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Summary. The transfer of angular momentum between the bar and halo
components of a galaxy is computed using both analytic dynamical friction theory
and ‘semi-restricted’ n-body simulations. The two methods yield results which are
in qualitative agreement and demonstrate that dynamical friction can exert strong
torques on galactic bars. A rotating rigid bar with typical parameters initially
ending at corotation slows down in several bar rotation times in the presence of an
isothermal halo. This rapid angular momentum transfer implies that the
corotation radius must be far beyond the end of the bar unless: (1) angular
momentum is added to the bar (i.e. by the disc) allowing an equilibrium bar
pattern speed to be reached; (2) the galactic halo is small or non-existent; or (3)
the bar is weak.

1 Introduction

Approximately one third of all disc galaxies are barred (Sandage & Tammann 1981). Bars also
appear naturally as the dominant unstable modes in numerical simulations of disc-like stellar
systems (e.g. Miller 1978; Miller & Smith 1979). In light of their ubiquity, it is important to
understand the role of bars in galactic evolution. In this paper, I investigate the long-term angular
momentum transfer between the bar and the halo. Throughout this paper, the term ‘halo’ denotes
any collisionless, approximately spherically distributed mass including the bulge and spheroidal
components and any unseen extended halo. I shall concentrate on the bar-halo interaction
although the bar—disc interaction is briefly discussed in Section 3.4. Mark (1976) describes the
long-term angular momentum transfer from the disc to the halo due to spiral structure.
Much of the previous work on bars in haloes has focused on the stability of disc to forming bars.
This work followed a suggestion by Ostriker & Peebles (1973) that a massive halo can suppress
bar formation. Since the purpose of these investigations was to determine the stability of the disc,
in most cases fixed haloes were used (Hohl 1976; Sellwood 1981; Combes & Sanders 1981). In the
investigations that used live haloes (e.g. Hohl 1978), the integration was terminated as soon as the
bar reached an equilibrium configuration. The sole exception is a paper by Sellwood (1980) who
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followed a disc+live halo model for approximately one rotation period after a strong bar formed.
He found that after a strong bar formed, the bulge began to gain angular momentum from the
disc. This result was an important clue that the interaction between the halo and the bar may have
interesting long-term consequences. The result suggests that the halo may exert a drag on the bar
just as a homogeneous medium exerts a drag on a test mass in the standard picture of dynamical
friction (Chandrasekhar 1943). In fact, there is observational evidence due to Kormendy (1982)
that bulges of barred galaxies rotate more rapidly than those of unbarred galaxies although the
scenario suggested by Kormendy is more complicated than the picture developed here.

In order to obtain a better understanding of how dynamical friction leads to angular
momentum transfer between the bar and the halo, I now present a simple example which
illustrates the basic features of the more detailed models in the following sections. The drag on a
test mass moving through an infinite homogeneous medium may be interpreted as the
gravitational force of the wake excited by the test mass (e.g. Kalnajs 1972). This force is given by
(Chandrasekhar 1943):

dv 4nG*m

dt v?

In Ao(<v) ey

where m is the mass of the test particle, o(<v) is the density of the background stars with speeds
less than v, A=bp,y/bymin Where by, and by, are the maximum and minimum impact
parameters. Usually b.,;,~Gm/v?, the impact parameter for a large deflection, and b,,, is the
scale size of the background. Now, consider a schematic model for a bar consisting of two point
masses, m, at the ends of a rigid rod of length 2d rotating about its midpoint with an angular
velocity or pattern speed, €2,,. The ‘bar’ is placed at the centre of a spherical distribution of stars
which represents the halo component of the galaxy. Ignoring the curvature of the trajectories of
the masses and any interaction between the wakes of the two masses, and treating the halo as a
locally homogeneous medium, the torque on the bar follows from equation (1):

dly ond dv 87rG2m2d1 )
—_— = —_—— e ——— < ,
o md— e nAo(<v) 2)

where the angular momentum J, of the bar is J,=2md?Q,, and v=Q,d. For simplicity, let the
halo be a singular isothermal sphere with velocity dispersion o and density o(r)=0?/(2xGr?).
The velocity distribution of stars in an isothermal sphere is Maxwellian so that
o(<v)=0(d)[®(v/\20)—v/\20®'(v/\20)] where ® is the error function. It is convenient tc
define the ‘corotation parameter,’ S, as the ratio of the velocity at the end of the bar to the circulat
velocity of a star at the same radius. In this case, S=Q,d/+20. Equation (2) then becomes

dt d dt d

dJ, ,\20dS  2Gm’In A 1
2md = 7 [®(S)—SD'(S)]. (3)

Defining T to be the bar’s initial rotation time for S=1 and letting f be the ratio of the mass of the
bar 2m to the mass of the halo inside d, the time it takes for the angular velocity to decrease by ¢
factor of two, the half-life, is given by:

T, 1 fl N A 0.404

To aflnA )i [®(S)-S®'(S)] flnA @

The value of In A is uncertain but it is generally of order unity or larger. Barred galaxies typically
have comparable luminosities in the bar and bulge components inside the bar’s major axis
(Kormendy 1983, private communication). Assuming the same mass-to-light ratio for both
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components gives f~1. This model therefore suggests that dynamical friction can slow a bar in a
rotation time. However, the model is not realistic enough to be convincing by itself. In particular:
(1) bars do not look like pairs of point masses and the standard dynamical friction theory can not
be used to derive the torque from an extended bar model; (2) equation (1) results from the force
on a test mass from an infinite homogeneous medium where the stars move on straight lines, while
a real halo is spherical and inhomogeneous, and composed of stars moving on planar orbits. In
Section 3, I use the analytic theory of dynamical friction for spherical systems (Tremaine &
Weinberg 1984, hereafter Paper I) to compute the half-life using a bar model with the potential
U(r)Y>, (6, ¢). It will turn out that the bar half-life, T',, is of order Ty, just as in the simple model
presented above. However, this calculation still contains the following approximations: (1) the
bar is assumed to be weak compared to the halo which is not the case in observed galaxies; and (2)
the bar model only includes the Y, , component. Thus, in Section 4, a semi-restricted n-body
simulation (e.g. Lin & Tremaine 1983) is performed using an ellipsoidal bar model to check the
dynamical friction theory. I conclude with Section 5.

In the next section, Section 2, the basic assumptions of this investigation are presented and
discussed.

2 Basic assumptions
There are three basic assumptions that will be employed throughout this paper:

(1) The unperturbed halo component will be assumed to be a singular isothermal sphere. This
isothermal sphere has the potential

U(r)=20°Inr/a, (5)

where g, is an arbitrary scale length that will later be associated with the semi-major axis of the bar
and o is the velocity dispersion. The phase-space distribution function for the halo is f=f,
exp (— E/o?) where E is the energy of a given orbit. I will choose f; such that the mass inside the
radius a, is unity:

Y 20%a, ) 6
==L (

Using equation (6), fy is easily evaluated and the distribution function becomes:

f=4—\/—meXP(—E/02) (7)
Unlike observed spheroidal components in some galaxies, the singular isothermal sphere does
not rotate and does not have an intrinsic scale length. However, the simple structure of the
isothermal sphere greatly simplifies the analytic treatment of Section 3 without, I believe,
significantly limiting the results of the investigation.

(2) The bar is assumed to rotate as a rigid body about the z-axis so that the torque 7, and the
angular acceleration are related by

'L'Z=I.Qb, (8)

where I is the moment of inertia of the bar. More generally, we can write 7,=1.4£, where the
effective moment of inertia I.; changes as the bar evolves and may even be negative (e.g.
Weinberg & Tremaine 1983). Since, in this paper, I am primarily interested in the magnitude of
the angular momentum transfer rather than its effect on the structure of the bar, I take I ;=1 for
simplicity.
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(3) As discussed in Section 1, the torque on the bar results from the interaction between the bar
and the wake it excites in the halo. A fully self-consistent treatment would have to include the
self-gravity of the wake. White (1983) found that self-consistent simulations of galaxy mergers
yielded orbital decay Tates that differed only by a factor of two from the rates predicted by
dynamical friction theory. Thus, I do not expect that the inclusion of self-gravity would
qualitatively change the results obtained here although it would significantly complicate the
analysis. In all of the calculations that follow, I will ignore the effects of the self-gravity of the
wake.

3 Analytic treatment of bar slow-down

The object of this section is to use perturbation theory to estimate the torque exerted by a halo on
a rotating bar. Instead of calculating the wake directly by solving the Poisson and Vlasov
equations, itis easier to compute the torque on a single star and then sum over all the stars. Let the
perturbation parameter, ¢, be the ratio of the mass of the bar to the mass of the unperturbed
stellar sphere inside the bar radius. Thus the bar potential is O(g) with respect to the unperturbed
potential. We found in Paper I that the dominant angular momentum transfer occurs at
resonances or commensurabilities between the radial and azimuthal frequencies of the stars and
the pattern speed of the bar. In the limit that the bar pattern speed changes rapidly or the bar is
weak, the perturbation to the stellar orbit is small and the net torque on the bar is O(g?). In this
case the torque is given by a generalization of a formula derived by Lynden-Bell & Kalnajs
(1972). A brief derivation of the Lynden-Bell & Kalnajs (hereafter LBK) formula will be
presented in Section 3.1 (see Paper I for additional details). If the bar pattern speed evolves
slowly or the bar is strong, the non-linear character of the resonance may dominate. I call this
regime the ‘slow limit’. Torques in the slow limit are O(¢*?). I will discuss the possibility and
consequencies of angular momentum transfer in this regime in Section 3.2. In Section 3.3 the
torque formulae are evaluated numerically and the slow-down rates are computed for a family of
models. Since the bar is actually imbedded in a disc which up to now has been ignored, one would
also like to include the effects of disc torques on the bar. Thus in Section 3.4 I add a cold disc and
discuss its evolutionary effect on the bar—halo system.

3.1 THE LYNDEN-BELL & KALNAJS FORMULA

First, consider the motion of a particle of unit mass in the unperturbed galaxy potential U(r). The
Hamiltonian is

1 B
Hy=— (p%+—2 s )+U(r), ©)

r rosin” 6

where (p2, pa, p3)=(7, r* 8, r*sin® ¢) are the momenta conjugate to the spherical coordinates (g;,
q2, 43)=(r, 6, ¢). Since ¢ is ignorable in equation (9), p; is conserved and is equal to the
z-component of angular momentum J,.

The total angular momentum J and energy E are also conserved:

J=(p}+p3/sin®6)2, (10)
2

E . 2+ d +U(r) 11
=—r+—: r).
2 2r? (1)

The energy equation (11) has real solutions for 7 only when r,<r<r,, where r, and r,, the periapse
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and apoapse, satisfy E=J?/2r*+U(r). The radial period, ¢, (time from periapse to periapse), and
radial frequency Q, are given by
2 a dr

"o ) pE—v e (12

In one radial period the star advances by an angle in the plane of its orbit Ay, where Ay =Q,t, and

Qz J Ta dr (13)
Q  x J), PRAE-U)-JYr]"
The radial action is
1 L 27,2912
L=— @ drp,=—| dr[2(E-U)-J*/r]". (14)
27 JT p

Following the method developed in Paper I, I use the canonical variables (I, I, I3)=(1I;, ], J,).
The conjugate coordinates are the angles (w;, w,, ws3). The angle w; is given by

W=, f ar| . (15)
o R(E-U)-FIPT™.

The integration contour C; goes from periapse to the current position. The integrals are line
integrals which increase monotonically along the orbit. It follows from equation (12) that w, is
zero at periapse and increases by 27 in one radial period. The second angle variable is

W2=w+f |dr|[2(E=U)=J? /)]~ 2(Q,-T/r), (16)

G

where

w=Jf |dO|[J*—J?/sin* 6]~ 12, (17)
G

The integration contour C, starts at an ascending node (thatis =x/2, é<0). We have shown that
1 is the angle from the ascending node to (7, 8, ¢), measured in the orbit plane along the direction
of orbital motion. The third angle variable w; is the azimuth of the ascending node.

Now, consider a bar with a pattern speed Q,. I assume ,>0 with no loss of generality. The bar
potential may then be expanded in spherical harmonics:

[ 1
Uo(r, =D, > Un(r) Ym0, Pror), (18)

=2 m=—1

where ¢, =¢—Qyt. Since the bar is assumed to have a rigid figure, the U, are independent of
time. The /=0 term in equation (18) is omitted since it does not contribute to the torque and may
be absorbed in the unperturbed galactic potential U(r). The /=1 terms vanish by symmetry since
the centre of mass of the bar lies at r=0.

Since the motion of an unperturbed star is periodic in the canonical coordinates, the bar
potential may be expanded in a Fourier series

o

Ub=2 2 lpll L (Ila Iz, 13) COS(llwl+lzlz+l3W3—l3th), (19)

l3=011,12=—°°
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where
0 N

‘lezzlz(ll, L, )= 2( ) Vllzls(ﬁ) Wll213(11’ b), (20)
= \ 1+d10

Vi, (B)=r},1,(B) Y (7/2,0)i" 7", (21)

1 T

Wi (I, 12)=7j dwy cos[lywy —L(y—w) Uy (r), (22)

0

and /5 is equivalent to the index m of equations (18). In the above expressions, I have employed
the summation convention and written [,w,=lw;+Lw,+l3ws. Since Uy(r, t) is even in ¢, We
have been able to combine the terms with a given /5 with those for —/; (see Paper I for details).
Thus /5 goes from 0 to o instead of — to « in equation (19). The angle B is the inclination of the
orbital plane to the equatorial plane. I have defined V,,,=0 for | n|>l or |m|>1. The 7.,,(B) are
rotation matrices (e.g. Edmonds 1960) which satisfy the orthogonality condition

T
[ a8 5n  ruprrntr= —=b0 @3)
0 21+1

To compute the torque on a single star, I assume £<1 and solve Hamilton’s equations by
successive iteration. On the first iteration, the torque on a particle is computed by integrating
around the unperturbed trajectory. On the second iteration, the torque is computed by
integrating around the first-order perturbed trajectory. To avoid transients caused by suddenly
‘turning on’ the bar, let w=5Q,+in, where the small positive parameter 7 implies U,~exp (1¢).
This assumption implies that the perturbation was turned on adiabatically in the distant past.
Upon averaging over initial phase (with fixed /;), the first-order contribution vanishes, and the
second-order contribution is

. 1 3 |2
(Aoly)=—-1 exp (2) RAA

: 24
A | 1,Qp—15Qp—in|? @9

In the equation above, I have denoted the average of a quantity X over the initial phases of al
stars with given momenta J; by single brackets (X). I will also want to consider the integral of ¢
quantity X over all stars in a galaxy. I denote this integral by double brackets:

{X)= f dxdvf(r,v)X, (25

where f is the phase-space density.

In equation (24) the torque diverges at the resonances, [,Q,—/5Q,—0. We have shown ir
Paper I, however, that if the resonances passes through the orbit rapidly, we can take n—0 anc
write the divergent factor as a delta function,

1
8(x)= —limn|x—in|~2 (26
T n—0

The integration over the momenta then yields the total torque. For a spherical galaxy, the
phase-space distribution function is given by f=f(1;, I,). The expression for the total torque on the
bar is then

© ® 5L
7 == (A I)y=4n* f dl, f dl f dl;
0 0 -1

> of :
x 2 2 l3lka_lk|‘I’lllzg}25(1191”292—1391))- @7

13=0 l],lz=—°°
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I refer to equation (27) as the LBK torque formula. To this order of approximation, all the
contribution to the torque occurs for stars at resonance and the torque is second order in the
perturbation W.

I will apply the LBK torque formula to the following model:

(1) The unperturbed system is the singular isothermal stellar sphere discussed in Section 2.

(2) For a bar, one expects the quadrupole terms (/=2) to be dominant and thus all higher (/I>2)
terms to the sum in equation (18) are ignored. Assuming Uy to be symmetric about z=0, only
terms with even [+m exist. Thus, m=0, +2. Furthermore, the m=0 term may be ignored since
it has azimuthal symmetry and thus exerts no torque. The only contributing terms are then /=2,
m=12. In addition, since Uy, is real and even in ¢, it follows that U, ,=U, _, and all of the U,,,,
are real.

(3) The radial potential, U, ,(r), has the form

b1r2

U, (1) 1W g

(28)
where b; and b, are constants. Thus the potential satisfies Laplace’s equation for radii well
outside the bar and behaves like the potential of a system with constant density as ¥—0. In order to
compute the rate of change in pattern speed of the bar due to the torque (see Section 2), the bar
must be assigned a mass by fitting equation (28) to a mass model. I discuss one such fit for the
homogeneous ellipsoid in Section 3.3.

I now use the properties of the isothermal stellar sphere, equations (5) and (6), to evaluate the
orbital parameters given in equations (12)-(17). Since these expressions are functions of £ and J
and the distribution function is a function of energy only, it is convenient to change interaction
variables in equation (27) from (1, I, I3) to (E, J, ). In the new variables equation (27) may be
written

dE dJ* d d
PR =270, f f f ———Ql—(c—gsﬂzl%zé|w,11213126(1595—139b). (29)

For a given energy, the maximum angular momentum is that of a circular orbit and is given by
Jmax(E)=1\20a, exp ([Va(E/o*~1)]. Now define x=J/Jn,, and the reduced radius F=r/a,
exp(E/20%). The reduced turning points 7, and 7, are then given by the roots of the
transcendental equation —2In7=x*/e/* and are shown in Fig. 1. For circular orbits (x=1),
Fp=F,=exp (—Y2) and for radial orbits (x=0), 7,=0 and 7,=1. The frequencies given by equations
(12) and (13) may now be conveniently written as functions of E and x:

Q,(E, x)=exp (— E/20%) vi(x), (30)
Q,(E, x)=exp(—E/20%) v5(x), (31)
where

a di -1
vil)= {Zn\/2_02 fcl [-2In f—%z/er‘z]l/z} ’ G2)
va0)= vi(%)x dr (33)

2w exp (V2) Jo F=21n F—x?/ei*]? ’
The reduced orbital frequencies, v; and v,, are shown in Fig. 2 (¢;=0=1in this and all subsequent

figures). From epicyclic theory, vi(x—1)=2exp (Y2), va(x—1)=\2exp () and v,/vi(x—1)=
1/\2. The integral in equation (33) may also be evaluated for x—0 yielding v,/v,(*—0)=1/2.
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Figure 1. The reduced turning points, 7, and 7,, as a function of .
In order to compute the radial potential transform (equation 22) one also needs to know botl

wi and the quantity w,—¢ given by equations (15) and (16) as functions of r (or equivalently 7) fo
a given E and x. These functions are

) vi(®)ay (7 dr o4
W\F)= ’
RN A S
and
V(%) % f" dr
wy)= Wi— ‘ . 3
fon) vi(%) ' exp (V2) J5P[—2 In F—x?/ie]'? (
40— 77—
35+~ Vl ]
30+ _
] _
-
25 —
2.0
1= S Y SO R B
00 o2 0.4 0.6 0.8 1.0

Figure 2. The reduced orbital frequencies, v; and v,, in units of o/a, as a function of x.
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The resonance condition, [;Q;+1,2,—13Q,=0, yields a relation between E and x for a given
resonance (4, b, 15),

E=202In (11 vi(%) +Lva(x) ) .

36
Lo (36)

Since I consider only the /=2, m=+2 components, we have [3=2, and the possible resonances
are severely restricted. There are resonances only for =2, ,=-2, 0, 2 (see equations 20-22).
Using equation (36), the allowed values of /; for each of the three [, are: (1) L=2, ;=-1, 0,
e, 052 L=0,5=1,2,...,0;and 3) L=-2,1;=2,3,...,». InFig. 3, some of the allowed
resonances (I;, l,, l;) are plotted on the E—» plane. In the limit x»—0 (36) takes the form
E~In(l;+1,/2)+constant. Thus, three curves corresponding to g=I;+1,/2 where ge{1,2,3, ...}
meet at a point at x=0. The resonance (—1, 2, 2) has g=0 and thus the energy for a resonant star
becomes infinitely negative as »—0.

The LBK formula (29) may now be greatly simplified. First I use the expression for the bar
potential in the canonical variables (19)—(22) together with the orthogonality condition for the
rotation matrices (23) to perform the f integration. The integration over energy is also easy.
Finally, one is left with the following expression for the torque on the rotating bar by the halo
stars:

3.2 2 1 hd
ek 3T @fo f xS S h+bva)/m)]
0 L=

e, =2,0,2 h=—o

2 .
{[thrzz(Ea %) On+2t _3‘ [W3o2(E, %)) 5120} (37

where E is given by equation (36) for the terms in curly brackets. Since 722X¥<0, the bar always

0 o |
I3 |4
L 1l of 2] |]134] |3 |4
0.8 -1
0.6 - n
X L
04 5
0.2 1
| 2 3“)4 5
0.0 | ! 1
-6 0 2 4

Figure 3. Relationship of E to x for particular resonances (I, b, i3=2) (equation 36). The energy per unit mass, E, is
given in units of o%. The radii of the circular orbits for resonances are given along the top of the figure and /; for each
curve is marked. The value of g=/;+//2 for the curves is noted along the x=0 axis.
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Figure 4. Radial potential transform, Wél 1,2, using the perturbed potential equation (28) with a;=b;=b,=1.

loses angular momentum to the halo. Although the sum over /; is infinite, only nearly radial orbits
contribute to the radial potential transform W for large ;. In Fig. 4, W(x) is shown for ,=-2,0, 2
and /;<3. Note that the amplitude drops and that the extrema occur for smaller values of » as /;
increases; for increasing radial orbits there is more power in the higher harmonics (cf. equation
22). For a similar reason, nearly circular orbits near the (1, [, L)=(—1, 2, 2) resonance will
strongly contribute to the total torque. Using Figs 3 and 4 together one may determine the
phase—space location of the dominant angular momentum transfer.

I will evaluate equation (37) numerically in Section 3.3. First, however, I will return to the
problem of the self-consistency of the LBK formulation and the effects of torques in the limit of
slow changes in Q,, where it does not apply.

3.2 TORQUES IN THE SLOW LIMIT

In Paper I we showed that the validity of the LBK formula (27) depends on a parameter we called
the ‘speed’:
LQy

lp[] Li lk apop/GIk
If s>1 the LBK formula is recovered and if s<1 slow limit effects dominate. For strong bars, the
slow-limit contribution to the total torque will be shown to be negligible. Thus, the reader who is
interested mainly in results may skip to Section 3.3. In the remainder of the subsection, I will
discuss the expression for the torque on the bar in the slow limit and discuss the possibility that
stars may be captured into resonance with the bar.

In the slow limit s<1, we found (Paper I the following expression for the torque to lowest order
L 1/2.,
ing”’=

=) L 12
‘L'EIL: (2”)3 f dl f dl, j d13f(1j)
0 0 -1

. sgn(lal,Q,/d1)
X E, E, LQy | W, |1 O(5)0(1,R2—13Q2y), (39)
h=0 h,h=- e ‘lkalpgp/alk |1/2

s= . (38)
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where s is given by equation (38) and Q(s) is a monotonic decreasing function with Q(s=0)=8/x
and Q(s=1)=0. The function Q(s) is given by
2 (=
Q(s)= — | dxsinx[cosx;—cosx+s(x;—x)]"%,  x;=sin”ls, = 0<x;<n/2, (40)
7s ),

and x, is the first root of the radicand which exceeds x;. In contrast to dynamical friction, the
momentum changes in the slow limit are reversible: that s, the sign of the torque depends on the
sign of Q. Thus, for example, if a bar is artificially slowed and then speeded up, so that a
resonance passes twice through an ensemble of stars, then the net angular momentum transfer
will be zero to O(e'/?). Thus, these interactions cannot be considered to be dynamical friction; a
more appropriate name might be ‘dynamical feedback.” Using the definitions in Section 3.1,
equation (39) may be rewritten in the variables E and x:

1Q (* Vdnn
o t=16m0"fya? ——; f dp sin B
e Q4 Jo 0 vi(x)
= sgn (101,Q,/31)
x [L1v1 () +Lv2(0)] [ W), 1,0, (). (41)
Iz=~22,0,2 llzz—w o T ol Qp/a L M

Since s depends on the inclination 8 through the potential ¥, one cannot integrate analytically
over f as in the case of the LBK formula.

I will now make the approximation that for s<1 the torque is given by equation (41) and for s>1
the torque is given by the LBK formula (27). I have ignored the details of the transition region
s~1 in making this assumption, but numerical calculations indicate that the LBK formula is only
significantly in error for 1<s=<2. Since there is no reason to expect a large fraction of the
resonances to have s~1, the details around s~1 will probably not be qualitatively significant. The
total torque is the sum of the contributions from the LBK and the slow regimes

TRl = JQ = LBK 4 N (42)
Since 72" is proportional to Q,, we define (dJ/dQp)N-=1"L/Q, where J,=IQ, is the angular

momentum of the bar. Employing equation (42) gives

.E!;BK

I=(dJy/dQp)™"
Note that if all angular momentum transfer were to occur in the slow limit, 7-BK=( leading to
Q,=0. This is a consequence of the reversibility of dynamical feedback. In practice, equation (43)
must be solved by iteration since (dJ,/d2,)"" depends on Qy, through s. This will be done in
Section 3.3.

Another possible outcome of a star passing through resonance in the non-linear regime is
capture into libration about the rotating bar. Capture must be studied by analysis of the equations
of motion for a single star in the bar—halo system since the averaging procedure used in deriving
equation (39) destroys the phase-space topology that leads to capture (Lichtenberg & Lieberman
1983, p. 65). We performed such an analysis in Paper I and showed that in the LBK regime (s>1)
the capture probability is zero, and for very slow transitions (s<<1) the capture probability is of
order 2. Motivated by observations of barred galaxies, in this paper I assume the bar is strong
and ends at corotation for which nearly all resonances are in the fast limit as I will demonstrate in
the following subsection.! Since captures are not important for the models presented, I will not
discuss their consequencies further in this paper.

Qy (43)

1f, however, the bar is weak or slowly rotating, a non-negligible fraction of stars may be in the slow limit. As
discussed in Paper I, the bar may then acquire a cloud of captured stars of order £", which may be much larger than
the original bar mass which is of order €. The effect of captured stars is to increase the effective moment of inertia of
the bar since any change in pattern speed requires angular momentum transfer to the captured stars (see equation 8
and following discussion).
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3.3 NUMERICAL RESULTS

I will now evaluate equations (37) and (43) numerically and derive the ‘slow-down time’ for a bar.
I define the slow-down time to be

Tyow= _Jb/Jb =- Qb/gb, (44)

where Q, is initial pattern speed and the second equality follows from the assumption that the bar
rotates as a solid body (see Section 2). The quantity T, is the instantaneous e-folding time for
pattern-speed decay. Note that this time differs from the half-life, T},,, defined in Section 1
although it is of the same order. The number of initial rotation times for a given slow-down is then
given by

N= Tslow/ To=Tgow Qb/zn (45)

In order to evaluate equation (45), a moment of inertia for the bar model must be chosen since
we have discarded the m=0 terms which contribute to the moment of inertia. To choose the mass
model, I will fit the perturbed bar potential equation (28) to the exact Y, ., component of the
potential of a homogeneous ellipsoid with principal axes a;>a,>a3. The parameters b, and b, are
chosen to match the exact component as r~>0 and r—:

27 ,
by=nGp \/E (A1—Ay), (46

a5—aj

=1, @7
A—A;

b§= _5 a1a,03

where

=]

A=a10,05 J du/(@?+u) (a?+u)(a3+u)(ad+u)
0
(Chandrasekhar 1969). The mass of the bar is defined to be a fixed fraction, uy,, of the mass of the

stellar component inside the bar radius (cf. equation 6)

20%a .

M,= G o (48
and therefore the moment of inertia of the bar rotation about the a; axis is

20%a, ‘

I= e (@i +a3). (49

Table 1. LBK formula.

b 7

0.25 7.64x107°
0.50 1.66x1072
0.75 3.04x1071
1.00 1.53

1.25 3.80

1.50 7.78

1.75 16.9

2.00 37.7

2.50 156

3.00 460
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As in Section 1 the corotation parameter may be defined:
S=Qua;/\20. (50)

Thus, $>1 (S<1) if the end of the bar is outside (inside) corotation. If a; and o are fixed then Qy is
determined by S.

Now, to evaluate the LBK formula for the model potential (28), note that up to a multiplicative
factor the expression (37) depends only the parameter b,S/a;. Thus, it is convenient to define the
dimensionless torque

t=—1lBK (b3=228by a1, ay=0=Qu=fo=1),  Up()=r?/[1+(r/b3)’]. (51)

In evaluating equation (51), I use Uy(r) instead of Uy(r) in the LBK formula (37). Equation (37)
may then be written
262

ao__ Vi -
1285%Q,
Thus, one only needs to determine a one-parameter family #(b3) to determine 7-BX for this
model. The function 7(b3) has been tabulated as a function of b3 in Table 1. Note that the torque
drops rapidly for S<1 since the strongest resonances lie well outside the bar.

Using equations (45), (46), (50), and (52) one obtains an expression for the number of rotation
times for slow down

22712 (14+a?)?B? §
3 (A—A)my T

(53)

where a=a,/a, and f=as/a,. I will call the model with a=0.2, =0.1, and u,=1 the ‘standard
model’. These parameters were all suggested by Kormendy (1983, private communication) as
typical parameters of observed bars. The standard bar with S=1 slows down in N=0.965 initial
bar rotation times. If the standard bar has S=1.5 it slows in 2.7 initial rotation times; for S=1/2 it

2.5 T T T T T T T T T T T

0.5

0.0 1 | [ | L 1 [ L | 1
0 4 8 12 16 20 24

Figure 5. Pattern speed as a function of time for the standard model. The pattern speed is given in units of 0/a; and
the time is in units of a;/o.
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slows in 0.39 initia] rotation times. A better estimate may be obtained by integrating equation
(52) in time assuming that the bar is rigid. In Fig. 5, the resulting pattern speed is plotted as a
function of time for S=1. The maximum rate of slow down occurs at 0.3 rotation times where
$=0.7. For the standard model T} ,=1.6 Tj. I conclude that the bar slows significantly in several
rotation times. Since these results were derived using perturbation theory, the extrapolation to
Up=11s not strictly justified; however the n-body simulations described in Section 4 substantiate
these results.

AsImentioned in Section 2, the isothermal sphere does not rotate. The possibility remains that
a rotating halo could significantly change the rate of angular momentum transfer to the bar. To
investigate this possibility, the isothermal sphere may be simply modified to produce a family of
rotating halo models. Since at any point in the isothermal sphere the distribution function
(equation 7) only depends on the magnitude of the velocity, any star may be reversed in its orbit
without changing the density of the halo. In terms of the variables of equation (29), this
transformation corresponds to (E, J, B)—(E, J, 1—p). By reversing a fraction of the retrograde
orbits, say those with 7/2(2—x)<f<n where 0<x<1, one may construct a family of rotating
haloes and study their effect on the bar slow-down rate. Since the density of these rotating models
is the same as that of the isothermal sphere, the LBK torque formula (equation 27) is still valid
and may be used with an appropriate modified distribution function to compute the torque on the
bar as a function of x. Performing the computation, I find that the rate at which the bar loses
angular momentum increases monotonically as x varies from 0 to 1. In the extreme case of no
retrograde orbits at all, x=1, the torque is a factor of 1.46 larger than that for the standard model.
The reason for this increase is that prograde orbits have a stronger effect on the bar than
retrograde orbits. More specifically, one can show from equation (21) that prograde (retrograde)
orbits contribute predominantly to the ,=2 (l,=—2) resonances and both prograde and
retrograde orbits contribute equally to the /,=0 resonances. Since the /,=2 resonances are
generally stronger than the /,=—2 resonances (see Fig. 4) for a given /,, increasing the number of
prograde orbits at the expense of retrograde orbits increases the torque on the bar.* In summary,
the dynamical slow down of a bar in a rotating halo is not significantly different from the slow
down for the standard model presented above.

I now will discuss the effect of slow-limit torques on the bar slow-down time. Since the
integrand of (dJ,/dQp)N* depends on u, the right-hand side of equation (41) can not be evaluated
as a simple one-parameter family. Instead, I will calculate N by using equation (43) for the
parameters of the standard model with S=1 but varying u;, (see Table 2). For the true standard
model (u,=1) one finds that the slow limit is unimportant and the value for N is the same as

Table 2. Non-linear slow down.

7S N (dJy/dQu)N"/1
0.01 1492 —~14.5

0.02 200 -3.16

0.03 49.4 —5.36x107!
0.05 19.8 —2.67x1072
0.10 9.65 1.02x1072
0.20 4.81 7.41x107*
0.40 2.41 2.67x1073
0.60 1.61 8.94 x1078
0.80 1.21 2.00x1078
1.00 0.965 3.84x107°

*There is an additional contribution due to the discontinuity of the modified distribution in /5 which tends to
decrease the torque but it is small compared with the effect just described.
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quoted above. Only eccentric orbits (x<1) in the strongest resonance (I1, L, 3)=—(—1,2,2) (cf.
Fig. 4) interact with the bar in the slow limit. These orbits transfer angular momentum from the
bar to the halo. As u,, decreases, more and more orbits contribute to the slow-limit torque and N
falls below the LBK value but the differences are small for u,=0.1. For u,<0.05, weaker
resonances also contribute to the slow limit. The weaker resonances exert torques in the opposite
sense: angular momentum is transferred from the stars to the bar. This results in (dJ,/dQ,)N"/1
becoming negative and N becoming larger than the LBK values. For u,=0.05N is 3 per cent
larger than the LBK value, and for u,=0.03 it is 54 per cent larger. Alternatively, we may
consider the effect of slow-limit torques for the standard model (u,=1) and variable S. If §<1, we
have seen that Q, from the LBK formula will be small and the slow limit will be important (cf.
equation 38). Therefore, decreasing § will lead to similar behaviour as decreasing uy,. Thus,
torques in the slow limit may be important for the evolution of both weak or slowly rotating bars.

As was noted in Section 3.2, the theory does not include capture into resonance which would
stabilize the slow down by increasing the effective moment of inertia.

3.4 DISC TORQUES

So far, I have only considered the angular momentum transfer between the bar and the halo, but
the rotating bar will also interact with the disc. If the disc accepts angular momentum from the
bar, the presence of the disc will tend to reinforce angular momentum transfer from the bar to the
halo demonstrated in the previous subsection. However, if the disc deposits angular momentum
in the bar one might expect a steady state to be reached in which the torque of the disc on the bar
equals the torque of the bar on the halo. In this case, the bar acts as a catalyst, enabling the disc to
shed its angular momentum and achieve a lower energy state.

Just as the bar induces a wake in the halo which exerts a torque on the bar, the bar may excite
density waves in the disc which may transfer angular momentum to the bar. Goldreich &
Tremaine (1979) investigated the excitation of density waves at the Lindblad and corotation
resonances in a gas disc by an external potential and determined the angular momentum transfer
rate. They showed that the results also apply to a stellar disc and in the epicyclic limit (x—1)
reduce to the LBK formula in two dimensions (which is the form originally derived by
Lynden-Bell & Kalnajs 1972). The expression can be used to determine the torques between the
bar and the disc. Let the external perturbation be a rotating bar and assume the background discis
such that the excitation of density waves cause a positive torque on the bar, 72"5€. Then, equating
the bar—halo torque to the bar—disc torque, T25“=7LBX gives an implicit relationship for the
equilibrium pattern speed and disc parameters. To derive this relationship, I choose an
unperturbed disc with the density Z(r)=Zyry/r which has a logarithmic potential. I parametrize
the ‘strength’ of the disc by defining the quantity y to be the ratio of the radial force at r due to the
disc component to the radial force due to the isothermal halo. Thus, y=nGZyry/0? which is,
coincidentaily, also equal to the ratio of the mass of the disc to the mass of the halo inside radius r.

Table 3. Bar-halo—
disc steady state.

S Y
0.25 4.0
0.50 0.52
0.75 0.029
1.00 0.023
1.25 0.038
1.50 0.091

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z 1snbny Lz uo1senb Aq 2691 LOL/LSY/S/E L Z/e1oe/SeIuW/WOoD dno-ojwepeoe//:sdiy wolj peapeojumod


http://adsabs.harvard.edu/abs/1985MNRAS.213..451W

FTOBSWNRAS, 7137 “451W

466 M. D. Weinberg

One finds that angular momentum is deposited in the bar by the inner Lindblad resonance and
accepted by the disc at the outer Lindblad resonance while the corotation resonance does not
contribute at all. The inner Lindblad resonance dominates the contribution over all parameters of
interest. The steady-state values of the disc ratio y as a function of corotation parameter for the
standard bar model are shown in Table 3.

Since we expect y~1, the end of the bar is inside corotation, S=<0.5, for steady-state. This
result, however, is likely to be strongly dependent on the disc model. The most important
conclusion to be drawn from this model is the possibility that the bar—halo-disc interaction may
yield a steady pattern speed. Note that the steady-state scenario depends on the existence of an
inner Lindblad resonance between the bar and the disc; if there is no inner Lindblad resonance,
the disc would accept angular momentum at the outer Lindblad resonance and no steady state
would be possible. Sellwood (1981) found that in his models, bars tend to avoid the inner
Lindblad resonance. Sanders & Tubbs (1980), on the other hand, conclude that in order to
produce realistic gas dynamics there must be a least one inner Lindblad resonance within the bar.
It is not clear whether or not galactic bars have inner Lindblad resonances in general.

4 Numerical simulation

N-body simulations can be used to test a number of the approximations used in the previous
sections. The most important are: (1) the restriction of the bar potential used in Section 3 to only
the Y5, component; and (2) the use of perturbation theory which is only strictly valid for u,<1
while observed bars have u,~1.

In the same spirit as the analytic dynamical friction calculation, I again assume the stars only
respond to the force derived from the unperturbed potential and the bar potential and ignore
star—star interactions. Lin & Tremaine (1983) have called this approach the ‘semi-restricted’
n-body technique. There are two principal advantages of this approach over a full n-body
simulation: (1) the computational complexity scales only as n rather than n? which is a great
savings in CPU time for large n; and (2) the neglect of the star—star interactions is consistent with
the perturbation theory in Section 3 which is what we are trying to check.

4.1 METHOD

The simulation requires the simultaneous solution of 6n+2 first-order ODE’s where 7 is the
number of stars. The two additional equations describe the evolution of the rigid bar. The bar is
assumed to rotate about a fixed (z) axis.

Motivated by the perturbation theory, I choose the initial distribution of stars to cover phase
space around the dominant lowest-order resonances assuming that the Y, ., component of the
potential is dominant. Since the terms with />2 will also contribute to the torque and the widths of
the resonances in the E-x plane will be broadened by the changing pattern speed, the precise
identification of individual resonance is not strictly valid but is only heuristically useful. The
locations of the /=2, m==2 resonances can be roughly estimated from Fig. 3. For all resonances
indices except (/;, ,)=(—1, 2) a given resonance has only a slight variation of E as a function of x.
Thus, I distribute the stars using a Monte-Carlo procedure according to equation (6) but only with
E i.<E<E,,.. Since there is a constraint on the number of stars that can be included in a
simulation, the range [ E i, Emax] must be chosen carefully, subject to two constraints: (1) it must
cover the main resonances over the course of the evolution; and (2) it must be chosen small
enough such that there are always enough stars in the resonances so that the first-order terms
average to zero.
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The quantity u, is defined to be the ratio of the mass of a star to the mass of the distribution
inside the bar radius. The 6n+2 equations of motion then become:

dl',' (54)
— =y,
dt
dv, 20? YUEs D 55)
== r— r,t
dt 2 ®
d¢
—=Q 56
o (56)
aQ 5 " d'U,' dU,‘

ST o
dt (a2 +ad)uy, = dt dt

After a sufficiently long time, the bar may achieve equipartition with the halo stars at which
point further net angular momentum transfer will cease. This equipartition is a numerical artifact
resulting from small » approximation and will limit the validity of the simulations for large ¢; of
course, for a real galaxy Qy,.q would be negligible. The condition for equipartition may be
written:

1 2 1 2
_2— Ibgb;eq: _Z—'mso > (58)

where my; is the mass of a halo star. For the ellipsoidal bar with » halo stars and a given energy
range, the above condition gives an equipartition value for the pattern speed:

B
o(1+a?)

Note that too small a value of u, may result in equipartition of energy between the individual stars
and the bar at an unacceptably large pattern speed. For this reason and since I am primarily
interested in checking the validity of the slow down times obtained in Section 3 I choose u,=1 for
the simulations below.

In all the simulations I choose a;=0=1 so that Qb=\/§S initially and thus an initial rotation
time, Ty, is \/-Zn/S time units.

QF, eq=5 (59)

4.2 RESULTS

I again use the parameters of the standard model (@=0.2, $=0.1, u,=1.0) given in Section 3.3 and
take n=1000 to define a standard simulation using the homogeneous ellipsoidal bar. Notice that
in the standard simulation, the ellipsoidal bar exerts a net radial force on a star in addition to that
from the isothermal halo and therefore corotation is beyond the end of the bar for S=1. To
account for this, I define §= \/5 in the standard simulation so that a star in a circular orbit at r=q;
would be in corotation if a=f=u,=1. After some experimentation, I found that the slow down in
the standard simulation was smooth for the energy range [—6, 2].

In Fig. 6, I show three runs of the standard simulation (S=12) to give an indication of the
statistical error in the model. In Fig. 7, I show three runs with $§=1 to investigate the sensitivity of
the evolution to the corotation parameter. In both cases T ,=3.5 To demonstrating that standard
simulation is not sensitive to the exact position of corotation. However, the half-life is a factor of
2.2 greater that the analytic estimate in Section 3. A possible source of this discrepancy is the
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additional radial force from the ellipsoidal bar. Since the velocities of the background stars are
initially in an isothermal distribution, the addition of the massive bar systematically decreases x
for most orbits and thus decreases the strength of the primary resonances which have their main
contribution from nearly circular orbits (see Fig. 4 and equation 37). In Section 3, I was able to
avoid this complication by ignoring the axisymmetric terms in equation (18). To investigate this
problem, I ran one simulation with S=\2 and one with S=1 but with the initial velocities of the
stars increased by a factor of \/Q The simulations give T} ,,=1.8 Ty, 1.1 T}, for S= \/5, 1. This is in
closer agreement with the perturbation theory result: T,,=1.6T;. Thus, it seems that the
distortion of the unperturbed potential by the bar does slow the evolution.

For the standard model the equipartition pattern speed given by equation (59) is Qp, ¢q=0.12.
From Figs 6 and 7, we see that the pattern speed has levelled off by t=24 to Q,=0.5 which is above
the equipartition value. In fact from previous arguments, there are several reasons why the actual
limiting pattern speed may be above Qy, .. First, as {2y, becomes smaller, the resonant stars will
have higher values of energy and since the energy range is limited, only a small subset of the
population will be\involved in angular momentum transfer. Secondly, if the resonances involved
are sparsely populated, angular momentum transfer will be inefficient before the equipartition
limit is reached. Thirdly, the angular momentum transfer rate decreases as Q, decreases so that
the rate at which equipartition is approached decreases.

Since the bar is turned on suddenly in the equilibrium isothermal sphere, one might worry that
the expected evolution may be obscured by transients. To investigate the effect of transients, I let
the system evolve for a fraction p of an initial rotation time with the pattern fixed toits initial value
so that the stars are forced by the bar but the bar does not react. During this time the bar mass is
gradually increased to its true value according to the rule w(¢)=u, sin® (t¢/2p T,). This procedure
is analogous to the adiabatic turn-on that was employed in the perturbation theory. However, the
angular momentum added by the bar during the turn-on phase modifies the equilibrium stellar
distribution, and if p is large, the distribution will be significantly distorted by the time the bar is

25 T T T T T T T T T T T

2.0

0.5

0.0 I | 1 | 1 | 1 | | | 1

0 4 8 12 16 20 24
Figure 6. Three runs of the standard simulation: number of stars n=1000, corotation parameter §= 12, axis ratios

a=0.2 and $=0.1, bar mass ratio u,=1.0 and energy range [E i, Emax]=[—6, 2]. The equipartition speed, Qyp;eq, 18
marked by a dashed line.
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25 T T T T T ] T T T T T

Figure 7. Three runs of the standard simulation but with $=1.0.

allowed to interact. I found that runs with p=<t0.5 were not substantially affected by this
procedure. For p=1 the evolution was slightly slower and noisier, possibly because the turn-on
was so slow that few stars are left near resonance once the bar is allowed to react. Nevertheless, if
there were significant transients, one would expect a noticeable difference between the runs with
p=0.0 and p=0.5. Since the difference between these two runs was negligible, I conclude that
initial transients are unimportant in the standard simulation.

As a further comparison between the simulation and the analytic results, I attempted to
reproduce the results of the perturbation theory in Section 3 by using the model radial potential
equation (28) and the parameters of the standard bar model from equations (46) and (47) instead
of the homogeneous ellipsoid. Although one would really like to take u,<<1 as required by the
perturbation theory, the simulation is limited by spurious equipartition and again I take u,=1.
For these simulations I found that the range [—2.5, 2] gave smooth evolution for n=500. I also
found minor transient increases in pattern speed which could be damped by taking p=0.1. I now
compare the numerical simulations with the analytic results of Section 3. The pattern speed
curves for this model are shown in Fig. 8 for three cases. For these simulations T ,=0.4 T, which
is approximately a factor of 4 smaller than the analytic prediction. Thus, the angular momentum
transfer occurs at a larger rate in the simulations than in the perturbation theory. Although this
discrepancy is disturbing, the main purpose of this investigation is to show that T ,,~T,, which
these simulations demonstrate.

It is interesting to compare the results obtained here to those of Sellwood’s live halo simulation
(Sellwood 1980). Sellwood began with a relaxed halo component to which he added a disc of
equal mass. He found that most of the disc component form a bar which ends at corotation. By
following the angular momentum in each component, Sellwood found that the bar also transfers
angular momentum to the halo component. Sellwood’s run 106 gives Ty ,,=5 Ty which may be
compared to the standard simulation which gives T, =4.5 Ty. Given the inherent differences the
two models, such as different bar geometry and central concentration of the halo, the two rates of
angular momentum transfer are qualitatively the same.
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Figure 8. Three simulations using the standard bar model in Section 3.3 with number of stars n=500, corotatior
parameter S=1.0, initial growth period p=0.1, and bar mass ratio u,=1.0.

To summarize the numerical results, it was found that: (1) The rate of angular momentum
transfer in the simulations is larger than the predictions of the perturbation theory for the same
bar potential (equation 28). This suggests that the LBK formula may underestimate the torque
when uy, is large; (2) using a homogeneous ellipsoid as a bar model instead of only the /=2, m=2
component we find Ty,,=3.5T,. Although this is a larger half-life than that predicted by the
analytic theory, it is still significantly smaller than a galactic lifetime.

5 Conclusions

I have computed the angular momentum transfer between a bar and a spherical halo using bott
analytic perturbation theory and numerical simulations. If the end of the bar is initially a
corotation, a strong bar may transfer a significant fraction of its angular momentum to the halc
component in a few rotation times. If bars rotate more slowly (§<1), are weak (u,<1), or if the
halo component is significantly more centrally condensed than the isothermal sphere, the
slow-down time may be considerably longer. However, simulations of gas forcing by bar
(Sanders & Tubbs 1980) suggest that bars do end in the vicinity of corotation (also sex
Contopoulos 1980), photometric observations show that strong bars are common, and their fla
rotation curves indicate that they may indeed have extended massive halos (Kormendy 1983)
The rapid angular momentum transfer found in these calculations suggests two possible
scenarios. First, bars may gain angular momentum, possibly from the disc at the inner Lindblac
resonance. Secondly, the method of angular momentum transfer discussed here may b
suppressed, for example, if the halo has been cleared out of the region around the bar. In order tc
proceed further, the self-consistent responses of the bar and halo to the torques will have to be
considered. Our results suggest that it would be worthwhile to carry out long-term N-bod)
calculations of the evolution of discs in live halos.

We see that the simplest model for the interaction between a galactic bar and massive halo b
dynamical friction leads to significant transfer of the bar’s angular momentum to the halo in mucl
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less than a Hubble time. The rapid angular momentum transfer predicted by this model places
strong constraints on our picture of barred galaxy evolution.
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