Hooker 1864; Cheeseman 1906; Cheeseman 1936; Moore in Allan 1961; 
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Sykes in Webb et al. 1988) represent hypotheses of species boundaries that are 

investigated in this study. To date, molecular phylogenetic studies in Plantago have 

included only three out of the eight New Zealand species. 

 

1.6 Summary and research aims 

In summary, obtaining DNA sequences from multiple independent genetic markers 

has many advantages in phylogenetic studies. For Plantago, Australasian species 

should be integrated into the molecular phylogeny in order to make inferences about 

the biogeography of Southern Hemisphere Plantago species. A molecular phylogeny 

including Australasian species can also be used to look at species relationships within 

the group, many of which are still largely unclear. Genetic data may be useful for the 

genus because morphological characters are extremely plastic in the group and do not 

appear to be very useful for species delimitations. 

 

For this thesis, DNA sequences from the three different genomes are obtained to 

reconstruct a molecular phylogeny of Australasian Plantago species. Selection of 

molecular markers from the three different plant genomes is based on an assay of 

various primer pairs. The molecular phylogeny is then used to: 1) investigate 

phylogeny and biogeography of Australasian species of Plantago; and 2) elucidate 

phylogeny, evolutionary patterns and species boundaries of the New Zealand species. 

In particular, I investigate if the current distribution of native Australasian Plantago 

species can be explained by vicariance or long distance dispersal. While this study 

cannot include a taxonomic monograph due to time constraints, I address several 

taxonomic issues at species rank that have plagued researchers in the past. 
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Chapter Two: Primer pair assays for amplification 

of 24 nuclear, mitochondrial, or chloroplast regions 

in four Plantago and one Veronica (Plantaginaceae) 

species 
 

Abstract 

Combining DNA sequences from all three plant genomes provides a powerful 

phylogenetic tool because the genomes have different modes of inheritance. DNA 

sequences from the chloroplast and nucleus are most often used for reconstructing the 

evolutionary history of plants, whereas mitochondrial DNA is not often used because 

of extremely low evolution rates within the mitochondrial genome. The aim of this 

study was to find markers with good phylogenetic signals for future studies on the 

genus Plantago (Plantaginaceae). A total of 23 different sequence regions in all three 

genomes were tested for amplification in four Plantago and one Veronica species. 

This survey revealed that primers for ITS, cox1, ndhF-rpl32, trnK-psbA, trnE-trnTr, 

trnLc-trnLf, trnC-trnD, rps16 (using both sets of primers tested) and trnH-psbA 

produced consistently clean amplification of their targeted regions and were of good 

sequence length (about 700-1k base pairs in length each). These regions are 

recommended for future studies in Plantago or related groups. DNA microsatellites 

developed specifically for Plantago major, P. coronopus and P. intermedia were also 

trialed but they did not amplify or were not genotyped successfully. Of the regions 

that were sequenced, ITS and ndhF-rpl32 had the highest sequence variation between 

New Zealand and Australian species (an average of 2.5% for each) and were chosen 

for further phylogenetic analyses of Plantago.  
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2.1 Introduction 

 

Nuclear DNA (nrDNA) sequences are the most often used molecular markers in plant 

phylogenetic studies, whereas chloroplast DNA (cpDNA) has recently gained 

recognition as a useful marker (since the 1990’s). The single most commonly used 

genetic marker in plant molecular phylogenetics is the Internal Transcribed Spacer 

(ITS) region, which is located in the nrDNA. Out of 244 plant phylogenetic papers 

published between the years 1998-2004, it was found that 66% utilized ITS data and 

34% of these presented phylogenies based on ITS data alone (Álvarez and Wendel 

2003).  

 

DNA sequence regions from cpDNA and mtDNA, however, may prove to be more 

useful for phylogenetic studies than some well-established nrDNA markers. Sequence 

regions from cpDNA and mtDNA can also be used in conjunction with nrDNA 

markers to improve understanding of the evolutionary history of a plant or plant 

groups. Utilising genetic markers from the three different genomes may reveal 

different lineage histories because mtDNA and cpDNA are typically uniparentally 

inherited, whereas nrDNA is biparentally inherited. These contrasting modes of 

inheritance are especially useful for plant studies, in which polyploidy, hybridisation 

and introgression are fairly common processes (Soltis et al. 2004). For example, 

hybridisation events have been inferred and parent species have been elucidated from 

conflicting signals presented by nrDNA and organelle DNA in several phylogenetic 

studies (Lockhart et al. 2001; Albach and Chase 2004; Smissen et al. 2004). Where 

there is no conflict among lineages, combining sequences from all three plant 

genomes is able to provide a powerful tool for phylogenetic analysis. Concatenated 
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datasets have increased dataset size compared to a single region, which allows 

building methods to construct more robust trees, whereas analyzing data from 

multiple independent sources has been shown to improve the power of analyses 

(Cummings et al. 1995). Analyses of concatenated datasets may thus provide further 

insight into an organism’s evolutionary history than can be achieved by markers from 

the one genome alone or even several markers from the same genome. 

 

Mitochondrial DNA (mtDNA) is rarely found to be a suitable marker for plant 

phylogenetic studies. Unlike mtDNA in animals, plant mtDNA is generally assumed 

to evolve at an extremely slow rate (Wolfe et al. 1987) and is therefore highly 

conserved even at species level. However, an unusually high rate of mtDNA evolution 

has recently been reported in Plantago (Cho et al. 2004) and several other plant 

groups such as Silene (Houliston and Olson 2006) and Geraniaceae (Bakker et al. 

2006). In the case of Plantago, this accelerated rate even exceeds the rate of animal 

mtDNA evolution by an order of magnitude (Cho et al. 2004), which is highly 

suprising. More phylogenetic work needs to be carried out on the mtDNA in the 

group to explore this high rate of evolution. 

 

The genus Plantago (Plantaginaceae) comprises more than 200 species of wind-

pollinated plants with a worldwide distribution that includes many cosmopolitan 

species. Plants within the genus have variable chromosome numbers. Rahn (1996) 

reports values from from 2n = 8 (P. ovata) to 2n = 96 (P. correae and P. “sylvester") 

within the genus) and diverse breeding systems (such as self-compatibility, 

dichogamy, cosexuality, gynodioecy, dioecy, unisexual females or hermaphrodites), 

which have captured the attention of many researchers (see Wolff and Schaal 1992; 
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VanDijk and BakxSchotman 1997; Squirrell and Wolff 2001; Hale and Wolff 2003; 

Nilsson and Ågren 2006; Nilsson et al. 2006). The plants in the genus also have 

interesting chemical properties, which have been investigated in various studies 

(Rønsted et al. 2000; Rønsted et al. 2003; Kozan et al. 2006; Barton 2007). Several 

species, such as P. ovata, are cultivated for medicinal uses (Dagar et al. 2006). Recent 

studies that investigate the phylogeny of Plantago using the nrDNA Internal 

Transcribed Spacer (ITS) and the cpDNA trnL-F region have created a framework for 

the evolutionary history of the group. However, these studies included sequences for 

only three or six Australasian species (Rønsted et al. 2002; Hoggard et al.  2003), 

respectively.  

 

In this study, the usefulness of several primer pairs from each of the three plant 

genomes is tested for plants in the genus Plantago. The study group comprises two 

New Zealand species, one Australian and one cosmopolitan Plantago species. A 

species from a different genus in the same family, Veronica stricta from New Zealand, 

was included in the assays to establish the applicability of the primer pairs outside of 

the genus. The unexpected rate of evolution in Plantago mtDNA may be useful for 

phylogenetic studies involving the genus and warrants further investigation. For this 

reason, mtDNA primers have been included in this study. Several microsatellite 

primers were also included. Microsatellites are regions in any given genome, which 

have multiple repeats of a string of one to six nucleotides (Zane et al. 2002). 

Microsatellite regions have frequent length polymorphism, and are more variable than 

other types of sequence markers at the population level.  
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Table 2.1. Primer sequences and references for the primer pairs included in this study.  
 

  Region Genome Primer sequences Reference Designed for 

1 ITS Nuclear 
ITS28CC  CGCCGTTACTAGGGGAATCCTTGTAAG  
ITS5  GGAAGTAAAAGTCGTAACAAGG 

Wagstaff and Garnock-Jones 1998     
White et al. 1990 

Universal 

2 CYC Nuclear Primers are unpublished Wang, UBC (pers. comm.) N/A 

3 CAM Nuclear 
CAMX1F  AGCCTNTTCGACAAGGATGG             
CAMX2R  AGTGANCGCATCACAGTT 

Strand et al. 1997 angiosperms 

4 Waxy Nuclear 
Waxy7F  GYYTTSTGCATCCACAACATTGC                   
Waxy13R  GGAGTGGCRACGTTTTCCTT 

Olmstead et al. unpubl. Lamiales 

5 CHS Nuclear 
CHSX1F  AGGAAAAATTCAAGCGCATG                         
CHSX2RN  TTCAGTCAAGTGCATGTAACG Strand et al. 1997 angiosperms 

6 LFY Nuclear 
LFY.F2  CGTGGSAAAAAGAAYGGYYTDGATTA           
LFY.R3  CATTTTDGGYTTGTTKATGTA 

Howarth and Baum 2005 angiosperms 

7 G3pdH Nuclear 
GPDX7F  GATAGATTTGGAATTGTTGAGG    
GPDX9R  AAGCAATTCCAGCCTTGG 

Strand et al. 1997 angiosperms 

8 cox1 Mitochondrial 
cox1F4  GGATATCTAGGYATGGTTTATGC                    
cox1R3  AAGCTGGAGGACTTTGTAC Cho et al. 2004 (pers. comm.) Plantago 

9 nad1 Mitochondrial 
nad1b  GCATTACGATCTGCAGCTCA                             
nad1c  GGAGCTCGATTAGTTTCTGC 

Demesure et al. 1995 land plants 

10 NIA3 Mitochondrial 
NIA-i3F  AARTAYTGGTGYTGGTGYTTYTGGTC            
NIA-i3R  GAACCARCARTTGTTCATCATDCC 

Howarth and Baum 2002 
Scaevola, and 
angiosperms 

11 
ndhF-
rpl32 Chloroplast 

ndhF  GAAAGGTATKATCCAYGMATATT                        
rpl32-R  CCAATATCCCTTYYTTTTCCAA Shaw et al. 2007 angiosperms 

13 rpl32-trnL Chloroplast 
trnL  CTGCTTCCTAAGAGCAGCGT                                
rpl32-F  CAGTTCCAAAAAAACGTACTTC 

Shaw et al. 2007 angiosperms 

12 trnK-psbA chloroplast 
trnK3F  CCGACTAGTTCCGGGTTCGAAT                       
PSBAR  CGCGTCTCTCTAAAATTGCAGTCAT 

Winkworth et al. 2002a Myosotis 

14 trnE-trnTr chloroplast 
trnE  GCC TCC TTG AAA GAG AGA TG                          
trnT-r  TAC CAC TGA GTT AAA AGG GC Doyle et al. 1992 Poaceae 
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Table 2.1. Primer sequences and references for the primer pairs included in this study.  
 

  Region Genome Primer sequences Reference Designed for 

15 trnLc-trnLf chloroplast 
c  CGAAATCGGTAGACGCTACG                                    
f  ATTTGAACTGGTGACACGAG 

Taberlet et al. 1991 land plants 

16 trnC-trnD chloroplast 
trnC  CCAGTTCAAATCTGGGTGTC                             
trnD  GGGATTGTAGTTCAATTGGT 

Demesure et al. 1995 land plants 

17 rps16 chloroplast 
rps16F  AAA CGA TGT GGT ARA AAG CAA C    
rps16R  AAC ATC WAT TGC AAS GAT TCG ATA Shaw et al. 2005 Angiosperms 

18 rbcL chloroplast 
aF  ATGTCACCACAAACAGAGACTAAAGC                    
cR  GCAGCAGCTAGTTCCGGGCTCCA 

Hasebe et al. 1994 Ferns 

19 trnH-psbA chloroplast 
trnH2  CGCGCATGGTGGATTCACAATCC           
psbAF  GTTATGCATGAACGTAATGCTC 

Tate 2002                                            
Sang et al. 1997 

Tarasa and  
Paeonia 

20 rps16 chloroplast 
rpsF  GTGGTAGAAAGCAACGTGCGACTT           
rpsR2  TCGGGATCGAACATCAATTGCAAC Oxelman et al. 1997 

angiosperms (designed 
from Sileneae) 

21 
trnLb-
trnTa 

chloroplast 
a  CATTACAAATGCGATGCTCT                                      
b  TCTACCGATTTCGCCATATC  

Taberlet et al. 1991 land plants 

22 PCM07 microsatellite 
PCM07F  GAGCGTCCGATCTAAACGAT 
PCM07R  GACTAACGTGCATTGCCTAGC 

Koorevaar et al. 2002 Plantago coronopus 

23 PM6 microsatellite 
PM6F  ATATGAATTAGCCAACAAA                                 
PM6R  CCAGCTCCAAGTCAAAGTA Squirrell and Wolff 2001 P. major, P. intermedia 

24 Jpm11 microsatellite 
Jpm11F  ATGGCATGAGTGGACCAGAT 
Jpm11R  AAAAGCTGGGCACCTACAAA 

Squirrell and Wolff 2001 P. major, P. intermedia 
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The primers used here have been previously published (Table 2.1) and were chosen based 

on their previous usefulness in other plant phylogenetic studies. Many of these were 

designed for universal use throughout land plants, including ITS regions (White et al. 

1990; Wagstaff and Garnock-Jones 1998), trnL-trnF (Taberlet et al. 1991) and the rps16 

intron (Shaw et al. 2005). Other primers have been developed for specific group studies, 

such as rbcL for ferns (Hasebe et al. 1994), trnE-trnTr for Poaceae (Doyle et al. 1992) 

and trnK-psbA for Myosotis (Winkworth et al. 2002a). The microsatellite markers have 

been designed for specific species within Plantago; PCM07 for P. coronopus (Koorevaar 

et al. 2002), and JPM11 and PM6 for P. major and P. intermedia (Squirrell and Wolff 

2001). Prior to this study, all of the primer pairs (with the exception of ITS and trnLc-

trnLf) have not been amplified in any native New Zealand or Australian Plantago species. 

Several regions with successful amplification are then scrutinized in more detail by 

comparing amplified length and sequence variation between the Plantago samples. The 

regions which show successful amplification and good sequence variation can be 

recommended for use in future studies. 

 

2.2 Materials and Methods 

 

2.2.1 Study group 

Within Plantago, two native New Zealand species (P. spathulata subsp. spathulata and P. 

triandra subsp. triandra), one native Australian species (P. euryphylla) and one 

cosmopolitan species that has established in New Zealand (P. lanceolata) were included 

in this study. P. lanceolata and P. spathulata subsp. spathulata represent the furthest 
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divergence between taxa in the genus and are placed in distant clades in the phylogeny 

(Rønsted et al. 2002), thereby covering a wide range of the molecular variation in the 

genus. For the microsatellites, the Plantago species that the primers were designed for 

were included as positive controls. Thus, P. coronopus was included as the positive 

control for PCM07, and P. major was included as the positive control for both JPM11 

and PM6.  

 

In addition, Veronica stricta was included to see if the primers had phylogenetic utilities 

beyond the genus Plantago, especially for primers that were designed for specific use, e.g. 

the microsatellite primer pairs. Sample collection details for the species included in this 

study are given in Appendix I (A). 

 

2.2.2 Molecular methods 

Total DNA was extracted from silica-dried leaves or whole plants with either the 

QIAGEN DNeasy Plant Mini Extraction Kit (Hilden, Germany) or a 

cetyltrimethylammonium bromide (CTAB) extraction method modified from Doyle and 

Doyle (1990). PCR amplification was performed using Eppendorf Mastercycler ep 

gradient S (Hamburg, Germany) in a final volume of 25 �l of the following: 16.35 �l 

water, 10X ThermoPol reaction buffer (10 mM KCl, 10 mM (NH4)2SO4, 20 mM Tris-

HCl (pH8.8), 2 mM MgSO4, 0.1% Triton X-100)(New England BioLabs), 0.4 mg/mL 

BSA, 250 �mol dNTPs, 10 ρmol each primer, 0.75 U of Taq DNA polymerase (New 

England BioLabs) and 0.4 �l DNA template. Products were amplified with a 

thermocycling profile of an initial 3 minutes at 95°C; then 35 cycles of 30 seconds at 
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Table 2.2. PCR amplification and sequencing results for the four Plantago and one Veronica species included in this study.  
 

  Region Veronica 
stricta 

Plantago 
lanceolata 

Plantago 
euryphylla 

Plantago 
spathulata 

Plantago 
triandra 

Annealing 
temperature 

No. of base 
pairs Sequencing 

1 ITS S S S S S 50°C ~800 + 

2 CYC M — M M M 40°C ~500-600 + 

3 CAM M — — — — 40°C ~200-1300* N/A 

4 Waxy — — — — — N/A ? N/A 

5 CHS — — — — — N/A ~150-1200* N/A 

6 LFY — — — — — N/A ~500* N/A 

7 G3pdH — — — — — N/A ~150-1600* N/A 

8 cox1 S S S S S 55°C ~800 + 

9 nad1 S S — — — 50°C ~200 N/A 

10 NIA3 — — — — — N/A ~85-1646* N/A 

11 ndhF-rpl32 S S S S S 50°C ~900-1000 + 

13 rpl32-trnL S S S/M S S/M 50°C ~800-900 + 

12 trnK-psbA S S S S S 50°C ~300 + 

14 trnE-trnTr S S S S S 50°C ~500-700 + 

15 trnLc-trnLf S S S S S 50°C ~1000 + 

16 trnC-trnD S S S S S 50°C >2000 + 

17 rps16 S S S S S 50°C ~1000 N/A 

18 rbcL S/M S/M S/M S S/M 50°C ~1400 N/A 

19 trnH-psbA S S S S S 50°C ~400 + 

20 rps16 S S S S S 50°C ~1000 N/A 

21 trnLb-trnTa S — — — — 50°C ~700* N/A 

22 PCM07 M M M M M 55°C ~190* + 

23 PM6 — — — — — N/A ~100* N/A 

24 JPM11 M M M M M 55°C ~200 0 

 
S = single banded amplified product, M = multiple banded amplified product, S/M = multiple banded product but band of amplified region much brighter, — = 
no amplified product, * estimated length from previous studies, + = successful sequencing or genotyping, 0 = sequencing or genotyping failed, N/A = data not 
available (i.e. not sequenced). 
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95°C, 30 seconds at 50°C, and 2 minutes at 72°C; and a final extension period of 10 

minutes at 72°C on an Eppendorf Mastercycler ep gradient S (Hamburg, Germany). 

The same PCR protocol was used for all primer pairs but some of the primer pairs 

needed optimization of annealing temperatures for successful single band 

amplification of the targeted region (Table 2.2).  

 

The microsatellite regions were amplified using the same PCR cocktail as above, with 

the following modifications: 2 ρmol of the forward primer with an M13 tail was 

added, and 8 ρmol of a reverse complement of the tail labeled with a fluorescent 

6FAM dye was added to the cocktail. The method used here follows the PCR protocol 

as described in Schuelke (2000). These regions were amplified using a two-step 

thermocycling profile of: an initial 5 minutes at 94°C; then 30 cycles of 30 seconds at 

94°C, 30 seconds at 55-57°C, and 2 minutes at 72°C; followed by 8 cycles of 30 

seconds at 94°C, 30 seconds at 53°C, and 2 minutes at 72°C; and a final extension 

period of 10 minutes at 72°C. 

 

Amplified lengths for all samples were checked using a 100 base pair (bp) DNA 

ladder (Roche, Penzberg, Germany) on a 1.5% agarose gel. The amplified products of 

Plantago species of ITS, CYC, cox1, ndhF-rpl32, rpl32-trnL, trnK-psbA, trnE-trnTr, 

trnLc-LF, trnC-trnD, trnH-psbA, PCM07 and JPM11 were cleaned using ROCHE 

High Pure PCR Product Purification Kit (Manheim, Germany) and these were 

sequenced/genotyped using an ABI3730 Genetic Analyzer by the Allan Wilson 

Centre Genome Service (Massey University, Palmerston North, New Zealand). 

Genetic sequences were aligned and sequence variation was calculated using 
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Figure 2.1. Gels illustrating various PCR products. Lanes: 1-5 = Veronica stricta, 

Plantago lanceolata, P. euryphylla, P. spathulata subsp. spathulata and P. triandra 

subsp. triandra for each region; A: trnH-psbA and rps16 (amplified using primers 

from Oxelman et al. 1997), B: rbcL and C: CYC. Products in A show single banded 

amplification of targeted area (referred to as S in Table 2.2) whereas B and C are a 

mix of multiple bands (S/M and M in Table 2.2). 
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Figure 2.2. Gels illustrating the amplification of the microsatellite regions. Lanes: 1-5 

= Veronica stricta, Plantago lanceolata, P. euryphylla, P. spathulata subsp. 

spathulata and P. triandra subsp. triandra for each region; A: PCM07, B: PM6, C: 

JPM11. Positive controls for B and C were run on a separate gel (not shown). PCM07 

and JPM11 yielded product with multiple bands, whereas PM6 failed to amplify the 

targeted area.  
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MEGA3.1 (Kumar et al. 2004). Microsatellites were analysed using GeneMapper 

v3.7 (Applied Biosystems). DNA sequences were deposited into Genbank 

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=nucleotide).  

 

2.3 Results 

 

Different primer pairs amplified with various results (see Figs. 2.1 and 2.2) and the 

optimal temperatures for each region varied from 40ºC to 55ºC (Table 2.2). Primer 

pairs that resulted in single band amplifications for all samples trialed were: ITS, cox1, 

ndhF-rpl32, trnK-psbA, trnE-trnTr, trnLc-trnLf, trnC-trnD, rps16 (using both sets of 

primers) and trnH-psbA. CAM yielded amplified products only for Veronica stricta, 

whereas nad1 amplified successfully in the Veronica stricta and the cosmopolitan 

Plantago species (P. lanceolata) but not in the Australasian Plantago species. CYC 

amplified multiple banded products in all samples but did not amplify in P. lanceolata.  

Primers that consistently failed to amplify any product despite several attempts were 

Waxy, Leafy, CHS and G3pdH and NIA3.  

 

Table 2.3. Comparison of sequence variation (%) between the three sequenced 

regions, which represent the three plant genomes. Each of the values presented 

here is the sequence variation as compared with Plantago spathulata subsp. 

spathulata.  

 Australasian Cosmopolitan 

 Plantago triandra 
subsp. triandra P. euryphylla P. lanceolata 

ITS 2.84 2.09 9.12 

ndhF-rpl32 2.13 3.32 11.49 

Cox1 0.17 0.17 17.98 
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Several of the amplified products were sequenced but these are not directly 

comparable because products from different species were sequenced for each region. 

However, sequences were obtained from all four Plantago species for ITS, ndhF-

rpl32 and cox1, representing one region from each genome. Percentages of sequence 

variation among the Plantago species for these regions (Table 2.3) showed that the 

interspecific genetic divergence found in ITS and ndhF-rpl32 are quite similar but 

there was relatively lower interspecific genetic divergence found in cox1 among 

Australasian species. However, cox1 displayed higher sequence divergence between 

the New Zealand P. spathulata subsp. spathulata and the cosmopolitan P. lanceolata 

than ITS and ndhF-rpl32. 

 

The microsatellite primers PCM07 and JPM11 yielded multiple-banded product for 

all Plantago and Veronica samples, whereas PM6 did not amplify the targeted region 

(Fig. 2.2). PCM07 and JPM11 amplified the targeted product in the positive control 

but PM6 failed to amplify in its positive control. For PCM07 and JPM11, which had 

successful amplification, we analyzed the product for length and heterogeneity in the 

samples. Genotyping was unsuccessful for PCM07, whereas the JPM11 

microsatellites failed to show heterogeneity in the Plantago samples.  

 

2.4 Discussion 

 

Primer pairs for amplification of regions from all three plant genomes were included 

in this study to test their usefulness for future phylogenetic studies focusing on 

Plantago or related genera. Regions from all three plant genomes were tested, 

including several regions that are not usually utilised in plant phylogenetic studies, e.g. 
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regions in the short single copy of the cpDNA and the mtDNA regions. With the 

exception of ITS and trnLc-trnLf, the primers included in this study have never been 

tested in Plantago.  

 

2.4.1 PCR amplification results 

Most of the primers tested here amplified products for all Plantago and Veronica 

species, including a few that were designed specifically for other plant groups (such 

as aF and cR from Hasebe et al. (1994), which were designed for Leptosporangiate 

ferns). Surprisingly, other primers such as those for Leafy and CAM, which were 

designed for universal use among angiosperms, consistently failed to amplify PCR 

products (Leafy) or only produced PCR products for Veronica stricta (CAM). The 

primers for the nad1 region, shown to have worked in previous studies involving 

Plantago species (Bakker et al. 2006), amplified DNA from the cosmopolitan P. 

lanceolata and from the outgroup (V. stricta) but failed to amplify DNA from native 

New Zealand and Australian species. Poor primer specificity or differences in the 

quality of the DNA used in PCR could be the cause for non-amplification of the 

targeted region. However, the latter seems less probable as the method of DNA 

extraction was the same for all of the samples and the quality of DNA for all samples 

were similar when checked on a gel. 

 

Nine regions amplified consistently with good PCR product across all samples: ITS, 

cox1, ndhF-rpl32, trnK-psbA, trnE-trnTr, trnLc-trnLf, trnC-trnD, rps16 (using both 

sets of primers) and trnH-psbA (Table 2.2). Among these, one is from nrDNA, one 

from mtDNA and seven are from cpDNA. This result may simply be proportional to 

the number of cpDNA markers included in this study but appears to suggest that 
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regions from the cpDNA have easier amplification compared to nrDNA or mtDNA. 

Microsatellites failed to amplify using PCR (Fig. 2.2), or failed genotyping (Table 

2.2), suggesting that primers for these regions cannot be extended to other species in 

the genus. 

 

While the nad1 region has been previously reported as >1 kbp in sequence length, the 

amplified nad1 product in Plantago lanceolata was about 200 bp. This finding is 

consistent with previous studies reporting a loss of this mtDNA intron in Plantago 

(Bakker et al. 2006). This deletion also occurs in Pelargonium, Geranium, and 

Sarcocaulon (Bakker et al. 2000).  

 

2.4.2 Sequence divergence compared in ITS, ndhF-rpl32 and cox1 

Usefulness of ITS, ndhF-rpl32 and cox1 are compared in this study using sequence 

divergence. Among these, the nuclear ITS region is the most commonly used marker 

in plants whereas the mtDNA cox1 is the most commonly used marker used in animal 

phylogenetics. The cpDNA ndhF-rpl32 intergenic spacer is a fairly new marker that 

has not yet been utilised in plant phylogenetics but was found to have the most 

variation among other primers designed by Shaw et al. (2007) for universal 

angiosperm use. Among the three regions, cox1 had much higher sequence divergence 

between the native New Zealand species P. spathulata subsp. spathulata and the 

introduced P. lanceolata (Table 2.3). This may be support for the fast evolutionary 

rate of mtDNA in Plantago as reported by Cho et al. 2004. However, the same rate 

does not seem to extend to within the New Zealand species, where cox1 has the least 

amount of variation (only one nucleotide substitution between the two New Zealand 

species) compared with ITS or ndhF-rpl32. Further studies are needed to determine 
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the extent of the elevated mtDNA rate in Plantago. The ndhF-rpl32 region appears to 

have the fastest rate between Australasian species (Australian P. euryphylla and New 

Zealand P. spathulata subsp. spathulata), whereas cox1 and ITS did not have as much 

variation per sequence length for these species. Thus, different primers may be better 

suited to different research objectives. For example, the fast evolving cpDNA marker 

ndhF-rpl32 may be appropriate when working with lower taxonomic levels, while the 

mtDNA cox1 may be better suited when analyzing taxa at higher taxonomic levels. 

 

2.4.3 Conclusions 

In this study, amplification of regions from nuclear, mitochondrial and chloroplast 

genomes in four species of Plantago and one Veronica (more than 10,000 bp in total) 

have shown that several regions are more easily amplified than others. Cross-

amplification of microsatellites designed for other species in Plantago failed to 

amplify or sequence for these four Plantago and one Veronica species. The 

thermocycling profile and optimal annealing temperatures reported here can also be 

further optimized for each individual primer to achieve cleaner amplification product.  

 

ITS had the most sequence variation between the New Zealand species in this study.  

This region is the most commonly used marker in most plant phylogenetic studies and 

has proven to be reliable in studies despite several drawbacks (see Feliner and 

Rosselló 2007). However, researchers have now been looking for alternative markers 

that may be more useful for phylogenetic analyses (e.g. Shaw et al. 2007). It is shown 

in this study that there may be more information in markers in the nrDNA (such as 

ITS) or in the other two genomes, depending on the needs of the researcher. 

Researchers intending to work on Plantago and any closely related group such as 
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Veronica should be able to use the primer pairs that consistently amplified the 

targeted products (Tables 2.1 and 2.2). Based on results from this study, it is not 

recommended to use the microsatellite primers tested here for species other than those 

they were developed for. 

 

For further phylogenetic analyses of Australasian Plantago species (Chapters three 

and four), I chose to use ITS and ndhF-rpl32 because these markers appear to have 

substantial variation and are a reasonable length (about 800-1000 bp long). Cox1 had 

the best result out of all the mitochondrial regions tested and is therefore also selected 

for further phylogenetic analyses. The sequence divergence observed among 

Australasian species here indicates that the elevated rate of evolution is inconsistent 

across the genus and sequencing of cox1 for more Australasian species will allow for 

testing of this hypothesis (Cho et al. 2004 only included a few Plantago species and 

no Australasian species).  
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Chapter Three: A three genome phylogeny for 

Australasian Plantago (Plantaginaceae) species 

reveals multiple trans-Tasman dispersal patterns1 
 

Abstract 

Recent phylogenetic studies have shown that the occurrence of recent long distance 

dispersal in Southern Hemisphere plants is far more prevalent than the expected 

distribution pattern of ancient Gondwanan vicariance. The phylogeny of New Zealand 

and Australian Plantago (Plantaginaceae) was reconstructed using DNA sequences 

from the Internal Transcribed Spacers, ndhF-rpl32 and cox1 from the nrDNA, 

cpDNA and mtDNA, respectively. The resolved phylogeny shows evidence for at 

least three long distance directional dispersal events, which does not support a 

Gondwanan vicariance origin for Southern Hemisphere Plantago species. Molecular 

dating also showed support for the conclusion that the distribution of Australasian 

Plantago was influenced by relatively recent long distance dispersal and not 

vicariance events. A concatenated ITS, ndhF-rpl32 and cox1 phylogeny indicated that 

the three trans-Tasman dispersals have occurred from Australia to New Zealand, 

consistent with the direction of the West Wind Drift. The finding of three dispersal 

events to New Zealand differs from the common pattern of a single origin followed by 

rapid radiation in many New Zealand plant groups. The apparent success of this group 

in New Zealand may be attributed to the fact that the plants were pre-adapted to the 

environments they established in. 

1
Note: This chapter has been prepared as a manuscript for submission in a journal and has been 

retained in this format. Co-authors of this paper are Phil Garnock-Jones, Heidi Meudt and Peter Ritchie, 
whose roles were supervision and advice. Mei Lin Tay collected sequence data and wrote the 
manuscript. Mei Lin Tay, Phil Garnock-Jones, and Heidi Meudt collaborated for the collection of 
Plantago samples 
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 3.1 Introduction 
 

For the last ca. 45 years, it has been the common view that Southern Hemisphere flora 

is a relic of the supercontinent Gondwana and that their current distributions are the 

result of vicariance (see Pole 1994; de Queiroz 2005; McGlone 2005). However, 

recent studies using molecular data revealed that most plant groups in the Southern 

Hemisphere have instead achieved their current distributions through more recent 

long distance dispersal events (Winkworth et al. 1999; Winkworth et al. 2002b; de 

Queiroz 2005; McGlone 2005). This paradigm shift is an element that is reflected in 

New Zealand plant biogeography. New Zealand has always been featured in studies 

about Southern Hemisphere biogeography because of its unique geologic history. 

New Zealand has been separated by at least 1500km from its closest landmass 

(Australia) since the breakup of the supercontinent Gondwana about 80 million years 

ago (mya) (Cooper and Cooper 1995). In spite of this, there is evidence that even 

plant groups regarded as classic examples of “ancient New Zealand lineages” (Cooper 

and Millener 1993) have previously undergone long distance dispersal. For example, 

it has been found that several lineages of southern beeches (Nothofagus) have arrived 

relatively recently through long distance dispersal (Swenson et al. 2001; Knapp et al. 

2005). Molecular dating has shown that many plant lineages have diversified recently 

and are probably the result of long distance dispersal, not relicts of Gondwana (Hurr 

et al. 1999; Lockhart et al. 2001; Heenan et al. 2002; Zhang and Renner 2003; Perrie 

and Brownsey 2005; Barker et al. 2007; Perrie and Brownsey 2007). Some authors 

have gone as far as to say that the entire New Zealand flora arrived by long distance 

dispersal (Pole 1994), but there are still examples appearing in the literature of plant 

groups that date back to a Gondwanan origin, e.g. Agathis (Stöckler et al. 2002; 



 
 
 
 

 40 

Knapp et al. 2007). Thus, the origins of the New Zealand flora may be the result of a 

mixture of older vicariance and more recent long distance dispersal events.  

 

A common observation among New Zealand plant groups with a history of long 

distance dispersal is a lack of DNA sequence divergence between species from 

Australia and species from New Zealand (Hurr et al. 1999; Renner et al. 2000; 

Swenson et al. 2001; Wagstaff et al. 2002; Smissen et al. 2003; Ford et al. 2007; 

Sanmartín et al. 2007) and a recurrent pattern of New Zealand and Australian species 

being sister groups (Linder and Crisp 1995; Sanmartín and Ronquist 2004; Perrie and 

Brownsey 2005; Crayn et al. 2006; Meudt and Simpson 2006). A brief survey of 

recent phylogenetic studies involving Australasian plants revealed that many New 

Zealand plant groups have arrived from Australia (e.g. Wagstaff et al. 1999; Wagstaff 

and Wege 2002; Ford et al. 2007). This asymmetric West to East direction of 

dispersal is consistent with expectations of the West Wind Drift, which predicts more 

dispersal events from west to east because of westerly winds and ocean currents 

(Raven 1973; Winkworth et al. 2002b; Muñoz et al. 2004; Sanmartín et al. 2007). 

Another pattern that is frequently found is a single dispersal to New Zealand followed 

by rapid species radiation (Wagstaff and Garnock-Jones 1998; Winkworth et al. 1999; 

Perrie et al. 2003; Albach et al. 2005b; Meudt and Simpson 2006). Other dispersal 

biogeographic patterns also exist (Winkworth et al. 2002b). However, these patterns 

can be difficult to elucidate because species relationships are often unresolved 

polytomies in large scale studies (i.e. at the genus level or higher) (Swenson et al. 

2001; von Hagen and Kadereit 2001). Species relationships have previously been 

found to be unclear in studies focusing on Australasian groups, e.g. Radford et al. 
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Figure 3.1. A: The Australasian region AI = Auckland Islands, AUS = Australia, NZ 

= New Zealand, PI = Pacific Islands and TAS = Tasmania. B: Distribution of native 

species of New Zealand Plantago from the databases of the Allan Herbarium 

(Landcare Research, Christchurch, NZ) and Victoria University of Wellington 

(Wellington, NZ). C: Distribution of native Australian Plantago species from the 

Australian Virtual Herbarium (http://www.flora.sa.gov.au/avh/). For B and C, shaded 

areas illustrate the distribution of native Australasian species and black circles 

represent the localities where native Australasian species were sampled for this 

molecular study 

. 
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(2001); Perrie et al. (2007). Thus, more studies focused on lower taxonomic levels are 

needed to fully understand the historical biogeography of Australasian plants.   

 

The molecular phylogeny of Australasian Plantago species was reconstructed in order 

to resolve species relationships and to investigate regional biogeographic patterns, e.g. 

to test the occurrence of long distance dispersal versus vicariance in the evolutionary 

history of the group. Plantago is a large worldwide genus in the family 

Plantaginaceae with six subgenera and more than 200 species (Rahn 1996). There are 

eight native Plantago species in New Zealand (Sykes in Webb et al. 1988), and an 

undescribed polyploid species (P. “sylvester”) (Groves and Hair 1971). There are 24 

species that are native to Australia (Briggs 1992), all of which are placed in subg. 

Plantago (Rahn 1996). New Zealand species of Plantago are distributed widely over 

both the North and South Islands (Fig. 3.1). In Australia, they are found on the 

mainland below 25oS and in Tasmania. Australasian Plantago also occur on offshore 

islands; P. aucklandica is endemic to the Auckland Islands, and P. triantha is 

endemic to the Auckland Islands and Tasmania. The plants are mostly small rosette 

herbs and are usually found in damp areas (such as seepage areas and near bogs, tarns, 

and river edges) from alpine regions to lowland herbfields and coastal areas. 

Morphological differences between taxa are not easily defined, which has resulted in 

problems with species delimitation and identification in the past. Classification of 

subgenera and sections in this paper follows Rahn (1996), whereas classification of 

Australasian species follows Sykes (in Webb et al. 1988) and Briggs (1992). 

 

When Rahn reconstructed the phylogeny of Plantago using morphological characters, 

the New Zealand species were paraphyletic to multiple South American, Australian 
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and other Pacific species. It was suggested that Plantago had a distribution consistent 

with vicariance with subsequent extinctions (Rahn 1996). Molecular phylogenetics 

can often form a robust and well-resolved evolutionary history where morphological 

characters and the fossil record cannot. In a worldwide phylogenetic study of 

Plantago, Rønsted et al. (2002) inferred that the distribution of the species was 

largely influenced by long distance dispersal. However, only three Australasian 

species were included in the study. Six Australasian species were included in another 

molecular phylogenetic study by Hoggard et al. (2003) but these studies were not 

focused on species relationships of the Australasian species and thus provided no 

further resolution among them.  

 

Including all the Southern Hemisphere Plantago species is key to testing dispersal vs. 

Gondwanan vicariance. In a Gondwanan vicariance scenario, three clades are 

expected: a South American clade that is sister to an Australian clade, and a New 

Zealand clade that is sister to (and with a node that is basal to) the South American-

Australian group. In addition, the node of the New Zealand clade should be at least 80 

mya according to the break-up sequence of Gondwana. Since this study is focused on 

the Australasian Plantago species, we can conclude that long distance dispersal has 

occured if: (1) the New Zealand and Australian groups are not reciprocally 

monophyletic, (2) the New Zealand species are in a clade that is derived from the 

Australian species (concordant with the direction of wind flow but does not match the 

pattern expected from Gondwanan vicariance) and/or (3) the split between New 

Zealand and Australian groups is found to be less than 80mya.  
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The Internal Transcribed Spacers (ITS) from nuclear DNA (nrDNA), ndhF-rpl32 

spacer from chloroplast DNA (cpDNA) and cox1 from mitochondrial DNA (mtDNA) 

were chosen to elucidate the evolutionary history of the Australasian Plantago. The 

cox1 marker is particularly interesting for Plantago because unprecendented elevated 

rates of mtDNA evolution, even several times higher than human mtDNA evolution 

rates, have been reported in the genus (Cho et al. 2004). This is surprising because 

mtDNA in plants is normally characterized by slow evolving rates (Wolfe et al. 1987). 

A mtDNA marker would also provide good phylogenetic resolution if the elevated 

rate was present in the Australasian species. Using markers from the three genomes 

will allow a comparison of evolutionary patterns in the three plant genomes, and also 

an investigation of whether the mtDNA of Australasian Plantago has a faster rate of 

evolution than nrDNA and cpDNA. The aims of this study are thus to test for 

evidence of either Gondwanan vicariance or long distance dispersal in the 

evolutionary history of this plant group, to investigate Australasian biogeographic 

patterns, and to examine if fast evolving mtDNA is present in Australasian Plantago.  

 

3.2 Materials and Methods 

 

3.2.1 Study group 

Samples for this study were collected from wild populations across the North and 

South Islands of New Zealand from previously known locations in order to cover the 
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Table 3.1: Collection details and Genbank accession numbers for species included in this study.  
 

Genbank accession number 
Species 

Indigenous 

distribution 
Collected from 

Collection 

number ITS ndhF-rpl32 cox1 

Herbarium 

voucher 

Plantago alpestris AUS Kosciuszko National Park, NSW, AUS BGB9748    NSW742962 
P. aucklandica AI AI, NZ (cult. Otari-Wilton Bush) N/A    WELTU20185 
P. australis America Hunua Ranges, Auckland, NZ MLT019 & PGJ    WELTU20181 
P. cladarophylla AUS Barrington Tops National Park, NSW, AUS JRHosking 2682    WELTU20189 
P. coronopus Mediterranean, 

Europe 
Island Bay, Wellington, NZ PGJ2549    WELTU20183 

P. cunninghamii AUS Brigalow Park Nature Reserve, NSW, AUS JRHosking 2752    WELTU20186 
P. daltonii AUS St. Clair National Park, AUS, Tasmania BGB9782    NSW743874 
P. debilis AUS Barrenjoey Headland, NSW, AUS BGB9738    NSW 742894 
P. euryphylla AUS Kosciuszko National Park, NSW, AUS BGB9743    NSW742956 
P. glacialis AUS Kosciuszko National Park, NSW, AUS BGB9753    NSW743813 
P. lanceolata cosmopolitan Karori, Wellington, NZ PGJ2551    WELTU20184 
P. lanigera (1) NZ Sugar Loaf Pass, Aspiring National Park, NZ Mike Thorsen 

s.n. 

   WELTU20133 

P. lanigera (2) NZ Sugar Loaf Pass, Aspiring National Park, NZ Mike Thorsen 

 s. n. 

   WELTU20133 

P. lanigera (3) NZ Hall  Range, Canterbury, NZ PBH s.n.    WELTU20143 
P. lanigera (4) NZ Wilberg Range, Westland, NZ MLT027 et al.    WELTU20147 
P. lanigera (5) NZ Wilberg Range, Westland, NZ MLT027 et al.    WELTU20147 
P. major cosmopolitan Ben Burn Park, Karori, NZ PGJ2550    WELTU20180 
P. muelleri AUS Kosciuszko National Park, NSW, AUS BGB9752    NSW743812 
P. obconica (1) NZ Hector Mountains, Otago, NZ N/A    CHR573261 
P. obconica (2) NZ Cardrona Ski Field, Wanaka, NZ PGJ2600 et al.    WELTU20121 
P. paradoxa AUS St. Clair National Park, AUS, Tasmania BGB9781    WELTU20187 
P. raoulii (1) NZ Lake Sarah, Cass, NZ PGJ2559    WELTU20153 
P. raoulii (2) NZ Wainuiomata Valley, Wellington, NZ PB & RL s.n.    WELTU20155 
P. sp.* ? Pukerua Bay, Wellington, NZ PGJ2566 & MLT    WELTU20178 
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Table 3.1: Collection details and Genbank accession numbers for species included in this study.  
 

Genbank accession number 
Species 

Indigenous 

distribution 
Collected from 

Collection 

number ITS ndhF-rpl32 cox1 

Indigenous 

distribution 

P. spathulata subsp. 
spathulata NZ Marfells Beach, Marlborough, NZ PGJ2629 & MLT 

  
 WELTU20117 

P. "sylvester" NZ Lake Sylvester, Nelson, NZ MLT022 & PGJ    WELTU20150 
P. tasmanica var. 
tasmanica 

AUS St. Clair National Park, AUS, Tasmania BGB9780    WELTU20188 

P. triandra subsp. 
masoniae 

NZ Paturau Coast, Nelson, NZ PJL s. n.    WELTU20168 

P. triandra subsp. 
triandra 

NZ Lake Sylvester, Nelson, NZ MLT021 & PGJ    WELTU20163 

P. triantha TAS / AI Enderby Island, AI, NZ VT55    WELTU20177 
P. unibracteata (1) NZ Mt Ruapehu, NZ MLT053 et al.    WELTU20173 
P. unibracteata (2) NZ Lake Sylvester, Nelson, NZ MLT024 & PGJ    WELTU20175 
P. varia AUS Kosciuszko National Park, NSW, AUS BGB9767    NSW743869 
Veronica hookeriana NZ Whanahuia Range, Ruahine Mountains, NZ PGJ2458    WELTU 
Veronica 

salicornioides 

NZ Jacks Pass, Hanmer, Canterbury, NZ N/A    CHR512475 

  
 

Locations: AI = Auckland Islands, AUS = Australia, NSW = New South Wales, NZ = New Zealand and TAS = Tasmania. Collectors: BGB = Barbara Briggs, MLT = 
Mei Lin Tay, PBH = Peter Heenan, PGJ = Phil Garnock-Jones, PB = Peter Beveridge, PJL = Peter Lockhart, RL = Rodney Lewington and VT = Vanessa Thorne.  
Herbarium vouchers: CHR = Allan Herbarium, Landcare Research, Christchurch, New Zealand; NSW = National Herbarium of New South Wales, Australia; WELT = 
Herbarium of Museum of New Zealand, Te Papa Tongarewa, Wellington, New Zealand; and WELTU = H. D. Gordon Herbarium in Victoria University of Wellington, 
New Zealand.  
  

*The taxon referred to as P. sp. in this study is an introduced species that has never been reported in New Zealand. The ITS sequence for this species was identical to a 
P. asiatica sequence downloaded from Genbank (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=nucleotide) but further morphological work is needed to clarify the 
identity of this sample. 
 

Note: Accession numbers will be inserted into table before publication of the paper. 
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range of species distributions, and also from Australia (Fig. 3.1). Location of samples, 

along with voucher information and Genbank accession numbers are presented in 

Table 3.1. Multiple individuals were obtained for several of the Australasian species. 

DNA sequences were obtained from all eight known native New Zealand Plantago 

species, including the recently described New Zealand species, P. obconica (Sykes 

1988) and the undescribed New Zealand polyploid specimen, tag-named P. 

“sylvester” (Groves and Hair 1971). The chromosome number of 2n = 96 reported by 

Groves and Hair (1971) was confirmed using one sample from the populations 

referred to as P. “sylvester” in this study. DNA sequences were also obtained for 12 

of the 24 native Australian species including P. triantha, which is also found in New 

Zealand. Introduced Plantago species that have established in New Zealand (P. 

coronopus, P. lanceolata, P. major and P. australis) were included in this study. P. 

major and P. australis are in the same subgenus as the Australasian species (subg. 

Plantago). P. coronopus and P. lanceolata are in subg. Coronopus and Albicans, 

respectively (following Rahn 1996).  

 

 P. coronopus and P. lanceolata were used as close outgroups as they represent the 

sister groups of subg. Plantago (Rønsted et al. 2002), whereas Veronica hookeriana 

and V. salicornioides are used as distant outgroup species for Plantago because 

Veronica is a close relative and has been used as an outgroup in the past (Rønsted et 

al. 2002; Cho et al. 2004). The dataset of one region (ndhF-rpl32) contained only V. 

hookeriana as a distant outgroup due to sequencing difficulties.  
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3.2.2 Genetic markers 

In order to reconstruct the molecular phylogeny, the following genetic markers were 

chosen. ITS, found in the nuclear genome of plants and animals, has various 

advantages as a marker (Álvarez and Wendel 2003) and is widely applied; 66% of 

published plant phylogenetic papers at the genus level or below between 1998 and 

2002 utilised this marker (Feliner and Rosselló 2007). The second molecular marker 

used is the ndhF-rpl32 intergenic spacer. This region is located in the small single 

copy region of the chloroplast and universal primers for this region have been 

published recently (Shaw et al. 2007), where this marker was found to have the 

highest variation among sequences out of many other amplified chloroplast regions. 

Thirdly, cox1, a gene in mtDNA that codes for the cyclooxygenase enzyme was used. 

The three regions described above each come from a different genome. By combining 

sequences from different independent sources (at least between the biparentally 

inherited ITS and the other two maternally inherited regions), incongruences (if any) 

in the evolutionary history of the different genomes may be visualised. Additionally, 

it has been shown that the increased length of variable sequences and sampling from 

different sites both increase accuracy and support for phylogenetic analyses 

(Cummings et al. 1995) and thus, concatenation of these three regions will be useful if 

they do not present conflicting signals. 

 

3.2.3 Molecular techniques  

Tissue samples were either preserved in silica gel from field collections, or were 

obtained from existing herbarium specimens. DNA extractions were performed using 

the DNEasy Plant Mini kit (Qiagen, Hilden, Germany) or using a 

cetyltrimethylammonium bromide (CTAB) protocol modified from Doyle and Doyle 
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(1990), after manual disruption of dried tissue using a pestle and mortar. The primers 

used to amplify the various DNA regions are: ITS28CC-

CGCCGTTACTAGGGGAATCCTTGTAAG (Wagstaff and Garnock-Jones 1998) 

and ITS5-GGAAGTAAAAGTCGTAACAAGG (White et al. 1990); ndhF- 

AAAGGTATKATCCAYGMATATT and rpl32R-AATATCCCTTYYTTTTCCAA 

from (Shaw et al. 2007); and cox1F4-GGATATCTAGGYATGGTTTATGC and 

cox1R3-AAGCTGGAGGACTTTGTAC (Cho et al. 2004 pers. comm.) These primers 

amplify the ITS region (ITS1, 5.8s nuclear rDNA and ITS2), ndhF-rpl32 spacer 

region, and cox1 mitochondrial gene, respectively. 

 

PCR amplification was performed using Eppendorf Mastercycler ep gradient S 

(Hamburg, Germany) in a final volume of 25 �l of the following: 16.35 �l water, 10X 

ThermoPol reaction buffer (10 mM KCl, 10 mM (NH4)2SO4, 20 mM Tris-HCl 

(pH8.8), 2 mM MgSO4, 0.1% Triton X-100)(New England BioLabs), 0.4 mg/mL 

BSA, 250 �mol dNTPs, 10 ρmol each primer, 0.75 U of Taq DNA polymerase (New 

England BioLabs), and 0.4 �l DNA template. The amplification was carried out with 

a thermocycling profile of an initial 2 minutes at 94°C, followed by 30 cycles of 1 

minute at 94°C, 1.5 minutes at 50°C, 1 minute at 72°C, and ending with a final 

extension time of 5 minutes at 72°C. This PCR protocol was used to successfully 

amplify regions for all primers pairs. PCR products were visualised on 1.5% agarose 

gels before being purified with the High Pure PCR Purification Kit (Roche 

Diagnostics, Manheim, Germany). The purified PCR products were sequenced in both 

directions using an ABI3730 Genetic Analyzer by the Allan Wilson Centre Genome 

Service (Massey University, Palmerston North, New Zealand). 
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Table 3.2: Summary of statistics for each dataset used in this study. 
 

  ITS (nuclear) ndhF-rpl32 (chloroplast) cox1 (mitochondrial) concatenated 

     
Base frequencies of all sites (%) 

T- 23.0     C- 26.4  
A- 22.2     G- 28.4 

T- 37.0     C- 12.5  
A- 37.3     G- 13.2 

T- 32.8     C- 23.2 
A- 23.3     G- 20.6 

T- 31.2     C- 20.4  
A- 28.0     G- 20.4 

     

Base frequencies of variable sites (%) 
T- 31.6     C- 26.2  
A- 22.5     G- 19.6 

T- 33.0     C- 19.0  
A- 25.4     G- 22.5 

T- 26.1     C- 34.1  
A- 25.5     G- 14.3 

T- 30.5     C- 25.1  
A- 24.7     G- 19.7 

     
Range of sequence length (aligned length) in bp 

including outgroups 
577-622 (639) 548-737 (942) 613 (613) 1774-1972 (2194) 

     
No. of recoded gaps appended and aligned 

length (with recoded gaps) 
26 (665) 36 (978) 0 (613) 61 (2255) 

     
No. of variable sites and parsimony informative 

sites  including outgroups (%) 
211 (20%) 286 (10%) 150 (19%) 638 (13%) 

     
No. of variable sites and parsimony informative 

sitesfor ingroup sequences (%) 
78 (6%) 95 (6%) 39 (2%) 212 (5%) 

     
Modeltest model (AIC) GTR + G TVM + G TVM + G TIM + I + G 

     
Gamma shape estimate 0.4645 2.0817 0.2834 0.9143 
     
Pinvar 0 0 0 0.2309 
     
No. of transitions (all sites included) 17 14 10 38 

     
No. of transversions (all sites included) 10 17 11 38 

     
Transition/transversion ratio (all sites included) 1.6 0.8 0.9 1.0 

     
% missing data 0.43% 0.64% 0.44% 0.52% 
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3.2.4 Dataset alignment and analyses 

The program MEGA v3.1 (Kumar et al. 2004) was used to assemble and align 

sequences for each accession. Before alignment, the sequences were submitted to 

BLAST (http://www.ncbi.nlm.nih.gov/blast/) to check that they were the correct 

region. The aim of this study is to look at the overall biogeographic patterns of the 

different austral species and not to analyse samples at the population level. Therefore, 

population replicates were removed according to the availability of sequences in all 

three regions. This was done to improve the efficiency of analyses and to visually 

simplify the analyses, as well as to allow for concatenation of the datasets where a 

different number of taxa was sequenced for each region. There were 35 individuals 

included in the ndhF-rpl32 dataset, whereas the ITS and cox1 datasets included 

sequences from 36 individuals (Veronica salicornioides was not included in the ndhF-

rpl32 dataset). For the concatenated dataset, we used the 35 taxa included in the 

ndhF-rpl32 dataset. Exploration of sequence datasets was performed using functions 

provided in MEGA v3.1 and DAMBE v4.5.9 (Xia and Xie 2001).  

 

Analyses were first performed individually for each of the datasets and then on a 

concatenated dataset. Gaps were coded using modified complex indel coding (MCIC) 

method as implemented in SeqState v1.32 (Müller 2005) and these were included in 

the dataset. Preliminary analyses of our datasets suggested that gaps are informative 

and should be included, and previous analyses have found that MCIC coded gaps 

often outperform analyses in which gaps are treated as missing data or excluded 

(Simmons et al. 2007). Datasets with gaps coded resulted in 26 indel characters added 

onto the end of the ITS and 36 onto the chloroplast sequence matrix. There were no 

indels in the cox1 dataset, as expected, because it is a coding region. An indel was 
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present in the aligned ITS sequence of Veronica salicornioides, one of the distant 

outgroups, but the sequence was not included in the concatenated dataset because of 

sequencing problems. Therefore, the concatenated dataset had 61 indel characters 

added onto the end of the alignment (Table 3.2). Ambiguous characters present in the 

datasets were excluded from phylogenetic analyses. 

 

Maximum parsimony (MP) and maximum likelihood (ML) analyses were conducted 

using PAUP* v4.0b10 (Swofford 2002). A heuristic search was conducted under a 

MP criterion using 10,000 replicates of random sequence addition and tree-bisection-

reconnection (TBR) branch swapping. A maximum of 10,000 trees was set for the MP 

analysis. A heuristic search was also conducted under a ML criterion, with 100 

replicates of random sequence addition, and TBR branch swapping. The substitution 

model was selected by Modeltest v3.7 (Posada and Crandall 1998), which tests the fit 

among 56 different models of different complexity using a hierarchical likelihood 

ratio test. Models were selected using Akaike Information Weights criterion (AIC) 

because it has advantages over the hierarchical likelihood ratio test (Posada and 

Buckley 2004). Chosen models and parameter estimates are presented in Table 3.2. 

Nonparametric bootstrap support was assessed using 200 replicates for both MP and 

ML analyses, with random sequence addition and TBR branch swapping.  

 

MrBayes v3.1.1 (Huelsenbeck and Ronquist 2001) was used to conduct heuristic 

searches, also implementing the AIC model that was selected by Modeltest. Each 

dataset was initially analysed with four chains and 500,000 generations. Additional 

generations were added if necessary in order to reach a standard deviation of split 

frequencies of less than 0.01, which ensures that the runs have converged on a 
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stationary distribution. For the concatenated dataset, two analyses were run. First one 

model was used across the whole dataset, and then a partitioned dataset was used such 

that separate models were used for each dataset as recommended by Modeltest for 

each individual dataset. For each run, 25% of the trees were excluded as burn-in. 

 

Topological congruence was examined firstly by visually comparing trees generated 

from each of the datasets for each analysis. A partition-homogeneity test was also run 

in PAUP* (1000 replicates, TBR branch swapping, 100 random replicates of random 

taxa addition, and MaxTrees = 10,000) for all combinations of datasets. Additionally, 

supertree networks were constructed from ML trees from the three datasets using 

Splitstree v4.8 (Huson and Bryant 2006). The ITS, cpDNA and mtDNA datasets were 

then concatenated and characters (e.g. geographic distributions and habitats) were 

mapped onto a concatenated tree in order to infer evolutionary patterns. 

 

3.2.5 Molecular dating 

An ITS dataset consisting of representatives from each Australasian Plantago species, 

several Veronica sequences, and sequences of Aragoa and Littorella obtained from 

Genbank (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=nucleotide) were used 

to date nodes for testing the hypothesis of a Gondwanan origin for the Australasian 

(see Appendix I (B) for details of the dataset). ITS sequences were used because only 

ITS sequences for Litorella and Aragoa are readily available. Rate heterogeneity of 

the dataset was checked by estimating the likelihood score of a tree with a molecular 

clock constraint and comparing this to the likelihood score of a tree obtained without 

this constraint using a likelihood ratio test (Felsenstein 1981). It was found that the 

ITS sequences did not evolve in a clock-like manner. Therefore, a relaxed clock 
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model was implemented in the following molecular dating analyses. It has also been 

shown through simulations of different datasets that a relaxed–clock approach is more 

accurate and more precise than other models at reconstructing phylogenies 

(Drummond et al. 2006). BEAST v1.4.6 (Drummond et al. 2006) was used to 

implement a relaxed-clock model within a Bayesian framework to estimate 

divergence times for the lineages in our dataset. The program BEAUti v1.4.6 

(Drummond et al. 2006) was used to set up groups that were used for dating nodes. 

Only monophyletic groups with high support in the ML tree were set up. These were: 

1) a clade containing Plantago and Aragoa sequences, 2) a clade of the Plantago 

species, 3) a clade with all Plantago but excluding P. coronopus and P. lanceolata, 

and 4) Clade I, excluding P. cunninghamii. Analyses in BEAST were set up with 

10,000,000 runs initially, with additional 10,000,000 runs until estimated sample sizes 

(ESS) for each parameter were large enough, resulting in 20,000,000 to 40,000,000 

runs for each analysis. A GTR + I + G model was implemented for each analysis as 

recommended by Modeltest. A gamma distribution of rates is preferable in molecular 

dating (Sanderson and Doyle 2001). TRACER v1.4 (Rambaut and Drummond 2007) 

was used to analyse results. Exploration of the trees reconstructed by BEAST showed 

identical topology of the ITS tree reconstructed using ML analysis in all cases.  

 

Testing Gondwanan origin of Australasian species 

The hypothesis of Gondwanan origin for the Australasian species was tested in two 

separate analyses. First, a divergence date for a group was estimated to obtain a 

substitution rate for the sequences. The divergence date for the node of the 

Australasian Plantago, P. major, P. sp. and P. australis clade is expected to be at least 

80 mya if the New Zealand species were present before New Zealand split from 
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Gondwana. Thus, the node of this clade was constrained at 80mya. Secondly, 

substitution rates were applied to estimate divergence of the nodes. The slowest rate 

reported across all herbaceous angiosperms lineages in a study by Kay et al. (2006) of 

1.72 x10-9 substitutions/site/year was chosen in order to be conservative.  

 

The resulting substitution rates and node dates were then subjected to a t-test to 

compare it to the expected values. The test involves calculating a 99% confidence 

interval for the expected value and determining if the obtained value from BEAST is 

within that 99% interval. If values obtained from BEAST are found outside the 

interval, then the values are significantly different at the 1% level. Estimated 

substitution rates were then compared with the lowest substitution rate found in 

herbaceous angiosperms and estimated divergence dates were compared to 80mya. 

 

Estimating age of the Australasian species 

We used the dates 5.47 MYA for the radiation of the Plantago-Littorella group and 

7.1 MY since the divergence of this group and Aragoa (see Rønsted et al. 2002) to 

calibrate the tree to obtain an estimate for the divergence dates of Australasian species.  

 

3.3 Results 

 

3.3.1 Dataset statistics 

Exploration of the three datasets revealed that the ndhF-rpl32 dataset had more 

variable sites relative to the ITS and cox1 datasets, but a lower percentage of 

parsimony-informative sites than the ITS dataset (Table 3.2). When gaps were coded 
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as separate indel characters, the ITS and ndhF-rpl32 datasets had slightly more 

parsimony informative sites than when gaps were ignored. In comparison to these two 

regions, the cox1 dataset had fewer variable sites but a higher percentage of 

parsimony informative sites than the ndhF-rpl32 dataset, and a similar percentage of 

parsimony informative sites as the ITS dataset. The variable sites in cox1 provided 

little resolution within the Australasian Plantago clade, but were useful in delimiting 

the clade and separating Plantago from Veronica.  

 

All ITS and ndhF-rpl32 sequences were unique, whereas the cox1 dataset only had 15 

unique sequences. This result illustrates the lack of cox1 sequence divergence 

between members of Australasian Plantago. In fact, some Australian species had 

identical cox1 sequence to some New Zealand species (P. muelleri was identical to P. 

triandra and P. unibracteata; P. debilis and P. triantha were identical to P. raoulii 

and P. spathulata subsp. picta; and P. euryphylla and P. glacialis were identical to P. 

lanigera, P. novae-zelandiae, P. obconica and P. aucklandica).  

 

Chi-squared tests of all base frequencies only showed significant base heterogeneity 

for the ndhF-rpl32 dataset and among variable sites for the cox1 dataset. In all three 

datasets, average G-C (guanine and cytosine) content was slightly less than A-T 

(adenine and thymine). This could be explained by transversions from A/T to C/G 

events, which are common in chloroplast genomes and is caused by oxidative damage 

(GuhaMajumdar and Sears 2005). In the cox1 dataset, the third codon position had 

less G-C content than the first and second positions. The G-C content in plant 

genomes has been found to vary substantially although the implications of this are 

still unknown (Carels and Bernardi 2000). 
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Within the cox1 dataset, the substitution rate was higher in the third codon position 

than the other two codon positions, as expected because the third codon position is 

functionally redundant for many amino acids. Transition and transversion rates 

differed among the three regions, with transitions being more frequent than 

transversions in the ITS dataset but the other way around for the ndhF-rpl32 and the 

cox1 datasets (Table 3.2). Transitions may have a bias over transversions because of 

the different molecular structures of purines (A, G) and pyrimidines (C, T) (Decker-

Walters et al. 2004) but Keller et al. (2007) report that the bias is not universal and 

the results from the organellar DNA datasets support the latter situation. The 

transition/ transversion ratio was higher in the third codon position for the cox1 gene.  

 

Homogeneity partition (HP) tests indicated that the datasets were not congruent (p-

value=0.001, 0.002, 0.001, 0.016 for ITS + ndhF-rpl32 + cox1, ITS + cox1, ITS + 

ndhF-rpl32, and ndhF-rpl32 + cox1, respectively). While the organellar DNA datasets 

(ndhF-rpl32 and cox1) showed the least conflict, they were still significantly different. 

Visual analysis of the topology and Splitstree analyses (appendix II (N)) indicated that 

only four species (Plantago muelleri, P. paradoxa, P. triandra and P. unibracteata) 

provided conflicting signal and may be the cause of the low p-values of the HP test. 

However, the three datasets were still significantly incongruent when HP tests were 

run with these four species removed. Although traditionally used to check congruence 

of phylogenies from different regions, the HP test has been shown to be highly 

inaccurate even when the topologies of trees are congruent (Reeves et al. 2001; Yoder 

et al. 2001) and may continue to indicate conflict even after the incongruent taxa are  



 
 
 
 

 58 

 

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2: Maximum Likelihood phylogenies with branch lengths for each of the 

three datasets (A, ITS; B, ndhF-rpl32; C, cox1). The cox1 tree displays a short branch 

length from the outgroup Plantago species (P. coronopus and P. lanceolata) to the 

Veronica species, and a long branch between the Australasian and outgroup Plantago 

species. In contrast, the ITS and ndhF-rpl32 phylogenies have long branches from the 

outgroup Plantago to the Veronica species and a short branch between Australasian 

and outgroup Plantago species. Likelihood scores for these trees are -2513.31, -

3045.43, and -8393.42, respectively. 

B: ndhF-rpl32 

A: ITS 
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Figure 3.2 (continued): Maximum Likelihood phylogenies with branch lengths for 

each of the three datasets (A, ITS; B, ndhF-rpl32; C, cox1). The cox1 tree displays a 

short branch length from the outgroup Plantago species (P. coronopus and P. 

lanceolata) to the Veronica species, and a long branch between the Australasian and 

outgroup Plantago species. In contrast, the ITS and ndhF-rpl32 phylogenies have 

long branches from the outgroup Plantago to the Veronica species and a short branch 

between Australasian and outgroup Plantago species. Likelihood scores for these 

trees are -2513.31, -3045.43, and -8393.42, respectively.  

C: cox1 
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Figure 3.3. Maximum Likelihood (ML) tree reconstructed using concatenated data 

(ITS, ndhF-rpl32 and cox1) showing indigenous distributions and habitats of native 

and introduced Australasian Plantago species (likelihood score = -7738.89). Values 

displayed above branches are from Maximum Parsimony/ML bootstrap analyses, 

whereas values presented below branches are posterior probabilities from MrBayes 

analyses (* indicates less than 50% support for the node). Arrows indicate a trans-

Tasman dispersal event to New Zealand from an ancestral Australian population. 

AUS = Australia, AI = Auckland Islands, COSMO = cosmopolitan and NZ = New 

Zealand.  
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removed (Manos et al. 1999). Thus, analyses of a concatenated dataset were carried 

out because the tree topologies were not vastly incongruent in this case and there was 

no support for the placement of the conflicting species in the ITS tree. In the ITS 

dataset, some sequences had a few ambiguous sites that may result from multiple 

copies of the rDNA array in the genome. All ambiguous sites in the dataset were 

ignored during tree reconstruction analyses.  

 

3.3.2 Phylogenetic analyses 

The topologies of trees reconstructed using different tree construction methods were 

very similar for the ITS, ndhF-rpl32 and cox1 datasets (see appendix II (A-M)). Using 

one model versus individual models for each marker in MrBayes resulted in trees with 

the same topology. Posterior probabilities for trees made under Bayesian inference of 

phylogeny were higher compared to MP bootstrap values, and were similar to 

bootstrap support values obtained using ML. Therefore, only trees made using ML are 

presented here, with support values from all three analyses displayed on the 

concatenated tree (Fig. 3.3). ML trees for the individual datasets are displayed as 

phylograms in Fig. 3.2. 

 

Concatenated dataset 

In the tree reconstructed from the concatenated dataset (Fig. 3.3), the distant outgroup 

species Veronica hookeriana is in a polytomy with Plantago lanceolata. The nodes of 

these species are basal to the node of P. coronopus, which is in turn basal to the node 

of P. australis, followed by a clade containing P. major and P. sp. The Australasian 

species group into the clade following P. australis, within which there are four highly 

supported monophyletic groups. Clade IV is Australian and has a node that is basal to 
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the rest of the clades. Clade III comprises species from New Zealand, and P. 

aucklandica from the Auckland Islands. This clade is sister to P. glacialis (Australian), 

and Clades I and II, which are a mix of New Zealand and Australian species. Clade I 

and Clade II both contain a grade of Australian species at the base of a New Zealand 

clade. Thus, the pattern here is that there are multiple clades containing both New 

Zealand and Australian species, where the node of the New Zealand species appears 

in more derived positions in the tree than the node of the Australian species. In 

addition, Clade I is a group of Australasian Plantago found in lowland areas whereas 

Clades II, III, IV, along with P. glacialis are found in alpine and sub-alpine areas.  

 

Individuals of Plantago raoulii, P. lanigera, and subspecies of P. spathulata and P. 

triandra do not form monophyletic groups, respectively, in the tree resolved using the 

concatenated dataset. This is discussed further in a separate paper focused on 

taxonomic issues and relationships of individuals at the population level (Chapter 

four). Supernetwork analysis using Splitstree shows support for the topology of the 

concatenated tree (appendix II (N)). The same four distinct groups are visible, with 

some uncertainties regarding the placement of P. muelleri, P. paradoxa, P. triandra 

subs. triandra and P. unibracteata, which was expected due to conflict between 

datasets. 

 

A peculiar pattern found in the ML trees (Fig. 3.2) is a long branch separating the 

ingroup Plantago species from the outgroup Plantago species and an unexpectedly 

short branch length between Plantago as a whole and the Veronica outgroup in cox1 

(Fig. 3.2). In contrast, the ITS and ndhF-rpl32 datasets have short branch lengths 
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between the ingroup species but a long branch between Plantago as a whole and the 

Veronica species. 

 

ITS 

In the ITS ML tree (Fig. 3.2A), the close outgroups differed in placement from the 

concatenated tree (Plantago lanceolata and P. coronopus have switched positions). P. 

major, P. sp. and P. australis form a clade that is nested within the Australasian 

species as opposed to having a node at the base of the tree in the concatenated 

phylogeny. The ingroup clades were similar but P. muelleri and P. paradoxa do not 

form a clade with P. unibracteata and P. triandra. Instead, P. unibracteata and P. 

triandra are placed at the base of the tree, whereas P. muelleri and P. paradoxa are 

placed as sister species to other Australian species further up in the tree. Furthermore, 

P. debilis, P. varia and P. triantha form a clade with P. spathulata subsp. spathulata. 

These results are incongruent with the concatenated tree and both organellar DNA 

trees. 

 

ndhF-rpl32 

The close outgroups (P. lanceolata and P. coronopus) form a clade, in contrast to the 

concatenated tree, where these species do not form a clade (Fig. 3.2B). When the 

dataset is analysed after concatenation, the topology of the reconstructed trees most 

resembled that of the ndhF-rpl32 trees. This outcome may be because there is more 

signal in the ndhF-rpl32 dataset. 
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Cox1 

The cox1 dataset resulted in very little resolution in the ML analysis (Fig. 3.2C), with 

two Australasian nodes resolved and only one with good bootstrap support (81% BP). 

Interestingly, the well supported clade is also present in the ndhF-rpl32 dataset, and in 

the concatenated dataset, and is the clade that causes conflict between the ITS tree and 

the organelle trees. Poorly resolved nodes within the Australasian group may suggest 

a recent separation of Australian and New Zealand taxa, or unsuitability of this 

marker for reconstructing the phylogeny of this group of plants. 

 

3.3.3 Molecular Dating 

Testing Gondwanan origin of Australasian species 

Molecular dating using ITS sequences rejected the hypothesis of Gondwanan 

vicariance for Australasian Plantago. When the divergence of the node including 

Australasian species, P. major, P. sp. and P. australis was set to 80mya, the final 

substitution rate estimated by BEAST was 5.806 (±0.240) x10-10 

substitutions/site/year. This rate is extremely low; more than ten times slower than the 

lowest substitution rate found in the literature for herbaceous angiosperms (1.72 x10-9 

(Kay et al. 2006)). When compared, the slowest rate and the observed rate were 

significantly different at the 1% level. Secondly, when the substitution rate was 

estimated at the lowest substitution rate found in herbaceous angiosperms, BEAST 

gave a divergence date of 24.804 (±0.663) mya for a clade of the Australasian species, 

P. major, P. sp. and P. australis. The node for the genus Plantago was estimated to be 

57.717 (±0.700) mya. This is not consistent with the expectation that the Australasian 

Plantago group arose before New Zealand broke off from Gondwana (at least 80mya) 
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and the expected and observed values are significantly different. Thus, the 

Gondwanan hypothesis is rejected for Southern Hemisphere Plantago. 

 

Estimating age of Australasian species 

Molecular dating of the ITS dataset using BEAST provided a date of 2.291 (±0.0039) 

mya for the divergence a clade comprising the Australasian Plantago species, P. 

major, and P. sp. Unfortunately, there was not enough support in the tree to separate 

the Australasian clades from P. major and P. sp. in the ITS tree. However, the node of 

Clade I (excluding P. cunninghamii) (Fig. 3.3) was dated to 1.520 (±0.030) mya, 

which provides a range of possible dates of origin for the Australasian species.  

 

3.4 Discussion 

 

The aim of this study was primarily to investigate whether the distribution of the 

Australasian Plantago was the result of Gondwanan vicariance or long distance 

dispersal (or a mixture of both), and to elucidate biogeographic patterns for the 

Australasian species of Plantago. Even though Rahn (1996) attributed geographic 

disjunctions in the genus to vicariance and subsequent extinctions, the topology of the 

morphological phylogeny could also be attributed to multiple more recent dispersal 

events, and it was inferred from a recent molecular phylogeny that long distance 

dispersal is extremely common within the group (Rønsted et al. 2002). Subsequently, 

if dispersal was found to be the process behind the biogeography of Australasian 

Plantago, the goal of this study was to determine the number of and direction of 

dispersal events between Australia and New Zealand. This is important because many 
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large scale or austral (Swenson et al. 2001; von Hagen and Kadereit 2001) and even 

Australasian-focused plant phylogenetic studies (Radford et al. 2001; Perrie et al. 

2007) lack signal in molecular markers between closely related Australasian taxa. 

This lack of signal often results in ambiguous relationships between Australasian taxa. 

The dataset used in this study was 2194 bp in length (2255 when indel characters are 

included as coded characters) and is able to resolve most of the relationships among 

Australasian Plantago. 

  

3.4.1 Biogeography of Australasian Plantago 

The hypothesis of Gondwanan vicariance can be rejected for Australasian Plantago. 

The concatenated tree (Fig. 3.3) reveals that multiple New Zealand clades are nested 

within the Australian species, which is consistent with a dispersal scenario; but not 

vicariance, as the cause of current distribution. There is also a lack of sequence 

divergence among the Australasian species, which we would not expect from a long 

isolation of the New Zealand species. Additionally, the nodes of the New Zealand 

clades are placed in a more derived position than nodes of the Australian species in 

the tree. Rønsted et al. (2002) estimated an Australasian clade of P. spathulata and P. 

debilis to be 0.5-0.7 mya (this clade was not found in the phylogeny presented here) 

and estimated 5.47 mya for the genus Plantago as a whole. All of this suggests that 

the genus is too young to be a remnant of Gondwana. This view is supported by our 

own molecular dating. Statistical tests rejected the hypothesis of Gondwanan 

vicariance for the Australasian species for both tests of: 1) when the node of the 

Australasian clade was set to 80mya (as would be expected for a Gondwanan 

vicariance hypothesis), or 2) when rates used for dating was set to the lowest known 

rate across herbaceous angiosperm lineages. Thus, both tree topology and molecular 
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dating strongly suggest that the Australasian Plantago group achieved their current 

distribution through long distance dispersal and not Gondwanan vicariance. 

 

The clades formed by the Australasian species in the molecular phylogeny presented 

in this study can be interpreted as multiple directional, long distance trans-Tasman 

events. This is consistent with other plant phylogenetic studies that report Australian 

and New Zealand species as sister groups (Linder and Crisp 1995; Sanmartín and 

Ronquist 2004; Perrie and Brownsey 2005; Crayn et al. 2006; Meudt and Simpson 

2006). The lack of sequence divergence between Australian and New Zealand species 

is especially evident in analysis of the cox1 dataset, where several Australian and New 

Zealand species share identical sequences, suggesting recent diversification/speciation 

of the trans-Tasman species. The timing of arrival and diversification of the New 

Zealand species matches the geological dates of the uplift of the New Zealand 

mountains (5-2mya) (Winkworth et al. 2002b).  

 

At least three independent long distance dispersal events to New Zealand, followed by 

speciation are evident in the reconstructed phylogeny (Fig. 3.3). All three dispersals 

appear to be directional from Australia to New Zealand. There also appears to be two 

dispersal events from Australia to the Auckland Islands. Dispersal in this direction is 

congruent with expectations because prevailing winds from the West would result in 

frequent west to east direction of dispersals (refered to as West Wind Drift) (Raven 

1973; Winkworth et al. 2002b; Sanmartín et al. 2007). The finding of multiple 

dispersals across the Tasman differs from the common pattern of one dispersal 

followed by rapid radiation found in many other New Zealand plant groups (Wagstaff 

and Garnock-Jones 1998; Winkworth et al. 1999; Perrie et al. 2003; Albach et al. 
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2005b; Meudt and Simpson 2006). However, the fact that there are many 

cosmopolitan species in Plantago and even small oceanic islands have a mixture of 

native and introduced species from the genus indicates that the plants are able to 

disperse over long distances fairly frequently. Within the Australasian taxa, species 

are commonly distributed across geographic barriers that often separate other plants, 

like the Cook Strait in New Zealand, which separates the North and South Islands, 

and Bass Strait, which separates Tasmania from Australia. 

 

The three dispersal events from Australia reflect two independent dispersals to the 

alpine/sub-alpine region in New Zealand (and the subantarctic islands) and one to the 

lowlands, where the closest Australian relative is also from similar habitats (Fig. 3.3). 

One explanation for this pattern is that the New Zealand species may have evolved 

from a common ancestor that had already established in that bioclimatic zone (i.e., 

alpine to alpine, lowland to lowland), which may have increased the success of 

establishment in New Zealand. This has been suggested previously (e.g. Winkworth et 

al., 2002), albeit in the other direction. For example, it was suggested that Craspedia 

radiated from only one successful dispersal event because of establishment difficulties 

(Ford et al. 2007). Further, many New Zealand genera that contain mostly alpine 

species also contain lowland species, although patterns of habitat colonization are not 

clear (Buckley and Simon 2007). The lowland New Zealand species form a clade that 

is nested within an alpine clade, which suggests that alpine groups have subsequently 

dispersed to coastal regions (Fig. 3.3). In this study, we show that in the Australasian 

species, the alpine species appear to have one migration to lowland habitats, followed 

by an additional dispersal across the Tasman. More studies regarding the New 

Zealand alpine species are needed to determine patterns in habitat preferences. 
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Multiple dispersals across the Tasman appear fitting for Plantago, which is widely 

distributed. However, dispersal mechanisms of the group are largely unknown. Many 

Plantago seeds produce mucilage when wet and it has been hypothesized that a 

method of dispersal is by sticking to oceanic birds (Rønsted et al. 2002). Another 

New Zealand plant group that has also undergone multiple dispersals is Lepidium 

(Mummenhoff et al. 2001), which also has mucilaginous seeds. Other Plantago 

species, such as P. lagopus, have hairs on their capsules, which have been shown to 

facilitate overland dispersal by sticking to the coat of migrating ungulates (Manzano 

and Malo 2006). Seeds may also be dispersed by wind or water but there is no 

evidence for this.  

 

We have shown that Australasian Plantago have undergone long distance dispersal 

but we are unable to make inferences about the relationships between South American 

and Australasian species of Plantago due to a lack of South American material. 

However, ITS sequences for 13 South American Plantago species were obtained from 

GenBank. Inclusion of these sequences in phylogenetic analyses (data not shown here; 

see Chapter 4) still shows support for long distance dispersal throughout the Southern 

Hemisphere, i.e. South American, Australian and New Zealand species do not form 

monophyletic groups in the tree, and the Australian species are more closely related to 

the New Zealand species than they are to South American species. Thus, inferences 

made from this study remain valid. 

 

3.4.2 Incongruence of phylogenies from nuclear DNA and organellar DNA 

In this study, trees reconstructed from the different genomes yielded similar 

topologies but there were a few discrepancies. The Australian species P. muelleri and 
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P. paradoxa and the New Zealand species of P. triandra and P. unibracteata appear 

to have conflicting evolutionary histories of nuclear and organellar genomes. While 

the four species form a clade in the ndhF-rpl32 tree and the tree of the concatenated 

dataset, they are interspersed between other Australasian species in the ITS tree. One 

explanation for this conflict may be hybridisation, which is not surprising because the 

group is relatively young. Although trans-Tasman hybridisation appears unlikely, it 

has been reported to occur in plants (Perrie and Brownsey 2005). The conflict may 

also be a result of very little sequence divergence in the ITS sequences, which does 

not resolve the placement of P. triandra and P. unibracteata in the tree. Further 

analysis of the ITS dataset suggests that lack of resolution may be the most likely 

explanation for the conflict (see Chapter four).  

 

3.4.3 Reduced rates of mtDNA in Australasian Plantago 

Finally, the elevated rates of mtDNA substitutions in Plantago that were reported by 

Cho et al. (2004) were not evident in the Australasian species. There was a long 

branch between close Plantago outgroups and ingroup Plantago but a short branch 

between Plantago and Veronica in the cox1 marker. The opposite was found in the 

other two genomic markers. Any long branch is again reduced in the Australasian 

species, which may be a result of recent rapid radiations, a process not uncommon in 

endemic New Zealand groups (Wagstaff and Garnock-Jones 1998; Heenan et al. 2002; 

Murray et al. 2004) or a decrease in substitution rate, which has been found in other 

lineages of Plantago (Cho et al. 2004). The latter is more plausible, as there is no 

evidence of reduced substitution rates in ITS or ndhF-rpl32 sequences in the 

Australasian species, which would be expected if the reduction in the cox1 

substitution rates was a result of recent rapid radiations of the Australasian species. 
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3.4.4 Summary and future directions 

In summary, this study has shown evidence for long distance dispersal between 

Australia and New Zealand for the native Australasian Plantago. This study revealed 

an uncommon pattern of three independent directional dispersals across the Tasman 

Sea from Australia to New Zealand. In all cases, the ancestors of the dispersed species 

appear to have been pre-adapted to the habitats they established in. It was shown 

through molecular dating that the node of the Australian clade is about 2.291 to 1.520 

mya. Further studies are needed to clarify if there are any more trans-Tasman 

dispersals and if trans-Tasman hybridisation is possible, if the high rate of mtDNA 

evolution has slowed down in Plantago from other locations, and to determine the 

dispersal mechanism of this group. Lastly, the dataset could be expanded to include 

all known Southern Hemisphere species in order to reveal other Southern Hemisphere 

patterns and relationships. 
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Chapter Four: Evolutionary patterns and species 

boundaries in New Zealand Plantago 

(Plantaginaceae) species using ITS  
 

Abstract 

Major geological and climatic changes in New Zealand have affected the evolution of 

plants and are linked to events such as recent speciation. Recent speciation in many 

New Zealand plant lineages may have given rise to large groups with high 

morphological variation, for which taxonomy is difficult. In this study, phylogenetic 

analyses were carried out for the Australasian species of Plantago (Plantaginaceae) 

using Internal Transcribed Spacer (ITS) regions from nuclear DNA to investigate 

evolutionary patterns and species boundaries. An ITS phylogeny suggests that the 

Plantago species are separated allopatrically corresponding to habitat type and 

altitude (e.g. coastal, lowland or alpine/subalpine). Sympatric separation may also 

have occurred in the past and is influenced by various factors including polyploidy 

and different flowering times. The phylogeny also revealed that the species 

boundaries of several New Zealand species, including P. spathulata, P. triandra, and 

classifications of P. obconica, P. triantha and P. aucklandica may need revision. Low 

sequence divergence but high morphological variation was found in this study and 

could be caused by various factors, including recent speciation, presence of species 

complexes, hybridisation, and/or interbreeding.  
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4.1 Introduction 

 

4.1.1 Evolution of New Zealand plant groups 

Since its separation from Gondwana, New Zealand has undergone major geological 

and climatic changes, which have affected the evolutionary history and distribution of 

its biota (McDowall 2008). The main large-scale climatic and geological events that 

may have had an impact on speciation patterns of groups with recent origins are: 1) 

Pleistocene glaciation cycles (Trewick and Morgan-Richards 2005; McDowall 2008) 

and 2) final uplift of the Southern Alps ca. 5mya (Cox and Findlay 1995; Batt et al. 

2000; Haase et al. 2007). These events may have had a dramatic effect on speciation 

patterns by causing physical separation of populations or through the creation of new 

habitats, which allow for divergence of populations as adaptations to these new 

habitats take place. Over time, the separation of populations could have led to 

speciation. Cook Strait, which separates the North and South Islands, may also have 

been a barrier to gene exchange in the past, although there may have been land 

bridges connecting the North and South Islands during the Pliocene glacial cycles 

(Lewis et al. 1994). Other phylogeographic hypotheses leading to speciation include 

glacial refugia (Wright et al. 2000; Greaves et al. 2007), displacement along the 

alpine fault (Buckley and Simon 2007), or separation by distance. Sympatric 

speciation is possible as well; a common pattern in New Zealand plant groups is 

recurrent polyploidy (Connor 1985), which may lead to rapid speciation of polyploids 

(i.e. when they are sympatric with parental lineages).  
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Molecular data have been used successfully to investigate patterns of evolution of 

New Zealand biota. For example, phylogenetic analyses using molecular data showed 

evidence that the Hebe sensu lato (Veronica) complex had two radiations: one 

coinciding with uplift of the Southern Alps and the other with Pleistocene glaciation 

cycles (Wagstaff and Garnock-Jones 1998). In addition, it has been found that many 

groups have dispersed from the South Island (S. I.) to the North Island (N. I.), and that 

lowland species often have a different origin from the alpine species (e.g. Lockhart et 

al. 2001). 

 

Recent molecular studies found that many New Zealand plant groups show evidence 

of recent radiations. These events occurred either following long distance dispersal 

(Breitwieser et al. 1999; Winkworth et al. 1999; McGlone et al. 2001; Winkworth et 

al. 2002b; Sanmartín and Ronquist 2004), or are associated with physical changes 

such as uplift of mountain ranges and climate fluctuations (Raven 1973; Lockhart et 

al. 2001; Winkworth et al. 2002a). Due to recent or incomplete speciation, species 

boundaries in New Zealand plants may be unclear using morphological characters and 

this often results in taxonomic problems. Many New Zealand genera are large and 

have high morphological variation both within and among species, such as Myosotis 

(Winkworth et al. 1999) and multiple genera within Gnaphalieae (Smissen et al. 

2004). However, most genera studied to date are also found to have little genetic 

variation in contrast to morphology (Winkworth et al. 1999; Heenan et al. 2002; 

Vijverberg et al. 2002; Winkworth et al. 2002a).  
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4.1.2 Taxonomy of New Zealand plant groups 

The increasing use of molecular data has also helped with the systematics of many 

New Zealand plant groups (e.g. Heenan et al. 2002; Glenny 2004; Perrie and 

Brownsey 2005; Ford et al. 2007). Molecular data led to the conclusion that Veronica 

(previously circumscribed to exclude the Southern Hemisphere Hebe complex) was 

paraphyletic (Albach and Chase 2001) and the genus was subsequently enlarged by 

addition of Hebe and its relatives (Garnock-Jones et al. 2007). Molecular data (along 

with karyological information) also revealed that two species of Crassula (C. hunua 

and C. ruamahanga) were actually a species complex with interspecific hybridisation 

and polyploidy and these were reduced to one species (de Lange et al. 2007). 

Additionally, molecular data have been shown in several studies to provide better 

resolution when morphology and molecular data are congruent (Winkworth et al. 

2002a; Meudt and Simpson 2007).  

 

4.1.3 The genus Plantago 

The aim of this study was to reconstruct a molecular phylogeny for the genus 

Plantago (Plantaginaceae), focusing on species relationships between and 

delimitations within the Australasian species. Plantago is a large genus of wind-

pollinated plants, with over 200 species distributed worldwide. The genus has three 

basic chromosome numbers (x = 4, 5, and 6) (Rahn 1996; Dhar et al. 2006), and 

diploid chromosome numbers range from 2n = 8 (P. ovata) to 2n = 96 (P. correae and 

P. “sylvester”). While extensive morphological variation can occur within each 

species because of the plasticity of characters in some species, at the same time there 

may be few morphological differences between some species (Rock 1920; Sykes in 

Webb et al. 1998).  
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Phylogenetic relationships, species boundaries and evolutionary patterns among 

Australasian Plantago species in particular are not well understood. To date, one 

morphological and two molecular studies have reconstructed Plantago phylogeny 

with the inclusion of some Australasian species. The morphological phylogeny of all 

Plantago species was the first phylogenetic study of the genus and included most of 

the Australasian species (one New Zealand and four Australian species were not 

included) (Rahn 1996).  

 

In the first study using genetic sequences, Rønsted et al. (2002) combined ITS 

(Internal Transcribed Spacer) and trnL-F sequences to reconstruct the phylogeny of 

57 Plantago species (including P. spathulata and P. raoulii from New Zealand, and P. 

debilis from Australia/Tasmania). In the second molecular phylogenetic study, 

Hoggard et al. (2003) obtained ITS sequences for 23 Plantago species (including P. 

tasmanica, P. daltonii, P. euryphylla, P. hispida and P. paradoxa, which are endemic 

to Australia/Tasmania, and P. triandra from New Zealand). The latter focused on the 

relationships of Littorella, which was included as a subgenus within Plantago by 

Rahn (1996).  

 

These molecular phylogenies conflict with the morphological phylogeny mainly in the 

circumscription of several subgenera, e.g. it was found that subg. Albicans was 

paraphyletic (Rønsted et al. 2002). Species of Littorella were found to be in a sister 

clade to a clade of all other Plantago species and it was subsequently suggested that 

Littorella be recognised at genus rank (Hoggard et al. 2003). The recent molecular 
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Table 4.1. A comparison of previous taxonomic treatments of New Zealand Plantago. Shaded areas indicate species and subspecies 

accepted in the most recent Flora of New Zealand (Webb et al. 1988) and are also the classifications that are used in this study. 

Name Type 
Hooker 
1864  

Cheeseman 
1906 

Cheeseman 
1925 

Moore (in 
Allan 1961) 

Sykes (in 
Webb 1988) 

Plantago aucklandica Hook.f. 
1844 

Auckland Islands (K) aucklandica aucklandica aucklandica aucklandica aucklandica 

P. triantha Spreng.1825, ≡ P. 

carnosa R.Br., non Lam., ≡ P. 

subantarctica Cockayne 1928 
nom. illeg. (superfl. ) 
= (≡?) P. brownii Rapin (1827) 

(K/BM?) the name 
should be based on 
R.Br. specimens 

As brownii 
Rapin 

As brownii 
Rapin 

As brownii 
Rapin 

triantha triantha 

P. triandra Bergg. 1877 Kelly Range (Lund?) – triandra triandra triandra triandra 
subsp. 
triandra 

P. hamiltonii Kirk 1879 Greymouth (WELT) – triandra triandra triandra triandra 
subsp. 
triandra 

P. masoniae Cheesem. 1921  
(as masonae) 

Manaia (AK) – – masoniae (as 
masonae) 

triandra triandra 
subsp. 
masoniae 

P. spathulata Hook.f. 1854 Pahawa (Pahaoa) (K; 
iso WELT?) 

spathulata spathulata spathulata spathulata spathulata 

subsp. 
spathulata 
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Table 4.1. A comparison of previous taxonomic treatments of New Zealand Plantago. Shaded areas indicate species and subspecies 

accepted in the most recent Flora of New Zealand (Webb et al. 1988) and are also the classifications that are used in this study. 

Name Type 
Hooker 
1864  

Cheeseman 
1906 

Cheeseman 
1925 

Moore (in 
Allan 1961) 

Sykes (in 
Webb 1988) 

P. picta Colenso 1890 Tolaga Bay (WELT & 
K) 

– In syn of P. 

brownie 
In syn of P. 

brownie 
picta spathulata 

subsp. picta 

P. raoulii Decne 1852 Banks Pen. (P) raoulii raoulii raoulii raoulii raoulii 

P. dasyphylla Colenso 1892 Dannevirke (WELT) – raoulii raoulii raoulii raoulii 

P. novae-zelandiae Moore 
1961 

Mt Hikurangi (WELT) – P. brownii 

auctt. NZ non 

Rapin 

P. brownii 

auctt. NZ non 

Rapin 

novae-

zelandiae 

lanigera 

P. lanigera Hook.f. 1864 Otago Lake Distr., (K 
&WELT) 

lanigera lanigera lanigera lanigera lanigera 

P. lanigera var. petriei 
Cheesem. 1906 

Mt Kyeburn (AK) – lanigera var. 
petriei 

lanigera var. 
petriei 

lanigera lanigera 

P. unibracteata Rahn 1996, ≡ 
P. uniflora Hook.f. non L.≡ P. 

triandra var. uniflora 
(Hook.f.) Pilger 

Ruahine Mts (K) uniflora 
Hook.f. 

uniflora 
Hook.f. 

uniflora 
Hook.f. 

uniflora 
Hook.f. 

uniflora 
Hook.f. 

P. obconica Sykes 1988 (CHR) – – – – obconica 
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phylogenies indicate that Australasian Plantago species cluster together and that P. 

stauntoni from Amsterdam & St. Paul Islands is nested within the Australasian group 

(Rønsted et al. 2002; Hoggard et al. 2003). However, relationships among the 

Australasian species and the placement of P. stauntoni were either unsupported or 

unresolved. Little is known regarding the evolutionary history of Australasian species 

because few Australasian species were included in these molecular phylogenies. 

 

4.1.4 New Zealand Plantago 

In New Zealand, eight native species of Plantago were accepted in the most recent 

Flora (Sykes in Webb et al. 1998; Table 4.1) and one (P. “sylvester") is an 

undescribed polyploid (Groves and Hair 1971). The chromosome number of 2n = 96 

reported by Groves and Hair (1971) was confirmed using one sample from P. 

“sylvester” populations obtained in this study. Twenty four species are native to 

Australia (Briggs 1992). All of the Australasian species are placed in subg. Plantago 

and mainly in sect. Oliganthos and sect. Mesembrynia; one species from the Auckland 

Islands (P. aucklandica) is placed in sect. Plantago (Rahn 1996).  

 

Out of the eight native New Zealand species, Plantago lanigera, P. obconica, P. 

unibracteata, P. aucklandica and P triandra subsp. triandra are found in the 

alpine/subalpine region, whereas P. triantha, P. triandra subsp. masoniae and P. 

spathulata subsp. picta are found in lowland coastal areas (although sea level is 

considered sub-alpine in the Auckland Islands where P. triantha is found). P. 

spathulata subsp. spathulata and P. raoulii are found in both lowland and subalpine 

areas from coastal regions to altitudes of ca. 1000 and 1500m, respectively (Sykes in 

Webb et al. 1988). 
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A. Plantago spathulata 
subsp. spathulata 
 (Marfells Beach) 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. P. raoulii (Owhiro Bay)  
 

 

C. P. “sylvester” (Lake 
Sylvester) 
 
 
 
 
 
 
 
D. P. lanigera (Shotover Saddle) 
 
 
 
 
 
 
 
 
Figure 4.1. Morphological habits of cultivated samples of the New Zealand Plantago species, 

illustrating morphological plasticity of the plants. Figures on the left were photographed in 

February 2007, whereas the figures on the right were taken in cultivation in November 2007. 
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E. P. triandra subsp. 

masoniae (Manaia) 
 
 
 
 
 
 
 
 
 

 

F. P. triandra subsp. 

triandra (Lake Sylvester) 
 
 
 
 
 
 
 
 

 
G. P. unibracteata 
(Mt. Wilberg) 
 
 
 
 
 
 
 
 

 
H. P. obconica 

(Cardrona Skifield) 
 
 
 
 
 
 
 
 
Figure 4.1. Morphological habits of cultivated samples of the New Zealand Plantago species, 

illustrating morphological plasticity of the plants. Figures on the left were photographed in 

February 2007, whereas the figures on the right were taken in cultivation in November 2007. 
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Like all Plantago, morphological differences in the New Zealand species are not 

easily defined, resulting in problems with species delimitation and identification. 

Although Rahn (1996) reported that hair and seed morphology appeared to be the 

most useful characters for the genus, characters such as leaf size, shape, hairiness and 

teeth, scape length, and the number of flowers may vary within a population 

according to environmental factors (Sykes in Webb et al. 1988; see also Fig. 4.1). 

Taxonomic discrepancies are therefore common between previous Flora treatments 

(Table 4.1) and are used to represent hypotheses of species boundaries in this study 

using a molecular phylogenetic approach. Below, I discuss the taxonomy of the New 

Zealand Plantago species according to the order that they later appear in the ITS 

phylogeny and the specific hypotheses that will be tested in each case, including 

testing species and subspecies delimitations (P. spathulata, P. raoulii, P. lanigera and 

P. triandra) and closest relatives (P. “sylvester” and P. obconica).  

 

Species and subspecies delimitations 

Plantago spathulata 

Sykes (in Webb et al. 1988) included two subspecies under P. spathulata, subsp. 

spathulata (found on southern N. I. coasts, and both coasts and inland in the S. I.) and 

subsp. picta (endemic to the coastal Poverty Bay region and East Cape in Gisborne).  

These were previously treated as two species, P. spathulata and P. picta (Table 4.1). 

Separation of the two was based on morphological characters, such as a persistent 

taproot with no adventitious roots and scapes up to 7 cm long (P. picta), whereas P. 

spathulata only had adventitious roots and scapes of 3-12-(22) cm long. Sykes (in 

Webb et al. 1988) recognized these entities at the lower rank of subspecies because 

populations of the two were found close to one another geographically, and the 
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characters used to distinguish the two species by Moore (in Allan 1961) were 

inconsistent due to plastic morphology within populations. Molecular data can be 

used to test the hypothesis that these two are conspecific by reconstructing a 

population level phylogeny that includes representatives of both groups. 

 

Plantago raoulii 

P. raoulii has been noted to have two different forms, with one form widespread on 

both the North and South Islands, and the other common in Taranaki and around the 

Cook Strait (Sykes in Webb et al. 1988). The latter is described as having thicker 

leaves that are also wider and shorter. Both forms can be found in coastal regions and 

in altitudes of up to 1500 m. The hypothesis of whether the narrow-leaved and broad-

leaved individuals can be separated based on DNA sequence data is tested in this 

group using a population level phylogeny for both forms. 

 

Plantago lanigera 

P. lanigera as circumscribed by Sykes (in Webb et al. 1988) was previously 

considered to be two distinct species (e.g. Moore in Allan 1961 treated the group as as 

P. lanigera and P. novae-zelandiae, see Table 4.1). Various morphological characters 

were used to differentiate between the two forms, such as crowded long hairs, 

rhomboid shaped lamina, and bracts <2 mm long in P. lanigera vs. sparse long hairs, 

elliptic lamina, and bracts 2.5-3 mm long in P. novae-zelandiae. Sykes (in Webb et al. 

1988) recognized only one species (P. lanigera) because these morphological 

characters were inconsistent and the ranges of populations of the two forms overlap. It 

was found in a separate study that plants identified as P. lanigera had a chromosome 

number of 2n = 12, whereas plants identified as P. novae-zelandiae exhibit both 2n = 
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12 and 2n = 24 (Spence and Sykes 1989). While the means of morphological 

characters such as seed size, shape and weight, ovule numbers, number of leaves per 

plant, number of capsules per inflorescence, number of seeds per capsule, and 

inflorescence height were significantly different between the two forms, the 

measurement ranges of most of these characters overlap (and therefore cannot 

conclusively be used to separate one species from the other); only seed weight and 

size were found to be useful in this respect (Spence and Sykes 1989). The hypothesis 

that these two forms (both found in alpine regions) are conspecific is tested using a 

population level phylogeny that includes multiple representatives of both forms. 

 

Plantago triandra 

Two subspecies of P. triandra were recognized by Sykes (in Webb et al. 1988). 

Subsp. masoniae (found in coastal areas) is described as having fleshier leaves with 

smaller sessile flowers compared to subsp. triandra (which are mostly found on 

inland mountains). Only one species (P. triandra) was recognised by Moore (in Allan 

1961) because morphological characters used to distinguish between the coastal and 

inland forms were regarded as inconsistent and also very plastic. P. triandra has also 

been previously treated as three species (P. triandra, P. masoniae and P. hamiltonii) 

based on morphology, but P. hamiltonii sensu lato was regarded as synonymous with 

P. triandra subsp. triandra in the most recent Flora (Sykes in Webb et al. 1988). 

Molecular data will be used to test the hypothesis that two different forms exist in P. 

triandra using a population level molecular phylogeny to evaluate if sequence 

divergence is present between subsp. triandra and subsp. masoniae. 
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Species relationships 

Plantago “sylvester” 

Moore (in Allan 1961) and Sykes (in Webb et al. 1988) both mention several plants in 

northwest Nelson with several different morphological characters in the description 

for P. raoulii. Based on morphology, Moore included the plants in P. spathulata, 

whereas Sykes grouped them with P. raoulii. Chromosome counts made for the plants 

(given the tag name P. “sylvester”) suggest that they are 16-ploids with a 

chromosome number of 2n = 96, whereas P. raoulii and P. spathulata have a 

chromosome number of 2n = 48 (Groves and Hair 1971). Thus, using a molecular 

phylogeny, the relationship of P. “sylvester” is tested (i.e. is it more closely related to 

P. raoulii or P. spathulata?) 

 

Plantago obconica 

P. obconica is a recently described species found in alpine regions. It is suggested to 

be closely related to P. triandra subsp. triandra because of morphological similarities 

such as fine subulate leaves and a calyx that is shorter than the capsule (Sykes 1988). 

The species has not previously been included in any phylogenetic studies. The 

hypothesis that P. obconica is closely related to P. triandra is tested by examining 

relationships in a species level phylogeny. 

 

4.1.5 Study aims 

In this chapter, an ITS phylogeny of Australasian Plantago species, integrated with 

other Plantago species for which ITS sequences are readily available, is presented. 
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Table 4.2. Details of Plantago samples that were included in the ITS phylogeny. Samples that were collected and sequenced (DNA) for this 

study are indicated in bold, with details of collection location. 

Ref. in 

Rahn 

(1996) 

Species 
Indigenous 

distribution 
Collection location 

Accession 

number Reference or voucher 

155 Plantago afra S Africa  AY101892 Rønsted et al. 2002 
184 P. albicans Mediterranean  AY101905 Rønsted et al. 2002 
75 P. alpestris Australia Kosciuszko National Park, NSW, AUS  NSW742962 (BGB9748) / 

NSW742963 (BGB9749)  
132 P. alpine Europe  AY101877 Jensen et al. 1996 
175 P. amplexicaulis Mediterranean  AY101900 Rønsted et al. 2002 
146 P. arborescens Macaronesia  AY101886 / 

AJ548954 
Rønsted et al. 2000 / 
Hoggard et al. 2003 

154 P. arenaria Mediterranean  AY101891 / 
AY692082 

Rønsted et al. 2002 / 
Dhar et al. 2006 

210 P. aristata E USA  AY101911 / 
AJ548983 

Rønsted et al. 2002 / 
Hoggard et al. 2003 

29 P. asiatica S & E Asia  AY101862 / 
AJ548977 

Rønsted et al. 2002 / 
Hoggard et al. 2003 

166 P. atrata Europe, W Asia  AY101895 Rønsted et al. 2002 
15 P. aucklandica Auckland Islands Auckland Islands (cult. in Otari-Wilton Bush, 

Wellington, NZ) 

 Otari cult. (2003.2037) 

108 P. australis America Hunua Ranges, Auckland, NZ  WELTU20181 (MLT019 & PGJ) 
   Waverly, NZ (cult. population)  WELTU20182 (Colin Ogle s. n.) 
    AY101874 / 

AF313038 / 
Rønsted et al. 2000 / 
Albach & Chase 2001 

178 P. bellardii Mediterranean  AY101902 Rønsted et al. 2000 
52 P. camtschatica E Asia  AJ548971 Hoggard et al. 2003 

190 P. ciliata Mediterranean  AY101906 Rønsted et al. 2002 
67 P. cladarophylla Australia Barrington Tops National Park, NSW, AUS  NSW744803 (J. R. Hosking 2682) 

23 P. cornuti S Europe  AY101859 Rønsted et al. 2002 
140 P. coronopus Mediterranean, 

Europe 

Island Bay, Wellington, NZ  WELTU20183 (PGJ2549) 
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Table 4.2. Details of Plantago samples that were included in the ITS phylogeny. Samples that were collected and sequenced (DNA) for this 

study are indicated in bold, with details of collection location. 

Ref. in 

Rahn 

(1996) 

Species 
Indigenous 

distribution 
Collection location 

Accession 

number Reference or voucher 

140 P. coronopus Mediterranean, 

Europe 

Island Bay, Wellington, NZ AY101882 / 
AJ548987 

Rønsted et al. 2002 / 
Hoggard et al. 2003 

137 P. crassifolia Mediterranean, S Africa  AY101881 Rønsted et al. 2002 
176 P. cretica E Mediterranean  AY101901 Rønsted et al. 2002 
57 P. cunninghamii Australia Brigalow Park Nature Reserve, NSW, AUS  NSW744804 (J. R. Hosking 2752) 

74 P. daltonii Tasmania St. Clair National Park, AUS, Tasmania  NSW743874 (BGB9782) 

    AJ548968 Hoggard et al. 2003 
60 P. debilis Australia Barrenjoey Headland, NSW, AUS  NSW 742894 (BGB9738) 

    AY101868 Rønsted et al. 2002 
46 P. elongata W USA  AJ548974 Hoggard et al. 2003 

207 P. erecta W USA  AY101909 / 
AJ548982 

Rønsted et al. 2002 / 
Hoggard et al. 2003 

72 P. euryphylla Australia Kosciuszko National Park, NSW, AUS  NSW743824 (BGB9760) / 

NSW743822  (BGB9758) / 

NSW742956 (BGB9743) /  

NSW (BGB9741) 
    AJ548966 Hoggard et al. 2003 

148 P. famarae Macaronesia  AY101888 Rønsted et al. 2002 
129 P. glacialis Australia Kosciuszko National Park, NSW, AUS  NSW742960 (BGB9746) / 

NSW743813 (BGB9753) 
45 P. heterophylla SE USA  AJ548975 Hoggard et al. 2003 
77 P. hispida Tasmania, E Australia  AJ548967 Hoggard et al. 2003 

212 P. hookeriana S USA  AY101913 Rønsted et al. 2002 
169 P. lagopus Mediterranean  AY101897 / 

AY692078 
Rønsted et al. 2002 /  
Dhar et al. 2006 

170 P. lanceolata cosmopolitan Karori, Wellington, NZ  WELTU20184 (PGJ2551) 

    AY101898 / 
AF313036 / 
AJ548984 / 
AY692077 

Albach & Chase 2001 / 
Rønsted et al. 2002 / 
Hoggard et al. 2003 / 
Dhar et al. 2006 
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Table 4.2. Details of Plantago samples that were included in the ITS phylogeny. Samples that were collected and sequenced (DNA) for this 

study are indicated in bold, with details of collection location. 

Ref. in 

Rahn 

(1996) 

Species 
Indigenous 

distribution 
Collection location 

Accession 

number Reference or voucher 

120, 122 P. lanigera New Zealand Hall Range, Canterbury, NZ  WELTU20131 (PBH s. n.) / 
WELTU20143 (PBH s. n.) 

   Sealy Tarns, Mt. Cook, NZ  WELTU20125 (PBH s. n.) / 
WELTU20124 (PBH s. n.) 

   Sugarloaf Pass, Otago, NZ  WELTU20133 (Mike Thorsen s. n.)  
   The Remarkables, Queenstown, NZ  WELTU20142 (PGJ2611 et al.) / 

WELTU20141 (PGJ2607 et al.) / 
WELTU20128 (MLT040 et al.) / 
WELTU20140 (MLT036 et al.) / 
WELTU20136 (MLT039 & PGJ)  

   Mt. Hikurangi, East Cape, NZ  WELTU20134 (Mike Thorsen s. n.) 
   Wilberg Range, Westland, NZ  WELTU20147 (MLT027 et al.)  
   Shotover Saddle, Otago, NZ  WELTU20132 (MLT034 & PGJ) 

   Cardrona Skifield, Wanaka, NZ  WELTU20138 (MLT031 et al.)  
   Rock and Pillar Range, Otago, NZ  WELTU20130 (HMM273/2 & BS) 

   Ruahine Ranges, North Island, NZ  WELTU20145 (MLT051 et al.) / 
WELTU20139 (MLT052 et al.) 

   Tararua Ranges, Wellington, NZ  WELTU20123  

[Otari cult. (2005.0122)] 

   Thomson Mountains, Otago, NZ  WELTU20148  

[Otari cult. (2005.0112)]  

   Eyre Mountains, Otago, NZ  CHR580877 (Kerry Ford s. n.) 
171 P. leiopetala Madeira  AY101899 / 

AJ548985 
Rønsted et al. 2002 / 
Hoggard et al. 2003 

194 P. lundborgii San Ambrosio Is.  AY101907 Rønsted et al. 2002 
141 P. macrorhiza Mediterranean  AY101883 Rønsted et al. 2002 
26 P. major cosmopolitan Kingsland, Auckland, NZ  WELTU20179 (MLT018 & LT) 

   Karori, Wellington, NZ  WELTU20180 (PGJ2550) 

    AY101861 / 
AY692079 

Rønsted et al. 2003 / 
Dhar et al. 2006 
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Table 4.2. Details of Plantago samples that were included in the ITS phylogeny. Samples that were collected and sequenced (DNA) for this 

study are indicated in bold, with details of collection location. 

Ref. in 

Rahn 

(1996) 

Species 
Indigenous 

distribution 
Collection location 

Accession 

number Reference or voucher 

135 P. maritima cosmopolitan  AY101879 / 
AJ548986 

Rønsted et al. 2002 / 
Hoggard et al. 2003 

151 P. mauritanica NW Africa  AY101890 Rønsted et al. 2002 
40 P. maxima E Europe, C Asia  AY101864 Rønsted et al. 2002 
41 P. media Europe, C Asia  AY101865 / 

AJ548964 
Rønsted et al. 2002 / 
Hoggard et al. 2003 

131 P. muelleri Australia Kosciuszko National Park, NSW, AUS  NSW743812 (BGB9752) / 

NSW742951 (BGB9742) 
91 P. myosuros S America  AY101873 Rønsted et al. 2002 

168 P. nivalis S Spain  AY101896 Rønsted et al. 2000 
162 P. nubicola Peru, Bolivia, NW 

Argentina 
 AJ548972 Hoggard et al. 2003 

– P. obconica New Zealand Hector Mountains, Otago, NZ  CHR573261  

   Cardrona Skifield, Wanaka, NZ  WELTU20122 (MLT030 et al.) / 
WELTU20121 (PGJ2600 et al.) 

179 P. ovata Mediterranean,W USA  AY101903 / 
AJ548973 / 
AY692076 

Rønsted et al. 2002 / 
Hoggard et al. 2003 / 
Dhar et al. 2006 

24 P. palmata trop. Africa  AY101860 Rønsted et al. 2002 
 P. paradoxa Tasmania St. Clair National Park, NSW, AUS  WELTU20187 (BGB9781) 

121    AJ548969 Hoggard et al. 2003 
211 P. patagonica W USA, Argentina  AY101912 Rønsted et al. 2000 
68 P. raoulii New Zealand Manaia, Taranaki, NZ  WELTU20156 (MLT054 et al.) 

   George Creek, Wainuiomata, Wellington, NZ  WELTU20152 (PB & RH s. n.) 
   Owhiro Bay, Wellington, NZ  WELTU20151 (MLT016 et al.) / 

WELTU20157 (MLT017 et al.) 
   Maungatawharau, Waiouru, NZ   Cult. in Victoria University (Colin 

Ogle s. n.) 
   Maungaharuru, Hawkes Bay, NZ  WELT (LP4448 & LS) 

   Tararua Ranges, Wellington, NZ  WELT (LP4539 & LS) 
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Table 4.2. Details of Plantago samples that were included in the ITS phylogeny. Samples that were collected and sequenced (DNA) for this 

study are indicated in bold, with details of collection location. 

Ref. in 

Rahn 

(1996) 

Species 
Indigenous 

distribution 
Collection location 

Accession 

number Reference or voucher 

68 P. raoulii New Zealand Cape Palliser, Wairarapa, Wellington, NZ  WELT (LP4996 & LS) 

   Lake Sarah, Cass, NZ  WELTU20153 (PGJ2559) 

22 P. reniformis SE Europe  AY101858 / 
AJ548978 

Rønsted et al. 2002 / 
Hoggard et al. 2003 

94 P. rhodosperma S USA, N Mexico  AJ548976 / 
AY692081 

Hoggard et al. 2003 / 
Dhar et al. 2006 

118 P. rigida Andes  AY101876 / 
AF313037 / 
DQ006026  

Rønsted et al. 2002 / 
Albach & Chase 2001 / 
Kress et al. 2005 

35 P. rugelii E N America  AY101863 / 
AY692080 

Rønsted et al. 2002 / 
Dhar et al. 2006 

160 P. sarcophylla E Mediterranean  AY101893 Rønsted et al. 2002 
149 P. sempervirens SW Europe  AY101889 Rønsted et al. 2002 
200 P. sericea Andes  AY101910 Rønsted et al. 2003 
136 P. serraria Mediterranean  AY101880 Rønsted et al. 2002 

 P. sp. ? Pukerua Bay, Wellington, NZ  WELTU20178 (PGJ2566 & MLT) 

20 P. sparsiflora SE USA  AJ548979 Hoggard et al. 2003 
56 P. spathulata subsp. 

picta 
New Zealand East Cape, Gisborne, NZ  CHR439486 

76 P. spathulata subsp. 

spathulata 
New Zealand Cass, NZ  WELTU20118 (PGJ2557) 

   Cape Palliser, Wairarapa, Wellington, NZ  WELTU20120 (PGJ2567 & MLT) / 
WELTU20119 (PGJ2568 & MLT) 

   Marfells Beach, Marlborough, NZ  WELTU20117 (PGJ2629 & MLT) 

161 P. squarrosa E Mediterranean  AY101894 Rønsted et al. 2002 
78 P. stauntoni Amsterdam & St. Paul 

Is. 
 AY101870 Rønsted et al. 2000 

182 P. stocksii W Asia  AY101904 Rønsted et al. 2002 
142 P. subspathulata Madeira  AY101884 Rønsted et al. 2002 
133 P. subulata Mediterranean  AY101878 Rønsted et al. 2000 
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Table 4.2. Details of Plantago samples that were included in the ITS phylogeny. Samples that were collected and sequenced (DNA) for this 

study are indicated in bold, with details of collection location. 

Ref. in 

Rahn 

(1996) 

Species 
Indigenous 

distribution 
Collection location 

Accession 

number Reference or voucher 

– P. "sylvester" New Zealand Lake Sylvester, Nelson, NZ  WELTU20150 (MLT022)  

WELTU20149 (MLT023) 
205 P. tandilensis E Argentina  AY101908 Rønsted et al. 2002 

 P. tasmanica Tasmania St. Clair National Park, NSW, AUS  NSW743928 (BGB9780) 

73    AJ548970 Hoggard et al. 2003 
43 P. tenuiflora E Europe, C Asia  AY101866 Rønsted et al. 2002 
84 P. tomentosa S America  AY101872 Rønsted et al. 2002 

124 P. triandra subsp. 

triandra 
New Zealand Kettlehole Tarn, Cass, NZ  WELTU20158 (PGJ2558)  

   St. Arnaud, Nelson, NZ  WELTU20162 (MLT025 & PGJ) 

   Lake Sylvester, Nelson, NZ  WELTU20163 (MLT021 et al.) 
   Harihari, Westland, NZ  WELTU20164 (MLT029 et al.) 
   Waipapa River, Northland, NZ (cult. in 

Otari-Wilton Bush, Wellington, NZ) 

 WELTU20165 

[Otari cult. (1005.0115)] 
    AJ548965 Hoggard et al. 2003 

– P. triandra subsp. 
masoniae 

New Zealand Paturau Coast, Nelson, NZ  WELTU20160 (PJL s. n.) 

   Manaia, Taranaki, NZ  WELTU20167 (MLT055 et al.) 
109 P. triantha Tasmania, 

Subantarctic Islands 

Enderby Island, Auckland Islands  WELTU20177 (VT55) 

81 P. trinitatis Ilha Trinidade  AY101871 Rønsted et al. 2002 
119 P. unibracteata New Zealand Cardrona Skifield, Wanaka, NZ  WELTU20171 (PGJ2603 & MLT) 

   Wilberg Range, Westland, NZ  WELTU20160 (PGJ2599 et al.) / 
WELTU20172 (MLT028 et al.) 

   Lake Sylvester, Nelson, NZ  WELTU20175 (MLT024 & PGJ) 

   Rainbow Skifield, Nelson, NZ  WELTU20174 (MLT026 & PGJ) 

   The Remarkables, Queenstown, NZ  WELTU20176 (MLT038 & PGJ) 

   Ruapehu Skifield, Mt. Ruapehu, NZ  WELTU20173 (MLT053 & PGJ) 

114 P. uniglumis S America  AY101875 Rønsted et al. 2002 
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Table 4.2. Details of Plantago samples that were included in the ITS phylogeny. Samples that were collected and sequenced (DNA) for this 

study are indicated in bold, with details of collection location. 

Ref. in 

Rahn 

(1996) 

Species 
Indigenous 

distribution 
Collection location 

Accession 

number Reference or voucher 

65 P. varia Australia Kosciuszko National Park, Australia  NSW 743869 (BGB9766) / 

NSW743869 (BGB9767) 
147 P. webbii Macaronesia  AY101887 Rønsted et al. 2002 
143 Litorella uniflora Europe  AJ548962 / 

AJ548960 / 
AJ548963 / 
AJ548961 / 
AF515218 

Hoggard et al. 2003 /  
Hoggard et al. 2003 /  
Hoggard et al. 2003 /  
Hoggard et al. 2003 / 
Albach et al. 2004 / 
 

144 Litorella americana North America  AJ548956 / 
AJ548958 / 
AJ548957 / 
AJ548955 

Hoggard et al. 2003 / 
Hoggard et al. 2003 / 
Hoggard et al. 2003 / 
Hoggard et al. 2003 

145 Litorella australis South America  AJ548959 Hoggard et al. 2003 
– Aragoa 

corrugatifolia 

Colombia  AJ548980 Hoggard et al. 2004 

– Aragoa cupressina Northern Andes  AJ459402 Bello et al. 2002 
– Veronica hookeriana New Zealand Whanahuia Range, Ruahine Mts, NZ  WELTU (PGJ2458) 

– Veronica 
salicornioides 

New Zealand Jacks Pass, Hanmer, Canterbury, NZ  CHR512475 

 

Collectors: BGB = Barbara G. Briggs, HMM = Heidi Meudt, LP = Leon Perrie, LS = Lara Shepherd, LT = Leah Tooman, MLT = Mei-Lin Tay, PBH = Peter Heenan, PGJ = 

Phil Garnock-Jones, PB = Peter Beveridge, PJL = Peter J. Lockhart, RL = Rodney Lewington and VT = Vanessa Thorn. Herbarium vouchers: CHR = Allan Herbarium, 

Landcare Research, Christchurch, New Zealand; NSW = National Herbarium of New South Wales, Australia; WELT = Herbarium of Museum of New Zealand, Te Papa 

Tongarewa, Wellington, New Zealand; and WELTU = H. D. Gordon Herbarium in Victoria University of Wellington, New Zealand. Samples in bold are new samples 

collected and sequenced for this study. 

 
Note: Genbank accession numbers will be inserted into the table at before publication of papers.
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Figure 4.2: Distributions of New Zealand Plantago species based on collection of 

previous herbarium specimens (from Allan Herbarium, Landcare Research, 

Christchurch, New Zealand) and locations of samples collected for this study. A: The 

Australasian region (AI = Auckland Islands, AUS = Australia, NZ = New Zealand, PI 

= Pacific Islands, and TAS = Tasmania); B: P. spathulata; C: P. raoulii and P. 

“sylvester”; D: P. lanigera (A = alpine/subalpine habitats; C = coastal; C/S = coastal 

to altitudes of 1000-1500m). 
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Figure 4.2 (continued): Distributions of New Zealand Plantago species based on 

collection of previous herbarium specimens (from Allan Herbarium, Landcare 

Research, Christchurch, New Zealand) and locations of samples collected for this 

study. E: P. triandra; F: P. unibracteata and P. triantha; and G: P. obconica and P. 

aucklandica (A = alpine/subalpine habitats; C = coastal; C/S = coastal to altitudes of 

1000-1500m). 
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The inclusion of a comprehensive set of New Zealand Plantago population samples 

and representatives of Australasian species is essential for determining overall species 

relationships and biogeographic patterns of the genus in the Southern Hemisphere. In 

the previous chapter, I discussed the implications of new molecular data of 

Australasian Plantago for Southern Hemisphere biogeography. The aims of this 

chapter are to use ITS sequences: 1) to place the Australasian species within a larger 

phylogenetic framework, and 2) to examine delimitation and relationships, taxonomy 

and evolutionary patterns of the native New Zealand species using a molecular 

phylogeny (i.e. testing presence of different species or subspecies in P. spathulata, P. 

raoulii, P. lanigera and P. triandra; and elucidating species relationships of two 

undescribed or recently described species (P. “sylvester” and P. obconica).  

 

4.2 Materials and Methods 

 

4.2.1 Study group 

Collection locations of samples, along with voucher information and Genbank 

accession numbers are presented in Table 4.2. Samples were collected from the wild 

across the North and South Islands of New Zealand (Fig. 4.2) from previously known 

locations, and from Australia.  

 

Multiple individuals (ranging from one to ten) from several populations (ranging from 

one to fourteen) were obtained for each species. All eight native New Zealand 

Plantago species were included in the phylogeny, including the recently described 

Plantago obconica (Sykes 1988) and the undescribed New Zealand polyploid P. 

“sylvester” (Groves and Hair 1971). Twelve out of the 24 native Australian species 
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were obtained (including P. triantha, which is also found in New Zealand). In 

addition, introduced Plantago species, which have established in New Zealand (P. 

coronopus, P. lanceolata, P. major, P. australis and an unidentified specimen referred 

to as P. sp. in this study) were also inlcuded. P. major and P. australis are in the same 

subgenus as the Australasian species (subg. Plantago), whereas P. coronopus and P. 

lanceolata are in subg. Coronopus and subg. Albicans, respectively (following Rahn 

1996). Additional sequences from previous studies were obtained from GenBank. 

 

Plantago lanigera and P. novae-zelandiae are both referred to as P. lanigera here 

following Sykes (in Webb et al. 1988) but the ITS phylogeny is scrutinised to see if 

two groups are evident. Both forms were collected, including specimens with larger 

leaves and sparser hairs thought to be P. novae-zelandiae and specimens with smaller 

leaves that were densely covered with hair thought to represent P. lanigera as defined 

by Moore (in Allan 1961).  

 

 Several Veronica and Aragoa species were used as outgroups in the phylogeny. 

Veronica is used as a distant outgroup to Plantago because it is a close relative and 

has been used as an outgroup in the past (Rønsted et al. 2002; Hoggard et al. 2003; 

Cho et al. 2004), whereas Aragoa is the sister group to the Plantago-Littorella clade 

(Bello et al. 2002). For the purpose of this paper, the Littorella clade is treated as an 

outgroup as it has been shown to form the sister clade to a clade of all other Plantago 

species (Rønsted et al. 2002; Hoggard et al. 2003). 
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4.2.2 Molecular techniques  

Tissue samples were mostly preserved in silica gel from field collections, but a few 

were obtained from existing herbarium specimens. DNA extractions were performed 

using the DNEasy Plant Mini kit (Qiagen, Hilden, Germany) or using a 

cetyltrimethylammonium bromide (CTAB) protocol modified from Doyle and Doyle 

(1990), after manual disruption of dried tissue using a pestle and mortar. The primers 

used to amplify the ITS DNA region are: ITS28CC: 

CGCCGTTACTAGGGGAATCCTTGTAAG (Wagstaff and Garnock-Jones 1998) 

and ITS5: GGAAGTAAAAGTCGTAACAAGG (White et al. 1990). Only ITS is 

used in this study because ITS sequences for Plantago are available on Genbank 

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=nucleotide). Additionally, apart 

from a few conflicts, the ITS phylogeny is identical to the phylogeny reconstructed 

using chloroplast and mitochondrial DNA. The ITS region has also been used for 

everything from fungi to higher plants (White et al. 1990, Álvarez and Wendel 2003) 

to animals (Jorgensen et al. 2007; Kuriiwa et al. 2007), and often provides good 

resolution even at shallow phylogenetic levels (Álvarez and Wendel 2003). Thus, the 

ITS phylogeny will be used to explore taxonomic issues and evolutionary patterns of 

the native New Zealand Plantago species in this study.  

 

PCR amplification was performed using Eppendorf Mastercycler ep gradient S 

(Hamburg, Germany) in a final volume of 25 �l of the following: 16.35 �l water, 10X 

ThermoPol reaction buffer (10 mM KCl, 10 mM (NH4)2SO4, 20 mM Tris-HCl 

(pH8.8), 2 mM MgSO4, 0.1% Triton X-100)(New England BioLabs), 0.4 mg/mL 

BSA, 250 �mol dNTPs, 10 ρmol each primer, and 0.75 U of Taq DNA polymerase 

(New England BioLabs) and 0.4 �l DNA template. The amplification was carried out 



 

98 

with a thermocycling profile of: an initial 2 minutes at 94°C, followed by 30 cycles of 

1 minute at 94°C, 1.5 minutes at 50°C, 1 minute at 72°C, and ending with a final 

extension time of 5 minutes at 72°C. This PCR protocol was used to successfully 

amplify regions for all the primers. PCR products were visualised on 1.5% agarose 

gels before being purified with the High Pure PCR Purification Kit (Roche 

Diagnostics, Manheim, Germany). The purified PCR products were sequenced in both 

directions using an ABI3730 Genetic Analyzer by the Allan Wilson Centre Genome 

Service (Massey University, Palmerston North, New Zealand). 

 

4.2.3 Dataset alignment and phylogenetic analyses 

 

The program MEGA v3.1 (Kumar et al. 2004) was used to assemble and align 

sequences for each sample. The final ITS dataset consisted of 252 sequences from 239 

species of Plantago, 10 sequences from Littorella, one sequence from Aragoa and 

two sequences from Veronica. Of these, 152 sequences (25 Plantago species and 2 

Veronica species) were obtained for this study, and 100 sequences were obtained 

from GenBank. Identical sequences were combined in order to improve efficiency of 

analyses. Thus, the final dataset had 177 sequences of length 656 bp including 

inferred gaps, with 321 (48.9%) variable sites and 269 (41%) parsimony-informative 

sites. Gaps were coded using modified complex indel coding (MCIC) method as 

implemented in SeqState v1.32 (Müller 2005) and were included in the dataset 

because the gaps may contain informative characters (shown in Chapter three). There 

were 733 characters in the dataset when indels were coded as characters concatenated 

onto the end of the sequences. The gapcoded dataset was then explored using MEGA 

v3.1 and DAMBE v4.5.9 (Xia and Xie 2001) and used for subsequent analyses. 



 

99 

The substitution model was selected using Modeltest v3.7 (Posada and Crandall 1998), 

which tests the fit among 56 different models of different complexity using a 

hierarchical likelihood ratio test. Models were chosen using Akaike Information 

Weights criterion (AIC) because it has advantages over the hierarchical likelihood 

ratio test (Posada and Buckley 2004). Thus, the model implemented for the ITS 

dataset was a GTR + I + G model, with base frequencies of variable sites: T = 26.3%, 

C = 29.4%, A = 20.1%, G = 24.3% (p(χ2) = 0.5560), scaled transition and transversion 

substitutions in the dataset: AC = 0.7695, AG = 1.6289, AT = 1.2942, CG = 0.2850, 

CT = 4.0783, GT = 1.000, a gamma shape parameter = 0.8876 and a proportion of 

invariable sites (pinvar)  = 0.3241. 

 

MrBayes v3.1.1 (Huelsenbeck and Ronquist 2001) was used to conduct heuristic 

searches under a Maximum Likelihood (ML) criterion. The analysis was conducted 

using 1,000,000 generations, resulting in 10,000 trees, and run until the standard 

deviation was less than 0.01 to ensure that the runs had converged on a stationary 

distribution (25% of the runs were discarded as burn-in). Branches with posterior 

probabilities less than 50% were collapsed in the phylogeny. Current taxonomical 

classifications were then plotted on the branches of the resolved phylogeny to check if 

the molecular phylogeny agreed with the phylogeny based on morphological 

characters (Rahn 1996). One of the Plantago spathulata subsp. picta sequences was 

removed from further analyses, because DNA was extracted from some leaves that 

were not in very good condition and was from a herbarium specimen more than 20 

years old. The resulting sequence had multiple ambiguous sites and was placed in a 

different position from a more recently dried sample of P. spathulata subsp. picta 

with a clearer sequence (Appendix II (O)). 
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The Bayesian phylogeny resulted in several well-supported clades but these had poor 

internal resolution. In order to clarify these internal relationships, each group was 

analysed separately in three groups to resolve parts of the full phylogeny that did not 

resolve because these species had a relatively lower rate of evolution than species in 

other parts of the tree. These phylogenies were used to investigate relationships 

between the New Zealand species in more detail. A model for each dataset was 

estimated using Modeltest v3.7 and these are presented in Appendix III (A), along 

with other data statistics. MrBayes was used to conduct heuristic searches for each of 

the three New Zealand datasets to check initial topology. The analyses were run with 

1,000,000 generations, yielding 10,000 trees, and each analysis had a final standard 

deviation that was less than 0.01 (25% of the trees were discarded as burn-in). 

Replicates of the same population that clustered in the same clade in the resulting 

MrBayes phylogeny were removed and ML analyses were run on the reduced datasets 

to improve efficiency. ML analyses were conducted using PAUP* version 4.0b10 

(Swofford 2002) with 100 replicates of random sequence addition and TBR branch 

swapping. Nonparametric bootstrap support was assessed using 200 replicates, with 

random sequence addition and TBR branch swapping.  

 

Complex evolutionary patterns, such as those arising from hybridisation, introgression 

and species radiations, cannot be properly displayed on traditional bifurcating trees 

(Lockhart et al. 2001; Huson and Bryant 2006). Therefore, Splitstree v4.8 (Huson and 

Bryant 2006) was used to conduct neighbour net analyses on each of the datasets in 

order to better visualise relationships between the New Zealand species. Splitstree 

uses genetic distances to compute split networks, which allows conflicting signals of 

species similarities to be visualised if they are present in a dataset.  
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4.3 Results 

 

During alignment of the dataset, several pairs of identical sequences were found 

(presented here with Genbank accession numbers): Plantago debilis (NSW 742894) 

and P. hispida (AJ548967); P. sp. (WELTU (PGJ2566 & MLT)) and P. asiatica 

(AY101862); and P. daltonii (AJ548968) and P. tasmanica (AJ548970).  

 

In general, there was very little intraspecific genetic variation within Australasian 

Plantago species sampled more than once; most of the species have less than 1% 

sequence divergence (Table 4.3). The highest intraspecific sequence divergence, 

found in P. raoulii and in P. lanigera, is still low (about 2.1-2.5%). Uncorrected p-

distances between all pairwise comparisons of Australasian species range from 0% to 

only 4.3% (results not shown).  

 

 

Table 4.3. Population statistics for the native New Zealand Plantago species (with 

more than one DNA sequence) included in the ITS phylogeny. 

 

Species 
No. of 

sequences 

No. of 

localities 

No. of 

haplotypes 

No. of  

variable 

sites 

Average % 

sequence 

difference 

Plantago spathulata 15  4  4  5  0.76 
    P. spathulata subsp. spathulata 14  3  3  1  0.15 
P. raoulii 18  9  14  14  2.13 
P. “sylvester" 12  1  6  1  0.15 
P. lanigera 28  14  20  19  2.90 
P. obconica 6  2  2  0  0.00 
P. triandra 19  7  7  5  0.76 
    P. triandra subsp. triandra 13  5  4  3  0.46 
    P. triandra subsp.masoniae 6  2  4  4  0.61 
P. unibracteata 10  7  8  5  0.76 
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(See Fig. 4.3) 

(See Fig. 4.4) 

(See Fig. 4.5) 

 

Figure 4.3: Simplified 50% consensus tree 

using Bayesian analysis (average tree 

likelihood score = -7531.24), with 

classifications according to Rahn (1996). 

Geographic locations of Southern 

Hemisphere species are indicated. Each 

Australasian species in the tree represents 1-

25 individual sequences (A = 

alpine/subalpine habitats; C = coastal; C/S = 

coastal to altitudes of 1000-1500m; C/L = 

coastal/lowlands; L = lowland habitats). 
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Phylogeny using ITS 

The 50% MrBayes consensus phylogeny reconstructed using the complete dataset was 

divided into four clades and two grades (Fig. 4.3). The focus of this paper is on the 

placement of Australasian species within a larger phylogeny, and species relationships 

within native New Zealand species. New Zealand species relationships are elucidated 

separately in the reduced ML analyses, thus, only the main structures of the clades are 

displayed in this figure for easier visual interpretation. Further resolved structure in of 

the clades can be found in the original tree, which is appended (Appendix II (O)).  

 

Two main clades are resolved within Plantago. The first (Clade I) contains subg. 

Coronopus, subg. Albicans, subg. Psyllium, and subg. Bougeria (Fig. 4.3). In this 

clade, Plantago nubicola (subg. Bougeria) is nested within a paraphyletic Albicans. 

Most of the P. major replicates cluster together in Plantago Clade II, one sequence is 

placed within Plantago Clade I. This suggests a probable misidentification of the 

latter specimen, with Genbank number AY692079. Clade I contains no native New 

Zealand species and is not discussed further. 

 

The second resolved clade represents subg. Plantago (sect. Mesembrynia, sect. 

Oliganthos and sect. Virginica) and includes all the Australasian species (1.0 PP). 

Subg. Plantago can be further divided to form three clades (Clades II, III and IV) and 

two grades (Grades A and B). Of the grades, Grade A contains only Australian 

species and is not further explored in this study. Previous analyses with a larger 

sequence dataset of three different genetic regions provided strong support that Grade 

B is a clade, even though in analyses of ITS alone the group appears to be a grade. 

Grade B is further explored in this study. The Australasian species do not form a clade 
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in the ITS phylogeny, with the widely distributed Clade III and P. stauntoni (from the 

Amsterdam & St. Paul Islands) nested within the Australasian species. However, there 

is low support for this finding (≤ 0.7BP for all resolved groups). Clade III contains 

species that are native to the Mediterranean, Europe, Africa, America and Asia, and is 

a mix of sect. Oliganthos, sect. Mesembrynia and sect. Virginica. South American 

species are present in Clade I and Clade III.  

 

There is not much resolution at species level for the Australasian species (Clade II, IV 

and Grade A, B). Sect. Mesembrynia and sect. Oliganthos are polyphyletic in the 

phylogeny. Clade II and Grade A are classified as sect. Mesembrynia, and Clade IV 

and Grade B are sect. Oliganthos. Individuals identified as P. lanigera did not form a 

clade and were placed in Clade II, Grade A and Grade B. P. paradoxa forms a clade 

with samples from New Zealand that were identified to P. lanigera from Eyre 

Mountains. Plantago paradoxa, P. glacialis, P. muelleri and P. triantha, which were 

classified in sect. Oliganthos by Rahn (1996) are clustered among species from sect. 

Mesembrynia. P. aucklandica is classified in sect. Plantago but is not placed with 

other species from that section (in Clade III). P. aucklandica, placed by Rahn (1996) 

in sect. Plantago, is only loosely associated with Clade III, which contains all the 

other species of sect. Plantago. Plantago triantha is classified in sect. Oliganthos 

(Rahn 1996) but is placed with species from sect. Mesembrynia in the resolved ITS 

phylogeny (Fig. 4.3). It thus seems likely that reduction to solitary flowers, one of the 

defining characteristics of sect. Oliganthos, has occurred several times in the clade 

(e.g. P. obconica, P. triantha and Littorella uniflora). 
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Figure 4.4. A: One of the reconstructed Maximum Likelihood (ML) trees of Clade II, 

which comprises lowland (including coastal) and alpine/subalpine species (tree score 

= 1087.60). Each sequence in A represents an individual plant. B and C: habit of P. 

spathulata subsp. spathulata; D: P. triantha from the Auckland Islands; E and F: two 

different forms of P. raoulii; G: specimen identified as P. lanigera from Sugarloaf 

Pass; and F: specimen from Lake Sylvester. ML bootstrap values are displayed above 

branches, whereas MrBayes posterior probabilities are displayed below branches 

(only support values >50% are shown). Plant pictures presented here are from plants 

that have been cultivated in the greenhouse for about a year.  
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Figure 4.5. A: One of the reconstructed Maximum Likelihood (ML) trees of Grade B, 

which is a clade of alpine/subalpine species (tree score = 1065.00). Each sequence in 

A represents an individual plant. B and C: two different forms currently classified 

under P. lanigera (previously P. lanigera and P. novae-zelandiae respectively); D: P. 

aucklandica, endemic to the Auckland Islands; E: habit of P. obconica. ML bootstrap 

values are displayed above branches, whereas MrBayes posterior probabilites are 

displayed below branches (only support values >50% are shown). Plant pictures 

presented here are from plants that have been cultivated in the greenhouse for about a 

year. 
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Figure 4.6. A: One of the reconstructed Maximum Likelihood (ML) trees of Clade IV, 

a clade of alpine/subalpine and coastal (P. triandra subsp. masoniae) species (tree 

score = 976.76). Each sequence in A represents an individual plant. B: P. 

unibracteata; C: P. triandra subsp. triandra; D: P. triandra subsp. masoniae. 

Samples of P. triandra marked with a * indicate populations of P. triandra subsp. 

masoniae, whereas the others are subsp. triandra. ML bootstrap values are displayed 

above branches, whereas MrBayes posterior probabilites are displayed below 

branches (only support values >50% are shown). Plant pictures presented here are 

from plants that have been cultivated in the greenhouse for about a year.  
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When the dataset was partitioned into the three Australasian groups of interest (Clade 

II, Grade B and Clade IV) and analysed separately, the reconstructed phylogenies 

were able to provide slightly better resolution of species. Proportions of nucleotide 

bases were equivalent among all sites in the three datasets (Appendix III (A)), but 

bases were heterogenous among variable sites for Clade IV and Grade B. Bayesian 

analyses have greater time efficiency over ML for large datasets like the large ITS 

dataset, but ML trees are preferred for smaller datasets because MrBayes generates 

numerous trees (10,000 in these analyses). The Bayesian and ML analyses of the 

datasets had congruent topologies and equivalent support values. Therefore, results of 

the reduced analyses are discussed using the phylogenies recovered using ML (Figs. 

4.3A, 4.4A, 4.5A).  

 

Clade II (sect. Oliganthos) 

Clade II includes the two subspecies of Plantago spathulata (four localities, 15 

individuals), P. raoulii (four localities, 18 individuals), and P. “sylvester” (one 

locality, 12 individuals) from New Zealand; five Australian species (P. varia, P. 

debilis, P. hispida, P. paradoxa and P. cladarophylla); one species (P. stauntoni) 

from the Amsterdam & St. Paul Islands in the South Indian Ocean; and one species, P. 

triantha (one locality, one individual), native to both New Zealand and Australia. The 

clade also contains several individuals that were identified as P. lanigera but do not 

form a clade with the other samples of P. lanigera, which are placed in Grade B.  

 

ML analysis suggests that the two subspecies of P. spathulata as currently 

circumscribed are not sister taxa (Fig. 4.4A). P. spathulata subsp. spathulata forms a 

clade with P. triantha, P. varia, P. debilis and P. hispida (<50BP, 0.92PP). 
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Figure 4.7. Neighbour-net analyses using Splitstree. A: Clade II; B: Grade B; and C: 

Clade IV. Dotted circles indicate the different species. In A colours indicate 

geographic location (red = New Zealand; blue = Australian; black = Amsterdam & St. 

Paul Islands).  

B: Grade B 

A: Clade II 
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Figure 4.7 (continued). Neighbour-net analyses using Splitstree. A: Clade II; B: 

Grade B; and C: Clade IV. Dotted circles indicate the different species. * in C indicate 

populations of P. triandra subsp. masoniae. 

C: Clade IV 
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The sister to this clade is P. stauntoni but there is low support for this relationship. P. 

raoulii is separated into two groups based on geographic locations. The N. I. P. 

raoulii are grouped together in a clade with P. spathulata subsp. picta (54BP, 0.81PP), 

whereas the sole sample of the S. I. P. raoulii forms a clade with P. “sylvester” (90BP, 

1.0PP). One of the populations identified as P. lanigera from Sugarloaf Pass also 

clusters with the sample of S. I. P. raoulii and P. “sylvester” but there is low support 

for this group (<50BP and PP). The other P. lanigera population in this group is from 

the Eyre Mountains and forms a clade with the Australian P. paradoxa (90BP, 1.0PP). 

ML analyses yielded six trees, which differed only by rearrangements in the P. 

raoulii-P. spathulata subsp. picta clade. In one of the trees, the node of the branch 

leading to P. spathulata subsp. spathulata and the node of the P. raoulii clade were 

placed in a polytomy. P. raoulii had the most sequence divergence within Clade I 

(2.13%), P. “sylvester” only had 0.15% sequence divergence, and there was 0.76% 

sequence divergence between the two subspecies of P. spathulata.  

 

Splitstree analysis of Clade II (Fig. 4.7A) revealed two groups. Each group contained 

both New Zealand and Australian species. Plantago spathulata subsp. picta is 

connected by a box to both P. cladarophylla and the N.I. P. raoulii, whereas the 

sample of P. triantha (from Auckland Islands) is attached to boxes connecting 

Australian species P. debilis, P. hispida and P. varia; but species relationships among 

these are not well-defined. Further, branches of one of the specimens of P. lanigera 

from Sugarloaf Pass is connected to P. spathulata subsp. spathulata, while the other 

specimen is connected to the branch leading to P. raoulii from Cass and P. “sylvester”. 

Placement of P. stauntoni is uncertain; it is placed between the two Australasian 

groups, but closest to P. cladarophylla.  
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Grade B  

Grade B contains Plantago lanigera (14 localities, 28 individuals), P. obconica (two 

localities, six individuals) and P. aucklandica (one locality, one individual). This 

grade was not resolved in the ITS phylogeny (Fig. 4.3) but there was high support for 

a clade comprising these species in previous combined analyses (see Fig. 3.2). Three 

main clades were resolved within the group (Fig. 4.5A), although relationships among 

them were not well-resolved. The first contains most of the P. lanigera samples 

(61BP, 93PP) with poorly supported (<50BP and PP) resolution of relationships 

within the clade. Secondly, there is a clade of two populations of P. lanigera (86BP, 

100PP), which together are sister to P. aucklandica (71BP, 95PP). The third clade 

contains the two populations of P. obconica (100BP, 1.0PP). ML analyses resulted in 

24 trees, where the only differences were rearrangements within the larger P. lanigera 

clade. Samples thought to represent P. novae-zelandiae are inseparable from the other 

P. lanigera samples based on ITS sequences, i.e. clustering within the large P. 

lanigera clade does not match either morphological differences or geographic location. 

There also does not appear to be geographical difference in the samples of P. lanigera. 

Among all the Australasian species, P. lanigera had the highest intraspecies sequence 

divergence: 2.90 % (Table 4.3) but this value is still low.  

 

The distinction between species in Grade B (Fig. 4.7B) is clear aside from the two 

populations of P. lanigera that do not cluster with the other P. lanigera. The 

neighbour-net of P. lanigera indicates possible reticulation in the past, which may be 

a result of complex history perhaps involving hybridisation or incomplete lineage 

sorting. 
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Clade IV (sect. Oliganthos) 

Clade IV consists of P. unibracteata (seven localities, ten individuals) and the two 

subspecies of P. triandra (seven populations, 19 individuals). ML analyses provided 

very little resolution for this clade (Fig. 4.6A). There were two resolved but poorly 

supported clades of P. unibracteata (both with <50BP), and one resolved clade for P. 

triandra (51BP). These, along with other samples from both species, form a polytomy 

at the base of Clade IV. The only difference among the three resulting ML trees was 

the placement of an individual P. unibracteata sequence from Mt. Wilberg. This 

sequence was placed alternatively as (1) sister to the other populations of the P. 

unibracteata clade, (2) at the most derived position in the P. unibracteata clade, and 

(3) in a polytomy with the P. unibracteata clade.  

 

The two subspecies of P. triandra do not group according to the classification of 

Sykes (in Webb et al. 1988), which was based on morphology. The two clades within 

P. triandra do not appear to group according to geographic location. In fact, several 

populations from P. triandra subsp. triandra share an identical ITS sequence with a 

population of P. triandra subsp. masoniae. P. unibracteata populations also did not 

group according to geographic locations (e.g. replicates from a Mt. Wilberg 

population were placed in separate clades). Intraspecific and interspecific sequence 

divergence was low for both species. Sequences within each species differed by only 

5 nucleotide substitutions out of 656 bp of ITS sequence (uncorrected p-distances 

range from 0.002-0.008). Sequence divergence between the two species was 

represented by 9 nucleotide substitutions and an extremely low range of uncorrected 

p-distances of 0.002-0.008.  
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In the Splitstree analysis of Clade IV (Fig. 4.7C), P. unibracteata and the two 

subspecies of P. triandra are inseparable genetically. The length of the branches 

connecting P. triandra and P. unibracteata show that P. triandra forms two groups 

that are more divergent genetically than either is from P. unibracteata. Further, 

representatives from both subspecies are present in each of the two groups of P. 

triandra. 

 

4.4 Discussion 

 

The aim of this study was firstly to integrate Australasian species of Plantago into a 

framework of an ITS phylogeny that included species representatives from around the 

world. This phylogeny was then used to evaluate the current taxonomy of the genus 

and overall relationships of the Australasian species. Secondly, phylogenetic analyses 

of multiple population samples per species were used to investigate evolutionary 

patterns and to address taxonomic issues in the New Zealand species of Plantago.  

 

4.4.1 Evolution of New Zealand Plantago 

Separation of groups according to elevation is evident in the ITS phylogeny presented 

here (Fig. 4.3), and also in the concatenated (ITS, ndhF-rpl32 and cox1) phylogeny in 

Chapter three (Fig. 3.2), where the Australasian lowland species are separated from 

the alpine/subalpine species. The lowland species appear to have one more recent 

migration event into lowland habitats from alpine/subalpine groups. A similar pattern 

is found in alpine Ranunculus species (Lockart et al. 2001) and New Zealand 

Veronica sect. Hebe (Wagstaff and Garnock-Jones 1998; Wagstaff et al. 2002). The 

distribution of the New Zealand Plantago species also suggests that physical 
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separation because of adaptations to different habitats may be an important speciation 

mechanism for some taxa in the group. For example., within Plantago triandra, subsp. 

triandra is distributed on inland mountains and sometimes low altitudes in the S. I., 

whereas subsp. masoniae grows in coastal areas that are separate from populations of 

P. triandra subsp. triandra (Sykes in Webb et al. 1988). 

 

Although the processes and mechanisms involved in the evolution of alpine species in 

New Zealand are not well known (Winkworth et al. 2005), the origin of the New 

Zealand species of Plantago was dated to be in the range of 2.3 to 1.5 mya in the 

previous chapter, which is within the period of uplift of the Southern Alps (starting 

about 5 mya). Speciation of the alpine and subalpine Plantago species following the 

uplift of these mountain ranges agrees with previous observations in other plant 

groups (Lockhart et al. 2001; Winkworth et al. 2002a). The Southern Alps may also 

present a physical barrier that limits the distribution of some species, such as P. 

spathulata subsp. spathulata, which is reportedly found only east of the main divide 

(Sykes in Webb et al. 1988).  

 

The ITS phylogeny of Clade II suggests that Cook Strait may be a physical barrier for 

P. raoulii populations because N.I. populations of P. raoulii are separated from the S.I. 

population in the ML phylogeny (Fig. 4.4A), which is also evident in the Splitstree 

analysis (Fig. 4.7A). However, only one population of P. raoulii from S. I. was 

included and testing of this hypothesis would benefit from wider sampling. Cook 

Strait does not appear to present a barrier for the other species because closely related 

populations occur on both sides of the strait (Figs. 4.4A, 4.5A, 4.6A). 
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Table 4.4. Comparison of allopatry vs. sympatry and same vs. different chromosome numbers in New Zealand Plantago species. 
 

  
Plantago 
aucklandica 

P. 
lanigera 

P. 
obconica 

P. 
raoulii 

P. spathulata 
subsp. 
spathulata 

P. spathulata 
subsp. picta 

P. 
"sylvester" 

P. triandra 
subsp. 
triandra 

P. triandra 
subsp. 
masoniae 

P. 
triantha 

P. 
unibracteata 

Plantago 
aucklandica 

— A A A A A A A A S A 

P. lanigera N/A — S A S A S S A A S 

P. obconica N/A X — A S A A S A A S 

P. raoulii N/A X X — S A S S S A S 

P. spathulata 
subsp. 
spathulata 

N/A X X I — A A S A A S 

P. spathulata 
subsp. picta 

N/A X X I I — A A A A A 

P. "sylvester" N/A X X X X X — S S A S 

P. triandra 
subsp. 
triandra 

N/A X X I I I X — A A S 

P. triandra 
subsp. 
masoniae 

N/A X X I I I X I — A A 

P. triantha N/A I/X I X X X X X X — A 

P. 
unibracteata 

N/A X X X X X X X X X — 

 
Upper right side is a comparision of whether the species are allopatric or sympatric (A = populations are allopatric, S = populations are sympatric). Lower left side is a 
comparison of chromosome numbers (X = different chromosome numbers, I = identical chromosome numbers, I/X = one of the chromosome numbers is the same (P. lanigera 

has two chromosome numbers 2n = 12, 24)). Colours represent different combinations; yellow boxes are sympatric species with different chromosome numbers; orange boxes 
are sympatric species with identical chromosome numbers; red boxes are allopatric species with same chromosome numbers; blue boxes are allopathic species with identical 
chromosome numbers. N/A = data not available (chromosome numbers for P. aucklandica unknown). Chromosome numbers from Groves and Hair (1971) and Rahn (1996). 
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Some of the New Zealand Plantago species occur in sympatric populations. The 

species have variable chromosome numbers (2n = 12, 24, 48, 60 and 96) which may 

act as a reproductive barrier where distributions overlap. Most species that have 

sympatric populations have different chromosome numbers (Table 4.4). For example, 

P. unibracteata and P. lanigera can be found growing at the same location but they 

have different chromosome numbers (2n = 60 and 2n = 12/24, respectively). 

Polyploidy may have allowed rapid speciation within the group, e.g. P. “sylvester” 

(2n = 96), which is suggested to be a hybrid of P. spathulata subsp. spathulata and P. 

raoulii (both 2n = 48) (see below). Different flowering times, along with the limited 

dispersal of pollen and seeds may also present a biological barrier to genetic exchange, 

and therefore may promote speciation. 

 

Possible hybrids 

Within the ITS dataset, several populations with unexpected relationships were found 

in a basal polytomy in Clade II. The samples (a few per population) were identified as 

Plantago lanigera but they do not group with the other P. lanigera populations, which 

are placed in Grade B. The morphology of these individuals is certainly peculiar; the 

habits of both P. lanigera from Eyre Mountains and P. lanigera from Sugarloaf Pass 

resemble the specimens collected from Lake Sylvester (P. “sylvester”) with respect to 

coloration, leaf shape and plant size (see Fig. 4.4E & F). Their positions are also odd 

in the Splitstree analyses (Fig. 4.7). P. lanigera from the Eyre Mountains is closest to 

P. paradoxa, whereas P. lanigera from Sugarloaf Pass are attached between P. 

spathulata subsp. spathulata and a clade of P. “sylvester” and P. raoulii (from Cass). 

These populations could represent misidentifications but the unexpected placements 
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in the ML and Splitstree analyses could also suggest hybridisation. Further sampling 

and a study of morphology characters may help clarify relationships of these species.  

 

4.4.2 Taxonomy of New Zealand Plantago 

Circumscription of subgenera and sections 

In the ITS phylogeny, the Australasian species fall into a clade of subg. Plantago, 

which is sister to a clade containing the other four subgenera (subg. Albicans, subg. 

Bougeria, subg. Psyllium and subg. Coronopus). The ITS phylogeny also shows that 

most of the subgenera identified by Rahn (1996) form monophyletic groups (Fig. 4.3) 

and the topology of the tree does not contradict the topology recovered from previous 

phylogenetic studies (Rønsted et al. 2002; Hoggard et al. 2003). 

 

While there is some resolution in Clade I, there is not much resolution among 

Australasian species (Clades II and IV, and Grades A and B). This is probably 

because of low sequence divergence within and between the Australasian species 

(Table 4.3, Appendix III (B)). This finding is consistent with the long branch lengths 

found in Plantago coronopus and P. lanceolata, but short branch lengths in 

Australasian species were formed when phylogeny was reconstructed in the previous 

chapter (Fig. 3.3). Slightly better resolution of species relationships within 

Australasian groups was obtained when species with relatively high substitution rates 

were removed to form three reduced Australasian datasets. The ML phylogenies of 

these smaller datasets are used to address taxonomic issues and to look at the 

evolution of Plantago species in New Zealand below. 
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Circumscription of New Zealand species and subspecies 

Plantago spathulata 

In the ML tree (Fig. 4.4A), Plantago spathulata subsp. picta appears to be more 

divergent from P. spathulata subsp. spathulata and closer to P. raoulii than expected 

based on morphology and previous classifications. Sykes (1988) noted that the main 

difference is a persistent taproot in subsp. picta, although they may also be 

differentiated by hairs either on the keels of bracts and sepals (subsp. spathulata) or 

only on the margins of bracts and sepals (subsp. picta) (Moore in Allan 1961). This is 

mirrored in Rahn’s (1996) morphological phylogeny, where subsp. picta is separated 

from subp. spathulata by only 5 steps (3 characters) which are: absence/presence of 

adventitious roots, whether or not the sepals are glabrous abaxially, and 1-4 ovules 

per ovary with a rudiment of an upper compartment on the adaxial side of the placenta. 

This suggests that although the two taxa are genetically divergent, they may share 

many plesiomorphic character states. The divergence of the two subspecies and the 

placement of subsp. picta as closely related to the population of P. raoulii from Cass 

is also evident in the Splitstree analysis of Clade II (Fig. 4.7A). They are allopatric: 

subsp. picta is endemic to East Cape and the Poverty Bay Coast in the N. I. (Sykes in 

Webb et al. 1988), whereas subsp. spathulata is found in the Wairarapa coast and 

throughout the S. I. Phylogenetic analyses suggest that the two taxa are not each 

other’s closest relatives. However, additional samples of subsp. picta should be 

sequenced and although these results suggest that they are distinct species, it would be 

impractical to recognise them taxonomically without reliable and consistent 

morphological differences.  
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Plantago raoulii 

There are reportedly two sympatric forms of P. raoulii (Sykes in Webb et al. 1988, C. 

Ogle pers. comm.) distinguished by broad vs. narrow leaves. These two distinct forms 

were collected for this study (Figs. 4.1B, 4.4E & F). However, both ML and Splitstree 

analyses indicated that there was no genetic differentiation between populations of N. 

I. P. raoulii found here that are consistent with morphology, i.e., there was no 

difference in the morphology of the plants that formed the separate poorly supported 

clades, and there were individuals from the same population that occurred in separate 

clades (but again no difference in morphology). Thus, it appears that the two forms of 

P. raoulii may simply be ecotypes or represent simple polymorphisms. 

 

The phylogenetic analyses also show that P. raoulii is separated by geographic 

location (i.e. N. I. and Cass populations were in different groups). It is possible that 

the P. raoulii population from Cass may be related to P. “sylvester” because they 

group together with high support. The habitats of the Cass and Lake Sylvester 

samples were similar (flush among Schoenus) and their morphology and flowering 

times in cultivation are very similar (Garnock-Jones pers. comm.), but P. raoulii from 

a location near to Cass has been found to have 2n = 48 (Groves and Hair 1971). 

Further studies and additional samples of P. raoulii from S. I. are needed to clarify 

this observation. 

 

Plantago lanigera 

In agreement with Sykes (in Webb et al. 1988), there was not enough molecular 

evidence to distinguish between the two forms previously known as P. lanigera and P. 

novae-zelandiae (e.g. Moore in Allan 1961) in the dataset. There was weak support 
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for a P. lanigera clade that included the two different forms (excluding two samples 

of P. lanigera) but no support for any difference between populations within the 

group (Fig. 4.5A). Thus, there is no evidence to refute the conspecificity of P. 

lanigera and P. novae-zelandiae (Sykes in Webb et al. 1988). There appears to be no 

barrier to genetic interchange among populations, although some reticulation in the 

history of P. lanigera is suggested from Splitstree analysis (Fig. 4.7B). An odd 

finding in the ML phylogeny is that some but not all individuals from two populations 

(Mt. Wilberg and Ruahines) were placed in a clade with P. aucklandica, which is 

sister to the larger P. lanigera clade. Samples from Mt. Wilberg were present in both 

clades, which indicate that they are not grouped according to geographic location. 

Two scenarios may explain this finding: that there were two different species 

collected in both locations, or that more variation exists within populations than 

between populations. The latter appears to be more plausible as samples collected 

from either population were morphologically indistinguishable.  

 

Plantago triandra 

Sampling in this study included populations referable to both P. triandra subsp. 

triandra and subsp. masoniae based on morphology. Although two clades of P. 

triandra were resolved, each contained both samples from both subsp. triandra and 

subsp. masoniae (Fig. 4.6A). Populations of the two were also not separated in the 

Splitstree analysis (Fig. 4.7C). Sykes (1988) distinguished subsp. masoniae from P. 

triandra subsp. triandra by fleshier leaves that differ in size. Morphological 

differences between coastal and inland plants appear to be cosistent (see Fig. 4.1E & 

F), but unfortunately, some components relating to the thickness of leaves, size, shape 

and even whether the leaves are toothed or entire appear to be plastic depending on 
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environment and seasonal changes (personal observation from plants in the 

greenhouse). Thus, although two morphological groups can be distinguished, there is 

no genetic evidence for separation of these two into separate subspecies. Several 

populations of subsp. triandra even share identical ITS sequences with individuals 

from a population of subsp. masoniae. These two morphological forms appear to be 

ecotypes and recognition at a lower rank (i.e. variety) might be more appropriate.  

 

Species relationships 

Plantago “sylvester” 

The 16-ploid P. “sylvester” may be an allopolyploid between P. raoulii and P. 

spathulata subsp. spathulata. There are morphological characteristics that link it to 

these two species: P. “sylvester” plants resemble P. spathulata by having two long 

seeds in each locule, and broad glabrous corolla lobes (Moore in Allan 1961); 

whereas they resemble P. raoulii in only having four vertical seeds, and the habit of 

the plants appear to resemble P. raoulii morphologically (Sykes in Webb et al. 1988). 

P. “sylvester” has a chromosome number of 2n = 96, while both P. spathulata and P. 

raoulii have chromosome numbers of 2n = 48. P. “sylvester” is sister to  a sample of 

P. raoulii from Cass (S. I.) in the ML analysis (Figs. 3A) and these are at almost equal 

distances from the N. I. P. raoulii and P. spathulata subsp. spathulata in the Splitstree 

analysis (Fig. 4.7A). Until the morphological recognition and geographic range of P. 

“sylvester” are better known, it would be imprudent to recognise it as a new species.  

 

Plantago obconica 

The ITS phylogeny reconstructed in this study (Fig. 4.3) and a three genome 

phylogeny discussed previously (Fig. 3.2) both show that P. obconica is closely 
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related to P. lanigera and not P. triandra as previously suggested based on 

morphology (Sykes in Webb et al. 1988). Thus, morphological similarities between P. 

obconica and P. triandra appear to have arisen convergently. P. obconica should be 

classified within sect. Oliganthos. 

 

Plantago triantha and Plantago aucklandica 

Plantago triantha is currently placed within sect. Oliganthos (Rahn 1996). However, 

it is placed with species from sect. Mesembrynia in the ITS phylogeny (Fig. 4.3) 

because it is very similar to P. spathulata subsp. spathulata genetically. P. 

aucklandica is placed in sect. Plantago (Rahn 1996) but groups with other species 

from sect. Oliganthos (Fig. 4.3 and Fig. 3.2). P. triantha and P. aucklandica should be 

reclassified in those groups.  

  

4.4.3 Implications of this study  

The reconstructed ITS phylogeny presented here using ITS sequences did not match 

the concatenated ML tree presented in the previous chapter (the latter resembles and 

is strongly influenced by the tree of the cpDNA spacer ndhF-rpl32). This outcome 

was also encountered in the previous chapter comparing trees of the ITS and 

organellar regions. Plantago triandra, P. unibracteata, P. muelleri and P. paradoxa 

showed conflicting organellar and nuclear DNA signals. The phylogeny presented in 

Chapter three had many branches with high BP support compared to the ITS 

phylogeny presented here where support values (PP) were mostly quite low. Thus, 

this conflict might simply be a result of poor sequence divergence among the four 

species, i.e. phylogenetic analyses may not be able to place them in the tree and they 

are placed as a polytomy at the base of the clade instead. Trans-Tasman hybridisation 
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events in the past may also have caused the incongruence, but this is a less likely 

explanation because migration, hybridisation, and extinctions must all be postulated. 

All four species are currently placed in sect. Oliganthos but if placement of P. 

paradoxa and P. muelleri follows that as indicated by the ITS phylogeny, they may 

have to be reclassified to sect. Mesembrynia. 

 

The South American species are found in two groups in the ITS phylogeny (in Clade I 

and Clade III). Thus, the South American species are not showing patterns consistent 

with those expected as a result of Gondwanan vicariance, i.e. one clade each of New 

Zealand, South American and Australian species, with an expected relationship of 

((Australia + South America) New Zealand) according to breakup sequence or 

multiple paralogous repeats of this pattern. In addition, Plantago stauntoni from the 

Amsterdam & St. Paul Islands (Southern Indian Ocean) is nested within the 

Australasian species. The phylogeny suggests that the ancestor of P. stauntoni 

dispersed there from Australasia but it is unclear from Fig. 4.3 exactly where it 

dispersed from. 

 

For the three Australasian clades, there is little resolution and low support for any 

resolved clades with ITS alone (Figs. 4.3 - 4.5) but it was shown in Chapter three that 

a concatenated dataset, including organellar DNA sequences were able to resolve 

species relationships (Fig. 3.2). Splitstree analyses back up the topology reconstructed 

by ML analyses but the neighbour net analyses revealed several additional reticulate 

relationships that were not illustrated in the ML trees (Fig. 4.7). However, analysis 

using Splitstree also showed difficulty in delineating species within the group. The 

lack of resolution and low support for clades may be a result of the low sequence 
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divergence among Australasian species (Table 4.3, Appendix III (B)). For example, 

the interspecific p-distance range (0.002-0.008) between Plantago triandra and P. 

unibracteata is extremely low and results in no resolution between the two in the ML 

phylogeny. The low sequence divergence coupled with variable morphology is 

consistent with the pattern found in most New Zealand plants that have undergone 

recent speciation (e.g. Winkworth et al. 1999; Winkworth et al. 2002a); changes in 

relatively few loci may result in huge morphological differences (Winkworth et al. 

1999). It may also be that the ITS region is not the best marker to capture genetic 

variation at this level. Other molecular data such as amplified fragment length 

polymorphism (AFLP) and randomly amplified polymorphic DNA (RAPD) are 

increasingly being applied for plant groups with low genetic variability and thus, use 

of these resources, along with wider sampling, may be able to improve resolution of 

species relationships in Australasian Plantago (e.g. Wolff and Morgan-Richards 1999; 

Meudt and Bayly 2008). If the New Zealand species have had a recent origin and not 

much genetic divergence, concatenation of multiple independent loci may also be 

helpful as long as little hybridisation in the group has occurred.  

 

It was found during phylogenetic analyses that samples of P. triandra and P. 

unibracteata were inseparable genetically (Figs. 4.6A, 4.7C). It is interesting to note 

that P. unibracteata has previously been treated as a variety of P. triandra (Table 4.1). 

Wider population sampling of both species will be able to clarify if this observation 

stands, which may lead to reclassification of P. unibracteata.  

 

It is also interesting to note that Plantago aucklandica appears to have a recent origin 

from within P. lanigera (Fig. 4.5A). P. aucklandica is found in Auckland Islands and 
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the subantarctic islands, and could be classified as a megaherb. Thus, if this 

relationship is true, then P. aucklandica appears to have a different history from that 

suggested by Wagstaff et al. (2007), which is that subantarctic megaherb lineages are 

old and are sister to large New Zealand clades. 

 

Plantago sp. might represent a recent addition to the naturalised flora of New Zealand 

because it does not match any of the reported species in Sykes (in Webb et al. 1988). 

While P. asiatica is common and widespread in Asia, it has never been found in New 

Zealand. The taxonomic status of P. tasmanica and P. daltonii were discussed by 

Brown (1981), who mentioned that morphologies of the two species are very similar. 

Field and glasshouse experiments revealed that differences in leaf morphology remain 

consistent between species, although there is some degree of plasticity in leaf 

morphology. There were two sequences each of P. daltonii and P. tasmanica and they 

were all identical (except for a few ambiguous sites in the sequences). Their close 

genetic similarity mirrors their close morphological similarity. This suggests that the 

two may not be isolated from one another but there is not enough sampling to clarify 

their taxonomic status in this study.   

 

Additionally, it was found that genetic divergence in New Zealand Plantago is 

highest within populations, followed by between populations. There is the least 

amount of variation between species. This pattern is also not expected because the 

ITS region undergoes concerted evolution (Álvarez and Wendel 2003), which should 

reduce genetic divergence within populations. Explanations for this unexpected 

pattern could be incomplete speciation within many lineages, or that the plants are 

undergoing dispersal around the North and South Islands. Additionally, Plantago 
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plants are wind-pollinated, which suggests that genetic exchange could occur over 

long distances and it also appears that biotic seed dispersal is not limited, as 

evidenced by widespread dispersal and presence of many cosmopolitan species in the 

genus.  

 

4.4.4 Conclusions and future directions 

In summary, this study is important because it shows the placement of most of the 

Australasian species in a worldwide Plantago phylogeny. DNA sequences for 13 

Australasian species were added to the Plantago phylogeny, which now includes 

about 80 Plantago species out of ca. 210 so far, excluding Littorella. Analysis of the 

ITS dataset revealed that the Australasian species have very little interspecific genetic 

differences, even though extensive morphological variation may exist. Taxonomy has 

been difficult for the genus because of plastic morphological characters and flower 

reduction associated with wind pollination. The New Zealand Plantago species are no 

exception; the morphology of plants in cultivation changes dramatically according to 

environmental and seasonal change (see Fig. 4.1) The complex evolutionary history in 

the New Zealand Plantago species as indicated by Splitstree analyses require further 

investigation because processes such as hybridisation or incomplete lineage sorting 

may be involved in this group. In addition to reticulation, recurrent polyploidy 

appears to be a common speciation mechanism in the group, suggested by variable 

chromosome numbers and demonstrated by the Australasian species and is probably 

associated with hybrid speciation. The groups are also separated by altitude: whether 

plants are found in alpine/subalpine or lowland habitats appears to relate to the 

separation of the New Zealand groupings. 
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Additionally, it is evident from the ITS phylogeny presented in this study that the 

current taxonomic classifications of many New Zealand species (i.e. P. spathulata, P. 

triandra, P. obconica, P. aucklandica and P. triantha) need revision.  

 

It is shown here that while ITS is the most commonly used marker in plant studies 

(Álvarez and Wendel 2003) and also in Plantago phylogenetic studies (Rønsted et al. 

2002; Hoggard et al. 2003), it may not be the most suitable marker for investigating 

genetic variation in recently diverged species. Resolution in the phylogeny of 

Australasian species may be increased with wider population sampling and utilising 

markers from faster evolving regions such as from the cpDNA or non-sequence 

markers such as RAPD or AFLP. The relationships between the two subspecies 

currently classified under P. spathulata require further studies, with increased 

sampling of P. spathulata subsp. picta.  

 

Additional chromosome counts should be made, especially for the P. raoulii from the 

S. I., which appears to be closely related to the 16-ploid P. “sylvester”. Also, P. 

lanigera in the ITS phylogeny included samples within two populations that were 

widely separated in the phylogenetic tree (Fig. 4.5A) and in the Splitstree analysis 

(Fig. 4.7B). Given that two chromosome numbers are known within this complex 

(Grove and Hair 1971; Sykes 1988), chromosome counts would also be interesting for 

these samples. 
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Chapter Five: General Discussion 

 

The aim of this thesis was to generate molecular sequence data to: 1) elucidate the 

phylogeny and biogeography of the Australasian species of Plantago (Plantaginaceae) 

and 2) investigate evolutionary patterns and taxonomy of the New Zealand Plantago 

species. One region each from nuclear DNA, chloroplast DNA and mitochondrial 

DNA were chosen for amplification and sequencing of DNA from 20 Australasian 

Plantago species. Phylogenies for markers from each of the three genomes (ITS, 

ndhF-rpl32, and cox1) were reconstructed for the Australasian species to examine 

biogeographic patterns of the group in the Southern Hemisphere. Following this, new 

ITS sequences of 150 Plantago individuals were integrated into a larger phylogeny of 

Plantago, which included published sequences of other species distributed worldwide 

to investigate placement of the Australasian species. Phylogenetic analyses of the 

three New Zealand clades that were resolved in the ITS and concatenated phylogenies 

revealed several evolutionary patterns and assist species delimitations of the New 

Zealand species, which are outlined in this chapter. 

 

5.1 Choosing a suitable region for phylogenetic analyses 

The most commonly used region for plant phylogenetic analyses is the Internal 

Transcribed Spacer (ITS) from nuclear DNA. Despite its advantages, markers from 

other regions may sometimes prove to be more useful for reconstructing phylogenies, 

either by themselves or in conjunction with ITS. In this thesis, amplification and 

sequencing using 24 primer pairs from all three plant genomes was tested on four 

Plantago species (P. spathulata subsp. spathulata and P. triandra subsp. triandra 

from New Zealand; P. euryphylla from Australia; and the cosmopolitan P. lanceolata) 
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and a relative from the same family (Veronica stricta from New Zealand). Out of 

eleven primer pairs with consistent, clean amplification across all species (Table 2.1), 

the ITS from the nuclear genome and the intergenic spacer ndhF-rpl32 from the 

chloroplast genome were chosen for further phylogenetic studies because of their ease 

of amplification and adequate sequence diversity (2.8% for ITS and 2.1% for ndhF-

rpl32, comparing the two New Zealand species). While mitochondrial DNA (mtDNA) 

substitution rates are traditionally regarded as very slow in plants (Wolfe et al. 1987), 

a high rate of mtDNA evolution has been found in Plantago (Cho et al. 2004). 

Therefore, cox1 from the mtDNA was also chosen to compare rates found in 

Australasian mtDNA with rates found in previous studies, and for phylogeny 

reconstruction in this study.   

 

Comparisons between the two New Zealand species revealed that ITS and ndhF-rpl32 

had relatively higher sequence variation than cox1, whereas cox1 had more variation 

when comparing the Australasian species with the cosmopolitan Plantago lanceolata 

(Table 2.3). In Chapter Four, phylogenetic analyses indicated that ITS is not a suitable 

marker for investigating New Zealand species relationships because very little genetic 

differences were found between species. In Chapter Three, the ndhF-rpl32 region was 

found to have better variation between species, and higher resolution in the phylogeny 

compared to the ITS region. It was also shown that the cox1 marker provided very 

little resolution in the Australasian group. Thus, the use of fast evolving chloroplast 

markers is recommended for further studies involving Australasian Plantago. 
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5.2 Phylogeny of Plantago  

Previous molecular phylogenies reconstructed for Plantago included only three and 

six species (Rønsted et al. 2002 and Hoggard et al. 2003, respectively) out of a total 

of 32 Australasian species. Inclusion of the Australasian species is essential for 

elucidating biogeographic patterns of Southern Hemisphere Plantago, and to 

investigate unclear Australasian species relationships. In this thesis, inclusion of 

sequences from 20 Australasian species in the worldwide ITS phylogeny revealed that 

all the Australasian species are placed in a clade of subg. Plantago (Fig. 4.2). The 

subg. Plantago clade is separate from a clade comprising the four other subgenera 

(subg. Psyllium, subg. Albicans, subg. Bougeria, and subg. Coronopus). This clade 

also includes a clade of species that are native to America (including South America), 

Africa, Asia, Ilha Trindade, Europe, and several cosmopolitan species. P. stauntoni 

from the Amsterdam & St. Paul Islands was nested within the Australasian species.  

 

There was some incongruence between phylogenies reconstructed using the ITS 

dataset and either of the organelle datasets caused by different placements of 

sequences of P. triandra and P. unibracteata (New Zealand species), and P. muelleri 

and P. paradoxa (Australian species) in the phylogenies. Explanations for this 

incongruence included low resolution in the ITS phylogeny within the Australasian 

group, or reticulation in the evolutionary history of these species (e.g. trans-Tasman 

hybridisation). The lack of resolution in the ITS phylogeny is most likely because 

there was low support for the placement of these species in the ITS phylogeny (Fig. 

4.3) but high support in the concatenated phylogeny (Fig. 3.2).  
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The phylogeny displaying branch lengths of the cox1 region for the Australasian 

species (Fig. 3.3C) revealed that while there is an elevated rate of mitochondrial 

evolution between Australasian species and the two introduced species (P. lanceolata 

and P. coronopus) that were included, the elevated rate is not present among 

Australasian species. This could be due to recent radiations in the group, which is not 

uncommon in endemic New Zealand groups (Heenan et al. 2002; Murray et al. 2004; 

Wagstaff and Garnock-Jones 1998). However, different Plantago lineages have also 

been found to have either substitution rate increases or rate decreases (Cho et al. 2004) 

and the branch lengths could simply indicate that there has been a decrease in 

substitution rate in the Australasian Plantago species. The latter situation is more 

likely to be true, as there was no decrease in substitution rate evident in the other 

markers (ITS or ndhF-rpl32), which is expected if speciation was the result of more 

recent rapid radiations. 

 

5.3 Biogeography of Australasian Plantago 

Reconstructions of molecular phylogenies for Southern Hemisphere plant groups have 

revealed that long distance dispersal has been an important process in most plant 

groups (Radford et al. 2001; Swenson et al. 2001; von Hagen and Kadereit 2001; 

Heenan et al. 2002; Hurr et al. 1999; Lockhart et al. 2001; Winkworth et al. 2002; 

Zhang and Renner 2003; Perrie and Brownsey 2005; Barker et al. 2007; Perrie and 

Brownsey 2007; Perrie et al. 2007; Sanmartín et al. 2007) but there is still evidence of 

Gondwanan vicariance in a few plant lineages (Stöckler et al. 2002, Knapp et al. 

2007). Most New Zealand plant groups also have one dispersal event to New Zealand, 

followed by speciation (Wagstaff and Garnock-Jones 1998; Winkworth et al. 1999; 

Perrie et al. 2003; Albach et al. 2005; Meudt and Simpson 2006). A meta-analysis of 
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plant phylogenetic studies has shown that dispersal between Australia and New 

Zealand is asymmetrical, and most dispersal events have occurred in the direction of 

West to East due to West Wind Drift and oceanic currents (Sanmartín et al. 2007). 

 

In this thesis, the hypothesis of Gondwanan vicariance for the Southern Hemisphere 

Plantago was rejected because there was no evidence of monophyletic groups of 

Australian, New Zealand and South American species, respectively, in the phylogeny. 

Further, New Zealand clades and species are more closely related to Australian 

groups than to South American clades and species. Molecular dating techniques 

provided evidence for long distance dispersal within the Australasian Plantago. It was 

found that there was too little genetic divergence among the Australasian species to 

infer a Gondwanan origin for the group. The origin for the Australasian clade was 

estimated to be within 1.5 to 2.2 million years ago, which is consistent with the uplift 

of the Southern Alps in the South Island of New Zealand.  

 

The phylogeny of the concatenated dataset (ITS + ndhF-rpl32 + cox1) suggests at 

least three long distance dispersal events to New Zealand from Australia (Fig. 3.2). 

This direction of dispersal is consistent with patterns influenced by the West-Wind 

Drift and ocean currents (Sanmartín et al. 2007) but differs from the common pattern 

of one origin of most New Zealand groups. These long distance events also reflect 

dispersal of species that were already adapted to the alpine/subalpine or lowland 

environment in Australian lineages before establishment in New Zealand. One habitat 

shift event from the alpine/subalpine zone to lowland habitats in Australasian 

Plantago can be postulated from the phylogeny. Additionally, the ancestor of P. 
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stauntoni, which is native to the Amsterdam & St. Paul Islands, appears to have 

dispersed from within Australasia. 

 

5.4 Taxonomy of New Zealand Plantago  

Taxonomy of plant groups in New Zealand has been difficult because of extreme 

morphological variation but a common pattern of low genetic divergence, which is 

associated with the recent origin or recent radiations of many plant lineages in New 

Zealand (Winkworth et al. 1999; Smissen et al. 2004). Taxonomy within the genus 

Plantago has also been difficult because plants in the genus have extremely plastic 

morphological characters (Sykes in Webb et al. 1988; Rahn 1996). Difficult species 

delimitations in the New Zealand species of Plantago have resulted in multiple 

taxonomic changes in the past (Moore in Allan 1961; Sykes in Webb et al. 1988). 

These changes were used to represent hypotheses of species questions in this study. 

No previous molecular studies have included more than two New Zealand species 

when reconstructing the phylogeny of the genus (Rønsted et al. 2002; Hoggard et al. 

2003). 

 

In this thesis, phylogenetic analyses using ITS sequences were able to show that there 

was no genetic difference between morphological forms recognized within each of 

Plantago lanigera, P. triandra and P. raoulii. Therefore, the rank of P. lanigera and P. 

raoulii should be maintained; in addition, the two subspecies described under P. 

triandra are not supported by molecular data. Genetic distinctions between P. 

triandra and P. unibracteata were also unclear. P. spathulata subsp. picta and P. 

spathulata subsp. spathulata did not group together in the phylogeny, which indicates 

that the two are not as closely related as previously thought based on similarity of 
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morphological characters. However, only one sample of P. spathulata subsp. picta 

was obtained for this study. With more sampling, there may be substantial evidence 

for P. spathulata subsp. picta to be restored to species rank (P. picta as in (Moore in 

Allan 1961). The placement of P. obconica in the phylogeny of a concatenated ITS, 

ndhF-rpl32 and cox1 dataset (Fig. 3.2) clearly indicated that P. obconica is closely 

related to P. lanigera, not P. triandra as previously suggested (Sykes 1988) and 

should therefore be classified within sect. Oliganthos. Additionally, Plantago triantha 

perhaps should be placed in sect. Mesembrynia and P. aucklandica in sect. Oliganthos.  

 

Low resolution found in phylogenies might be a result of low genetic divergence 

found among Australasian species using the ITS marker (Table 4.2, appendix 4.4), 

and the ndhF-rpl32 and cox1 markers (Table 2.3). The highest genetic divergence 

among New Zealand Plantago species (2.8401%) was found in ITS, which is also low. 

 

Splitstree analyses (Fig. 4.7) and the ML phylogeny using ITS sequences (Fig. 4.4) 

revealed that the placement of several specimens of P. lanigera (from the Eyre 

Mountains and Sugarloaf Pass) were not well-defined (Fig. 4.6). Further studies 

should include more specimens of these, along with nearby samples, to determine if 

these could be hybrids, which could explain their ambiguous placements in the 

phylogenetic analyses.  

 

5.5 Evolutionary patterns 

Phylogenetic analyses suggest that adaptation to different habitats and altitudes (i.e. 

alpine/subalpine, lowland or coastal) may have played an important role in speciation 

within New Zealand Plantago. There are eight native New Zealand species: P. 
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lanigera, P. obconica, P. unibracteata, P. aucklandica and P triandra subsp. triandra 

can be found in the alpine/subalpine region; P. triantha, P. triandra subsp. masoniae 

and P. spathulata subsp. picta can be found in coastal areas; and P. spathulata subsp. 

spathulata and P. raoulii can be found from coastal regions to altitudes of ca. 1000 

and 1500m, respectively (Sykes in Webb et al. 1988). Separation of species according 

to altitude is backed up by the ITS phylogeny (Fig. 4.3), and also in the concatenated 

(ITS, ndhF-rpl32 and cox1) phylogeny (Fig. 3.2), where the New Zealand lowland 

species are separated from the alpine/subalpine species. The molecular phylogeny 

also suggests that the New Zealand species were pre-adapted to the alpine/subalpine 

and lowland habitats, with a more recent origin for the lowland species. There appears 

to have been a single migration event into lowland habitats from alpine/subalpine 

groups. 

 

The New Zealand species have variable chromosome numbers (2n = 12, 24, 48, 60 

and 96) which may act as a reproductive barrier where distributions overlap. For 

example, P. unibracteata and P. lanigera can be found growing at the same location 

but have different chromosome numbers (2n = 60 and 2n = 12/24, respectively). 

Polyploidy may be a mechanism of rapid speciation within the group. A good 

example is P. “sylvester” (2n = 96), which is suggested to be a hybrid of P. spathulata 

subsp. spathulata and P. raoulii (both 2n = 48). Different flowering times, along with 

the limited dispersal of pollen and seeds may also present a biological barrier to 

genetic exchange, which may promote speciation. 
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 5.6 Future directions 

One of the problems encountered in this thesis is that the New Zealand Plantago 

species have very little intra- and interspecific genetic divergence, resulting in little 

resolution within the group in all three markers. Wider population sampling within 

New Zealand or the addition of further independent genetic markers may help 

overcome this problem. Other genetic data such as randomly amplified polymorphic 

DNA (RAPD) and Amplified Fragment Length Polymorphism (AFLP) are often used 

for lineages that have little genetic divergence (e.g. Wolff and Morgan-Richards 1999; 

Meudt and Bayly 2008) and may be able to provide further resolution within the New 

Zealand groups. Wider population sampling throughout New Zealand and addition of 

genetic material would also help to clarify identities of ambiguously placed 

populations or individuals, such as the P. lanigera populations from Sugarloaf Pass 

and Eyre Mountains. 

 

Additional chromosome counts to those reported by Groves and Hair (1971) would be 

invaluable in future studies for specimens suspected of being hybrids, like the South 

Island specimens of P. raoulii (i.e. chromosome counts will be able to determine if 

they are 16-ploids like P. “sylvester”). Additional counts and sampling should be 

made for P. “sylvester” specimens, including morphologically similar plants that have 

been reported in the Gouland Downs (Moore in Allan 1961). In addition, the two 

chromosome races within the P. lanigera complex also require further sampling and 

their relationship to morphological variation, habitats, distributions, and sympatry 

needs further work to clarify the taxonomic status of the individuals currently placed 

under P. lanigera. 
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For Plantago phylogeny reconstruction and biogeographic analyses, the ITS and 

ndhF-rpl32 datasets could be expanded to include all of the Australian species, some 

samples of species distributed around the Pacific (such as Hawaii, Tonga, Juan 

Fernández, and New Guinea), and additional South American species. This would 

contribute to the understanding of distribution patterns, especially in the Southern 

Hemisphere. Additionally, genetic data could also be used to investigate unclear 

species relationships for Australian Plantago. 

 

5.7 Conclusions 

It was shown here that the Plantago phylogeny reconstructed using sequences from 

all three plant genomes, along with some molecular dating work, rejected the 

hypothesis of vicariance from Gondwana. Instead, the origin of the Australasian 

species appears to be through three long distance dispersal events of pre-adapted 

lineages. In addition, a phylogram of the cox1 region suggests that the high rate of 

mtDNA evolution observed in Plantago by Cho et al. (2004) has slowed down in the 

Australasian group. In regard to New Zealand Plantago taxonomy, phylogenetic 

analyses in the Australasian group has shown that P. lanigera, P. raoulii and P. 

triandra should remain as species, with abolition of the subspecies within P. triandra, 

and that the two subspecies of P. spathulata should be recognised at species rank (as 

in Moore in Allan 1961). P. obconica, P. triantha and P. aucklandica need to be 

reclassified. Additionally, ITS may not be a suitable marker for investigating species 

boundaries within this group. NdhF-rpl32 from the fast-evolving chloroplast region 

may be more useful for future phylogenetic work. Chromosome counts, utilization of 

additional genetic markers, and expansion of the molecular datasets (both within New 
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Zealand and outside) will be able to provide more answers, particularly for taxonomic 

work on the genus. 
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Appendix I: Details of sample collections 

 
A. Samples used in primer pair assays (Chapter two). 
 

Taxon Collection location 

Indigenous 

distribution 

Voucher 

specimen 

P. triandra  

subsp. triandra 

Lake Sylvester, NW Nelson, New 
Zealand 

 NZ 
WELTU20163 
(MLT021 et al.) 

     
P. spathulata 

subsp. spathulata 

Between Kettlehole Bog and 
Kettlehole Tarn, Cass, New Zealand 

 NZ 
WELTU20118 
(PGJ2257) 

     
P. euryphylla Kosciuszko National Park, Southern 

Tablelands, NSW, Australia 
 AUS 

NSW742956 
(BGB9743) 

     
P. lanceolata Ponsonby Road, Karori, Wellington, 

New Zealand  COSMO 
WELTU20184 
(PGJ2551) 

     
P. coronopus End of Red Rocks, Owhiro Bay, 

Wellington, New Zealand 
 MED, EUR 

WELTU20183 
(PGJ2549) 

     
P. major Ben Burn Park, Wellington, New 

Zealand  COSMO 
WELTU20180 
(PGJ2550) 

     
Veronica stricta VUW, Mount Street, Wellington, 

New Zealand 
 NZ 

WELTU 
(MLT001) 

 
Distibution: NZ = New Zealand, AUS = Australia, COSMO = cosmopolitan, MED = Mediterranean, EUR 
= Europe. Samples collected from New Zealand are deposited in the herbarium at the herbarium of Victoria 
University of Wellington, Wellington, New Zealand (WELTU). Australian voucher specimens can be 
found at the National Herbarium of New South Wales (NSW). 
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B. Species and accession numbers of ITS sequences used in molecular dating analyses 
(Chapter three). 
 

Species Collected from 
Reference/Herbarium 

Voucher 

Plantago "sylvester" Lake Sylvester, Nelson, NZ WELTU20150 

P. alpestris Kosciuszko National Park, NSW, AUS NSW742962 

P. aucklandica Auckland Islands, NZ In cult. Otari (2003.2037) 

P. australis Hunua Ranges, Auckland, NZ WELTU20181 

P. cladarophylla Barrington Tops National Park, NSW, AUS NSW744803 

P. coronopus Island Bay, Wellington, NZ WELTU20183 

P. cunninhamii Brigalow Park Nature Reserve, NSW, AUS NSW744804 

P. daltonii  St. Clair National Park, AUS, Tasmania NSW743874 

P. debilis Barrenjoey Headland, NSW, AUS NSW 742894 

P. euryphylla Kosciuszko National Park, NSW, AUS NSW742956 

P. glacialis Kosciuszko National Park, NSW, AUS NSW743813 

P. lanceolata Karori, Wellington, NZ WELTU20184 

P. lanigera (3) Hall  Range, Canterbury, NZ WELTU20143 

P. major Ben Burn Park, Karori, NZ WELTU20180 

P. muelleri Kosciuszko National Park, NSW, AUS NSW743812 

P. obconica Cardrona Skifield, Wanaka, NZ WELTU20121. 

P. paradoxa St. Clair National Park, AUS, Tasmania WELTU20187 

P. raoulii (1) Lake Sarah, Cass, NZ WELTU20153 

P. sp. Pukerua Bay, Wellington, NZ WELTU20178 

P. spathulata subsp. picta East Cape, Gisborne, NZ CHR439486 

P. spathulata subsp. spathulata Marfells Beach, Marlborough, NZ WELTU20117 

P. tasmanica St. Clair National Park, AUS, Tasmania WELTU20188 

P. triandra subsp. masoniae Paturau Coast, Nelson, NZ WELTU20168 

P. triandra subsp. triandra Lake Sylvester, Nelson, NZ WELTU20163 

P. triantha Enderby Island, AI, NZ WELTU20177 

P. unibracteata Lake Sylvester, Nelson, NZ WELTU20175 

P. varia Kosciuszko National Park, NSW, AUS NSW743869 

Aragoa. corrugatifolia (AJ548980) Colombia Hoggard et al. 2003 

A. cupressina (AJ459402) northern Andes Bello et al. 2002 

Littorella americana (AJ548956) Anderson Lake Hoggard et al. 2007 

L. americana (AJ548958) New Brunswick Hoggard et al. 2007 

L. americana (AJ548957) Trout Lake Hoggard et al. 2007 

L. australis (AJ548959) Falkland Islands Hoggard et al. 2007 

L. uniflora (AJ548960) Denmark Hoggard et al. 2007 

L. uniflora (AJ548963) Iceland Hoggard et al. 2007 

L. uniflora (AJ548961) Sweden Hoggard et al. 2007 

Veronica hookeriana Whanahuia Range, Ruahine Mts, NZ WELTU (PGJ2458)  

Veronica salicornioides Jacks Pass, Hanmer, Canterbury, NZ CHR512475 
 

Locations: AI = Auckland Islands, AUS = Australia, NSW = New South Wales, NZ = New Zealand, RBG Kew = 
Royal Botanic Gardens Kew, UK = United Kingdom. Collectors: BGB = Barbara G. Briggs, MLT = Mei-Lin Tay, 
PBH = Peter Heenan, PGJ = Phil Garnock-Jones, PJL = Peter J. Lockhart and VT = Vanessa Thorn. Herbarium 
vouchers: WELTU = H. D. Gordon Herbarium in Victoria University of Wellington, New Zealand; NSW = National 
Herbarium of New South Wales, Australia; and CHR = Allan Herbarium, Landcare Research, Christchurch, New 
Zealand. The Littorella species included here had the same sequences for replicate samples of the same species. 
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 Appendix II: Phylogenetic analyses 

 A. 50% bootstrap consensus phylogeny of the ITS dataset recovered using Maximum 
Parsimony (using samples listed in Table 3.1). Tree scores range from 350-356. 
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B. 50% posterior probability consensus phylogeny of the ITS dataset recovered using 
Bayesian analysis (using samples listed in Table 3.1). Estimated tree likelihood score 
= -2417.00. 

 
 
 
 



 

173 

C. 50% bootstrap consensus phylogeny of the ITS dataset recovered using neighbour-
joining methods (using samples listed in Table 3.1). 
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D. 50% bootstrap consensus phylogeny of the ndhF-rpl32 dataset recovered using 
Maximum Parsimony (using samples listed in Table 3.1). Tree scores range from 
496-500. 
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E. 50% posterior probability consensus phylogeny of the ndhF-rpl32 dataset recovered 
using Bayesian analysis (using samples listed in Table 3.1). Estimated likelihood 
score = -3079.09. 
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F. 50% bootstrap consensus phylogeny of the ndhF-rpl32 dataset recovered using 
neighbour-joining methods (using samples listed in Table 3.1). 
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G. 50% bootstrap consensus phylogeny of the cox1 dataset recovered using Maximum 
Parsimony (using samples listed in Table 3.1). Tree scores range from 198-199. 
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H. 50% posterior probability consensus phylogeny of the cox1 dataset recovered using 
Bayesian analysis (using samples listed in Table 3.1). Estimated likelihood score = -
1838.13. 
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I. 50% bootstrap consensus phylogeny of the cox1 dataset recovered using neighbour-
joining methods (using samples listed in Table 3.1). 
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J. 50% bootstrap consensus phylogeny of the concatenated (ITS + ndhF-rpl32 + cox1) 
dataset recovered using Maximum Parsimony (using samples listed in Table 3.1). 
Tree scores range from 1056-1058. 
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K. 50% posterior probability consensus phylogeny of the concatenated (ITS + ndhF-

rpl32 + cox1) dataset recovered using Bayesian analysis with one model for the 
dataset (using samples listed in Table 3.1). Estimated likelihood score = -7775.85. 
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L.  50% posterior probability consensus phylogeny of the concatenated (ITS + ndhF-

rpl32 + cox1) dataset recovered using Bayesian analysis when the dataset was 
partitioned and different models were implemented for each region (using samples 
listed in Table 3.1). Estimated likelihood score = -7874.62. 
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M. 50% bootstrap consensus phylogeny of the concatenated (ITS + ndhF-rpl32 + cox1) 
dataset recovered using neighbour-joining methods (using samples listed in Table 
3.1). 
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N. Neighbour-net analyses of the concatenated regions ITS, ndhF-rpl32 and cox1 of the Australasian species using Splitstree v4.8 (using 
samples listed in Table 3.1).  
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O. 50% posterior probability consensus ITS phylogeny of a worldwide Plantago 

dataset reconstructed using Bayesian analysis (samples listed in Table 4.1). 
Estimated likelihood score = -7531.24. 
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O. (continued) 50% posterior probability consensus ITS phylogeny of a worldwide 
Plantago dataset reconstructed using Bayesian analysis. 
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O. (continued) 50% posterior probability consensus ITS phylogeny of a worldwide 
Plantago dataset reconstructed using Bayesian analysis. 
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O. (continued) 50% posterior probability consensus ITS phylogeny of a worldwide 
Plantago dataset reconstructed using Bayesian analysis. 
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O. (continued) 50% posterior probability consensus ITS phylogeny of a worldwide 
Plantago dataset reconstructed using Bayesian analysis. 

 



 

190 

Appendix III. Data statistics 

 
A.  Data statistics for the three Australasian groups resolved in a worldwide ITS 

phylogeny (Fig. 4.2). Sample details can be found in Table 4.1. 
 

  Clade II Grade B Clade IV 

Base frequencies (all sites) T- 23.1   C- 26.3 
A- 22.1   G- 28.5 

T- 23.0   C- 26.0 
A- 22.3   G- 28.6 

T- 23.2   C- 26.0 
A- 22.4   G- 28.5 

Base frequencies (variable sites) T- 29.4   C- 27.9 
A- 22.9   G- 19.8 

T- 22.4   C- 48.0 
A- 11.0   G- 18.6 

T- 22.3   C- 41.3 
A- 9.3    G- 27.1 

Variable sites and parsimony-informative 
sites (%) 37(3.35%) 31(1.98%) 16(0.61%) 

Modeltest model GTR + I TIMef K81 + I 

Pinvar 0.8224 0 0.9468 

Number of transitions (all sites) 3 3 1 

Number of transversions (all sites) 3 2 2 

Transition/transversion ratio (all sites) 1 1.5 0.5 

p-value of χ2 of base frequencies overall 
(variable sites) 0.7530 (0.5399) 0.7530 (0.0001) 0.7530 (0.0002) 
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 B. Uncorrected pairwise distances of ITS sequences among Australasian species (sample details can be found in Table 4.1). 
 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 
2 0.7 —                     
3 0.8 0. 5 —                    
4 2.9 1.5 2.7 —                   
5 1.3 0. 8 1.8 2.5 —                  
6 1.8 0. 2 1.3 1.8 1.3 —                 
7 1.8 0. 5 1.5 2.3 1.3 0.8 —                
8 0.5 0.3 1.0 2.0 0.5 0.8 0.8 —               
9 3.0 1.7 2.9 1.2 2.7 2.0 2.3 2.2 —              
10 2.9 1.7 2.7 1.7 2.9 2.2 2.7 2.2 1.5 —             
11 3.2 1.9 3.0 0. 7 2.9 2.2 2.7 2.4 1.3 1.8 —            
12 3.0 1.7 2.8 1.5 2.7 2.0 2.5 2.2 1.3 1.8 1.7 —           
13 2.3 1.0 2.2 1.5 2.0 1.3 1.8 1.5 1.3 1.8 1.7 0.8 —          
14 2.9 1.2 2.3 2.7 2.3 1.3 1.8 1.8 2.9 3.0 2.7 2.9 2.2 —         
15 2.2 1.0 2.0 2.3 2.2 1.5 2.0 1.5 2.2 2.3 2.5 1.8 1.2 2.3 —        
16 1.5 1.2 1.0 3.4 2.3 2.0 2.2 1.7 3.6 3.4 3.7 3.5 2.9 2.9 2.7 —       
17 2.3 1.0 2.2 1.5 2.0 1.3 1.8 1.5 1.3 1.8 1.7 1.0 0.3 2.2 1.2 0.029 —      
18 2.5 1.2 2.3 1.7 2.2 1.5 2.0 1.7 1.5 2.0 1.8 1.2 0.5 2.3 1.3 3.0 0.5 —     
19 2.7 1.3 2.5 1.8 2.3 1.7 2.2 1.8 1.7 2.2 2.0 1.3 0.7 2.2 1.5 3.2 0.7 0.8 —    
20 2.5 1.2 2.3 1.7 2.2 1.5 2.0 1.7 1.5 2.0 1.8 1.2 0.5 2.2 1.3 3.0 0.5 0.7 0.5 —   
21 2.5 1.2 2.0 2.2 2.0 1.3 0.8 1.5 2..5 3.2 2.9 2.7 2.0 2.4 2.5 2.7 2.0 2.2 2.3 2.0 —  
22 2.5 1.2 2.3 1.7 2.2 1.5 2.0 1.7 1.5 2.0 1.8 1.2 0.5 2.2 1.3 3.0 0.5 0.7 0.5 0.0 2.0 — 
23 1.0 0.3 0. 5 2.5 2.0 1.2 1.7 1.2 2.7 2.5 2.9 2.7 2.0 2.2 1.8 1.2 2.0 2.2 2.3 2.2 2.2 2.2 
 
1 = P. spathulata subsp. spathulata, 2 = P. spathulata subsp. picta, 3 = P. triantha, 4 = P. triandra subspp, 5 = P. "sylvester", 6 = P. raoulii, 7 = P. lanigera (Eyre 
Mountains), 8 = P. lanigera (Sugarloaf Pass), 9 = P. lanigera, 10 = P. obconica, 11 = P. unibracteata, 12 = P. aucklandica, 13 = P. euryphylla, 14 = P. cladarophylla, 
15 = P. cunninghamii, 16 = P. varia, 17 = P. glacialis, 18 = P. muelleri, 19 = P. alpestris, 20 = P. tasmanica, 21 = P. paradoxa, 22 = P. daltonii, 23 = P. debilis & P. 

hispida. Highlighted boxes indicate relatively high p-distances found in the dataset (≥3.0%). Species with multiple shaded values are P. varia and P. spathulata subsp. 
picta (representatives of each species are used). 
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