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Abstract 

 
Leaves vary from planar sheets and needle-like structures, to elaborate cup-shaped 

traps. Here we show that in the carnivorous plant Utricularia gibba, the upper leaf 

(adaxial) domain is restricted to a small region of the primordium which gives rise to 

25 the trap’s inner layer. This restriction is necessary for trap formation, as ectopic adaxial 
 

activity at early stages gives radialized leaves and no traps. We present a model that 

accounts for the formation of both planar and non-planar leaves through adaxial- 

abaxial domains of gene activity establishing a polarity field that orients growth. In 

combination with an orthogonal proximodistal polarity field, this system can generate 

30 diverse leaf forms, and can account for the multiple evolutionary origins of cup-shaped 
 

leaves through simple shifts in gene expression. 

 

 

 

 
One Sentence Summary 

 
A developmental model shows how shifts in gene activity can generate diverse leaf forms. 

 

35 Main Text 
 

Leaves come in many shapes and sizes. Most consist of planar sheets of cells that harvest 

light for photosynthesis. Formation of these leaves depends on adaxial and abaxial domains 

of gene activity in leaf primordia (1, 2). However, the mechanism by which these domains 

generate sheet-like development is unclear. It is unknown whether growth is oriented by the 

40 adaxial-abaxial (ad-ab) boundary throughout the leaf, or solely at the epidermis. It is also 
 

unclear how orientations of growth and cell division are specified; and whether growth 

orients the plane of division, or the plane of division orients growth. Finally, it is unclear 

how the system for planar leaf development has been modified to generate non-planar leaves, 
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such as filiform (needle-like) leaves, and cup-shaped leaves of carnivorous plants which have 
 

45 evolved multiple times independently. 
 

 

Computational models for formation of flat or cup-shaped leaves have been proposed based 

on cell divisions being induced by the epidermal ad-ab boundary, with the plane of division 

orienting growth (3, 4). However, these models are not easily reconciled with observations 

that cell divisions occur throughout the leaf lamina, not solely at the margin (5–7). Here we 

50 suggest an alternative mechanism based on the analysis of ad-ab genes in trap and filiform 
 

leaf development of the humped bladderwort, Utricularia gibba (Lentibulariaceae), an 

aquatic carnivorous plant (Fig.1A). 

Each U. gibba leaf consists of several filiform leaflets (Fig.1, E,F), and may bear a trap 

(Fig.1, D,F). At early developmental stages, organ primordia are dome-shaped (Fig. 1G). 

55 Based on morphology alone, it is unclear at this stage whether these primordia will become 
 

leaflets or traps. At later stages, leaflet primordia form tapering cylinders that grow to be 

slightly wider than thick, and curve longitudinally towards the apex (Fig.1, H-J). By contrast, 

trap primordia are curved in both longitudinal and transverse sections, and consist of three 

cell layers (Fig.1K). The inner layer is positioned adaxially (facing the spiral apex, to the 

60 right in Fig.1). As development progresses, the trap grows to a near-spherical shape with a 
 

closed mouth (Fig.1, L-O, white arrowheads), and a two-cell-thick trap door grows out near 

the dorsal lip (Fig.1, N-O, orange arrowheads). Over a 20-fold increase in trap length 

(approximately 400-fold increase in area), lamina thickness only doubles (Fig.1, K-O and 

Fig.S1), resulting in a curved sheet. 

 

65 To define the ad-ab domains in U. gibba (8, 9), we identified homologues of the adaxially 
 

expressed PHV/PHB genes, and abaxially expressed FIL and KAN genes (10, 11). Before 

trap and leaflet primordia morphologies clearly diverged, UgPHV1 was expressed on the 
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adaxial side (black arrowhead Fig. 2A), and was more restricted in some primordia (yellow 

arrowhead Fig. 2A). In leaflet primordia at later stages, UgPHV1 and UgFIL1 were expressed 

70 on the adaxial and abaxial sides respectively (Fig.2, B-E; Fig.S3, A-J). In trap primordia 
 

UgPHV1 was expressed in the innermost cell layer, extending into the inner side of the trap 

door (Fig.2, F-I; Fig.S3, K-P). UgFIL1 and UgKAN1 were expressed in the outer layers (Fig. 

2, J-Q, Fig.S3, Q-V), although only UgKAN1 was expressed in the outer ventral region 

(yellow arrowhead Fig.2, N-Q). Thus, the adaxial and abaxial domains of a planar leaf 

75 broadly correspond to the inner and outer regions of the trap respectively. Similar findings 
 

were reported for S. purpurea trap, although KAN expression was not detected (4). 

 

To determine whether the observed expression patterns have functional significance, we 

induced ectopic expression of miRNA-resistant UgPHV1 under the control of the 35S 

promoter, using a Cre-Lox system (HS-UgPHV1 plants, see Methods for details). After 

80 extended heat-shock, GFP fluorescence and in situ hybridization confirmed ectopic induction 
 

throughout the tissue (Fig.S4). 

 

To determine how ectopic UgPHV1 affected development, tissues were imaged daily 

following induction (Fig. 3, A-D). At seven days post-induction (Fig.3D), the main axis could 

be divided into three regions: (1) An upper region, encompassing the apex and leaves 

85 (Fig.3D, red). The normal spiral organization of the apex had been replaced by an open linear 
 

structure (Fig. 3, H-M), containing no trap primordia, and only radially symmetrical leaflets 

(Fig.S6). The leaves below the apex bore no traps, or bore small malformed traps (Fig.3D; 

Fig.S5, C-E). Tracing this upper region back through the sequence of daily images, showed it 

derived from primordia located within the spiral apex at the time of induction (Fig.3C; 

90 Fig.S5B). (2) A middle region (Fig.3D, blue), derived from leaves bearing small traps (80 to 
 

200 µm long) at the time of induction (Fig.3D, white arrows, Fig.S5B). This region had 

 

normal leaves bearing traps up to 300 µm long, with thick walls and malformed trap doors 
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(Fig.S5, F-H). (3) A lower region, derived from leaves bearing traps that were longer than 

200µm at the time of induction (Fig.3D, black; Fig.S5B). This region contained normal 

95 leaves and traps. 
 

 

Thus, ectopic expression of UgPHV1 in early primordia leads to loss of trap development 

(Fig. 3, E,F), and generation of radialized organs, similar to the effect of ectopic PHV/PHB in 

Arabidopsis (11–13). Ectopic UgPHV1 in later trap primordia, but before traps are 200 µm 

long, leads to aberrant trap development and growth arrest (Fig.3G; Fig. S5). Ectopic 

100 UgPHV1 after this stage has no effect, although this may be due to inefficiency of induction 
 

in older traps (Fig. S4). These results indicate that restricted UgPHV1 is necessary for 

initiation and maintenance of trap development. 

To explore how domains of ad-ab identity may control leaf morphogenesis, we modelled 

primordia as mechanically connected viscoelastic volumes of material, with growth oriented 

105 by a polarity field (14). We began with a hemispherical ground state, representing a 
 

radialized leaf primordium without a history of ad-ab activity, with polarity pointing 

proximodistally (red arrows Fig. 4A). For simplicity, the field was implemented by taking the 

gradient of a morphogen diffusing from the base towards the tip. In reality, such fields most 

likely reflect cellular polarity rather than a continuous field (15, 16). Specifying a higher 

110 growth rate parallel to, rather than perpendicular to, the polarity, generated a tapering 
 

cylinder, corresponding to the phenotype of radialized mutants (Fig.4, A-C; Movie S1). 

 

To model formation of a planar leaf, we invoked a second polarity field, orthogonal to the 

first, termed the orthoplanar polarity field (black arrows Fig.4D). This field was implemented 

by taking the gradient of a morphogen diffusing from the outer surface of the primordium 

115 towards the junction between adaxial and abaxial domains throughout the midplane. 
 

Evidence for a midplane domain playing a role in lamina formation comes from analysis of 
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the WOX/PRS module (17–20). Three growth rates could then be specified: parallel to 

proximodistal polarity (Kpd), parallel to the orthoplanar polarity (Kop) and perpendicular to 

both (Kper) (14) (Fig.4E). 

 

120 Setting Kop to be much lower than Kpd and Kper generated a flattened sheet, corresponding to a 
 

planar leaf (Fig.4, F,G; Movie S2). Similar results were obtained using elliptical or elongated 

initial primordium shapes, illustrating the robustness of the model (Fig. S7). Low Kper as well 

as Kop generated a tapering elliptic cylinder, corresponding to leaflet of U. gibba (Fig.4, H,I; 

Movie S3). Thus, the formation of a planar leaf can be accounted for by having relatively low 

125 Kop, and a filiform leaf by both low Kop and low Kper. 
 

 

To determine the effect of a more confined adaxial domain, as observed in some U. gibba 

primordia (Fig. 2A), we restricted the domain to a small region on one side of the 

primordium, while keeping the same values of Kper, Kop and Kpd as in the planar leaf model 

(Fig.4, J,L). Running this model generated a cup-shaped sheet with the adaxial domain on the 

130 inner surface (Fig.4, K,L; Movie S4). This result suggests that those primordia showing 
 

restricted PHV1 expression at early stages (Fig. 2A) are fated to form traps. The model also 

predicts that expressing the adaxial domain throughout the primordium eliminates the 

orthoplanar polarity field, generating a tapering cylinder (Fig.4B), consistent with the results 

of ectopic PHV1 expression (Fig.3; Fig. S6). 

 

135 In contrast to U. gibba, the adaxial domain in trap primordia of S. purpurea extends to the 
 

base of the primordium as a narrow ventral strip which grows out to form a ridge (4). 

Incorporation of such a strip within the above model led to the formation of a cup with a 

ridge, similar to the form observed in S. purpurea (Fig.4, M-P; Movie S5). In S. purpurea, 

cell divisions were observed to be preferentially periclinal (new cell walls parallel to the outer 

140 surface of the primordium) in the ridge-forming region, but not in the more distal cup- 
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forming region (4). The authors incorporated these observations into a 2D model of a 

transverse section of the primordium, with small outgrowths prespecified at the ad-ab 

boundary. Assuming divisions are induced near the epidermal ad-ab boundary, and that the 

planes of division determine the orientation of growth, this model could generate the 

145 observed 2D shapes (4). 
 

 

To determine whether our model would give similar division patterns, we modelled 

transverse sections of the primordium containing virtual cells (Fig.4Q), with specified growth 

oriented relative to an orthoplanar polarity field. The plane of cell division was set by taking 

the shortest path through the cell center (5, 21). Some cells were marked in white to allow 

150 clones to be visualized. Running this model recapitulated the observed patterns of division 
 

(Fig.4, R,S; Movies S6, S7), with divisions in the ridge-forming region being preferentially 

periclinal (arrowed in Fig.4R). Thus, our model accounts for both trap morphogenesis and 

observed planes of division in S. purpurea. 

Our findings provide a simple mechanistic explanation for the generation of planar leaves, 
 

155 filiform and cup-shaped leaves, through shifts in expression domains or their effects on 
 

growth. Unlike previous models, growth is oriented by a polarity field, anchored by ad-ab 

domains acting throughout the leaf (not just at the epidermal boundary), consistent with 

observed division patterns. The planes of division are a result (emergent property), rather 

than the cause, of oriented growth. Moreover, our model does not depend on the primordium 

160 already having outgrowths in the regions that form the lamina, showing that it can break 
 

morphological symmetry rather than simply elaborating it. 

 

Additional structures, such as petioles, can be generated by introducing further domains into 

the model (Fig.S8-S10; Movies S8-S10). Diverse shapes and patterns of dissection in the 

outline of planar leaves may also be generated through modulation of growth oriented by a 
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165 proximodistal polarity field (22–25). Thus, a system in which regional identities modify 
 

growth rates oriented by two orthogonal polarity fields provides developmental flexibility, 

and can account for how cup-shaped forms evolved multiple times independently from 

species with planar leaves. 
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Fig. 1. Utricularia gibba morphology. (A) Stolon with circinnate apex (red arrowhead) 

bearing leaves and traps (black arrowheads) oriented adaxially (black arrows). (B) Schematic 

of (A) showing stolons (black) and leaves (grey). L leaflet-bearing leaf, LT trap-bearing leaf, 

240 AM axillary meristem, M apical meristem. (C) Magnification of apex shown in (A). (D) Trap 
 

showing dorsal (black) and ventral (white) sides and mouth (arrowhead). (E) Diagram of L in 

(B), with one leaflet in red. (F) Diagram of LT in (B), with trap in green. (G to G’) 

Longitudinal (G) and oblique views of early primordium (G’). (H to J’) Developmental 

series of leaflets in longitudinal section (H-J) and oblique view (H’-J’). (K to O’) 

245 Developmental series of traps in longitudinal section (K-O) and oblique view (K’-O’). In G- 
 

O’, green lines mark primordium and leaf length, yellow lines mark primordium, leaf and 

trap thickness, red lines mark primordium, leaf and trap width, blue lines mark trap length. 

Measurements are given in the same colors as the lines (see Fig. S1 for additional data). In N- 

O, orange arrowhead marks trap door, white arrowhead marks trap mouth. In D, H-O’ organs 

250 are shown with adaxial side to the right, marked ‘ad’ on H and K. Scale bars, 5 mm (A), 

 

1 mm (C), 500 m (D), 50 m (G,G’,H,H’,I,I’,J’,K-N’), 100 m (J,O,O’). The image in N 

 
was previously published in (26). 
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255 

Fig. 2. UgPHV1 and UgFIL1 expression patterns in Utricularia gibba leaflet and trap 

development. (A) UgPHV1 expression in young primordia. Black and yellow arrowheads 

mark primordia showing extended and restricted domains of the adaxial marker, respectively. 
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(B to E) UgPHV1 (B,C) and UgFIL1 (D,E) in leaflet primordia. (F to I) UgPHV1 during trap 
 

260 development, in longitudinal (F,H, I) and cross (G) sections. (J to M) UgFIL1 expression 
 

during trap development, in longitudinal (J,L,M) and cross (K) sections. (N to Q) UgKAN1 

expression during trap development in longitudinal sections. Dashed red lines in E and K 

indicate angle of sections shown in G and K. Trap mouth (black arrowhead), trap door (red 

arrowhead), ventral region (yellow arrowhead). In all panels adaxial side is shown to the 

 

265 right, marked ‘ad’ in B and D. Scale bars, 50 m. See an expanded version of this figure in 
 

Fig. S3. 
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Fig. 3. Induction of UgPHV1 prevents trap formation. (A–F) Uninduced plants produce 
 

270 traps (black arrowheads) at regular intervals (A,B), whereas induction of UgPHV1 prevented 
 

new trap formation (C,D,E) and trap growth (white arrowheads), but not leaf formation (F). 

 

(G) Upon induction, traps smaller than 200 μm did not grow. (H–M) Wild type circinnate 

apices (H,J,I) and open apices of HS-UgPHV1 plants with straight leaves (I,K,M). Scale bars 

in A to D 5 mm; H and I 1 mm; J to M 100 μm; L and M 50 μm. 

 

275 



 

17 

 

 

 

 
 

Fig. 4. Modelling of leaf and trap development. Oblique, cutaway and section views. (A– 

 

C) Generation of tapering cylinder. Initial (A,C) and final (B,C) states. Proximodistal polarity 
 

280 (red arrows) runs from organizers at base (magenta) to tip (yellow). (D–G) Generation of flat 
 

sheet. Initial (D,G) and final (F,G) states. Adaxial (blue), abaxial (brown) and midplane 
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(green) domains. Orthoplanar polarity (black arrows) runs from surface to midplane. 

Proximodistal and orthoplanar polarity shown only on outer and cutaway surfaces, 

respectively. Three growth rates specified by two polarity fields, Kpd, Kop and Kper (E). (H and 

285 I) Generation of an elliptic cylinder. Only final state shown. (J–L) Generation of a cup. Red 
 

arrowhead indicates shifted position of sink for proximodistal polarity. Initial (J,L) and final 

(K,L) states. (M–P) Generation of cup with ridge. Initial (M,O,P) and final (N,O,P) states. 

(Q–S) 2D models showing cell division patterns corresponding to section levels shown in 

(M,N). Initial (Q), intermediate (R) and final (S) states. Periclinal division walls in ridge 

290 arrowed in (R). Levels of transverse sections indicated by color-coded rectangles. Scale bar 
 

in arbitrary units. 
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