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Abstract 24 

The primary motor cortex (M1) is essential for voluntary fine motor control and is functionally conserved 25 

across mammals. Using high-throughput transcriptomic and epigenomic profiling of over 450,000 single 26 

nuclei in human, marmoset monkey, and mouse, we demonstrate a broadly conserved cellular makeup 27 

of this region, whose similarity mirrors evolutionary distance and is consistent between the 28 

transcriptome and epigenome. The core conserved molecular identity of neuronal and non-neuronal 29 

types allowed the generation of a cross-species consensus cell type classification and inference of 30 

conserved cell type properties across species. Despite overall conservation, many species 31 

specializations were apparent, including differences in cell type proportions, gene expression, DNA 32 

methylation, and chromatin state. Few cell type marker genes were conserved across species, 33 

providing a short list of candidate genes and regulatory mechanisms responsible for conserved features 34 

of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic 35 

classification allowed the Patch-seq identification of layer 5 (L5) corticospinal Betz cells in non-human 36 

primate and human and characterization of their highly specialized physiology and anatomy. These 37 

findings highlight the robust molecular underpinnings of cell type diversity in M1 across mammals and 38 

point to the genes and regulatory pathways responsible for the functional identity of cell types and their 39 

species-specific adaptations. 40 

 41 

Introduction 42 

Single-cell transcriptomic and epigenomic methods provide a powerful lens on understanding the 43 

cellular makeup of highly complex brain tissues based on distinct patterns of gene expression and 44 

underlying regulatory mechanisms 1–7. Applied to mouse and human neocortex, single-cell or single-45 

nucleus transcriptomic analysis has yielded a complex but finite classification of cell types with 46 

approximately 100 discriminable neuronal and non-neuronal types in any given neocortical region 1,2,6,8. 47 

Similar analyses using epigenomic methods have shown that many cortical cell types can be 48 
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distinguished on the basis of regions of open chromatin or DNA methylation 5,9,10. Furthermore, several 49 

recent studies have shown that transcriptomically-defined cell types can be aligned across species 2,11–50 

13, indicating that these methods provide a path to quantitatively study evolutionary conservation and 51 

divergence at the level of cell types. However, application of these methods has been highly 52 

fragmented to date. Human and mouse comparisons have been performed in different cortical regions, 53 

using single-cell (with biases in cell proportions) versus single-nucleus (with biases in transcript 54 

makeup) analysis, and most single-cell transcriptomic and epigenomic studies have been performed 55 

independently.  56 

 57 

The primary motor cortex (MOp in mouse, M1 in human and non-human primates, all referred to as M1 58 

herein) provides an ideal cortical region to address questions about cellular evolution in rodents and 59 

primates by integrating these approaches. Unlike the primary visual cortex (V1), which is highly 60 

specialized in primates, or frontal and temporal association areas, whose homologues in rodents 61 

remain poorly defined, M1 is essential for fine motor control and is functionally conserved across 62 

placental mammals. M1 is an agranular cortex, lacking a defined L4, although neurons with L4-like 63 

properties have been described 14. L5 of carnivore and primate M1 contains exceptionally large 64 

“giganto-cellular” corticospinal neurons (Betz cells in primates 15,16 that contribute to the pyramidal tract 65 

and are highly specialized for their unusually large size with distinctive “taproot”-style dendrites 17,18. 66 

Extracellular recordings from macaque corticospinal neurons reveal distinctive action potential 67 

properties supportive of a high conduction velocity and similar, unique properties have been reported 68 

during intracellular recordings from giganto-cellular neurons in cats19–21
. Additionally, some primate Betz 69 

cells directly synapse onto alpha motor neurons, whereas in cats and rodents these neurons synapse 70 

instead onto spinal interneurons 22,23. These observations suggest that Betz cells possess specialized 71 

intrinsic mechanisms to support rapid communication, some of which are primate specific. 72 

 73 
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Conservation of cellular features across species is strong evidence for evolutionary constraints on 74 

important cellular function. To explore evolutionary conservation and divergence of the M1 cellular 75 

makeup and its underlying molecular and gene regulatory mechanisms, we combined saturation 76 

coverage single-nucleus transcriptome analysis, DNA methylation, and combined open chromatin and 77 

transcriptome analysis of mouse, marmoset, and human M1 and transcriptomic profiling of macaque 78 

M1 L5. We describe a robust classification of neuronal and non-neuronal cell types in each species that 79 

is highly consistent between the transcriptome and epigenome. Cell type alignment accuracy and 80 

similarity varied as a function of evolutionary distance, with human more similar to non-human primate 81 

than to mouse. We derived a consensus mammalian classification with globally similar cellular diversity, 82 

varying proportions, and species specializations in gene expression between conserved cell classes. 83 

Few genes had conserved cell type-specific expression across species and likely contribute to other 84 

conserved cellular properties, such as the unique morphology of chandelier GABAergic neurons. 85 

Conversely, these data also allow a targeted search for genes responsible for species specializations 86 

such as the distinctive anatomy, physiology and axonal projections of Betz cells, large corticospinal 87 

neurons in primates that are responsible for voluntary fine motor control. Together these findings 88 

highlight the strength of a comparative approach to understand cortical cellular diversity and identify 89 

conserved and specialized gene and gene regulatory mechanisms underlying cellular identity and 90 

function. 91 

 92 

We made all primary and analyzed data publicly available. Raw sequence data are available for 93 

download from the Neuroscience Multi-omics Archive (nemoarchive.org) and the Brain Cell Data 94 

Center (biccn.org/data). Visualization and analysis tools are available at NeMO Analytics 95 

(nemoanalytics.org) and Cytosplore Viewer (viewer.cytosplore.org). These tools allow users to compare 96 

cross-species datasets and consensus clusters via genome and cell browsers and calculate differential 97 

expression within and among species. A semantic representation of the cell types defined through 98 
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these studies is available in the provisional Cell Ontology 99 

(https://bioportal.bioontology.org/ontologies/PCL; Supplementary Table 1). 100 

 101 

Results 102 

Multi-omic cell type taxonomies 103 

To characterize the molecular diversity of M1 neurons and non-neuronal cells, we applied multiple 104 

single-nucleus transcriptomic (plate-based SMART-seq v4, SSv4, and droplet-based Chromium v3, 105 

Cv3, RNA-sequencing) and epigenomic (single-nucleus methylcytosine sequencing 2, snmC-seq2; 106 

single-nucleus chromatin accessibility and mRNA expression sequencing, SNARE-seq2) assays on 107 

isolated M1 samples from human (Extended Data Fig. 1a), marmoset, and mouse brain. Cellular 108 

diversity was also profiled selectively in M1 L5 from macaque monkeys using Cv3 (Fig. 1b) to allow 109 

Patch-seq mapping in physiology experiments. M1 was identified in each species based on its 110 

stereotyped location in the caudal portion of frontal cortex and histological features such as the 111 

presence of exceptionally large pyramidal neurons in L5 of M1, classically known as Betz cells in 112 

human, other primates, and carnivores (Fig. 1a; 17). Single nuclei were dissociated, sorted, and 113 

transcripts were quantified with Cv3 for deep sampling in all four species, and additionally using SSv4 114 

in human and mouse for full-length transcript information. For human and a subset of mouse nuclei, 115 

individual layers of M1 were profiled independently using SSv4. Whole-genome DNA methylation, and 116 

open chromatin combined with transcriptome measurements, were quantified in single nuclei from a 117 

subset of species (Fig. 1b). Mouse datasets are also reported in a companion paper 6. Median neuronal 118 

gene detection was higher in human using SSv4 (7296 genes) than Cv3 (5657), partially due to 20-fold 119 

greater read depth, and detection was lower in marmoset (4211) and mouse (5046) using Cv3 120 

(Extended Data Fig. 1b-i). 121 

 122 
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For each species, a diverse set of neuronal and non-neuronal cell type clusters were defined based on 123 

unsupervised clustering of snRNA-seq datasets (cluster metadata in Supplementary Table 2). Human 124 

SSv4 and Cv3 data were integrated based on shared co-expression using Seurat 24, and 127 clusters 125 

were identified that included nuclei from both RNA-seq platforms (Extended Data Fig. j-l). Marmoset 126 

clusters (94) were determined based on independent clustering of Cv3 data using a similar analysis 127 

pipeline. Mouse clusters (116) were defined in a companion paper 6 using seven integrated 128 

transcriptomics datasets. These differences in the number of clusters are likely due to a combination of 129 

statistical methodological differences as well as sampling and data quality differences rather than true 130 

biological differences in cell diversity. For example, more non-neuronal nuclei were sampled in mouse 131 

(58,098) and marmoset (21,189) compared to human (4,005), resulting in greater non-neuronal 132 

resolution in those species. t-SNE visualizations of transcriptomic similarities across nuclei revealed 133 

well-separated clusters in all species and mixing among donors, with some donor-specific technical 134 

effects in marmoset (Extended Data Fig. 1m,n). 135 

 136 

Post-clustering, cell types were organized into taxonomies based on transcriptomic similarities and 137 

given a standardized nomenclature (Supplementary Table 3). As described previously for a different 138 

cortical region 2, taxonomies were broadly conserved across species and reflected different 139 

developmental origins of major non-neuronal and neuronal classes (e.g. GABAergic neurons from 140 

ganglionic eminences (GEs) versus glutamatergic neurons from the cortical plate) and subclasses (e.g. 141 

GABAergic CGE-derived Lamp5/Sncg and Vip versus MGE-derived Pvalb and Sst), allowing 142 

identification and naming of these subclasses across species. Consequently, cardinal cell subclass 143 

properties can be inferred, such as intratelencephalic (IT) projection patterns. Greater species variation 144 

was seen at the highest level of resolution (cell types) that are named based on transcription data in 145 

each species including the layer (if available), major class, subclass marker gene, and most specific 146 

marker gene (e.g. L3 Exc RORB OTOGL in human; additional markers in Supplementary Tables 4-6). 147 

GABAergic types were uniformly rare (< 4.5% of neurons), whereas more variable frequencies were 148 
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found for glutamatergic types (0.01 to 18.4% of neurons) and non-neuronal types (0.15% to 56.2% of 149 

non-neuronal cells). 150 

 151 

Laminar dissections in human M1 further allowed the estimation of laminar distributions of cell types 152 

based on the proportions of nuclei dissected from each layer (Fig. 1c). As expected and previously 153 

reported in middle temporal gyrus (MTG) of human neocortex 2, glutamatergic neuron types were 154 

specific to layers. A subset of CGE-derived Lamp5/Sncg GABAergic neurons were restricted to L1, and 155 

MGE-derived GABAergic types (Sst and Pvalb) displayed laminar patterning, with transcriptomically 156 

similar types showing proximal laminar distributions, whereas Vip GABAergic neuron types displayed 157 

the least laminar specificity. Three astrocyte subtypes had frequencies and layer distributions that 158 

correlated with known morphologically-defined astrocyte types 25, including a common type in all layers 159 

(protoplasmic), a rare type in L1 (interlaminar) 26, and a rare type in L6 (fibrous). 160 

 161 

Single-nucleus sampling provides a relatively unbiased survey of cellular diversity 2,27 and enables 162 

comparison of cell subclass proportions across species. For each donor, we estimated the proportion of 163 

GABAergic and glutamatergic cells among all neurons and compared the proportions across species. 164 

Consistent with previously reported differences in GABAergic neuron frequencies in primate versus 165 

rodent somato-motor cortex based on histological measurements (reviewed in 28), we found twice as 166 

many GABAergic neurons in human (33%) compared to mouse M1 (16%) an intermediate proportion 167 

(23%) in marmoset (Fig. 1f). Despite these differences, the relative proportions of GABAergic neuron 168 

subclasses were similar. Exceptions to this included an increased proportion of Vip and Sncg cells and 169 

decreased proportion of Pvalb cells in marmoset. Among glutamatergic neurons, there were 170 

significantly more L2 and L3 IT neurons in human than marmoset and mouse (Fig. 1f), consistent with 171 

the dramatic expansion of supragranular cortical layers in human (Fig. 1a) 29. The L5 172 

extratelencephalic-projecting (ET) types (also known as pyramidal tract, PT, or subcerebral types), 173 

including corticospinal neurons and Betz cells in primate M1, comprised a significantly smaller 174 
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proportion of glutamatergic neurons in primates than mouse. This species difference was also reported 175 

in MTG 2, possibly reflecting the spatial dilution of these cells with the expansion of neocortex in 176 

primates. Similarly, the L6 cortico-thalamic (CT) neuron populations were less than half as frequent in 177 

primates compared to mouse, whereas the L6 Car3 type was rare in all species and relatively more 178 

abundant in marmoset. 179 

 180 

Individual nuclei were isolated from M1 of the same donors for each species and molecular profiles 181 

were derived for DNA methylation (snmC-seq2) and open chromatin combined with mRNA (SNARE-182 

seq2). Independent unsupervised clustering of epigenomic data also resulted in diverse clusters (see 183 

below, Figs. 4 and 5) that were mapped back to RNA clusters based on shared (directly measured or 184 

inferred) marker gene expression. Cell epigenomes were highly correlated with transcriptomes, and all 185 

epigenomic clusters mapped to one or more transcriptomic clusters. The epigenome data generally had 186 

lower cell type resolution (Fig. 1c-e), although this may be due to sampling fewer cells or sparse 187 

genomic coverage. Interestingly, snmC-seq2 and SNARE-seq2 resolved different granularities of cell 188 

types. For example, more GABAergic Vip neuron types were identified in human M1 based on DNA-189 

methylation than open chromatin, despite profiling only 5% as many nuclei with snmC-seq2 (Fig. 1c). 190 

 191 

Consensus cellular M1 taxonomy across species 192 

A consensus cell type classification identifies conserved molecular makeup and allows direct cross-193 

species comparisons. The snRNA-seq Cv3 datasets were integrated using Seurat 24 that aligns nuclei 194 

across species based on shared co-expression of a subset of orthologous genes with variable 195 

expression. We repeated this analysis for three cell classes: GABAergic neurons (Fig. 2), glutamatergic 196 

neurons (Extended Data Fig. 3) and non-neuronal cells (Extended Data Fig. 4). As represented in a 197 

reduced dimension UMAP space (Fig.2a), GABAergic neuronal nuclei were well-mixed across species. 198 

Eight well-defined populations formed distinct islands populated by cells from all three species, 199 

including CGE-derived (Lamp5, Sncg, Vip) and MGE-derived (Pvalb, Sst, Sst Chodl) subclasses, and 200 
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Lamp5 Lhx6 and chandelier cell (ChC) types. To identify conserved molecular expression for each 201 

subclass across species, we first identified genes that were enriched in each subclass (“markers”) 202 

compared to all GABAergic neurons in each species (ROC test; AUC > 0.7). Then, we looked for 203 

overlap among these genes across species. Each subclass had a core set of conserved markers (Fig. 204 

2b, markers listed in Supplementary Table 7), and many subclass markers were species-specific. The 205 

contrast between a minority of conserved and majority of species-specific marker genes enriched in 206 

subclasses is particularly clear in the heatmap in Figure 2c (Supplementary Table 8). As expected 207 

based on their closer evolutionary distance, human and marmoset shared more subclass markers with 208 

each other than with mouse (Fig. 2b). 209 

 210 

Cell types remained distinct within species and aligned across species in the integrated transcriptomic 211 

space (Fig. 2d). To establish a consensus taxonomy of cross-species clusters, we used unsupervised 212 

clustering to split the integrated space into more than 500 small clusters (‘metacells’) and built a 213 

dendrogram and quantified branch stability by subsampling metacells and reclustering (Extended Data 214 

Fig. 2a). Metacells were merged with nearest neighbors until all branches were stable and included 215 

nuclei from the three species (see Methods). We used cluster overlap heatmaps to visualize the 216 

alignment of cell types across species based on membership in merged metacells (Fig. 2e). 24 217 

GABAergic consensus clusters displayed consistent overlap of clusters among the three species and 218 

are highlighted as blue boxes in the heatmaps (Fig. 2e).  219 

 220 

We next constructed a consensus taxonomy by pruning the metacell dendrogram (Extended Data Fig. 221 

2a), and demonstrated that all types were well mixed across species (Fig. 2f, grey branches). The 222 

robustness of consensus types was bolstered by a conserved set of marker genes (Extended Data Fig. 223 

2d) and high classification accuracy of subclasses (Extended Data Fig. 2e, data in Supplementary 224 

Table 9) and types (Extended Data Fig. 2f, data in Supplementary Table 9) compared to nearest 225 

neighbors within and among species using a MetaNeighbor analysis 30. Distinct consensus types (ChC, 226 
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Sst Chodl) were the most robust (mean AUROC = 0.99 within-species and 0.88 cross-species), while 227 

Sncg and Sst types could not be as reliably differentiated from closely related types (mean AUROC = 228 

0.84 within-species and 0.50 cross-species). Most consensus GABAergic types were enriched in the 229 

same layers in human and mouse (Fig. 2f), although there were also notable species differences. For 230 

example, ChCs were enriched in L2/3 in mouse and distributed across all layers in human as was seen 231 

in temporal cortex (MTG) based on RNA ISH 2. Sst Chodl was restricted to L6 in mouse and also found 232 

in L1 and L2 in human, consistent with previous observations of sparse expression of SST in L1 in 233 

human not mouse cortex 31. 234 

 235 

More consensus clusters could be resolved by pairwise alignment of human and marmoset than 236 

primates and mouse, particularly Vip subtypes (Fig. 2g, Extended Data Fig. 2b). Higher resolution 237 

integration of cell types was also apparent in cluster overlap plots between human and marmoset 238 

clusters (Fig. 2e, Extended Data Fig. 2c). We quantified the expression conservation of functionally 239 

annotated sets of genes by testing the ability of gene sets to discriminate GABAergic consensus types. 240 

This analysis was framed as a supervised learning task, both within- and between-species 30. Within-241 

species, gene sets related to neuronal connectivity and signaling were most informative for cell type 242 

identity (Extended Data Fig. 2g), as reported in human and mouse cortex 2,32. All gene sets had 243 

remarkably similar consensus type classification performance across species (r > 0.95; Fig. 2h), 244 

pointing to strong evolutionary constraints on the cell type specificity of gene expression central to 245 

neuronal function. Gene set classification performance was systematically reduced when training and 246 

testing between primates (44% reduction) and between primates and mouse (65% reduction; Fig. 2h). 247 

Therefore, many cell type marker genes were expressed in different consensus types between species. 248 

Future comparative work can compare reductions in classification performance to evolutionary 249 

distances between species to estimate rates of expression change across phylogenies. 250 

 251 
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Cross-species consensus types were defined for glutamatergic neurons using an identical approach as 252 

for GABAergic neurons (Extended Data Fig. 3). In general, glutamatergic subclasses aligned well 253 

across species and had a core set of conserved markers as well as many species-specific markers 254 

(Extended Data Fig. 3a-c, genes listed in Supplementary Tables 10-11). 13 consensus types were 255 

defined across species. Glutamatergic types had fewer conserved markers than GABAergic types 256 

(Extended Data Fig. 3d-f,j), although subclasses and types were similarly robust (mean within-species 257 

AUROC = 0.86 for GABAergic types and 0.85 for glutamatergic types) based on classification 258 

performance (Extended Data Fig. 3k,l and Supplementary Table 9). Human and marmoset had 259 

consistently more conserved marker genes than primates and mouse (Extended Data Fig. 3i) and could 260 

be aligned at somewhat higher resolution (Extended Data Fig. 3g,h) for L5/6 NP and L5 IT subclasses. 261 

 262 

Integration of non-neuronal cells was performed similarly to neurons (Extended Data Fig. 4a). 263 

Consensus clusters (blue boxes in Extended Data Fig. 4c) that shared many marker genes were 264 

identified across species (Extended Data Fig. 4d), and there was also evidence for the evolutionary 265 

divergence of gene expression in consensus types. For example, the Astro_1 type had 560 DEGs 266 

(Wilcox test; FDR < 0.01, log-fold change > 2) between human and mouse and only 221 DEGs 267 

between human and marmoset (Extended Data Fig. 4e). The human cortex contains several 268 

morphologically distinct astrocyte types 33: interlaminar (ILA) in L1, protoplasmic in all layers, varicose 269 

projection in deep layers, and fibrous in white matter (WM). We previously reported two transcriptomic 270 

clusters in human MTG that corresponded to protoplasmic astrocytes and ILAs 2, and we validated 271 

these types in M1 (Extended Data Fig. 4g,h). We identified a third type, Astro L1-6 FGFR3 AQP1, that 272 

expresses APQ4 and TNC and corresponds to fibrous astrocytes in WM (Extended Data Fig. 4g, left 273 

ISH). A putative varicose projection astrocyte did not express human astrocyte markers (Extended Data 274 

Fig. 4g, middle and right ISH), and this rare type may not have been sampled or is not 275 

transcriptomically distinct. 276 

 277 
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Species comparison of non-neuronal cell types was more challenging than for neurons due to variable 278 

sampling across species and more immature non-neuronal cells in mouse. 5- to 15-fold lower sampling 279 

of non-neuronal cells in human impacted detection of rare types. For example, pericytes, smooth 280 

muscle cells (SMCs), and some subtypes of vascular and leptomeningeal cells (VLMCs) were present 281 

in marmoset and mouse and not human datasets (Extended Data Fig. 4c, right plot, blue arrows), 282 

although these cells are clearly present in human cortex (for example, see 34). A maturation lineage 283 

between oligodendrocyte precursor cells (OPCs) and oligodendrocytes based on reported marker 284 

genes 35 that was present in mouse and not primates (Extended Data Fig. 4b) likely represents the 285 

younger age of mouse tissues used. Mitotic astrocytes (Astro_Top2a) were also only present in mouse 286 

(Extended Data Fig. 4a,c) and represented 0.1% of non-neuronal cells. Primates had a unique 287 

oligodendrocyte population (Oligo SLC1A3 LOC103793418 in marmoset and Oligo L2-6 OPALIN 288 

MAP6D1 in human) that was not a distinct cluster in mouse (Extended Data Fig. 4c, left plot, blue 289 

arrow). Surprisingly this oligodendrocyte clustered with glutamatergic types (Fig. 1c,d) and was 290 

associated with neuronal transcripts such as NPTX1, OLFM3, and GRIA1 (Extended Data Fig. 4i). This 291 

was not an artifact, as FISH for markers of this type (SOX10, ST18) co-localized with neuronal markers 292 

in the nuclei of cells that were sparsely distributed across all layers of human and marmoset M1 293 

(Extended Data Fig. 4j). This may represent an oligodendrocyte type that expresses neuronal genes or 294 

could represent phagocytosis of parts of neurons and accompanying transcripts that are sequestered in 295 

phagolysosomes adjacent to nuclei. 296 

 297 

To assess differential isoform usage between human and mouse, we used SSv4 data with full transcript 298 

coverage and estimated isoform abundance in cell subclasses. Remarkably, 25% of moderately 299 

expressed (> 10 transcripts per million) isoforms showed a large change (>9-fold) in usage between 300 

species, and isoform switching was 30-60% more common in non-neuronal than neuronal cells 301 

(Extended Data Fig. 2h,i, Supplementary Table 12). For example, β2-Chimaerin (CHN2), a gene shown 302 

to mediate axonal pruning in the hippocampus 36, was highly expressed in human and mouse L5/6 NP 303 
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neurons. In mouse, the short isoform was almost exclusively expressed, while in human, longer 304 

isoforms were also expressed (Extended Data Fig. 2j). 305 

 306 

Open chromatin profiling reveals distinct cell type gene regulation 307 

To directly match accessible chromatin profiles to RNA-defined cell populations, we used SNARE-Seq 308 

37, now modified for highly multiplexed combinatorial barcoding (SNARE-Seq2) 38. We generated 309 

84,178 and 9,946 dual-omic single-nucleus RNA and accessible chromatin (AC) datasets from human 310 

(n = 2) and marmoset (n = 2) M1, respectively (Extended Data Fig. 5a-b, Supplementary Table 13). On 311 

average, 2,242 genes (5,764 unique transcripts) were detected per nucleus for human and 3,858 genes 312 

(12,400 unique transcripts) per nucleus for marmoset, due to more than 4-fold greater sequencing 313 

depth for marmoset (average 17,576 reads per nucleus for human and 77,816 reads per nucleus for 314 

marmoset).  315 

 316 

To define consensus clusters, SNARE-seq2 single-nucleus RNA expression data were mapped to 317 

human and marmoset transcriptomic clusters (Fig. 1c,d) based on correlated expression of cell type 318 

marker genes. SNARE-seq2 transcriptomes were also independently clustered, with both approaches 319 

giving consistent results (Extended Data Fig. 5c-f). Consensus clusters were more highly resolved in 320 

transcriptomic compared to AC data (Extended Data Fig. 5g), and so an integrative approach was used 321 

to achieve best matched AC-level cluster annotations (Extended Data Fig. 5h-k). AC peak calling at 322 

multiple levels of cellular identity (for RNA consensus clusters, resolved AC clusters, subclasses and 323 

classes) yielded a combined total of 273,103 (human) and 134,769 (marmoset) accessible sites, with 324 

an average of 1527 or 1322 unique accessible peak fragment counts per nucleus, respectively. Gene 325 

activity estimates based on cis-regulatory interactions predicted from co-accessible promoter and distal 326 

peak regions using Cicero 39 were highly correlated with RNA expression values. This highlights the 327 

ability of SNARE-Seq2 to meaningfully characterize AC at RNA-defined cellular resolution that cannot 328 

be achieved using only AC data (Extended Data Fig. 6a-b). The AC-level clusters (Fig. 3a,b) that 329 
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showed similar coverage across individual samples (Extended Data Fig. 6c-f) revealed regions of open 330 

chromatin that are extremely cell type specific (Fig. 3c). These regulatory regions were relatively more 331 

abundant in glutamatergic compared to GABAergic neuron subpopulations (Fig. 3c-d, Supplementary 332 

Table 14).  333 

 334 

To better understand the interplay of gene regulation and expression, we compared transcript counts 335 

and open chromatin measured in the same nuclei. For example, the GABAergic neuron marker GAD2 336 

and the L2/3 glutamatergic neuron marker CUX2 showed cell-type specific chromatin profiles for co-337 

accessible sites that were consistent with their corresponding transcript abundances (Fig. 3e-g). 338 

Transcription factor binding site (TFBS) activities were calculated using chromVAR 40, permitting 339 

discovery of differentially active TFBSs between cell types. To investigate the regulatory factors that 340 

may contribute to marker gene expression, we evaluated active TFBSs for their enrichment within 341 

marker gene co-accessible sites. This permitted direct cell type mapping of gene expression and 342 

activity levels with the expression and activity of associated regulatory factors (Fig. 3g). Using this 343 

strategy, we identified TFBS activities associated with subclass (Fig. 3h-i) and AC-cluster level 344 

differentially expressed genes (DEGs) in human and marmoset (Supplementary Table 15). DEG 345 

transcript levels and AC-inferred gene activity scores showed high correspondence (Fig. 3h). While 346 

most subclasses also showed distinct TFBS activities, correspondence between human and marmoset 347 

was higher for glutamatergic rather than GABAergic neurons (Fig. 3h,j). For GABAergic neuron 348 

subclasses, gene expression profiles were more conserved than TFBS activities, consistent with fewer 349 

differences between GABAergic subpopulations based on AC sites (Fig. 3a,b). This observation is also 350 

consistent with fewer distinct TFBS activities among some inhibitory neuron subclasses (Lamp5, Sncg) 351 

in human compared to marmoset (Fig. 3h), despite these cell types having a similar number of AC peak 352 

counts (Extended Data Fig. 6d-f). Interestingly, glutamatergic neurons in L5 and L6 showed higher 353 

correspondence between primates based on TFBS activities compared to average expression, 354 
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suggesting that gene regulatory processes are more highly conserved in these subclasses than target 355 

gene expression.  356 

 357 

Methylomic profiling reveals conserved gene regulation 358 

We used snmC-seq2 41 to profile the DNA methylome from individual cells in M1. Single-nuclei were 359 

labeled with an anti-NeuN antibody and isolated by fluorescence-activated cell sorting (FACS), and 360 

neurons were enriched (90% NeuN+ nuclei) to increase detection of rare types. Using snmC-seq2, we 361 

generated single-nucleus methylcytosine datasets from M1 of human (n = 2 donors, 6,095 nuclei), 362 

marmoset (n = 2, 6,090), and mouse (9,876) (Liu et al. companion paper) (Supplementary Table 16). 363 

On average, 5.5 ± 2.7% (mean ± s.d.) of human, 5.6 ± 2.9% of marmoset and 6.2 ± 2.6% of mouse 364 

genomes were covered by stringently filtered reads per cell, with 3.4 × 104 (56%), 1.8 × 104 (62%) and 365 

4.5 × 104 (81%) genes detected per cell in the three species, respectively. Based on the DNA 366 

methylome profiles in both CpG sites (CG methylation or mCG) and non-CpG sites (CH methylation or 367 

mCH), we clustered nuclei (Methods) to group cell populations into 31 cell types in human, 36 cell types 368 

in marmoset, and 42 cell types in mouse (Fig. 4a and Extended Data Fig. 7a,b). For each species, cell 369 

type clusters could be robustly discriminated using a supervised classification model and had distinct 370 

marker genes based on DNA methylation signatures for neurons (mCH) or non-neuronal cells (mCG) 371 

(Methods). Differentially methylated regions (DMR) were determined for each cell type versus all other 372 

cell types and yielded 9.8 × 105 DMRs in human, 1.0 × 106 in marmoset, and 1.8 × 106 in mouse. 373 

 374 

We determined a consensus molecular classification of cell types in each species by integrating single-375 

nucleus methylomic data with the Cv3 transcriptomic data described above using measurements of 376 

gene body differential methylation (CH-DMG) to approximate expression levels. Nuclei from the two 377 

data modalities mixed well as visualized in ensemble UMAPs (Fig. 4b,c). Methylation clusters have 378 

one-to-one, one-to-many, or many-to-many mapping relation to transcriptomic clusters (Fig. 1c-e and 379 

Extended Data Fig. 7d-f). DMRs were quantified for each subclass versus all other subclasses (Fig. 380 
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4d), and glutamatergic neurons had more hypo-methylated DMRs compared to GABAergic neurons. 381 

Methylome tracks at subclass level can be found at http://neomorph.salk.edu/aj2/pages/cross-species-382 

M1/. To identify enriched transcription factor binding sites (TFBS) in each species and subclass, we 383 

performed motif enrichment analysis with hypo-methylated DMRs from one subclass against other 384 

DMRs of the same species, and identified 102 ± 57 (mean ± s.d.) TFBS in each subclass (Extended 385 

Data Fig. 8 and Supplementary Table 17). We repeated the enrichment analysis using TFBS motif 386 

clusters 42 and found similarly distinct subclass signatures (Supplementary Table 18). Although 387 

subclasses had unique marker genes (Fig. 2c, genes listed in Supplementary Table 8) and CH-DMG 388 

across species, they had remarkably conserved TFBS motif enrichment (Fig. 4e,f and Extended Data 389 

Fig. 8). For example, TCF4 is robustly expressed in L5 IT neurons across species and shows 390 

significant TFBS enrichment in hypo-methylated DMRs and AC sites. DMRs and AC sites provide 391 

independent epigenomic information (Extended Data Fig. 7f,g) and can identify different TFBS 392 

enrichment, such as for ZNF148 in L5 IT neurons. These results are consistent with previous 393 

observations of conserved TF network architectures in neural cell types between human and mouse 394 

(Stergachis et al. 2014). Conserved sets of TFs have the potential to determine conserved and 395 

divergent expression in consensus types based on shared or altered genomic locations of TFBS motifs 396 

across species. 397 

 398 

Layer 4-like neurons in human M1 399 

M1 lacks a L4 defined by a thin band of densely packed “granular” neurons that is present in other 400 

cortical areas, such as MTG (Fig. 5a), although prior studies have identified neurons with L4-like 401 

synaptic properties in mice 14 and expression of RORB, a L4 marker, in non-human primate M1 43. To 402 

address the potential existence of L4-like neurons in human M1 from a transcriptomic perspective, we 403 

integrated snRNA-seq data from M1 and the granular MTG, where we previously described multiple L4 404 

glutamatergic neuron types 2. This alignment revealed a broadly conserved cellular architecture 405 

between M1 and MTG (Fig. 5b,c, Extended Data Fig. 9) including M1 neuron types Exc L3 RORB 406 
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OTOGL (here, OTOGL) and Exc L3-5 RORB LINC01202 (here, LINC01202) that map closely to MTG 407 

neurons in deep L3 to L4 (Fig. 5c, red outlines). Interestingly, four MTG L2/3 IT types (LTK, GLP2R, 408 

FREM3, and CARM1P1) whose distinct physiology and morphology are reported in a companion paper 409 

44 had less clear homology in M1 than other types (Extended Data Fig. 9a-c), pointing to more 410 

variability across cortical areas of superficial as compared to deep glutamatergic neurons. To compare 411 

laminar positioning in M1 and MTG, the relative cortical depth from pia for each neuron was estimated 412 

based on the layer dissection and average layer thickness 45. Transcriptomically similar cell types were 413 

found at similar cortical depths in M1 and MTG, and the OTOGL and LINC01202 types were located in 414 

deep L3 and superficial L5 in M1 (Fig. 5d). 415 

 416 

MTG contains three main transcriptomically-defined L4 glutamatergic neuron types (FILIP1L, TWIST2 417 

and ESR1) and a deep L3 type (COL22A1) that is found on the border of L3 and L4 (Fig. 5e-g). The M1 418 

types OTOGL and LINC01202 matched one-to-one with MTG COL22A1 and ESR1, whereas there 419 

were no matches for the other two MTG L4 types (Fig. 5f). Based on snRNA-seq proportions, the L4-420 

like OTOGL type was much sparser in M1 than the ESR1 type in MTG (Fig. 5e). Multiplex fluorescent in 421 

situ hybridization (mFISH) with probes to cell type marker genes confirmed these findings. The MTG 422 

ESR1 type was highly enriched in L4, 2, and the homologous M1 LINC01202 type was sparser and 423 

more widely distributed across L3 and L5 (Fig. 5g). The MTG COL22A1 type was tightly restricted to 424 

the L3/4 border 2, and the M1 OTOGL type was similarly found at the L3/5 border. Quantification of 425 

labeled cells as a fraction of DAPI+ cells in L3-5 showed similar frequencies of M1 OTOGL and MTG 426 

COL22A1 types and 4-fold sparser M1 LINC01202 type versus MTG ESR1 type (Fig. 5h). These data 427 

indicate a conservation of deep L3 glutamatergic types and proportions across human cortical areas, 428 

but with reduced diversity and sparsification of L4-like neurons to a single (ESR1) type in M1, 429 

distributed more broadly where L4 would be if tightly aggregated. 430 

 431 

Chandelier cells share a core molecular identity across species 432 
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Conserved transcriptomic and epigenomic features of consensus types likely contribute to cell function 433 

and generate hypotheses about the gene regulatory mechanisms underlying cell type identity. Focused 434 

analysis of Pvalb-expressing GABAergic neurons illustrates the power of these data to predict such 435 

gene-function relationships. Cortical Pvalb-expressing neurons comprise two major types — basket 436 

cells (BCs) and ChCs — that have fast-spiking electrical properties and distinctive cellular 437 

morphologies. BCs selectively synapse onto the perisomatic region of glutamatergic pyramidal 438 

neurons. ChCs, also called axo-axonic cells 46, selectively innervate the axon initial segment (AIS) of 439 

pyramidal cells and have unique synaptic specializations called axon cartridges. These cartridges run 440 

perpendicular to their post-synaptic target axon, giving a characteristic morphological appearance of 441 

candlesticks on a chandelier. This highly conserved feature is shown with biocytin-filled cells from 442 

mouse, rhesus macaque, and human (Fig. 6a). To reveal evolutionarily conserved transcriptomic 443 

hallmarks of ChCs, we identified DEGs in ChCs versus BCs in each species using an ROC test. 357 444 

DEGs were identified in at least one species, and marmoset ChCs shared more DEGs with human (61 445 

genes) than mouse (29; Fig. 6b, Supplementary Table 19). Remarkably, only 25 DEGs were conserved 446 

across all three species. One conserved gene, UNC5B (Fig. 6c), is a netrin receptor involved in axon 447 

guidance and may help target ChC to pyramidal neuron AIS. Three transcription factors (RORA, 448 

TRPS1, and NFIB) were conserved markers and may contribute to gene regulatory networks that 449 

determine the unique attributes of ChCs. 450 

 451 

To determine if ChCs had enriched epigenomic signatures for RORA and NFIB (TRPS1 lacked motif 452 

data), we compared DMRs between ChCs and BCs. In all species, RORA and NFIB had significant 453 

CH-DMGs in ChCs not BCs (Fig. 6d), consistent with differential expression. To discern if these TFs 454 

may preferentially bind to DNA in ChCs, we tested for TF motif enrichment in hypo-methylated (mCG) 455 

DMRs and AC sites genome-wide. We found that the RORA motif was significantly enriched in DMRs 456 

in primates (Fig. 6d) and in AC sites of ChCs in all species (Fig. 6e, Supplementary Table 14). The 457 

NFIB binding motif was only significantly enriched in AC sites of mouse ChCs, possibly because 458 
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enrichment was transient during development or NFIB specificity is due to expression alone. Three 459 

independent genomic assays converge to implicate RORA as a ChC-specific TF among Pvalb-460 

expression neurons. Notably, 60 of 357 DEGs contained a ROR-motif in DMRs and AC regions in at 461 

least one species, further implicating RORA in defining ChC identity. 462 

 463 

Primate Betz cell specialization 464 

In mouse cortex, L5 glutamatergic neurons have distinct long-range projection targets (ET versus IT) 465 

and transcriptomes 1. L5 ET and IT neuron subclasses clearly align between human and mouse using 466 

snRNA-seq in M1 (Extended Data Fig. 3) and in temporal 2 and fronto-insular cortex 12. Betz cells in L5 467 

of primate M1 connect to spinal motor-neurons via the pyramidal tracts and are predicted to be L5 ET 468 

neurons. The species aligned transcriptomic types allow for the identification of genes whose 469 

expression may contribute to conserved ET versus IT features and primate-specific physiology, 470 

anatomy, and connectivity. Furthermore, Patch-seq methods that jointly measure the transcriptome, 471 

physiological properties and morphology of cells, allow the direct identification and characterization of 472 

L5 ET and IT neurons across mouse, non-human primate, and human. As primate physiology 473 

experiments are largely restricted to macaque, we also profiled L5 of macaque M1 with snRNA-seq 474 

(Cv3) to allow accurate Patch-seq mapping. 475 

 476 

L5 ET neurons had many DEGs compared to L5 IT neurons in all 4 species. Approximately 50 DEGs 477 

were conserved across all species and similarity to human varied as a function of evolutionary distance 478 

(Fig. 7a, Supplementary Table 20). Several genes encoding ion channel subunits were enriched in ET 479 

versus IT neurons in all species, potentially mediating conserved ET physiological properties (Fig. 7b). 480 

A number of additional potassium and calcium channels were primate-enriched (Fig. 7c), potentially 481 

underlying primate-specific ET or Betz cell physiology. Interestingly, many of these primate-specific ET-482 

enriched genes showed gradually increasing ET specificity in species more closely related to human. 483 

To explore this idea of gradual evolutionary change further, we identified genes with increasing L5 ET 484 
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versus IT specificity as a function of evolutionary distance from human (Fig. 7d, Supplementary Table 485 

21). Interestingly, this gene set was highly enriched for genes associated with axon guidance including 486 

members of the Robo, Slit and Ephrin gene families. These genes are potential candidates for 487 

regulating the cortico-motoneuronal connections associated with increasingly dexterous fine motor 488 

control across these species 23. 489 

 490 

To investigate if transcriptomically defined L5 ET types contain anatomically-defined Betz cells, FISH 491 

for L5 ET neurons was combined with immunolabeling against SMI-32, a protein enriched in Betz cells 492 

and other long-range projecting neurons in macaque 47–49 (Fig. 7e). Cells consistent with the size and 493 

shape of Betz cells were identified in two L5 ET clusters (Exc L5 FEZF2 ASGR2 and Exc L5 FEZF2 494 

CSN1S1). Similar to previous reports on von Economo neurons in the insular cortex 12, ET clusters in 495 

M1 also included neurons with non-Betz morphologies.  496 

 497 

To facilitate cross-species comparisons of Betz cells and mouse ET neurons we made patch clamp 498 

recordings from L5 neurons in acute and cultured slice preparations of mouse and macaque M1. For a 499 

subset of recordings, Patch-seq analysis was applied for transcriptomic cell type identification 500 

(Extended Data Fig. 10h). To permit visualization of cells in heavily myelinated macaque M1, we used 501 

AAV viruses to drive fluorophore expression in glutamatergic neurons in macaque slice culture 502 

(Extended Data Fig. 10g). As shown in Figure 7f, Patch-seq neurons mapping to the macaque Betz/ET 503 

cluster (Exc L5 FEZF2 LOC114676463) had large somata (diameter > 65 μm) and long “tap root” basal 504 

dendrites, canonical hallmarks of Betz cell morphology 17,50. A unique opportunity to record from 505 

neurosurgical tissue excised from human premotor cortex (near the confluence of the precentral and 506 

superior frontal gyri) during an epilepsy treatment surgery using the same methods as for macaque 507 

yielded multiple neurons that mapped transcriptomically to one of the Betz-containing cell types and 508 

had canonical Betz cell morphology (Fig. 7g). Macaque and human ET neurons were grouped for 509 
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physiological analysis because intrinsic properties were not significantly different, and many 510 

corticospinal axons originate from premotor cortex23. 511 

 512 

Shared transcriptomic profiles of mouse, primate, and human L5 ET neurons predicted conservation of 513 

some physiological properties of rodent and primate neurons. Transcriptomically-defined ET neurons 514 

across species expressed high levels of genes encoding an HCN channel-subunit and a regulatory 515 

protein (HCN1 and PEX5L; Fig. 7b). We hypothesized that HCN-dependent membrane properties, 516 

which are used to distinguish rodent ET from IT neurons 51, would similarly separate cell types in 517 

primates. Some primate L5 neurons possessed distinctive HCN-related properties such as a lower 518 

input resistance (RN) and a peak resonance (fR) in voltage response around 3-9 Hz (Fig. 7h,i), similar to 519 

rodent ET neurons. To determine whether HCN-related physiology is a conserved feature of L5 520 

neurons, we grouped all neurons into physiologically defined ET and non-ET neurons based on their RN 521 

and fR. We asked whether these physiologically-defined neurons corresponded to genetically-defined 522 

ET/Betz or non-ET neurons using Patch-seq and cell-type specific mouse lines. For mouse M1, the ET-523 

specific Thy1-YFP21,52 and IT specific Etv1-EGFP53
 mouse lines preferentially labeled physiologically 524 

defined ET and non-ET neurons, respectively (Fig. 7j). For primates, transcriptomically-defined Betz 525 

cells were physiologically defined ET neurons, whereas transcriptomically defined non-ET neurons 526 

were physiologically defined non-ET neurons (Fig. 7k). Thus, there was broad correspondence 527 

between physiologically-defined and genetically-defined ET neurons in both mouse and primate M1. 528 

There were notable differences in physiology between mouse and primate ET neurons, however. A 529 

greater fraction of primate ET neurons exhibited an exceptionally low RN compared to mouse (Fig. 7l). 530 

Additional differences in action potential properties across cell types and species may be explained in 531 

part by differences in the expression of ion channel-related genes (Fig. 7c, Extended Data Fig. 10). 532 

 533 

Most strikingly, primate Betz/ET neurons displayed a distinctive biphasic-firing pattern during long spike 534 

trains. The firing rate of both primate and mouse non-ET neurons decreased to a steady state within 535 
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the first second of a 10 second depolarizing current injection, whereas the firing rate of mouse ET 536 

neurons increased moderately over the same time period (Fig. 7m,n; Extended Data Fig. 10m,n). The 537 

acceleration in rodent ET neurons has been attributed to the expression of Kv1-containing voltage-538 

gated K+ channels that are encoded by genes like the conserved ET gene KCNA1. In macaque and 539 

human ET/Betz neurons, a distinctive biphasic pattern was characterized by an early cessation of firing 540 

followed by a sustained and dramatic increase in firing later in the current injection. Thus, while ET 541 

neurons in both primate and rodent M1 displayed spike frequency acceleration, the temporal dynamics 542 

and magnitude of this acceleration appears to be a unique feature of primate ET/Betz neurons. These 543 

data emphasize how transcriptomic data from this specialized neuron type can be linked to shared and 544 

unique physiological properties across species. 545 

 546 

Discussion 547 

Comparative analysis is a powerful strategy to understand brain structure and function. Species 548 

conservation is strong evidence for functional relevance under evolutionary constraints that can help 549 

identify critical molecular and regulatory mechanisms 54,55. Conversely, divergence indicates adaptive 550 

specialization, which may be essential to understand the mechanistic underpinnings of human brain 551 

function and susceptibility to human-specific diseases. In the current study, we applied a comparative 552 

approach to understand conserved and species-specific features of M1 at the level of cell types using 553 

single-nucleus RNA-seq (Cv3 and SSv4), open chromatin (SNARE-seq2 and ATAC-seq) and DNA-554 

methylation (snmC-seq2) technologies. Integrated analysis of over 450,000 nuclei in human, non-555 

human primates (marmoset, a New World monkey, and to a lesser degree macaque, an Old World 556 

monkey that is evolutionarily more closely related to humans), and mouse (see also companion paper 557 

6) yielded a high-resolution, multimodal classification of cell types in each species, and a coarser 558 

consensus classification conserved between rodent and primate lineages. Robust species conservation 559 

strongly argues for the functional relevance of this consensus cellular architecture. Species 560 
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specializations are also apparent, both in the additional granularity in cell types within species and 561 

differences between conserved cell types. A comparative evolutionary approach provides an anchor 562 

point to define the cellular architecture of any tissue and to discover species-specific adaptations. 563 

 564 

A key result of the current study is the identification of a consensus classification of cell types across 565 

species that allows the comparison of relative similarities in human compared to common mammalian 566 

model organisms in biomedical research. Prior studies have demonstrated that high resolution cellular 567 

taxonomies can be generated in mouse, non-human primate and human cortex, and that there is 568 

generally good concordance across species 2,11. However, inconsistencies in the methods and 569 

sampling depths used made strong conclusions difficult, compounded by the analysis of different 570 

cortical regions in different species. The current study overcame these challenges by focusing on M1, a 571 

functionally and anatomically conserved cortical region across mammals, and comparing a variety of 572 

methods on similarly isolated tissues (and the same specimens from human and marmoset). Several 573 

important points emerged from these integrated analyses. First, with deeper sampling and the same 574 

methodology (snRNA-seq with Cv3), a similar cellular complexity on the order of 100 cell types was 575 

seen in all three species. The highest resolution molecular classification was seen with RNA-seq 576 

compared to epigenomic methods, and among RNA-seq methods with those that allow the most cells 577 

to be analyzed. Strikingly, the molecular classifications were well aligned across all methods tested, 578 

albeit at different levels of resolution as a function of the information content of the assay and the 579 

number of cells profiled. All methods were consistent at the level of subclasses as defined above, both 580 

across methods and species; significantly better alignment was achieved among species based on 581 

transcriptomics, and with epigenomic methods in some subclasses. Mismatches in cellular sampling 582 

affect the ability to compare across species; for example, higher non-neuronal sampling in mouse and 583 

marmoset increased detection of rare cell types compared to human. One important comparison was 584 

between plate-based (SSv4) and droplet-based (Cv3) RNA-seq of human nuclei, where we compared 585 

results between approximately 10,000 SSv4 and 100,000 Cv3 nuclei. On average, SSv4 detected 30% 586 
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more genes per nucleus and enabled comparisons of isoform usage between cell types, albeit with 20-587 

fold greater sequencing depth. However, SSv4 cost 10 times as much as Cv3 and did not allow 588 

detection of additional cell types. 589 

 590 

The snmC-seq2 clustering aligned closely with the transcriptomic classification, although with 591 

significantly lower resolution in rarer subclasses. Hypo-methylated sites correlated with gene 592 

expression and specific transcription factor binding motifs were enriched in cell type specific sites. 593 

Multi-omic SNARE-seq2 measured RNA profiles of nuclei that allowed high confidence assignment to 594 

transcriptomic clusters. Examining accessible chromatin (AC) regions within the same nuclei led to 595 

strong correlations between cell subclass or type gene expression and active regulatory regions of 596 

open chromatin. Using this strategy, gene regulatory activities could be identified within RNA-defined 597 

cell populations (including RNA consensus clusters) that could not be resolved from AC data alone 598 

(Extended Data Fig. 6a, Supplementary Table 15). By joint consideration of these epigenomic 599 

modalities, glutamatergic neurons were found to have more hypo-methylated DMRs and differentially 600 

accessible chromatin, consistent with having larger somata and expressing more genes. Within-601 

species, cell types have many more unique AC sites than uniquely expressed marker genes. At the 602 

same time, there is striking conservation across species of subclass TFBS motif enrichment within AC 603 

and hypo-methylated DMRs. Most subclasses have distinct motifs, although L2/3 and L6 IT and Lamp5 604 

and Sncg subclasses share many motifs and are more clearly distinguished based on gene expression. 605 

Taken together, these results show a robust cell type classification that is consistent at the level of 606 

subclasses both across transcriptomic and chromatin measures and across species, with additional cell 607 

type-level granularity identified with transcriptomics. 608 

 609 

Alignment across species allowed a comparison of relative similarities and differences between 610 

species. A common (and expected) theme was that more closely related species are more similar to 611 

one another. This was true at the level of gene expression and epigenome patterning across cell types, 612 
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and in the precision with which transcriptomically-defined cell types could be aligned across species. 613 

For example, human and marmoset GABAergic types could be aligned at higher resolution than human 614 

and mouse. Human was more similar to macaque than to marmoset. This indicates that cell type 615 

similarity increases as a function of evolutionary distance to our closest common ancestors with mouse 616 

(~70 mya), marmoset (~40 mya), and macaque (~25 mya). Interestingly, many gene expression 617 

differences may change gradually over evolution. This is apparent in the graded changes in expression 618 

levels of genes enriched in L5 ET versus L5 IT neurons and in the reduced performance of cell type 619 

classification based on marker gene expression that is correlated with evolutionary distance between 620 

species. 621 

 622 

Several prominent species differences in cell type proportions were observed. First, the ratio of 623 

glutamatergic excitatory projection neurons compared to GABAergic inhibitory interneurons was 2:1 in 624 

human compared to 3:1 in marmoset and 5:1 in mouse and leads to a profound shift in the overall 625 

excitation-inhibition balance of the cortex. A similar species difference has been described based on 626 

histological measures (reviewed in 28), indicating that snRNA-seq gives a reasonably accurate 627 

measurement of cell type proportions. Surprisingly, the relative proportions of GABAergic subclasses 628 

and types were similar across species. These results suggest a developmental shift in the size of the 629 

GABAergic progenitor pool in the ganglionic eminences or an extended period of neurogenesis and 630 

migration. A decreased proportion of the subcortically targeting L5 ET neurons in human was also 631 

seen, as previously shown in temporal 2 and frontoinsular 12 cortex. This shift likely reflects the 632 

evolutionary increase in cortical neurons relative to their subcortical targets 56 and was less prominent 633 

in M1, suggesting regional variation in the proportion of L5 ET neurons. Finally, a large increase in the 634 

proportion of L2 and L3 IT neurons was seen in human compared to mouse and marmoset. This 635 

increase parallels the disproportionate expansion of human cortical area and supragranular layers that 636 

contain neurons projecting to other parts of the cortex, presumably to facilitate greater corticocortical 637 

communication. Interestingly, L2 and L3 IT neurons appear to be particularly highly variable across 638 
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cortical areas and species, and also are more diverse and specialized in human compared to mouse 639 

(see companion paper 44). 640 

 641 

A striking and somewhat paradoxical observation is the high degree of species specialization of 642 

consensus types. The majority of DEGs between cell types were consistently species-specific. This 643 

result suggests that the conserved cellular features of a cell type are largely due to a minority of DEGs 644 

with conserved expression patterns. The current study demonstrates this point for one of the most 645 

distinctive brain cell types, the cortical Pvalb-expressing GABAergic ChC. ChCs in mouse, non-human 646 

primate, and human have 100-150 genes with highly enriched expression compared to other Pvalb-647 

expressing interneurons (BCs); however, only 25 of these ChC-enriched genes are shared across 648 

species. This small overlapping gene set includes several transcription factors and a member of the 649 

netrin family (UNC5B) that could be responsible for AIS targeting. Binding sites for these TFs are 650 

enriched in ChC cluster regions of open chromatin and in hypo-methylated regions around ChC-651 

enriched genes. While these associations between genes and cellular phenotypes for conserved and 652 

divergent features remain to be tested, a comparative strategy can identify these core conserved genes 653 

and make strong predictions about the TF code for cell types and the genes responsible for their 654 

evolutionarily constrained functions.  655 

 656 

M1 is an agranular cortex lacking a L4, although a recent study demonstrated that there are neurons 657 

with L4-like properties in mouse 14. Here we confirm and extend this finding in human M1. We find a L4-658 

like neuron type in M1 that aligns to a L4 type in human MTG and is scattered between the deep part of 659 

L3 and the superficial part of L5 where L4 would be if aggregated into a layer. However, MTG 660 

contained several additional L4 types not found in M1, and with a much higher frequency. The human 661 

M1 L4-like type is part of the L5 IT_1 consensus cluster that includes several IT types in all species, 662 

including two L4-like types in mouse (L4/5 IT_1 and L4/5 IT_2) that also express the canonical L4 663 

marker Rorb (see companion paper 6). Therefore, it appears that M1 has L4-like cells from a 664 
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transcriptomic perspective, but only a subset of the types compared to granular cortical areas, at much 665 

lower density, and scattered rather than aggregated into a tight layer. 666 

 667 

The most distinctive cellular hallmark of M1 in primates and cats is the enormous Betz cell, which 668 

contributes to direct corticospinal connections to spinal motoneurons in primates that participate in fine 669 

motor control 15,16,57–59. Intracellular recordings from cats have shown highly distinctive characteristics 670 

including HCN channel-related membrane properties, spike frequency acceleration, and extremely fast 671 

maintained firing rates 19,20. However, they have never been recorded in primates using patch clamp 672 

physiology due to the high degree of myelination in M1 that prevents their visualization, and the inability 673 

to obtain motor cortex tissue from neurosurgical procedures which are careful to be function-sparing. A 674 

goal of the current project was to identify the transcriptomic cluster corresponding to Betz cells and use 675 

this to understand gene expression that may underlie their distinctive properties and species 676 

specializations. We have recently taken a similar approach to study von Economo neurons in the 677 

fronto-insular cortex, showing they are found within a transcriptomic class consisting of ET neurons 12. 678 

Betz cells are classical ET neurons that, together with the axons of smaller corticospinal neurons, make 679 

up part of the pyramidal tract from the cortex to the spinal cord 16,60. We show that neurons with Betz 680 

cell morphology label with markers for the M1 ET clusters. Like von Economo neurons, there does not 681 

appear to be an exclusively Betz transcriptomic type. Rather, M1 ET clusters are not exclusive for 682 

neurons with Betz morphology, and we find more than one ET cluster contains neurons with Betz 683 

morphology. 684 

 685 

Although comparative transcriptomic alignments provide strong evidence for functional similarity, the 686 

distinctions between corticospinal neurons across species or even between L5 ET and IT neuron types 687 

in primates or humans has not been demonstrated physiologically. We recently developed a suite of 688 

methodologies for studying specific neuron types in human and non-human tissues, including triple 689 

modality Patch-seq to combine physiology, morphology and transcriptome analysis, acute and cultured 690 
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slice physiology in adult human neurosurgical resections and macaque brain, and AAV-based neuronal 691 

labeling to allow targeting of neurons in highly myelinated tissues (companion paper 44; 61 . Specifically, 692 

these tools allow the targeting of L5 neurons in mouse and non-human primate and the assignment of 693 

neurons to their transcriptomic types using Patch-seq, which we facilitated by generating and aligning a 694 

L5 transcriptomic classification in macaque where such analyses could be performed. We show here 695 

that several of the characteristic features of L5 ET versus IT neurons are conserved, and can be 696 

reliably resolved from one another in mouse and non-human primate. Furthermore, macaque neurons 697 

with Betz-like morphologies mapped to the Betz-containing clusters. However, as predicted by 698 

differences in ion channel-related gene expression, not all physiological features were conserved 699 

between macaque and mouse ET neurons. Betz/ET neurons had the distinctive pauses, bursting and 700 

spike-frequency acceleration described previously in cats but not seen in rodents 19,20. Finally, we had 701 

access to an extremely rare human neurosurgical case where a region of premotor cortex was 702 

resected. Similar to macaque M1, this premotor region contained large neurons with characteristic 703 

Betz-like morphology that mapped transcriptomically to the Betz-containing clusters. Together these 704 

results highlight the predictive power of transcriptomic mapping and cross-species inference of cell 705 

types for L5 pyramidal neurons including the Betz cells. Furthermore, these data are consistent with 706 

observations that Betz cells may not in fact be completely restricted to M1 but distribute across other 707 

proximal motor-related areas that contribute to the pyramidal tract 62. Finally, a number of ion channels 708 

that may contribute to conserved ET versus IT features as well as species specializations of Betz cell 709 

function were identified that provide candidate genes to explore gene-function relationships. For 710 

example, axon guidance-associated genes are enriched in Betz-containing ET neuron types in 711 

primates, possibly explaining why Betz cells in primates directly contact spinal motor neurons rather 712 

than spinal interneurons as in rodents. Thus, as the comparative approach is helpful in identifying core 713 

conserved molecular programs, it may be equally valuable to understand what is different in human or 714 

can be well modeled in closer non-human primate relatives. This is particularly relevant in the context of 715 
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Betz cells and other ET neuron types that are selectively vulnerable in amyotrophic lateral sclerosis, 716 

some forms of frontotemporal dementia, and other neurodegenerative conditions. 717 

 718 
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Figure 1. Molecular taxonomy of cell types in M1 of human, marmoset, and mouse. a, M1 917 

highlighted in lateral views of neocortex across species. Nissl-stained sections of M1 annotated with 918 

layers and showing the relative expansion of cortical thickness, particularly L2 and L3 in primates, and 919 

large pyramidal neurons or ‘Betz’ cells in human L5 (arrowhead). Scale bars, 100 µm. b, Phylogeny of 920 

species and number of nuclei included in analysis for each molecular assay. All assays used nuclei 921 

isolated from the same donors for human and marmoset. SSv4, SMART-Seq v4; Cv3, Chromium v3; 922 

mya, millions of years ago. c-e, Dendrograms of cell types defined by RNA-seq (Cv3) for human (c), 923 

marmoset (d), and mouse (e) and annotated with cluster frequency and dissected layer (human only). 924 

Epigenomic clusters (in rows) aligned to RNA-seq clusters as indicated by horizontal black bars. 925 

Asterisks denote RNA clusters that lack corresponding epigenomic clusters. f, Relative proportions of 926 

cells in several classes and subclasses were significantly different between species based on an 927 

ANOVA followed by Tukey’s HSD tests (asterisk, adjusted P < 0.05). 928 
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 930 

Figure 2. Evolution of GABAergic neuron types across species. a, UMAP projection of integrated 931 

snRNA-seq data from human, marmoset, and mouse GABAergic neurons. Filled outlines indicate cell 932 

subclasses. b, Venn diagrams indicating the number of shared DEGs across species by subclass. 933 
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DEGs were determined by ROC tests of each subclass versus all other GABAergic subclasses within a 934 

species. c, Heatmap of all DEGs from b ordered by subclass and species enrichment. Heatmap shows 935 

gene expression scaled by column for up to 50 randomly sampled nuclei from each subclass for each 936 

species. d, UMAP projection from a, separated by species, and colored by within-species clusters. e, 937 

Cluster overlap heatmap showing the proportion of nuclei in each pair of species clusters that are 938 

mixed in the cross-species integrated space. Cross-species consensus clusters are indicated by 939 

labeled blue boxes. Human clusters (rows) are ordered by the dendrogram reproduced from Figure 1c. 940 

Marmoset (left columns) and mouse (right columns) clusters are ordered to align with human clusters. 941 

Color bars at top and left indicate subclasses of within-species clusters. Asterisks indicate marmoset 942 

and mouse Meis2 subclasses, which were not present in human. f, Dendrogram of GABAergic neuron 943 

consensus clusters with edges colored by species mixture (grey, well mixed). Below: Estimated spatial 944 

distributions of clusters based on layer dissections in human (top) and mouse (bottom). g, 945 

Dendrograms of pairwise species integrations, colored by subclass. Bar plots quantifying well-mixed 946 

leaf nodes. Significant differences (adjusted P < 0.05, Tukey’s HSD test) between species are indicated 947 

for each subclass. h, Scatter plots of MetaNeighbor analysis showing the performance (AUROC) of 948 

gene-sets to classify GABAergic neurons within and between species. Blue lines, linear regression fits; 949 

black lines, mean within species performance; grey lines, performance equivalent to chance. 950 
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Figure 3. Dual-omic expression and chromatin accessibility reveals regulatory processes 953 

defining M1 cell types. a-b UMAP visualizations of human (a) and marmoset (b) M1 SNARE-Seq2 954 

data (2 individuals per species) indicating both subclass and accessibility-level cluster identities. c, Dot 955 

plot showing proportion and scaled average accessibility of differentially accessible regions (DARs) 956 

identified between human AC clusters (adjusted P < 0.001, log-fold change > 1, top 5 distinct sites per 957 

cluster). d, Proportion of total human or marmoset DARs identified between subclasses (adjusted P < 958 

0.001, log-fold change > 1) after normalization to cluster sizes. e-f, Connection plots for cis-co-959 

accessible network (CCAN) sites associated with the human GAD2 (e) and CUX2 (f) genes. 960 

Corresponding AC read pile-up tracts for GABAergic and select glutamatergic subclasses are shown. 961 

Right panels are dot plots showing the percentage of expressing nuclei and average gene expression 962 

values (log scale) for GAD2 or CUX2 within each of the clusters indicated. g, UMAP plots as in Figure 963 

5a (human) showing (scaled from low—gray to high—red) CUX2 gene expression (RNA) and activity 964 

level predicted from AC data. UMAP plots for activity level of the EGR3-binding motif, identified using 965 

chromVAR and found to be enriched within CUX2 co-accessible sites, and the corresponding 966 

expression (RNA) of the EGR3 gene are shown. h, Heatmaps for human (top) and marmoset (bottom) 967 

showing TFBS enrichments, according to the scheme outlined in (i), within genes differentially 968 

expressed between subclasses and having at least two cis-co-accessible sites. Left panels show 969 

scaled average (log scale) gene expression values (RNA) for the top DEGs (adjusted P < 0.05, log-fold 970 

change > 1, top 10 distinct sites per cluster visualized), middle panels show the corresponding scaled 971 

average cicero gene activity scores and the right panels show scaled values for the corresponding top 972 

distinct chromVAR TFBS activities (adjusted P < 0.05, log-fold change > 0.5, top 10 distinct sites per 973 

cluster visualized). j, Correlation plots comparing scaled average gene expression profiles (left panel) 974 

or chromVAR TFBS activity scores (right panel) between human and marmoset matched subclasses. 975 
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 977 

Figure 4. DNA methylation differences across clusters and species. a, UMAP visualization of 978 

human M1 DNAm-seq (snmC-seq2) data indicating both subclass and DNAm cluster identities. b,c, 979 

UMAP visualization of integration between DNAm-seq and RNA-seq of human glutamatergic neurons 980 

colored by cell subclass for all nuclei (b) or only nuclei profiled with DNAm-seq (c). d, Barplots of the 981 

relative lengths of hypo- and hyper-methylated DMRs among cell subclasses across three species 982 

normalized by cytosine coverage genome-wide (Methods). Total number of DMRs for each subclass 983 
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are listed (k, thousands). e, Distinct TF motif enrichment for L5 IT and Lamp5 subclasses across 984 

species. f, t-SNE visualization of subclass TF motif enrichment that is conserved across species. 985 
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 987 

Figure 5. L4-like neurons identified in M1 based on cross-areal cell type homology. a, t-SNE 988 

projection of glutamatergic neuronal nuclei from M1 and MTG based on similarity of integrated 989 

expression levels. Nuclei are intermixed within all cell subclasses. b, Nuclei annotated based on the 990 

relative depth of the dissected layer and within-area cluster. A subset of clusters from superficial layers 991 

are highlighted. c, Proportion of nuclei in each cluster that overlap between areas. MTG clusters 992 

COL22A1 and ESR1 map almost one-to-one with M1 clusters OTOGL and LINC01202, respectively. d, 993 

Estimated relative depth from pia of M1 glutamatergic clusters and closest matching MTG neurons 994 

based on similarity of integrated expression. Mean (points) and standard deviation (bars) of the 995 

dissected layer are shown for each cluster and approximate layer boundaries are indicated for M1 and 996 

MTG. e, Magnified view of L4-like clusters in M1 and MTG. Note that MTG clusters FILIP1L and 997 

TWIST2 have little overlap with any M1 clusters. f, Overlap of M1 and MTG clusters in integrated space 998 

identifies two one-to-one cell type homologies and two MTG-specific clusters. g, ISH labeling of MTG 999 

and M1 clusters quantifies differences in layer distributions for homologous types between cortical 1000 

areas. Cells (red dots) in each cluster were labeled using the markers listed below each representative 1001 
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inverted image of a DAPI-stained cortical column. h, ISH estimated frequencies of homologous clusters 1002 

shows M1 has a 4-fold sparser L4-like type and similarly rare deep L3 type. 1003 
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 1005 

Figure 6. Chandelier neurons have a core set of conserved molecular features. a, Representative 1006 

ultrastructure reconstructions of a ChC and BC from human (left), macaque (middle), and mouse 1007 

(right). Insets show higher magnification of ChC axon cartridges. Macaque reconstructions were from 1008 

source data available in Neuromorpho 63,64. Mouse cells also appear in 65. b, Venn diagram indicating 1009 
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the number of shared ChC-enriched genes across species (top). DEGs were determined by a ROC test 1010 

of ChCs against BCs within a species. Heatmap showing scaled expression of the 25 conserved DEGs 1011 

in 100 randomly selected ChC and BC nuclei for each species (bottom); transcription factors are 1012 

colored in blue. c, Genome browser tracks showing UNC5B locus in human (left) and mouse (right) 1013 

ChCs and BCs. Tracks show aligned transcripts, regions of accessible chromatin, CGN methylation 1014 

rate, and CHN methylation rate. Yellow highlights mark examples of ChC-enriched regions of 1015 

accessible chromatin with hypo-methylated CGN. d, Heatmaps of TF gene body hypo-methylation 1016 

(mCH) state (bottom half, red) and genome-wide enrichment of TF motif across mCG DMRs in ChCs 1017 

and BCs (top half, blue). e, Scaled TFBS activities identified from SNARE-seq2 for human and 1018 

marmoset according to the scheme in Figure 4i and from mouse snATAC-seq data, using genes 1019 

enriched in ChC versus BC (Supplementary Table 19). Rows correspond to BC and ChC clusters 1020 

identified in snATAC-seq and SNARE-seq2 datasets. 1021 
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Figure 7. Betz cells have specialized molecular and physiological properties. a, Upset plot 1024 

showing conserved and divergent L5 ET glutamatergic neuron marker genes. DEGs were determined 1025 

by performing a ROC test between L5 ET and L5 IT within each species. b, c, Violin plots of ion 1026 

channel-related gene expression for genes that are enriched in (b) ET versus IT neurons and in (c) 1027 

primate versus mouse ET neurons. Protein names are in parentheses. d, Line graph of 131 genes with 1028 

expression enrichment in L5 ET versus IT neurons in human (>0.5 log2 fold-change) that decreases 1029 

with evolutionary distance from human. e, Two example photomicrographs of ISH labeled, SMI-32 IF 1030 

stained Betz cells in L5 human M1. Cells corresponding to two L5 ET clusters are labeled based on two 1031 

sets of marker genes. Insets show higher magnification of ISH in corresponding cells. Asterisks mark 1032 

lipofuscin; scale bar, 20 µm. f, g, Exemplar biocytin fills obtained from patch-seq experiments in 1033 

human, macaque and mouse brain slices. The example human and macaque neurons mapped to a 1034 

Betz cell transcriptomic cell type. Scale bars, 200 µm. g, MRI image in sagittal and coronal planes and 1035 

approximate location of excised premotor cortex tissue (yellow lines) and adjacent M1. h, Voltage 1036 

responses to a chirp stimulus for the neurons shown in f and g (left human neuron). i, Corresponding 1037 

ZAP profiles. All neurons were clustered into putative ET and non-IT neurons based upon their 1038 

resonant frequency and input resistance. j, For mouse L5 neurons (Thy1-YFP line H, n=117; Etv1-1039 

EGFP line, n=123; unlabeled, n=21) 99.2 % of neurons in the Etv1-EGFP line possessed non-ET-like 1040 

physiology, whereas, 91.4% of neurons in the Thy1-YFP line H had ET-like physiology. k, For primate 1041 

L5 neurons (human, n=8, macaque n=42), all transcriptomically-defined Betz cells (human, n=4, 1042 

macaque n=3) had ET-like physiology (human n=6, macaque, n=14), whereas all transcriptomically-1043 

defined non-ET neurons (human n=2, macaque n=3) had non-ET like physiology (human n=2, 1044 

macaque n=28). l, Cumulative probability distribution of L5 neuron input resistance for primate versus 1045 

mouse. * p = 0.0064, Kolmogorov-Smirnov test between mouse and primate ET neurons. m, Example 1046 

voltage responses to 10s step current injections for monkey, mouse and human ET and non-ET 1047 

neurons. The amplitude of the current injection was adjusted to produce ~5 spikes during the first 1048 

second. n, Raster plot (below) and average firing rate (above) during 1 s epochs during the 10s DC 1049 
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current injection. Primate ET neurons (pooled data from human and macaque) displayed a distinctive 1050 

decrease followed by a pronounced increase in firing rate over the course of the current injection. 1051 

Notably, a similar biphasic-firing pattern is observed in macaque corticospinal neurons in vivo during 1052 

prolonged motor movements 66, suggesting that the firing pattern of these neurons during behavior is 1053 

intimately tied to their intrinsic membrane properties. 1054 

  1055 
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Methods 1056 

Ethical compliance 1057 

Postmortem adult human brain tissue was collected after obtaining permission from decedent next-of-1058 

kin. Postmortem tissue collection was performed in accordance with the provisions of the United States 1059 

Uniform Anatomical Gift Act of 2006 described in the California Health and Safety Code section 7150 1060 

(effective 1/1/2008) and other applicable state and federal laws and regulations. The Western 1061 

Institutional Review Board reviewed tissue collection processes and determined that they did not 1062 

constitute human subjects research requiring institutional review board (IRB) review. 1063 

 1064 

Postmortem human tissue specimens 1065 

Male and female donors 18–68 years of age with no known history of neuropsychiatric or neurological 1066 

conditions (‘control’ cases) were considered for inclusion in the study (Extended Data Table 1). Routine 1067 

serological screening for infectious disease (HIV, Hepatitis B, and Hepatitis C) was conducted using 1068 

donor blood samples and only donors negative for all three tests were considered for inclusion in the 1069 

study. Only specimens with RNA integrity (RIN) values ≥7.0 were considered for inclusion in the study. 1070 

Postmortem brain specimens were processed as previously described 2. Briefly, coronal brain slabs 1071 

were cut at 1cm intervals and frozen for storage at -80°C until the time of further use. Putative hand and 1072 

trunk-lower limb regions of the primary motor cortex were identified, removed from slabs of interest, and 1073 

subdivided into smaller blocks. One block from each donor was processed for cryosectioning and 1074 

fluorescent Nissl staining (Neurotrace 500/525, ThermoFisher Scientific). Stained sections were 1075 

screened for histological hallmarks of primary motor cortex. After verifying that regions of interest 1076 

contained M1, blocks were processed for nucleus isolation as described below. 1077 

 1078 

Human RNA-sequencing, QC and clustering 1079 
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SMART-seq v4 nucleus isolation and sorting. Vibratome sections were stained with fluorescent Nissl 1080 

permitting microdissection of individual cortical layers (dx.doi.org/10.17504/protocols.io.7aehibe). 1081 

Nucleus isolation was performed as previously described (dx.doi.org/10.17504/protocols.io.ztqf6mw). 1082 

NeuN staining was carried out using mouse anti-NeuN conjugated to PE (FCMAB317PE, EMD 1083 

Millipore) at a dilution of 1:500. Control samples were incubated with mouse IgG1k-PE Isotype control 1084 

(BD Biosciences, 555749). DAPI (4',6-diamidino-2-phenylindole dihydrochloride, ThermoFisher 1085 

Scientific, D1306) was applied to nuclei samples at a concentration of 0.1µg/ml. Single-nucleus sorting 1086 

was carried out on either a BD FACSAria II SORP or BD FACSAria Fusion instrument (BD 1087 

Biosciences) using a 130 µm nozzle. A standard gating strategy based on DAPI and NeuN staining was 1088 

applied to all samples as previously described 2. Doublet discrimination gates were used to exclude 1089 

nuclei aggregates. 1090 

 1091 

SMART-seq v4 RNA-sequencing. The SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing (Takara 1092 

#634894) was used per the manufacturer’s instructions. Standard controls were processed with each 1093 

batch of experimental samples as previously described. After reverse transcription, cDNA was amplified 1094 

with 21 PCR cycles. The NexteraXT DNA Library Preparation (Illumina FC-131-1096) kit with 1095 

NexteraXT Index Kit V2 Sets A-D (FC-131-2001, 2002, 2003, or 2004) was used for sequencing library 1096 

preparation. Libraries were sequenced on an Illumina HiSeq 2500 instrument using Illumina High 1097 

Output V4 chemistry. 1098 

 1099 

SMART-seq v4 gene expression quantification. Raw read (fastq) files were aligned to the GRCh38 1100 

human genome sequence (Genome Reference Consortium, 2011) with the RefSeq transcriptome 1101 

version GRCh38.p2 (current as of 4/13/2015) and updated by removing duplicate Entrez gene entries 1102 

from the gtf reference file for STAR processing. For alignment, Illumina sequencing adapters were 1103 

clipped from the reads using the fastqMCF program. After clipping, the paired-end reads were mapped 1104 

using Spliced Transcripts Alignment to a Reference (STAR) using default settings. Reads that did not 1105 
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map to the genome were then aligned to synthetic construct (i.e. ERCC) sequences and the E. coli 1106 

genome (version ASM584v2). Quantification was performed using summerizeOverlaps from the R 1107 

package GenomicAlignments. Expression levels were calculated as counts per million (CPM) of exonic 1108 

plus intronic reads. 1109 

 1110 

10x Chromium RNA-sequencing. Nucleus isolation for 10x Chromium RNA-sequencing was conducted 1111 

as described (dx.doi.org/10.17504/protocols.io.y6rfzd6). After sorting, single-nucleus suspensions were 1112 

frozen in a solution of 1X PBS, 1% BSA, 10% DMSO, and 0.5% RNAsin Plus RNase inhibitor 1113 

(Promega, N2611) and stored at -80°C. At the time of use, frozen nuclei were thawed at 37°C and 1114 

processed for loading on the 10x Chromium instrument as described 1115 

(dx.doi.org/10.17504/protocols.io.nx3dfqn). Samples were processed using the 10x Chromium Single-1116 

Cell 3’ Reagent Kit v3. 10x chip loading and sample processing was done according to the 1117 

manufacturer’s protocol. Gene expression was quantified using the default 10x Cell Ranger v3 pipeline 1118 

except substituting the curated genome annotation used for SMART-seq v4 quantification. Introns were 1119 

annotated as “mRNA”, and intronic reads were included in expression quantification. 1120 

 1121 

Quality control of RNA-seq data. Nuclei were included for analysis if they passed all QC criteria.  1122 

SMART-seq v4 criteria: 1123 

> 30% cDNA longer than 400 base pairs  1124 

> 500,000 reads aligned to exonic or intronic sequence  1125 

> 40% of total reads aligned  1126 

> 50% unique reads  1127 

> 0.7 TA nucleotide ratio 1128 

Cv3 criteria:  1129 

> 500 (non-neuronal nuclei) or > 1000 (neuronal nuclei) genes detected  1130 

< 0.3 doublet score  1131 
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 1132 

Clustering RNA-seq data. Nuclei passing QC criteria were grouped into transcriptomic cell types using 1133 

a previously reported iterative clustering procedure (Tasic et al. 2018; Hodge, Bakken et al., 2019). 1134 

Briefly, intronic and exonic read counts were summed, and log2-transformed expression was centered 1135 

and scaled across nuclei. X- and Y-chromosomes and mitochondrial genes were excluded to avoid 1136 

nuclei clustering based on sex or nuclei quality. DEGs were selected, principal components analysis 1137 

(PCA) reduced dimensionality, and a nearest neighbor graph was built using up to 20 principal 1138 

components. Clusters were identified with Louvain community detection (or Ward's hierarchical 1139 

clustering if N < 3000 nuclei), and pairs of clusters were merged if either cluster lacked marker genes. 1140 

Clustering was applied iteratively to each subcluster until clusters could not be further split. 1141 

 1142 

Cluster robustness was assessed by repeating iterative clustering 100 times for random subsets of 1143 

80% of nuclei. A co-clustering matrix was generated that represented the proportion of clustering 1144 

iterations that each pair of nuclei were assigned to the same cluster. We defined consensus clusters by 1145 

iteratively splitting the co-clustering matrix as described (Tasic et al. 2018; Hodge, Bakken et al., 2019). 1146 

The clustering pipeline is implemented in the R package “scrattch.hicat”, and the clustering method is 1147 

provided by the “run_consensus_clust” function (https://github.com/AllenInstitute/scrattch.hicat). 1148 

 1149 

Clusters were curated based on QC criteria or cell class marker expression (GAD1, SLC17A7, 1150 

SNAP25). Clusters were identified as donor-specific if they included fewer nuclei sampled from donors 1151 

than expected by chance. To confirm exclusion, clusters automatically flagged as outliers or donor-1152 

specific were manually inspected for expression of broad cell class marker genes, mitochondrial genes 1153 

related to quality, and known activity-dependent genes. 1154 

 1155 

Marmoset sample processing and nuclei isolation 1156 
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Marmoset experiments were approved by and in accordance with Massachusetts Institute of 1157 

Technology IACUC protocol number 051705020. Two adult marmosets (2.3 and 3.1 years old; one 1158 

male, one female; Extended Data Table 2) were deeply sedated by intramuscular injection of ketamine 1159 

(20-40 mg/kg) or alfaxalone (5-10 mg/kg), followed by intravenous injection of sodium pentobarbital 1160 

(10–30 mg/kg). When pedal withdrawal reflex was eliminated and/or respiratory rate was diminished, 1161 

animals were transcardially perfused with ice-cold sucrose-HEPES buffer. Whole brains were rapidly 1162 

extracted into fresh buffer on ice. Sixteen 2-mm coronal blocking cuts were rapidly made using a 1163 

custom-designed marmoset brain matrix. Coronal slabs were snap-frozen in liquid nitrogen and stored 1164 

at -80°C until use. 1165 

  1166 

As with human samples, M1 was isolated from thawed slabs using fluorescent Nissl staining 1167 

(Neurotrace 500/525, ThermoFisher Scientific). Stained sections were screened for histological 1168 

hallmarks of primary motor cortex. Nuclei were isolated from the dissected regions following this 1169 

protocol: https://www.protocols.io/view/extraction-of-nuclei-from-brain-tissue-2srged6 and processed 1170 

using the 10x Chromium Single-Cell 3’ Reagent Kit v3. 10x chip loading and sample processing was 1171 

done according to the manufacturer’s protocol. 1172 

  1173 

Marmoset RNA-sequencing, QC and clustering 1174 

RNA-sequencing. Libraries were sequenced on NovaSeq S2 instruments (Illumina). Raw sequencing 1175 

reads were aligned to calJac3. Mitochondrial sequence was added into the published reference 1176 

assembly. Human sequences of RNR1 and RNR2 (mitochondrial) and RNA5S (ribosomal), were 1177 

aligned using gmap to the marmoset genome and added to the calJac3 annotation. Reads that mapped 1178 

to exons or introns of each assembly were assigned to annotated genes. Libraries were sequenced to a 1179 

median read depth of 5.95 reads per unique molecular index (UMI). The alignment pipeline can be 1180 

found at https://github.com/broadinstitute/Drop-seq. 1181 

  1182 
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Cell filtering. Cell barcodes were filtered to distinguish true nuclei barcodes from empty beads and PCR 1183 

artifacts by assessing proportions of ribosomal and mitochondrial reads, ratio of intronic/exonic reads (> 1184 

50% of intronic reads), library size (> 1000 UMIs) and sequencing efficiency (true cell barcodes have 1185 

higher reads/UMI). The resulting digital gene expression matrix (DGE) from each library was carried 1186 

forward for clustering. 1187 

  1188 

Clustering. Clustering analysis proceeded as in Krienen et al (2019, bioRxiv). Briefly, independent 1189 

component analysis. (ICA, using the fastICA package in R) was performed jointly on all marmoset 1190 

DGEs after normalization and variable gene selection as in (Saunders et al 2018, Cell). The first-round 1191 

clustering resulted in 15 clusters corresponding to major cell classes (neurons, glia, endothelial). Each 1192 

cluster was curated as in (Saunders et al 2018, Cell) to remove doublets and outliers. Independent 1193 

components (ICs) were partitioned into those reflecting artifactual signals (e.g. those for which cell 1194 

loading indicated replicate or batch effects). Remaining ICs were used to determine clustering (Louvain 1195 

community detection algorithm igraph package in R); for each cluster nearest neighbor and resolution 1196 

parameters were set to optimize 1:1 mapping between each IC and a cluster. 1197 

 1198 

Mouse snRNA-seq data generation and analysis 1199 

Single-nuclei were isolated from mouse primary motor cortex, gene expression was quantified using 1200 

Cv3 and SSv4 RNA-sequencing, and transcriptomic cell types and dendrogram were defined as 1201 

described in a companion paper 6. 1202 

 1203 

Integrating and clustering human Cv3 and SSv4 snRNA-seq datasets 1204 

To establish a set of human consensus cell types, we performed a separate integration of snRNA-seq 1205 

technologies on the major cell classes (Glutamatergic, GABAergic, and Non-neuronal). Broadly, this 1206 

integration is comprised of 6 steps: (1) subsetting the major cell class from each technology (e.g. Cv3 1207 

GABAergic and SSv4 GABAergic); (2) finding marker genes for all clusters within each technology; (3) 1208 
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integrating both datasets with Seurat’s standard workflow using marker genes to guide integration 1209 

(Seurat 3.1.1); (4) overclustering the data to a greater number of clusters than were originally identified 1210 

within a given individual dataset; (5) finding marker genes for all integrated clusters; and (6) merging 1211 

similar integrated clusters together based on marker genes until all merging criteria were sufficed, 1212 

resulting in the final human consensus taxonomy. 1213 

 1214 

More specifically, each expression matrix was log2(CPM + 1) transformed then placed into a Seurat 1215 

object with accompanying metadata. Variable genes were determined by downsampling each 1216 

expression matrix to a maximum of 300 nuclei per scrattch.hicat-defined cluster (from a previous step; 1217 

see scrattch.hicat clustering) and running select_markers (scrattch.io 0.1.0) with n set to 20, to 1218 

generate a list of up to 20 marker genes per cluster. The union of the Cv3 and SSv4 gene lists were 1219 

then used as input for anchor finding, dimensionality reduction, and Louvain clustering of the full 1220 

expression matrices. We used 100 dimensions for steps in the workflow, and 100 random starts during 1221 

clustering. Louvain clustering was performed to overcluster the dataset to identify more integrated 1222 

clusters than the number of scrattch.hicat-defined clusters. For example, GABAergic neurons had 79 1223 

and 37 scrattch.hicat-defined clusters, 225 overclustered integrated clusters, and 72 final human 1224 

consensus clusters after merging for Cv3 and SSv4 datasets, respectively. To merge the overclustered 1225 

integrated clusters, up to 20 marker genes were found for each cluster to establish the neighborhoods 1226 

of the integrated dataset. Clusters were then merged with their nearest neighbor if there were not a 1227 

minimum of ten Cv3 and two SSv4 nuclei in a cluster, and a minimum of 4 DEGs that distinguished the 1228 

query cluster from the nearest neighbor (note: these were the same parameters used to perform the 1229 

initial scrattch.hicat clustering of each dataset). 1230 

 1231 

Integrating and clustering MTG and M1 SSv4 snRNA-seq datasets 1232 

To compare cell types between our M1 human cell type taxonomy and our previously described human 1233 

MTG taxonomy 2, we used Seurat’s standard integration workflow to perform a supervised integration 1234 
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of the M1 and MTG SSv4 datasets. Intronic and exonic reads were summed into a single expression 1235 

matrix for each dataset, CPM normalized, and placed into a Seurat object with accompanying 1236 

metadata. All nuclei from each major cell class were integrated and clustered separately. Up to 100 1237 

marker genes for each cluster within each dataset were identified, and the union of these two gene lists 1238 

was used as input to guide alignment of the two datasets during integration, dimensionality reduction, 1239 

and clustering steps. We used 100 dimensions for all steps in the workflow. 1240 

 1241 

Integrating Cv3 snRNA-seq datasets across species  1242 

To identify homologous cell types across species, we used Seurat’s SCTransform workflow to perform 1243 

a separate supervised integration on each cell class across species. Raw expression matrices were 1244 

reduced to only include genes with one-to-one orthologs defined in the three species (14,870 genes; 1245 

downloaded from NCBI Homologene in November, 2019) and placed into Seurat objects with 1246 

accompanying metadata. To avoid having one species dominate the integrated space and to account 1247 

for potential differences in each species’ clustering resolution, we downsampled the number of nuclei to 1248 

have similar numbers across species at the subclass level (e.g. Lamp5, Sst, L2/3 IT, L6b, etc.). The 1249 

species with the largest number of clusters under a given subclass was allowed a maximum of 200 1250 

nuclei per cluster. The remaining species then split this theoretical maximum (200 nuclei times the max 1251 

number of clusters under subclass) evenly across their clusters. For example, the L2/3 IT subclass had 1252 

8, 4, and 3 clusters for human, marmoset, and mouse, respectively. All species were allowed a 1253 

maximum of 1600 L2/3 IT nuclei total; or a maximum of 200 human, 400 marmoset, and 533 mouse 1254 

nuclei per cluster. To integrate across species, all Seurat objects were merged and normalized using 1255 

Seurat’s SCTransform function. To better guide the alignment of cell types from each species, we found 1256 

up to 100 marker genes for each cluster within a given species. We used the union of these gene lists 1257 

as input for integration and dimensionality reduction steps, with 30 dimensions used for integration and 1258 

100 for dimensionality reduction and clustering. Clustering the human-marmoset-mouse integrated 1259 

space provided an additional quality control mechanism, revealing numerous small, species-specific 1260 
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integrated clusters that contained only low-quality nuclei (low UMIs and genes detected). We excluded 1261 

4836 nuclei from the marmoset dataset that constituted low-quality integrated neuronal clusters. 1262 

 1263 

To identify which clusters in our three species taxonomy aligned with macaque clusters from our L5 1264 

dissected Cv3 dataset, we performed an identical integration workflow on Glutamatergic neurons as 1265 

was used for the three species integration. Macaque clusters were assigned subclass labels based on 1266 

their corresponding alignment with subclasses from the other species. The annotated L5 dissected 1267 

macaque Cv3 dataset was then used as a reference for mapping macaque patch-seq nuclei (see 1268 

section below). 1269 

 1270 

Estimation of cell type homology 1271 

To identify homologous groups from different species, we applied a tree-based method 1272 

(https://github.com/AllenInstitute/BICCN_M1_Evo and package: 1273 

https://github.com/huqiwen0313/speciesTree). In brief, the approach consists of 4 steps: 1) metacell 1274 

clustering, 2) hierarchical reconstruction of a metacell tree, 3) measurements of species mixing and 1275 

stability of splits and 4) dynamic pruning of the hierarchical tree. 1276 

 1277 

Firstly, to reduce noise in single-cell datasets and to remove species-specific batch effects, we 1278 

clustered cells into small highly similar groups based on the integrated matrix generated by Seurat, as 1279 

described in the previous section. These cells were further aggregated into metacells and the 1280 

expression values of the metacells were calculated by averaging the gene expression of individual cells 1281 

that belong to each metacell. Correlation was calculated based on the metacell gene expression matrix 1282 

to infer the similarity of each metacell cluster. Then hierarchical clustering was performed based on the 1283 

metacell gene expression matrix using Ward’s method. For each node or corresponding branch in the 1284 

hierarchical tree, we calculated 3 measurements, and the hierarchical tree was visualized based on 1285 

these measurements: 1) Cluster size visualized as the thickness of branches in the tree; 2) Species 1286 
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mixing calculated based on entropy of the normalized cell distribution and visualized as the color of 1287 

each node and branch; 3) Stability of each node. The entropy of cells was calculated as: 𝐻 =1288 

−∑! 𝑝!𝑙𝑜𝑔𝑝!, where pi is the probability of cells from one species appearing among all the cells in a 1289 

node. We assessed the node stability by evaluating the agreement between the original hierarchical 1290 

tree and a result on a subsampled dataset calculated based on the optimal subtree in the subsampled 1291 

hierarchical trees derived from subsampling 95% of cells in the original dataset. The entire subsampling 1292 

process was repeated 100 times and the mean stability score for every node in the original tree was 1293 

calculated. Finally, we recursively searched each node in the tree. If the heuristic criteria (see below) 1294 

were not met for any node below the upper node, the entire subtree below the upper node was pruned 1295 

and all the cells belonging to this subtree were merged into one homologous group. 1296 

To identify robust homologous groups, we applied criteria in two steps to dynamically search the cross-1297 

species tree. Firstly, for each node in the tree, we computed the mixing of cells from 3 species based 1298 

on entropy and set it as a tuning parameter. For each integrated tree, we tuned the entropy parameter 1299 

to make sure the tree method generated the highest resolution of homologous clusters without losing 1300 

the ability to identify potential species-specific clusters. Nodes with entropy larger than 2.9 (for inhibitory 1301 

neurons) or 2.75 (for excitatory neurons) were considered as well-mixed nodes. For example, an 1302 

entropy of 2.9 corresponded to a mixture of human, marmoset, and mouse equal to (0.43, 0.37, 0.2) or 1303 

(0.38, 0.30, 0.32). We recursively searched all the nodes in the tree until we found the node nearest the 1304 

leaves of the tree that was well-mixed among species, and this node was defined as a well-mixed 1305 

upper node. Secondly, we further checked the within-species cell composition for the subtrees below 1306 

the well-mixed upper node to determine if further splits were needed. For the cells on the subtrees 1307 

below the well mixed upper node, we measured the purity of within-species cell composition by 1308 

calculating the percentage of cells that fall into a specific sub-group in each individual species. If the 1309 

purity for any species was larger than 0.8, we went one step further below the well mixed upper node 1310 

so that its children were selected. Any branches below these nodes (or well-mixed upper node if the 1311 
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within-species cell composition criteria was not met) were pruned and cells from these nodes were 1312 

merged into the same homologous groups, then the final integrated tree was generated. 1313 

As a final curation step, the homologous groups generated by the tree method were merged to be 1314 

consistent with within-species clusters. We defined consensus types by comparing the overlap of 1315 

within-species clusters between human and marmoset and human and mouse, as previously described 1316 

2. For each pair of human and mouse clusters and human and marmoset clusters, the overlap was 1317 

defined as the sum of the minimum proportion of nuclei in each cluster that overlapped within each leaf 1318 

of the pruned tree. This approach identified pairs of clusters that consistently co-clustered within one or 1319 

more leaves. Cluster overlaps varied from 0 to 1 and were visualized as a heatmap with human M1 1320 

clusters in rows and mouse or marmoset M1 clusters in columns. Cell type homologies were identified 1321 

as one-to-one, one-to-many, or many-to many so that they were consistent in all three species. For 1322 

example, the Vip_2 consensus type could be resolved into multiple homologous types between human 1323 

and marmoset but not human and mouse, and the coarser homology was retained. Consensus type 1324 

names were assigned based on the annotations of member clusters from human and mouse and 1325 

avoided specific marker gene names due to the variability of marker expression across species.  1326 

 1327 

To quantify cell type alignment between pairs of species, we pruned the hierarchical tree described 1328 

above based on the stability and mixing of two species. We performed this analysis for human-1329 

marmoset, human-mouse, and marmoset-mouse and compared the alignment resolution of each 1330 

subclass. The pruning criteria were tuned to fit the two-species comparison and to remove bias, and we 1331 

set the same criteria for all comparisons (entropy cutoff 3.0). Specifically, for each subclass and 1332 

pairwise species comparison, we calculated the number of leaves in the pruned tree. We repeated this 1333 

analysis on the 100 subsampled datasets and calculated the mean and standard deviation of the 1334 

number of leaves in the pruned trees. For each subclass, we tested for significant differences in the 1335 

average number of leaves across pairs of species using an ANOVA test followed by post-hoc Tukey 1336 

HSD tests. 1337 
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 1338 

Marker determination for cell type clusters by NS-Forest v2.1 1339 

NS-Forest v2.1 was used to determine the minimum set of marker genes whose combined expression 1340 

identified cells of a given type with maximum classification accuracy (T. Bakken et al. 2017; Aevermann 1341 

et al. 2018). (https://github.com/JCVenterInstitute/NSForest/releases). Briefly, for each cluster NS-1342 

Forest produces a Random Forest (RF) model using a one vs all binary classification approach. The 1343 

top ranked genes from RF are then filtered by expression level to retain genes that are expressed in at 1344 

least 50% of the cells within the target cluster. The selected genes are then reranked by Binary Score 1345 

calculated by first finding median cluster expression values for a given gene and dividing by the target 1346 

median cluster expression value. Next, one minus this scaled value is calculated resulting in 0 for the 1347 

target cluster and 1 for clusters that have no expression, while negative scaled values are set to 0. 1348 

These values are then summed and normalized by dividing by the total number of clusters. In the ideal 1349 

case, where all off-target clusters have no expression, the binary score is 1. Finally, for the top 6 binary 1350 

genes optimal expression level cutoffs are determined and all permutations of genes are evaluated by 1351 

f-beta score, where the beta is weighted to favor precision. This f-beta score indicates the power of 1352 

discrimination for a cluster and a given set of marker genes. The gene combination giving the highest f-1353 

beta score is selected as the optimal marker gene combination. Marker gene sets for human, mouse 1354 

and marmoset primary motor cortex are listed in Supplementary Tables 4, 5, and 6, respectively, and 1355 

were used to construct the semantic cell type definitions provided in Supplementary Table 1. 1356 

 1357 

Calculating differentially expressed genes (DEGs) 1358 

To identify subclass level DEGs that are conserved and divergent across species, we used the 1359 

integrated Seurat objects from the species integration step. Seurat objects for each major cell class 1360 

were downsampled to have up to 200 cells per species cell type. Positive DEGs were then found using 1361 

Seurat’s FindAllMarkers function using the ROC test with default parameters. We compared each 1362 

subclass within species to all remaining nuclei in that class and used the SCT normalized counts to test 1363 
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for differential expression. For example, human Sst nuclei were compared to all other GABAergic 1364 

human neurons using the ROC test. Venn diagrams were generated using the eulerr package (6.0.0) to 1365 

visualize the relationship of DEGs across species for a given subclass. Heatmaps of DEGs for all 1366 

subclasses under a given class were generated by downsampling each subclass to 50 random nuclei 1367 

per species. SCT normalized counts were then scaled and visualized with Seurat’s DoHeatmap 1368 

function.  1369 

 1370 

To identify ChC DEGs that are enriched over BCs, we used the integrated Seurat objects from the 1371 

species integration step. The Pvalb subclass was subset and species cell types were then designated 1372 

as either ChCs or BCs. Positive DEGs were then found using Seurat’s FindAllMarkers function 1373 

using the ROC test to compare ChCs and BCs for each species. Venn diagrams were generated using 1374 

the eulerr package (6.0.0) to visualize the relationship of ChC-enriched DEGs across species. 1375 

Heatmaps of conserved DEGs were generated by downsampling the dataset to have 100 randomly 1376 

selected BCs and ChCs from each species. SCT normalized counts were then scaled and visualized 1377 

with Seurat’s DoHeatmap function.  1378 

 1379 

We used the four species (human, macaque, marmoset, and mouse) integrated Glutamatergic Seurat 1380 

object from the species integration step for all L5 ET DEG figures. L5 ET and L5 IT subclasses were 1381 

downsampled to 200 randomly selected nuclei per species. A ROC test was then performed using 1382 

Seurat’s FindAllMarkers function between the two subclasses for each species to identify L5 ET-1383 

specific marker genes. We then used the UpSetR (1.4.0) package to visualize the intersections of the 1384 

marker genes across all four species as an upset plot. To determine genes that decrease in expression 1385 

across evolutionary distance in L5 ET neurons, we found the log-fold change between L5 ET and L5 IT 1386 

for each species across all genes. We then filtered the gene lists to only include genes that had a trend 1387 

of decreasing log-fold change (human > macaque > marmoset > mouse). Lastly, we excluded any gene 1388 
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that did not have a log-fold change of 0.5 or greater in the human comparison. These 131 genes were 1389 

then used as input for GO analysis with the PANTHER Classification System 67 for the biological 1390 

process category, with organism set to Homo sapiens. All significant GO terms for this gene list were 1391 

associated with cell-cell adhesion and axon-guidance, and are colored blue in the line graph of their 1392 

expression enrichment. 1393 

 1394 

Estimating differential isoform usage between human and mouse 1395 

To assess changes of isoform usage between mouse and human, we used SSv4 data with full 1396 

transcript coverage and estimated isoform abundance in each cell subclasses. To mitigate low read 1397 

depth in each cell, we aggregated reads from all cells in each subclass. We estimated the relative 1398 

isoform usage in each subclass by calculating its genic proportion (P), defined as the ratio (R) of 1399 

isoform expression to the gene expression, where R = (Phuman - Pmouse) / (Phuman + Pmouse). For a common 1400 

set of transcripts for mouse and human, we used UCSC browser TransMapV5 set of human transcripts 1401 

(hg38 assembly, Gencode v31 annotations) mapped to the mouse genome (mm10 assembly) 1402 

http://hgdownload.soe.ucsc.edu/gbdb/mm10/transMap/V5/mm10.ensembl.transMapV5.bigPsl. We 1403 

considered only medium to highly expressed isoforms, which have abundance > 10 TPM (Transcripts 1404 

per Million) and P > 0.2 in either mouse or human and gene expression > 10 TPM in both mouse and 1405 

human. 1406 

 1407 

Calculating isoform abundance in each cell subclass: 1408 

1) Aggregated reads from each subclass 1409 

2) Mapped reads to the mouse or human reference genome with STAR 2.7.3a using default 1410 

parameters 1411 

3) Transformed genomic coordinates into transcriptomic coordinates using STAR parameter: --1412 

quantMode TranscriptomeSAM 1413 
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4) Quantified isoform and gene expression using RSEM 1.3.3 parameters: --bam --seed 12345 --1414 

paired-end --forward-prob 0.5 --single-cell-prior --calc-ci 1415 

 1416 

Estimating statistical significance: 1417 

1) Calculated the standard deviation of isoform genic proportion (Phuman and Pmouse) from the 1418 

RSEM’s 95% confidence intervals of isoform expression 1419 

2) Calculated the P-value using normal distribution for the (Phuman - Pmouse) and the summed 1420 

(mouse + human) variance 1421 

3) Bonferroni-adjusted P-values by multiplying nominal P-values by the number of medium to 1422 

highly expressed isoforms in each subclass 1423 

 1424 

Species cluster dendrograms 1425 

DEGs for a given species were identified using Seurat’s FindAllMarkers function with a Wilcox test 1426 

and comparing each cluster to every other cluster under the same subclass, with logfc.threshold set to 1427 

0.7 and min.pct set to 0.5. The union of up to 100 genes per cluster with the highest avg_logFC were 1428 

used.The average log2 expression of the DEGs were then used as input for the build_dend function 1429 

from scrattch.hicat to create the dendrograms. This was performed on both human and marmoset 1430 

datasets. For mouse dendrogram methods, see the companion paper 6. 1431 

 1432 

Multiplex fluorescent in situ hybridization (FISH) 1433 

Fresh-frozen human postmortem brain tissues were sectioned at 14-16 μm onto Superfrost Plus glass 1434 

slides (Fisher Scientific). Sections were dried for 20 minutes at -20°C and then vacuum sealed and 1435 

stored at -80°C until use. The RNAscope multiplex fluorescent v1 kit was used per the manufacturer’s 1436 

instructions for fresh-frozen tissue sections (ACD Bio), except that fixation was performed for 60 1437 

minutes in 4% paraformaldehyde in 1X PBS at 4°C and protease treatment was shortened to 5minutes. 1438 

Primary antibodies were applied to tissues after completion of mFISH staining. Primary antibodies used 1439 
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were mouse anti-GFAP (EMD Millipore, MAB360, 1:250 dilution) and mouse anti-Neurofilament H 1440 

(SMI-32, Biolegend, 801701). Secondary antibodies were goat anti-mouse IgG (H+L) Alexa Fluor 1441 

conjugates (594, 647). Sections were imaged using a 60X oil immersion lens on a Nikon TiE 1442 

fluorescence microscope equipped with NIS-Elements Advanced Research imaging software (version 1443 

4.20). For all RNAscope mFISH experiments, positive cells were called by manually counting RNA 1444 

spots for each gene. Cells were called positive for a gene if they contained ≥ 3 RNA spots for that gene. 1445 

Lipofuscin autofluorescence was distinguished from RNA spot signal based on the larger size of 1446 

lipofuscin granules and broad fluorescence spectrum of lipofuscin. 1447 

 1448 

Gene family conservation 1449 

To investigate the conservation and divergence of gene family coexpression between primates and 1450 

mouse, MetaNeighbor analysis 30 was performed using gene groups curated by the HUGO Gene 1451 

Nomenclature Committee (HGNC) at the European Bioinformatics Institute 1452 

(https://www.genenames.org; downloaded January 2020) and by the Synaptic Gene Ontology (SynGO) 1453 

68 (downloaded February 2020). HGNC annotations were propagated via the provided group hierarchy 1454 

to ensure the comprehensiveness of parent annotations. Only groups containing five or more genes 1455 

were included in the analysis. 1456 

 1457 

After splitting data by class, MetaNeighbor was used to compare data at the cluster level using labels 1458 

from cross-species integration with Seurat. Cross-species comparisons were performed at two levels of 1459 

the phylogeny: 1) between the two primate species, marmoset and human; and 2) between mouse and 1460 

primates. In the first case, the data from the two species were each used as the testing and training set 1461 

across two folds of cross-validation, reporting the average performance (AUROC) across folds. In the 1462 

second case, the primate data were used as an aggregate training set, and performance in mouse was 1463 

reported. Results were compared to average within-species performance.  1464 

 1465 
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Replicability of clusters 1466 

MetaNeighbor was used to provide a measure of neuronal subclass and cluster replicability within and 1467 

across species. For this application, we tested all pairs of species (human-marmoset, marmoset-1468 

mouse, human-mouse) as well as testing within each species. After splitting the data by class, highly 1469 

variable genes were identified using the get_variable_genes function from MetaNeighbor, yielding 928 1470 

genes for GABAergic and 763 genes for Glutamatergic neuron classes, respectively. These were used 1471 

as input for the MetaNeighborUS function, which was run using the fast_version and one_vs_best 1472 

parameters set to TRUE. Using the one_vs_best parameter means that only the two closest 1473 

neighboring clusters are tested for their similarity to the training cluster, with results reported as the 1474 

AUROC for the closest neighbor over the second closest. AUROCs are plotted in heatmaps in 1475 

Extended Data Figures 2 and 3. Data to reproduce these figures can be found in Supplementary Table 1476 

9, and scripts are on GitHub (http://github.com/gillislab/MetaNeighbor). 1477 

 1478 

Single-cell methylome data (snmC-seq2): Sequencing and quantification 1479 

Library preparation and Illumina sequencing. Single nuclei were isolated from human and marmoset M1 1480 

tissue as described above for RNA-seq profiling and for mouse as detailed in 6. Detailed methods for 1481 

bisulfite conversion and library preparation were previously described for snmC-seq25,41. The snmC-1482 

seq2 libraries generated from mouse brain tissues were sequenced using an Illumina Novaseq 6000 1483 

instrument with S4 flowcells and 150 bp paired-end mode. 1484 

 1485 

Mapping and feature count pipeline. We implemented a versatile mapping pipeline (http://cemba-1486 

data.rtfd.io) for all the single-cell methylome based technologies developed by our group 5,41,69. The 1487 

main steps of this pipeline included: 1) demultiplexing FASTQ files into single-cell; 2) reads level QC; 3) 1488 

mapping; 4) BAM file processing and QC; and 5) final molecular profile generation. The details of the 1489 

five steps for snmC-seq2 were described previously 41. We mapped all the reads from the three 1490 

corresponding species onto the human hg19 genome, the marmoset ASM275486v1 genome, and the 1491 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2020. ; https://doi.org/10.1101/2020.03.31.016972doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.016972
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

mouse mm10 genome. After mapping, we calculated the methyl-cytosine counts and total cytosine 1492 

counts for two sets of genome regions in each cell: the non-overlapping chromosome 100-kb bins of 1493 

each genome, the methylation levels of which were used for clustering analysis, and the gene body 1494 

regions, the methylation levels of which were used for cluster annotation and integration with RNA 1495 

expression data. 1496 

 1497 

snmC-seq2: Quality control and preprocessing  1498 

Cell filtering. We filtered the cells based on these main mapping metrics: 1) mCCC rate < 0.03. mCCC 1499 

rate reliably estimates the upper bound of bisulfite non-conversion rate 5; 2) overall mCG rate > 0.5; 3) 1500 

overall mCH rate < 0.2; 4) total final reads > 500,000; and 5) bismark mapping rate > 0.5. Other metrics 1501 

such as genome coverage, PCR duplicates rate, and index ratio were also generated and evaluated 1502 

during filtering. However, after removing outliers with the main metrics 1-5, few additional outliers can 1503 

be found. 1504 

 1505 

Feature filtering. 100kb genomic bin features were filtered by removing bins with mean total cytosine 1506 

base calls < 250 or > 3000. Regions overlap with the ENCODE blacklist 70 were also excluded from 1507 

further analysis.  1508 

 1509 

Computation and normalization of the methylation rate. For CG and CH methylation, the computation of 1510 

methylation rate from the methyl-cytosine and total cytosine matrices contains two steps: 1) prior 1511 

estimation for the beta-binomial distribution and 2) posterior rate calculation and normalization per cell.  1512 

Step 1. For each cell we calculated the sample mean, 𝑚, and variance, 𝑣, of the raw mc rate (mc / cov) 1513 

for each sequence context (CG, CH). The shape parameters (𝛼, 𝛽) of the beta distribution were then 1514 

estimated using the method of moments:  1515 

𝛼 = 𝑚(𝑚(1 −𝑚)/𝑣 − 1) 1516 

𝛽 = (1 −𝑚)(𝑚(1 −𝑚)/𝑣 − 1) 1517 
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This approach used different priors for different methylation types for each cell and used weaker prior to 1518 

cells with more information (higher raw variance). 1519 

 1520 

Step 2. We then calculated the posterior: 𝑚𝑐3 =
"#$%	

"#'#%()
., We normalized this rate by the cell’s global 1521 

mean methylation, 𝑚 = 𝛼/(𝛼 + 𝛽). Thus, all the posterior 𝑚𝑐3  with 0 cov will be constant 1 after 1522 

normalization. The resulting normalized mc rate matrix contains no NA (not available) value, and 1523 

features with less cov tend to have a mean value close to 1.  1524 

 1525 

Selection of highly variable features. Highly variable methylation features were selected based on a 1526 

modified approach using the scanpy package scanpy.pp.highly_variable_genes function 71. In brief, the 1527 

scanpy.pp.highly_variable_genes function normalized the dispersion of a gene by scaling with the 1528 

mean and standard deviation of the dispersions for genes falling into a given bin for mean expression of 1529 

genes. In our modified approach, we reasoned that both the mean methylation level and the mean cov 1530 

of a feature (100kb bin or gene) could impact mc rate dispersion. We grouped features that fall into a 1531 

combined bin of mean and cov, and then normalized the dispersion within each mean-cov group. After 1532 

dispersion normalization, we selected the top 3000 features based on normalized dispersion for 1533 

clustering analysis.  1534 

 1535 

Dimension reduction and combination of different mC types. For each selected feature, mc rates were 1536 

scaled to unit variance, and zero mean. PCA was then performed on the scaled mc rate matrix. The 1537 

number of significant PCs was selected by inspecting the variance ratio of each PC using the elbow 1538 

method. The CH and CG PCs were then concatenated together for further analysis in clustering and 1539 

manifold learning. 1540 

 1541 

snmC-seq2: Data analysis 1542 
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Consensus clustering on concatenated PCs. We used a consensus clustering approach based on 1543 

multiple Leiden-clustering 72 over K-Nearest Neighbor (KNN) graph to account for the randomness of 1544 

the Leiden clustering algorithms. After selecting dominant PCs from PCA in both mCH and mCG 1545 

matrix, we concatenated the PCs together to construct a KNN graph using scanpy.pp.neighbors with 1546 

Euclidean distance. Given fixed resolution parameters, we repeated the Leiden clustering 300 times on 1547 

the KNN graph with different random starts and combined these cluster assignments as a new feature 1548 

matrix, where each single Leiden result is a feature. We then used the outlier-aware DBSCAN 1549 

algorithm from the scikit-learn package to perform consensus clustering over the Leiden feature matrix 1550 

using the hamming distance. Different epsilon parameters of DBSCAN are traversed to generate 1551 

consensus cluster versions with the number of clusters that range from minimum to the maximum 1552 

number of clusters observed in the multiple Leiden runs. Each version contained a few outliers that 1553 

usually fall into three categories: 1) cells located between two clusters that had gradient differences 1554 

instead of clear borders; 2) cells with a low number of reads that potentially lack information in essential 1555 

features to determine the specific cluster; and 3) cells with a high number of reads that were potential 1556 

doublets. The amount of type 1 and 2 outliers depends on the resolution parameter and is discussed in 1557 

the choice of the resolution parameter section. The type 3 outliers were very rare after cell filtering. The 1558 

supervised model evaluation then determined the final consensus cluster version. 1559 

 1560 

Supervised model evaluation on the clustering assignment. For each consensus clustering version, we 1561 

performed a Recursive Feature Elimination with Cross-Validation (RFECV) 73 process from the scikit-1562 

learn package to evaluate clustering reproducibility. We first removed the outliers from this process, 1563 

and then we held out 10% of the cells as the final testing dataset. For the remaining 90% of the cells, 1564 

we used tenfold cross-validation to train a multiclass prediction model using the input PCs as features 1565 

and sklearn.metrics.balanced_accuracy_score 74 as an evaluation score. The multiclass prediction 1566 

model is based on BalancedRandomForestClassifier from the imblearn package that accounts for 1567 

imbalanced classification problems75. After training, we used the 10% testing dataset to test the model 1568 
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performance using the balanced_accuracy_score score. We kept the best model and corresponding 1569 

clustering assignments as the final clustering version. Finally, we used this prediction model to predict 1570 

outliers’ cluster assignments, we rescued the outlier with prediction probability > 0.3, otherwise labeling 1571 

them as outliers. 1572 

 1573 

Choice of resolution parameter. Choosing the resolution parameter of the Leiden algorithm is critical for 1574 

determining the final number of clusters. We selected the resolution parameter by three criteria: 1. The 1575 

portion of outliers < 0.05 in the final consensus clustering version. 2. The ultimate prediction model 1576 

accuracy > 0.95. 3. The average cell per cluster ≥ 30, which controls the cluster size to reach the 1577 

minimum coverage required for further epigenome analysis such as DMR calls. All three criteria 1578 

prevented the over-splitting of the clusters; thus, we selected the maximum resolution parameter under 1579 

meeting the criteria using a grid search. 1580 

 1581 

Three-level of iterative clustering analysis. We used an iterative approach to cluster the data into three 1582 

levels of categories with the consensus clustering procedure described above. In the first level termed 1583 

CellClass, clustering analysis is done on all cells. The resulting clusters are then manually merged into 1584 

three canonical classes, glutamatergic neurons, GABAergic neurons, and non-neurons, based on 1585 

marker genes. The same clustering procedure was then conducted within each CellClass to get 1586 

clusters as the MajorType level. Within each MajorType, we got the final clusters as the SubTypes in 1587 

the same way. 1588 

 1589 

Integrating cell clusters identified from snmC-seq2 and from Cv3. We identified gene markers based on 1590 

gene body mCH hypo-methylation for each level of clustering of snmC-seq2 data using our in-house 1591 

analysis utilities (https://github.com/lhqing/cemba_data), and identified gene markers for cell class from 1592 

Cv3 analysis using scanpy 71. We then used Scanorama 76 to integrate the two modalities. 1593 

 1594 
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Calling CG differentially methylated regions (DMRs). We identified CG DMRs using methylpy 1595 

(https://github.com/yupenghe/methylpy) as previously described 77. Briefly, we first called CG 1596 

differentially methylated sites and then merged them into blocks if they both showed similar sample-1597 

specific methylation patterns and were within 250bp. Normalized relative lengths of DMRs (Figure 4d) 1598 

were calculated by summation of lengths of DMRs and 250bp around divided by numbers of cytosine 1599 

covered in sequencing. 1600 

 1601 

TFBS motif enrichment analysis. For each cell subclass (cluster), we performed TFBS motif enrichment 1602 

analysis for its hypo-methylated DMRs against the hypo-methylated DMRs from other cell subclasses 1603 

(clusters) using software AME 78. DMRs and 250bp regions around were used in the analysis.  1604 

 1605 

SNARE-Seq2: Sample preparation 1606 

Human and marmoset primary motor cortex nuclei were isolated for SNARE-seq2 according to the 1607 

following protocol: https://www.protocols.io/view/nuclei-isolation-for-snare-seq2-8tvhwn6 7,79. 1608 

Fluorescence-activated nuclei sorting (FANS) was then performed on a FACSAria Fusion (BD 1609 

Biosciences, Franklin Lakes, NJ) gating out debris from FSC and SSC plots and selecting DAPI+ 1610 

singlets (Extended Data Fig. 5a). Samples were kept on ice until sorting was complete and were used 1611 

immediately for SNARE-seq2.  1612 

 1613 

SNARE-Seq2: Library preparation and sequencing 1614 

A detailed step-by-step protocol for SNARE-Seq2 has been outlined in a companion paper 38. The 1615 

resulting AC libraries were sequenced on MiSeq (Illumina) (R1: 75 cycles for the 1st end of AC DNA 1616 

read, R2: 94 cycles for cell barcodes and UMI read, R3: 8 cycles for i5 read, R4: 75 cycles for the 2nd 1617 

end of AC DNA read) for library validation, then on NovaSeq6000 (Illumina) using 300 cycles reagent 1618 

kit for data generation. RNA libraries were combined at equimolar ratio and sequenced on MiSeq 1619 

(Illumina) (Read 1: 70 cycles for the cDNA read, Index 1: 6 cycles for i7 read, Read 2: 94 cycles for cell 1620 
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barcodes and UMI read) for library validation, then on NovaSeq6000 (Illumina) using 200 cycles 1621 

reagent kit for data generation. 1622 

  1623 

SNARE-Seq2: Data processing 1624 

A detailed step-by-step SNARE-seq2 data processing pipeline has been provided in a companion 1625 

paper 38. For RNA data, this has involved the use of dropEst to extract cell barcodes and STAR 1626 

(v2.5.2b) to align tagged reads to the genome (GRCh38 version 3.0.0 for human; GCF 000004665.1 1627 

Callithrix jacchus-3.2, marmoset). For AC data, this involved snaptools for alignment to the genome 1628 

(cellranger-atac-GRCh38-1.1.0 for human, GCF 000004665.1 Callithrix jacchus-3.2, marmoset) and to 1629 

generate snap objects for processing using the R package snapATAC.  1630 

 1631 

SNARE-Seq2: Data analysis 1632 

RNA quality filtering. For SNARE-Seq2 data, quality filtering of cell barcodes and clustering analysis 1633 

were first performed on transcriptomic (RNA) counts and used to inform on subsequent accessible 1634 

chromatin quality filtering and analysis. Each cell barcode was tagged by an associated library batch ID 1635 

(for example MOP1, MOP2… etc.), RNA read counts associated with dT and n6 adaptor primers were 1636 

merged, libraries were combined for each sample within each experiment and empty barcodes 1637 

removed using the emptyDrops() function of DropletUtils 80, mitochondrial transcripts were removed, 1638 

doublets were identified using the DoubletDetection software 81 and removed. All samples were 1639 

combined across experiments within species and cell barcodes having greater than 200 and less than 1640 

7500 genes detected were kept for downstream analyses. To further remove low quality datasets, a 1641 

gene UMI ratio filter (gene.vs.molecule.cell.filter) was applied using Pagoda2 (https://github.com/hms-1642 

dbmi/pagoda2).  1643 

 1644 

RNA data clustering. For human SNARE-seq2 RNA data, clustering analysis was first performed using 1645 

Pagoda2 where counts were normalized to the total number per nucleus and batch variations were 1646 
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corrected by scaling expression of each gene to the dataset-wide average. After variance 1647 

normalization, the top 6000 over-dispersed genes were used for principal component analysis. 1648 

Clustering was performed using an approximate k-nearest neighbor graph (k values between 50 – 500) 1649 

based on the top 75 principal components and cluster identities were determined using the infomap 1650 

community detection algorithm. Major cell types were identified using a common set of broad cell type 1651 

marker genes: GAD1/GAD2 (GABAergic neurons), SLC17A7/SATB2 (glutamatergic neurons), 1652 

PDGFRA (oligodendrocyte progenitor cells), AQP4 (astrocytes), PLP1/MOBP (oligodendrocytes), 1653 

MRC1 (perivascular macrophages), PTPRC (T cells), PDGFRB (vascular smooth muscle cells), FLT1 1654 

(vascular endothelial cells), DCN (vascular fibroblasts), APBB1IP (microglia) (Extended Data Fig. 5c). 1655 

Low quality clusters that showed very low gene/UMI detection rates, low marker gene detection and/or 1656 

mixed cell type marker profiles were removed. Oligodendrocytes were over-represented (54,080 total), 1657 

possibly reflecting a deeper subcortical sampling then intended, therefore, to ensure a more balanced 1658 

distribution of cell types, we capped the number of oligodendrocytes at 5000 total and repeated the 1659 

PAGODA2 clustering as above. To achieve optimal clustering of the different cell types, different k 1660 

values were used to identify cluster subpopulations for different cell types (L2/3 glutamatergic neurons, 1661 

k = 500; all other glutamatergic neurons, astrocytes, oligodendrocytes, OPCs, k = 100; GABAergic 1662 

neurons, vascular cells, microglia/perivascular macrophages, k = 50). To assess the appropriateness of 1663 

the chosen k values, clusters were compared against SMARTer clustering of data generated on human 1664 

M1 through correlation of cluster-averaged scaled gene expression values using the corrplot package 1665 

(https://github.com/taiyun/corrplot) (Extended Data Fig. 5d). For cluster visualization, uniform manifold 1666 

approximation and projection (UMAP) dimensional reduction was performed in Seurat (version 3.1.0) 1667 

using the top 75 principal components identified using Pagoda2. For marmoset, clustering was initially 1668 

performed using Seurat, where the top 2000 variable features were selected from the mean variance 1669 

plot using the ‘vst’ method and used for principal component analysis. UMAP embeddings were 1670 

generated using the top 75 principal components. To harmonize cellular populations across platforms 1671 

and modalities, snRNA-seq within-species cluster identities were then predicted from both human and 1672 
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marmoset data. We used an iterative nearest centroid classifier algorithm (Methods, ‘Mapping of 1673 

samples to reference taxonomies’) to generate probability scores for each SNARE-seq2 nuclei mapping 1674 

to their respective species’ snRNA-seq reference cluster (Cv3 for marmoset and SMART-Seqv4 for 1675 

human). Comparing the predicted RNA cluster assignment of each nuclei with Pagoda2-identified 1676 

clusters showed highly consistent cluster membership using Jaccard similarity index (Extended Data 1677 

Fig. 5e), confirming the robustness of these cell identities discovered using different analysis platforms. 1678 

 1679 

AC quality filtering and peak calling. Initial analysis of corresponding SNARE-Seq2 chromatin 1680 

accessibility data was performed using SnapATAC software (version 2) 1681 

(https://github.com/r3fang/SnapATAC) (https://doi.org/10.1101/615179). Snap objects were generated 1682 

by combining individual snap files across libraries within each species. Cell barcodes were included for 1683 

downstream analyses only if cell barcodes passed RNA quality filtering (above) and showed greater 1684 

than 1000 read fragments and 500 UMI. Read fragments were then binned to 5000 bp windows of the 1685 

genome and only cell barcodes showing the fraction of binned reads within promoters greater than 10% 1686 

(15% for marmoset) and less than 80% were kept for downstream analysis. Peak regions were called 1687 

independently for RNA cluster, subclass and class groupings using MACS2 software 1688 

(https://github.com/taoliu/MACS) using the following options "--nomodel --shift 100 --ext 200 --qval 5e-2 1689 

-B --SPMR". Peak regions were combined across peak callings and used to generate a single peak 1690 

count matrix (cell barcodes by chromosomal peak locations) using the “createPmat” function of 1691 

SnapATAC. 1692 

 1693 

AC data clustering. The peak count matrices were filtered to keep only locations from chromosomes 1-1694 

22, x or y, and processed using Seurat (version 3.1.0) and Signac (version 0.1.4) software 24 1695 

(https://satijalab.org). All peaks having at least 100 counts (20 for marmoset) across cells were used for 1696 

dimensionality reduction using latent semantic indexing (“RunLSI” function) and visualized by UMAP 1697 

using the first 50 dimensions (40 for marmoset). 1698 
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 1699 

Calculating gene activity scores. For a gene activity matrix from accessibility data, cis-co-accessible 1700 

sites and gene activity scores were calculated using Cicero software (v1.2.0) 39 (https://cole-trapnell-1701 

lab.github.io/cicero-release/). The binary peak matrix was used as input with expression family variable 1702 

set to “binomialff” to make the aggregated input Cicero CDS object using the AC peak-derived UMAP 1703 

coordinates and setting 50 cells to aggregate per bin. Co-accessible sites were then identified using the 1704 

“run_cicero” function using default settings and modules of cis-co-accessible sites identified using the 1705 

“generate_ccans” function. Co-accessible sites were annotated to a gene if they fell within a region 1706 

spanning 10,000 bp upstream and downstream of the gene’s transcription start site (TSS). The Cicero 1707 

gene activity matrix was then calculated using the “build_gene_activity_matrix” function using a co-1708 

accessibility cutoff of 0.25 and added to a separate assay of the Seurat object. 1709 

 1710 

Integrating RNA/AC data modalities. For reconciliation of differing resolutions achievable from RNA and 1711 

accessible chromatin (Extended Data Fig. 5f-k), integrative analysis was performed using Seurat. 1712 

Transfer anchors were identified between the activity and RNA matrices using the 1713 

“FindTransferAnchors” function. For human, transfer anchors were generated using an intersected list 1714 

of variable genes identified from Pagoda2 analysis of RNA clusters (top 2000 genes) and marker genes 1715 

for clusters identified from SSv4 data (2492 genes having β-scores > 0.4), and canonical correlation 1716 

analysis (CCA) for dimension reduction. For marmoset, transfer anchors were generated using an 1717 

intersected list of variable genes identified using Seurat (top 2000 genes) and DEGs identified between 1718 

marmoset consensus clusters (Cv3 snRNA-seq data, P < 0.05, top 100 markers per cluster). Imputed 1719 

RNA expression values were then calculated using the “TransferData” function from the Cicero gene 1720 

activity matrix using normalized RNA expression values for reference and LSI for dimension reduction. 1721 

RNA and imputed expression data were merged, a UMAP co-embedding and shared nearest neighbor 1722 

(SNN) graph generated using the top 50 principal components (40 for marmoset) and clusters identified 1723 

(“FindClusters”) using a resolution of 4. Resulting integrated clusters were compared against 1724 
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consensus RNA clusters by calculating jaccard similarity scores using scratch.hicat software. Cell 1725 

populations identified as T-cells from Pagoda2 analysis (human only) and those representing low 1726 

quality integrated clusters, showing a mixture of disparate cell types, were removed from these 1727 

analyses. RNA clusters were assigned to co-embedded clusters based on the highest jaccard similarity 1728 

score and frequency and then merged to generate the best matched co-embedded clusters, taking in 1729 

account cell type and subclass to ensure more accurate merging of ambiguous populations. This 1730 

enabled AC-level clusters that directly matched the RNA-defined populations (Extended Data Fig. 5k). 1731 

For consensus cluster and subclass level predictions (Extended Data Fig. 5g) the Seurat 1732 

“TransferData” function was used to transfer RNA consensus cluster or subclass labels to AC data 1733 

using the pre-computed transfer anchors and LSI dimensionality reduction. 1734 

 1735 

Final AC peak and gene activity matrices. A final combined list of peak regions was then generated 1736 

using MACS2 as detailed above for all cell populations corresponding to RNA consensus (> 100 1737 

nuclei), accessibility-level, subclass (> 50 nuclei) and class level barcode groupings. The corresponding 1738 

peak by cell barcode matrix generated by SnapATAC was used to establish a Seurat object as outlined 1739 

above, with peak counts, Cicero gene activity scores and RNA expression values for matched cell 1740 

barcodes contained within different assay slots.  1741 

 1742 

Transcription factor motif analyses. Jaspar motifs (JASPAR2020, all vertebrate) were used to generate 1743 

a motif matrix and motif object that was added to the Seurat object using Signac (“CreateMotifMatrix”, 1744 

“CreateMotifObject”, “AddMotifObject”) and GC content, region lengths and dinucleotide base 1745 

frequencies calculated using the “RegionStats” function. Motif enrichments within specific chromosomal 1746 

sites were calculated using the FindMotifs function. For motif activity scores, chromVAR 1747 

(https://greenleaflab.github.io/chromVAR) was performed according to default parameters (marmoset) 1748 

or using Signac “RunChromVAR” function on the peak count matrix (human). The chromVAR deviation 1749 

score matrix was then added to a separate assay slot of the Seurat object and differential activity of 1750 
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TFBS between different populations were assessed using the “Find[All]Markers” function through 1751 

logistic regression and using the number of peak counts as a latent variable. 1752 

 1753 

Differentially accessible regions (DARs) between cell populations (Fig. 4b) were identified using the 1754 

“find_all_diff” function (https://github.com/yanwu2014/chromfunks) and p-values calculated using a 1755 

hypergeometric test. For visualization, the top DARs (q value < 0.001 and log-fold change > 1) were 1756 

selected and the top distinct sites visualized by dot plot in Seurat. For motif enrichment analyses, peak 1757 

counts associated with the clusters selected for comparison (all subclasses, all AC-level clusters, 1758 

PVALB-positive for ChC analyses) were used to identify cis-co-accessible site networks or CCANs 1759 

using cicero as indicated above. Peak locations were annotated to the nearest gene (10,000 bases 1760 

upstream and downstream of the TSS) and only genes identified from SNARE-seq2 RNA data as being 1761 

differentially expressed (Seurat, Wilcoxon Rank Sum test) within the clusters of interest (adjusted P < 1762 

0.05, average log-fold change > 0.5) were used. Genes having more than one co-accessible site were 1763 

assessed for motif enrichments within all overlapping sites using the “FindMotifs” function in Signac 1764 

(using peaks for all cell barcodes for subclass and AC-level, or only peaks for ChC or L5 ET cells). 1765 

Motifs were then trimmed to only those showing significant differential activity (chromVAR) between the 1766 

clusters of interest (P < 0.05) as assessed using the “FindMarkers” function on the chromVAR assay 1767 

slot using Seurat and using the number of total peaks as a latent variable. The top distinct genes 1768 

(subclass, AC-level) or all genes (ChC, Betz) used for motif enrichment analysis were visualized for 1769 

scaled average RNA expression levels and scaled average cicero gene activities using the ggHeat 1770 

plotting function (SWNE package, https://github.com/yanwu2014/swne). Top chromVAR TFBS activities 1771 

were also visualized using ggHeat. 1772 

 1773 

Correlation plots. For correlation of RNA expression and associated AC activities for consensus and 1774 

AC-level clusters (Extended Data Fig. 6a-b), average scaled expression values were generated and 1775 

pairwise correlations performed for marker genes identified from an intersected list of variable genes 1776 
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identified from Pagoda2 analysis of RNA clusters (top 2000 genes) and marker genes for clusters 1777 

identified from SSv4 data (2492 genes having β-scores > 0.4). For correlation across species, 1778 

expression values for genes used to integrate human and marmoset GABAergic and glutamatergic 1779 

clusters (Cv3 scRNA-seq data), or chromVAR TFBS activity scores for all Jaspar motifs were averaged 1780 

by subclass, scaled (trimming values to a minimum of 0 and a maximum of 4) for each species 1781 

separately, then correlated and visualized using corrplot. 1782 

 1783 

Plots and figures. All UMAP, feature, dot, and violin plots were generated using Seurat. Connection 1784 

plots were generated using cicero and peak track gradient heatmaps were generated using Gviz 82 from 1785 

bedGraph files generated during peak calling using SnapATAC. Correlation plots were generated using 1786 

the corrplot package.  1787 

 1788 

Mouse chandelier cell ATAC-Seq: Data acquisition and analysis 1789 

Chandelier cells are rare in mouse cortex and were enriched by isolating individual neurons from 1790 

transgenically-labelled mouse primary visual cortex (VISp). Many of the transgenic mouse lines have 1791 

previously been characterized by single-cell RNA-seq 1. Single-cell suspensions of cortical neurons 1792 

were generated as described previously 1 and subjected to tagmentation (ATAC-seq) 83,84. Mixed 1793 

libraries, containing 60 to 96 samples were sequenced on an Illumina MiSeq. In total, 4,275 single-cells 1794 

were collected from 36 driver-reporter combinations in 67 mice. After sequencing, raw FASTQ files 1795 

were aligned to the GRCm38 (mm10) mouse genome using Bowtie v1.1.0 as previously described 9. 1796 

Following alignment, duplicate reads were removed using samtools rmdup, which yielded only single 1797 

copies of uniquely mapped paired reads in BAM format. Quality control filtering was applied to select 1798 

samples with >10,000 uniquely mapped paired-end fragments, >10% of which were longer than 250 1799 

base pairs and with >25% of their fragments overlapping high-depth cortical DNase-seq peaks from 1800 

ENCODE 85. The resulting dataset contained a total of 2,799 samples. 1801 

 1802 
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To increase the cell-type resolution of chromatin accessibility profiles beyond that provided by driver 1803 

lines, a feature-free method for computation of pairwise distances (Jaccard) was used. Using Jaccard 1804 

distances, principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) 1805 

were performed, followed by Phenograph clustering 86. This clustering method grouped cells from 1806 

class-specific driver lines together, but also segregated them into multiple clusters. Phenograph-defined 1807 

neighborhoods were assigned to cell subclasses and clusters by comparison of accessibility near 1808 

transcription start site (TSS ± 20 kb) to median expression values of scRNA-seq clusters at the cell type 1809 

and at the subclass level from mouse primary visual cortex 87. From this analysis, a total of 226 1810 

samples were assigned to Pvalb and 124 samples to Pvalb Vipr2 (ChC) clusters. The sequence data 1811 

for these samples were grouped together and further processed through the Snap-ATAC pipeline.  1812 

 1813 

Mouse scATAC-seq peak counts for Pvalb and ChC were used to generate a Seurat object as outlined 1814 

for human and marmoset SNARE-Seq2 AC data. Cicero cis-co-accessible sites were identified, gene 1815 

activity scores calculated, and motif enrichment analyses performed as outlined above. Genes used for 1816 

motif enrichment were ChC markers identified from differential expression analysis between PVALB-1817 

positive clusters in mouse Cv3 scRNA-seq data (adjusted P < 0.05). 1818 

 1819 

Patch-seq neuronal physiology, morphology, and transcriptomics 1820 

Subjects. The human neurosurgical specimen was obtained from a 61-year old female patient that 1821 

underwent deep tumor resection (glioblastoma) from the frontal lobe at a local hospital (Harborview 1822 

Medical Center). The patient provided informed consent and experimental procedures were approved 1823 

by the hospital institute review board before commencing the study. Post-hoc analysis revealed that the 1824 

neocortical tissue obtained from this patient was from a premotor region near the confluence of the 1825 

superior frontal gyrus and the precentral gyrus (Fig. 7g). All procedures involving macaques and mice 1826 

were approved by the Institutional Animal Care and Use Committee at either the University of 1827 

Washington or the Allen Institute for Brain Science. Macaque M1 tissue was obtained from male (n=4) 1828 
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and female (n=5) animals (mean age= 10 ± 2.21 years) designated for euthanasia via the Washington 1829 

National Primate Research Center’s Tissue Distribution Program. Mouse M1 tissue was obtained from 1830 

4-12 week old male and female mice from the following transgenic lines: Thy1h-eyfp (B6.Cg-Tg(Thy1-1831 

YFP)-HJrs/J: JAX Stock No. 003782), Etv1-egfp Tg(Etv1-EGFP)BZ192Gsat/Mmucd (etv1) mice 1832 

maintained with the outbred Charles River Swiss Webster background (Crl:CFW(SW) CR Stock No. 1833 

024), and C57BL/6-Tg(Pvalb-tdTomato)15Gfng/J: JAX stock No. 027395. 1834 

  1835 

Brain slice preparation. Brain slice preparation was similar for Pvalb-TdTomato mice, macaque and 1836 

human samples. Upon resection, human neurosurgical tissue was immediately placed in a chilled and 1837 

oxygenated solution formulated to prevent excitotoxicity and preserve neural function 88. This artificial 1838 

cerebral spinal fluid (NMDG aCSF) consisted of (in mM): 92 with N-methyl-D-glucamine (NMDG), 2.5 1839 

KCl, 1.25 NaH2PO4, 30 NaHCO3, 20 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 25 1840 

glucose, 2 thiourea, 5 Na-ascorbate, 3 Na-pyruvate, 0.5 CaCl2·4H2O and 10 MgSO4·7H2O. The pH of 1841 

the NMDG aCSF was titrated to pH 7.3–7.4 with concentrated hydrochloric acid and the osmolality was 1842 

300-305 mOsmoles/Kg. The solution was pre-chilled to 2-4°C and thoroughly bubbled with carbogen 1843 

(95% O2/5% CO2) prior to collection. Macaques were anesthetized with sevoflurane gas during which 1844 

the entire cerebrum was extracted and placed in the same protective solution described above. After 1845 

extraction, macaques were euthanized with sodium-pentobarbital. We dissected the trunk/limb area of 1846 

the primary motor cortex for brain slice preparation. Pvalb-TdTomato mice were deeply anesthetized by 1847 

intraperitoneal administration of Advertin (20mg/kg IP) and were perfused through the heart with NMDG 1848 

aCSF (bubbled with carbogen). 1849 

 1850 

Brains were sliced at 300-micron thickness on a vibratome using the NMDG protective recovery 1851 

method and a zirconium ceramic blade 61,88. Mouse brains were sectioned coronally, and human and 1852 

macaque brains were sectioned such that the angle of slicing was perpendicular to the pial surface. 1853 

After sections were obtained, slices were transferred to a warmed (32-34° C) initial recovery chamber 1854 
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filled with NMDG aCSF under constant carbogenation. After 12 minutes, slices were transferred to a 1855 

chamber containing an aCSF solution consisting of (in mM): 92 NaCl, 2.5 KCl, 1.25 NaH2PO4, 30 1856 

NaHCO3, 20 HEPES, 25 glucose, 2 thiourea, 5 Na-ascorbate, 3 Na-pyruvate, 2 CaCl2·4H2O and 2 1857 

MgSO4·7H2O continuously bubbled with 95% O2/5% CO2. Slices were held in this chamber for use in 1858 

acute recordings or transferred to a 6-well plate for long-term culture and viral transduction. Cultured 1859 

slices were placed on membrane inserts and wells were filled with culture medium consisting of 8.4 g/L 1860 

MEM Eagle medium, 20% heat-inactivated horse serum, 30 mM HEPES, 13 mM D-glucose, 15 mM 1861 

NaHCO3, 1 mM ascorbic acid, 2 mM MgSO4·7H2O, 1 mM CaCl2.4H2O, 0.5 mM GlutaMAX-I, and 1 mg/L 1862 

insulin (Ting et al 2018). The slice culture medium was carefully adjusted to pH 7.2-7.3, osmolality of 1863 

300-310 mOsmoles/Kg by addition of pure H2O, sterile-filtered and stored at 4°C for up to two weeks. 1864 

Culture plates were placed in a humidified 5% CO2 incubator at 35°C and the slice culture medium was 1865 

replaced every 2-3 days until end point analysis. 1-3 hours after brain slices were plated on cell culture 1866 

inserts, brain slices were infected by direct application of concentrated AAV viral particles over the slice 1867 

surface (Ting et al 2018). 1868 

 1869 

Thy1 and Etv1 mice were deeply anesthetized by IP administration of ketamine (130 mg/kg) and 1870 

xylazine (8.8 mg/kg) mix and were perfused through the heart with chilled (2-4°C) sodium-free aCSF 1871 

consisting of (in mM): 210 Sucrose, 7 D-glucose, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 7 MgCl2, 0.5 1872 

CaCl2,1.3 Na-ascorbate, 3 Na-pyruvate bubbled with carbogen (95% O2/5% CO2). Near coronal slices 1873 

300 microns thick were generated using a Leica vibratome (VT1200) in the same sodium-free aCSF 1874 

and were transferred to warmed (35°C) holding solution (in mM): 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 26 1875 

NaHCO3, 2 CaCl2, 2 MgCl2, 17 dextrose, and 1.3 sodium pyruvate bubbled with carbogen (95% O2/5% 1876 

CO2). After 30 minutes of recovery, the chamber holding slices was allowed to cool to room 1877 

temperature. 1878 

  1879 
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Patch clamp electrophysiology. Macaque, human and Pvalb-TdTomato mouse brain slices were placed 1880 

in a submerged, heated (32-34°C) recording chamber that was continually perfused (3-4 mL/min) with 1881 

aCSF under constant carbogenation and containing (in mM) 1): 119 NaCl, 2.5 KCl, 1.25 NaH2PO4, 24 1882 

NaHCO3, 12.5 glucose, 2 CaCl2·4H2O and 2 MgSO4·7H2O (pH 7.3-7.4). Slices were viewed with an 1883 

Olympus BX51WI microscope and infrared differential interference contrast (IR-DIC) optics and a 40x 1884 

water immersion objective. The infragranular layers of macaque primary motor cortex and human 1885 

premotor cortex are heavily myelinated, which makes visualization of neurons under IR-DIC virtually 1886 

impossible. To overcome this challenge, we labeled neurons using various viral constructs in 1887 

organotypic slice cultures (Extended Data Fig. 10g). 1888 

Patch pipettes (2-6 MΩ) were filled with an internal solution containing (in mM): 110.0 K-gluconate, 1889 

10.0 HEPES, 0.2 EGTA, 4 KCl, 0.3 Na2-GTP, 10 phosphocreatine disodium salt hydrate, 1 Mg-ATP, 20 1890 

µg/ml glycogen, 0.5U/µL RNAse inhibitor (Takara, 2313A) and 0.5% biocytin (Sigma B4261), pH 7.3. 1891 

Fluorescently labeled neurons from Thy1 or Etv1 mice were visualized through a 40x objective using 1892 

either Dodt contrast with a CCD camera (Hamamatsu) and/or a 2-photon imaging/ uncaging system 1893 

from Prairie (Bruker) Technologies. Recordings were made in aCSF: (in mM): 125 NaCl, 3.0 KCl, 1.25 1894 

NaH2PO4, 26 NaHCO3, 2 CaCl2, 1 MgCl2, 17 dextrose, and 1.3 sodium pyruvate bubbled with 1895 

carbogen (95% O2/5% CO2) at 32-35°, with synaptic inhibition blocked using 100 µM picrotoxin. 1896 

Sylgard-coated patch pipettes (3-6 MΩ) were filled with an internal solution containing (in mM): 135 K-1897 

gluconate, 12 KCl, 11 HEPES, 4 MgATP, 0.3 NaGTP, 7 K2-phosphocreatine, 4 Na2-phophocreatine (pH 1898 

7.42 with KOH) with neurobiotin (0.1-0.2%), Alexa 594 (40 µM) and Oregon Green BAPTA 6F (100 1899 

µM). 1900 

 1901 

Whole cell somatic recordings were acquired using either a Multiclamp 700B amplifier, or an AxoClamp 1902 

2B amplifier (Molecular Devices) and were digitized using an ITC-18 (HEKA). Data acquisition software 1903 

was either MIES (https://github.com/AllenInstitute/MIES/) or custom software written in Igor Pro. 1904 

Electrical signals were digitized at 20-50 kHz and filtered at 2-10 kHz. Upon attaining whole-cell current 1905 
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clamp mode, the pipette capacitance was compensated and the bridge was balanced. Access 1906 

resistance was monitored throughout the recording and was 8-25 MΩ. 1907 

  1908 

Data analysis. Data were analyzed using custom analysis software written in Igor Pro. All 1909 

measurements were made at resting membrane potential. Input resistance (RN) was measured from a 1910 

series of 1 s hyperpolarizing steps from -150 pA to +50 pA in +20 pA increments. For neurons with low 1911 

input resistance (e.g. the Betz cells) this current injection series was scaled by upwards of 4x. Input 1912 

resistance (RN) was calculated from the linear portion of the current−steady state voltage relationship 1913 

generated in response to these current injections. Resonance (fR) was determined from the voltage 1914 

response to a constant amplitude sinusoidal current injection (Chirp stimulus). The chirp stimulus 1915 

increased in frequency either linearly from 1-20 Hz over 20 s or logarithmically from 0.2-40 Hz over 20s. 1916 

The amplitude of the Chirp was adjusted in each cell to produce a peak-to-peak voltage deflection of 1917 

~10 mV. The impedance amplitude profile (ZAP) was constructed from the ratio of the fast Fourier 1918 

transform of the voltage response to the fast Fourier transform of the current injection. ZAPs were 1919 

produced by averaging at least three presentations of the Chirp and were smoothed using a running 1920 

median smoothing function. The frequency corresponding to the peak impedance (Zmax) was defined as 1921 

the resonant frequency. Spike input/output curves were constructed in response to 1 s step current 1922 

injections (50 pA-500 pA in 50 pA steps). For a subset of experiments, this current injection series was 1923 

extended to 3A in 600 pA steps to probe the full dynamic range of low RN neurons. Spike frequency 1924 

acceleration analysis was performed for current injections producing ~10 spikes during the 1 s step. 1925 

Acceleration ratio was defined as the ratio of the second to the last interspike interval. To examine the 1926 

dynamics of spike timing over longer periods, we also measured spiking in response to 10 s step 1927 

current injections in which the amplitude of the current was adjusted to produce ~5 spikes in the first 1928 

second. Action potential properties were measured for currents near rheobase. Action potential 1929 

threshold was defined as the voltage at which the first derivative of the voltage response exceeded 20 1930 
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V/s. AP width was measured at half the amplitude between threshold and the peak voltage. Fast AHP 1931 

was defined relative to threshold. We clustered mouse, macaque and human pyramidal neurons into 1932 

two broad groups based on their RN and fR using Ward’s algorithm. 1933 

  1934 

Biocytin histology. A horseradish peroxidase (HRP) enzyme reaction using diaminobenzidine (DAB) as 1935 

the chromogen was used to visualize the filled cells after electrophysiological recording, and 4,6-1936 

diamidino-2-phenylindole (DAPI) stain was used identify cortical layers as described previously 89.   1937 

 1938 

Microscopy. Mounted sections were imaged as described previously 89. Briefly, operators captured 1939 

images on an upright AxioImager Z2 microscope (Zeiss, Germany) equipped with an Axiocam 506 1940 

monochrome camera and 0.63x optivar. Two-dimensional tiled overview images were captured with a 1941 

20X objective lens (Zeiss Plan-NEOFLUAR 20X/0.5) in brightfield transmission and fluorescence 1942 

channels. Tiled image stacks of individual cells were acquired at higher resolution in the transmission 1943 

channel only for the purpose of automated and manual reconstruction. Light was transmitted using an 1944 

oil-immersion condenser (1.4 NA). High-resolution stacks were captured with a 63X objective lens 1945 

(Zeiss Plan-Apochromat 63x/1.4 Oil or Zeiss LD LCI Plan-Apochromat 63x/1.2 Imm Corr) at an interval 1946 

of 0.28 µm (1.4 NA objective; mouse specimens) or 0.44 µm (1.2 NA objective; human and non-human 1947 

primate specimens) along the Z axis. Tiled images were stitched in ZEN software and exported as 1948 

single-plane TIFF files. 1949 

 1950 

Morphological reconstruction. Reconstructions of the dendrites and the full axon were generated based 1951 

on a 3D image stack that was run through a Vaa3D-based image processing and reconstruction 1952 

pipeline as described previously 89. 1953 

 1954 

Viral vector production and transduction. Recombinant AAV vectors were produced by triple-1955 

transfection of ITR-containing enhancer plasmids along with AAV helper and rep/cap plasmids using 1956 
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the AAV293 cell line, followed by harvest, purification and concentration of the viral particles. The 1957 

AAV293 packaging cell line and plasmid supplying the helper function are available from a commercial 1958 

source (Cell Biolabs). The PHP.eB capsid variant was generated by Dr. Viviana Gradinaru at the 1959 

California Institute of Technology 90 and the DNA plasmid for AAV packaging is available from Addgene 1960 

(plasmid#103005). Quality control of the packaged AAV was determined by viral titering to determine 1961 

an adequate concentration was achieved (>5E12 viral genomes per mL), and by sequencing the AAV 1962 

genome to confirm the identity of the viral vector that was packaged. Human and NHP L5 ET neurons 1963 

including Betz cells were targeted in cultured slices by transducing the slices with viral vectors that 1964 

either generically label neurons (AAV-hSyn1-tdTomato), or that enrich for L5 ET neurons by expressing 1965 

reporter transgene under the control of the msCRE4 enhancer 87. 1966 

 1967 

Processing of Patch-seq samples. For a subset of experiments, the nucleus was extracted at the end of 1968 

the recording and processed for RNA-sequencing. Prior to data collection for these experiments, all 1969 

surfaces were thoroughly cleaned with RNAse Zap. The contents of the pipette were expelled into a 1970 

PCR tube containing lysis buffer (Takara, 634894). cDNA libraries were produced using the SMART-1971 

Seq v4 Ultra Low Input RNA Kit for Sequencing according to the manufacturer’s instructions. We 1972 

performed reverse transcription and cDNA amplification for X PCR cycles. Sample proceeded through 1973 

Nextera NT DNA Library Preparation using Nextera XT Index Kit V2 Set A(FC-131-2001). 1974 

   1975 

Mapping of samples to reference taxonomies. To identify which cell type a given patch-seq nuclei 1976 

mapped to, we used our previously described nearest centroid classifier 1. Briefly, a centroid classifier 1977 

was constructed for Glutamatergic reference data (human SSv4 or macaque Cv3) using marker genes 1978 

for each cluster. Patch-seq nuclei were then mapped to the appropriate species reference 100 times, 1979 

using 80% of randomly sampled marker genes during each iteration. Probabilities for each nuclei 1980 

mapping to each cluster were computed over the 100 iterations, resulting in a confidence score ranging 1981 
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from 0 to 100. We identified four human patch-seq nuclei that mapped with > 85% confidence and four 1982 

macaque nuclei that mapped with > 93% confidence to a cluster in the L5 ET subclass. 1983 

 1984 

Data availability 1985 

Raw sequence data are available for download from the Neuroscience Multi-omics Archive 1986 

(https://nemoarchive.org/) and the Brain Cell Data Center (https://biccn.org/data). Visualization and 1987 

analysis tools are available at NeMO Analytics (Individual species: 1988 

https://nemoanalytics.org//index.html?layout_id=ac9863bf; Integrated species: 1989 

https://nemoanalytics.org//index.html?layout_id=34603c2b) and Cytosplore Viewer 1990 

(https://viewer.cytosplore.org/). These tools allow users to compare cross-species datasets and 1991 

consensus clusters via genome and cell browsers and calculate differential expression within and 1992 

among species. A semantic representation of the cell types defined through these studies is available in 1993 

the provisional Cell Ontology (https://bioportal.bioontology.org/ontologies/PCL; Supplementary Table 1994 

1). 1995 

 1996 

Code availability 1997 

Code to reproduce figures will be available for download from 1998 

https://github.com/AllenInstitute/BICCN_M1_Evo. 1999 
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Extended Data Figure 1. RNA-seq quality metrics and integration of human datasets. a, 2059 

Schematic of single-nucleus isolation from M1 of post-mortem human brain and profiling with RNA-seq. 2060 

Box in the Nissl image highlights a cluster of Betz cells in L5. b, Using SSv4, > 1 million total reads 2061 

were sequenced across all subclasses in human. c-e, Using Cv3, total unique molecular identifiers 2062 

(UMI) varies between subclasses, and these differences are shared across species. f-i, Gene detection 2063 

(expression > 0) is highest in human using SSv4 (e) and lowest for marmoset using Cv3 (h). Note that 2064 

the average read depth used for SSv4 was approximately 20-fold greater than for Cv3 (target 60,000 2065 

reads per nucleus). j-k, tSNE projections of single nuclei based on expression of several thousand 2066 

genes with variable gene expression and colored by cluster label (j) or donor (k). l-n, Integration of 2067 

SSv4 and Cv3 RNA-seq datasets from human single nuclei isolated from GABAergic (l) and 2068 

glutamatergic (m) neurons and non-neuronal cells (n). Left: UMAP visualizations colored by RNA-seq 2069 

technology, cell subclass, and unsupervised consensus clusters. Right: Confusion matrices show 2070 

membership of SSv4 and Cv3 nuclei within integrated consensus clusters. 2071 
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Extended Data Figure 2. RNA-seq integration of GABAergic neurons across species. a, 2074 

Dendrogram of GABAergic neuron clusters from unsupervised clustering of integrated RNA-seq data 2075 

from human, marmoset and mouse. Edge thickness indicates the relative number of nuclei, and edge 2076 

color indicates species mixing (grey is well mixed). Major branches are labeled by subclass. 2077 

Dendrogram shown in Figure 2f is derived from this tree based on pruning species-specific branches. 2078 

b, Dendrograms of pairwise species integrations from Figure 2g with leaves labeled by cross-species 2079 

clusters and edges colored by species mixing. c, Cluster overlap heatmap from human-marmoset 2080 

pairwise Seurat integration showing the proportion of within-species clusters that coalesce within 2081 

integrated clusters. Columns and rows are ordered as in Figure 2e with cross-species consensus 2082 

clusters indicated by blue boxes. Top and left color bars indicate subclasses of within-species clusters. 2083 

d, Heatmaps showing scaled expression of the top 5 marker genes for each GABAergic cross-species 2084 

cluster, and 5 marker genes for Lamp5 and Sst. Initial genes were identified by performing a Wilcox test 2085 

of every integrated cluster against every other GABAergic nuclei. Additional DEGs were identified for 2086 

Lamp5 and Sst cross-species clusters, by comparing one of the cross-species clusters to all other 2087 

related nuclei (e.g. Sst_1 against all other Sst). e-f, Heatmap of 1-vs-best MetaNeighbor scores for 2088 

GABAergic subclasses (e) and clusters (f). Each column shows the performance for a single training 2089 

group across the three test datasets. AUROCs are computed between the two closest neighbors in the 2090 

test dataset, where the closer neighbor will have the higher score, and all others are shown in gray 2091 

(NA). For example, in e the first column contains results of training on human Lamp5, labeled with 2092 

numbers to indicate test datasets, where 1 is human, 2 is marmoset and 3 is mouse, and letters to 2093 

indicate closest (a) and second-closest (b) neighboring groups. Dark red 3x3 blocks along the diagonal 2094 

indicate high transcriptomic similarity across all three species. g, Scatter plot of MetaNeighbor analysis 2095 

showing the performance (AUROC) of gene sets to classify GABAergic neuron consensus types by 2096 

training with human or marmoset data and testing with the other species (Cross-Primate, y-axis) or 2097 

training with primate data and testing with mouse (Primate-Mouse, x-axis). Gene set size and type are 2098 

indicated by point size and color, respectively. h, Histogram of the relative difference in isoform genic 2099 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2020. ; https://doi.org/10.1101/2020.03.31.016972doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.016972
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

proportion (P) between human and mouse for all subclass comparisons. All moderately to highly 2100 

expressed isoforms were included (gene TPM > 10 in both species; isoform TPM > 10 and proportion > 2101 

0.2 in either species). Vertical lines indicate >9-fold change in mouse or human. i, Proportion of all 2102 

isoforms in h that switch between species (FDR P < 0.05; >9-fold change in P) summarized by 2103 

subclass and grouped by cell class. j, Comparison between species of isoform genic proportions for the 2104 

top three most common isoforms of Chimerin 2 (CHN2) expressed in the L5/6 NP subclass. Genome 2105 

browser tracks of RNA-seq (SSv4) reads in human and mouse at the CHN2 locus. 2106 
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Extended Data Figure 3. Glutamatergic neuron cell type homology across species. a, UMAP 2109 

visualization of integrated snRNA-seq data from human, marmoset, and mouse glutamatergic neurons. 2110 

Highlighted colors indicate subclass. b, Venn diagrams indicating number of shared DEGs across 2111 

species by subclass. DEGs determined by ROC test of subclass against all other glutamatergic 2112 

subclasses within a species. c, Heatmap of all DEGs from b ordered by subclass and species 2113 

enrichment. Heatmap shows expression scaled by column for up to 50 randomly sampled nuclei from 2114 

each subclass for each species. d, UMAP visualization of integrated snRNA-seq data with projected 2115 

nuclei split by species. Colors indicate different within-species clusters. e, Cluster overlap heatmap 2116 

showing the proportion of within-species clusters that coalesce with a given integrated cross-species 2117 

cluster. Cross-species clusters are labelled and indicated by blue boxes with human-marmoset overlap 2118 

shown to the left and human-mouse overlap shown to the right. Top and left axes indicate the subclass 2119 

of a given within-species cluster by color. Bottom axis indicates marmoset (left) and mouse (right) 2120 

within species clusters. Right axis shows the glutamatergic branch of the human dendrogram from 2121 

Figure 1c. f, Dendrogram of glutamatergic neuron cross-species clusters. g, Unpruned dendrogram of 2122 

glutamatergic neuron clusters from unsupervised clustering of integrated RNA-seq data. Edge 2123 

thickness indicates the relative number of nuclei, and edge color indicates species mixing. Major 2124 

branches are labeled by subclass. h, Bar plots quantifying the number of well-mixed clusters from 2125 

unsupervised clustering of pairwise species integrations. Significant differences (adjusted P < 0.05, 2126 

Tukey’s HSD test) between species are indicated for each subclass. i, Scatter plot of MetaNeighbor 2127 

analysis showing the performance (AUROC) of gene sets to classify glutamatergic neuron consensus 2128 

types by training with human or marmoset data and testing with the other species (Cross-Primate, y-2129 

axis) or training with primate data and testing with mouse (Primate-Mouse, x-axis). Gene set size and 2130 

type are indicated by point size and color, respectively. j, Heatmaps showing scaled expression of 2131 

marker genes for each glutamatergic cross-species cluster. The top 5 marker genes for each cross-2132 

species cluster are shown, with an additional 5 genes for L5 ET, L5 IT, and L6 IT. Initial genes were 2133 

identified by performing a Wilcox test of every integrated cluster against every other glutamatergic 2134 
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nuclei. Additional DEGs were identified for L5 ET, L5 IT, and L6 IT cross-species clusters, by 2135 

comparing one of the cross-species clusters to all other related nuclei (e.g. L5 IT_1 against all other L5 2136 

IT). k, l, Heatmap of 1-vs-best MetaNeighbor scores for glutamatergic subclasses (k) and clusters (l). 2137 

Results are displayed as in Extended Data Fig. 2e,f.  2138 
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Extended Data Figure 4. Non-neuronal cell type homology across species. a, UMAP plots of 2141 

integrated RNA-seq data for non-neuronal nuclei, colored by species and within-species clusters. Note 2142 

that some cell types are present in only one or two species. b, UMAP of mouse oligodendrocyte 2143 

precursors and mature cells showing expression levels of marker genes for different stages of cell 2144 

maturation. c, Heatmaps of the proportion of nuclei in each species-specific cluster that overlap in the 2145 

integrated RNA-seq analysis. Blue boxes define homologous cell types that can be resolved across all 2146 

three species. Arrows highlight clusters that overlap between two species and are not detected in the 2147 

third species, due to differences in sampling depth of non-neuronal cells, relative abundances of cell 2148 

types between species, or evolutionary divergence. d, Conserved marker genes for homologous cell 2149 

types across species. e, Pairwise comparisons between species of log-transformed gene expression of 2150 

the Astro_1 type. Colored points correspond to significantly differentially expressed (DE) genes (FDR < 2151 

0.01, log-fold change > 2). r, Spearman correlation. f, Fibrous astrocyte in situ validation. Violin plots of 2152 

marker genes of human astrocyte clusters that correspond to fibrous, interlaminar, and protoplasmic 2153 

types based on in situ labeling of types. Left ISH: Fibrous astrocytes located in the white matter (WM, 2154 

top) and a subset of L1 (bottom) astrocytes express the Astro L1-6 FGFR3 AQP1 marker gene TNC. 2155 

Middle ISH: Image of putative varicose projection astrocyte located in cortical L5 adjacent to a blood 2156 

vessel (bv) and extending long GFAP-labeled processes (white arrows) does not express the marker 2157 

gene TNC. The white dashed box indicates the area shown at higher magnification in the top right 2158 

panel. Likewise, the L3 protoplasmic astrocyte shown in the bottom right panel does not express TNC. 2159 

g, Combined GFAP immunohistochemistry and RNAscope FISH for markers of L1 astrocytes in 2160 

human, mouse, and marmoset. In human (top), pial and subpial interlaminar astrocytes are labeled with 2161 

AQP4 and ID3 and extend long processes from L1 down to L3. In marmoset (middle), both pial and 2162 

subpial L1 astrocytes express AQP4 and GRIK2 and extend GFAP-labeled processes through L1 that 2163 

terminate before reaching L2. An image of a marmoset protoplasmic astrocyte located in L3 shows that 2164 

this astrocyte type does not express the marker gene GRIK2. A subset of marmoset fibrous astrocytes 2165 

located in the white matter (WM) express GRIK2, suggesting that fibrous and L1 astrocytes have a 2166 
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shared gene expression signature as shown in human 2. L1 astrocytes in mouse (bottom) consist of pial 2167 

and subpial types that differ morphologically but are characterized by their expression of the genes 2168 

Aqp4 and Id3. Pial astrocytes in mouse extend short Gfap-labeled processes that terminate within L1 2169 

whereas mouse subpial astrocytes appear to extend processes predominantly toward the pial surface. 2170 

Protoplasmic astrocytes (example shown in L5) do not express Id3, whereas fibrous astrocytes in 2171 

mouse share expression of Id3 with L1 astrocyte types. Inset images outlined with white dashed boxes 2172 

illustrate cells in each of the accompanying images at higher magnification to show RNAscope spots for 2173 

each gene labeled. Scale bars, 20 µm. h, Violin plots of marker genes of oligodendrocyte lineage 2174 

clusters in human. Transcripts detected in the Oligo L2−6 OPALIN MAP6D1 cluster include genes 2175 

expressed almost exclusively in neuronal cells. Scale bars, 20 µm. i, Left: Inverted DAPI image 2176 

showing a column of cortex labeled with markers of the human Oligo L2-6 OPALIN MAP6D1 type. Red 2177 

dots show cells triple labeled with SOX10, NPTX1, and ST18. Top right: Examples of cells labeled with 2178 

marker gene combinations specific for the human Oligo L2-6 OPALIN MAP6D1 type. Bottom right: 2179 

Example of a marmoset cell labeled with the marker genes OLIG2 and NRXN3. Scale bars, 20 µm.  2180 
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Extended Data Figure 5. SNARE-seq2 transcriptomic profiling resolves M1 cell types. a-b, FACS 2183 

gating parameters used for sorting human and marmoset single nuclei (a) that were used for SNARE-2184 

seq2 as outlined in (b), to generate both RNA and accessible chromatin (AC) libraries having the same 2185 

cell barcodes. c, Dot plot showing averaged marker gene expression values (log scale) and proportion 2186 

expressed for clusters identified in a preliminary analysis of SNARE-seq2 RNA using Pagoda2. d, 2187 

Correlation heatmap of averaged scaled gene expression values for Pagoda2 clusters against SSv4 2188 

clusters from the same M1 region. e, Jaccard similarity plot for cell barcodes grouped according to 2189 

Pagoda2 clustering compared against the predicted SSv4 consensus clustering. f-k, Overview of AC-2190 

level cluster assignment using RNA-defined clusters indicating the five main steps of the process. f, 2191 

Consensus clusters visualized by UMAP on RNA expression data and that were used to independently 2192 

call peaks from AC data. g, Histograms showing maximum prediction scores for consensus cluster 2193 

(top) and subclass (bottom) labels from RNA data to corresponding accessibility data (cicero gene 2194 

activities). h, Consensus cluster peaks, as well as those identified from subclass and class level 2195 

barcode groupings, were combined and the corresponding peak by cell barcode matrix was used to 2196 

predict gene activity scores using Cicero for integrative RNA/AC analyses. UMAP shows joint 2197 

embedding of RNA and imputed AC expression values using Seurat/Signac. i, UMAP showing clusters 2198 

identified from the joint embedding (h). j, Jaccard similarity plot comparing cell barcodes either grouped 2199 

according to RNA consensus clustering or joint RNA/AC clustering (i). RNA consensus clusters were 2200 

merged to best match the cluster resolution achieved from co-embedded clusters. Chromatin peak 2201 

counts generated from peak calling independently on consensus, AC-level, subclass, and class 2202 

barcode groupings were used to generate a final peak by cell barcode matrix. k, Final AC-level clusters 2203 

visualized using UMAP.  2204 
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Extended Data Figure 6. SNARE-Seq2 quality statistics. a-b, Correlation heatmaps of average 2207 

scaled gene expression values against average scaled Cicero gene activity values for consensus 2208 

clusters (a) and AC-level clusters (b). c, UMAP plots showing human AC-level clusters for both RNA 2209 

and chromatin data, as well as the corresponding patient and experiment identities for the RNA 2210 

embeddings. d, Bar, violin and box plots for human AC-level clusters showing proportion contributed by 2211 

each experiment or patient, mean UMI and genes detected from the RNA data, the mean peaks and 2212 

cicero active genes detected from AC data, the fraction of reads found in promoters for AC data, and 2213 

the number of nuclei making up each of the clusters. e, UMAP plots showing marmoset AC-level 2214 

clusters for both RNA and chromatin data, as well as the corresponding patient and library identities for 2215 

the RNA embeddings. f, Bar, violin and box plots for marmoset AC-level clusters showing proportion 2216 

contributed by each library or patient, mean UMI and genes detected from the RNA data, the mean 2217 

peaks and cicero active genes detected from AC data, the fraction of reads found in promoters for AC 2218 

data, and the number of nuclei making up each of the clusters. 2219 
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Extended Data Figure 7. DNA-methylation cell type and integration with RNA-seq data. a-b, 2222 

UMAP visualization of marmoset M1 and mouse MOp DNA methylation (snmC-seq2) data and cell 2223 

clusters. c-e, Mapping between DNAm-seq and RNA-seq clusters from human (c), marmoset (d), and 2224 

mouse (e). Number of nuclei in each cluster are listed in parentheses. f, Numbers of hypo- and hyper-2225 

methylated DMRs and overlap with chromatin accessible peaks in each subclass of human. g, 2226 

Numbers of chromatin accessible peaks and overlap with DMRs in each subclass of human. 2227 
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Extended Data Figure 8. TFBS enrichment analysis on hypo-methylated DMRs at subclass level 2230 

show conservativity of gene regulation across species. Motif enrichment analysis of TFBS were 2231 

conducted using JASPAR’s non-redundant core vertebrata TF motifs for neuronal subclasses in each 2232 

species. Each subclass tri-column shows the results of human, marmoset and mouse, respectively 2233 

from left to right. The size of a dot denotes the p-value of the corresponding motif, while the color 2234 

denotes the fold change. The rightmost two columns show TF clusters (cl) identified from motif profiles 2235 

and TF family (fam) identified from TF structures. 2236 
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Extended Data Figure 9. Cell type homologies between human cortical areas based on RNA-seq 2239 

integration. a, Heatmap of glutamatergic neuron cluster overlap between M1 and MTG. b, Heatmaps 2240 

of glutamatergic neuron cluster overlap for M1 and MTG test datasets. Clusters were split in half and 2241 

two datasets were integrated using the same analysis pipeline as the M1 and MTG integration. Most 2242 

clusters mapped correctly (along the diagonal) with some loss in resolution between closely related 2243 

clusters (red blocks). c, tSNE plots of integrated glutamatergic neurons labeled with M1 and MTG 2244 

clusters. d-g, Cluster overlap heatmaps and tSNE plots of integrations of GABAergic neurons (d, e) 2245 

and non-neuronal cells (f, g), as described for glutamatergic neurons. 2246 
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Extended Data Figure 10. Cross-species alignment of glutamatergic neurons and differences in 2249 

L5 neuron spike trains and single spike properties. a, b, UMAP visualizations of cross-species 2250 

integration of snRNA-seq data for glutamatergic neurons isolated from human, macaque (L5 dissection 2251 

only), marmoset, and mouse. Colors indicate species (a) or cell subclass (b). c, Cluster overlap 2252 

heatmap showing the proportion of nuclei from within-species clusters that are mixed within the same 2253 

integrated clusters. Human clusters (rows) are ordered by the dendrogram reproduced from Figure 1c. 2254 

Macaque clusters (columns) are ordered to align with human clusters. Color bars at top and left indicate 2255 

subclasses of within-species clusters. Blue box denotes the L5 ET subclass. d, Dendrogram showing 2256 

all macaque clusters from L5 dissection with subclasses denoted to the right. e, Violin plot showing 2257 

expression of marker genes for human L5 ET neuron subtypes. f, Two examples of ISH labeled, SMI-2258 

32 IF stained Betz cells in L5 of human M1 that correspond to the L5 ET cluster Exc L3-5 FEZF2 2259 

ASGR2. Insets show higher magnification of ISH-labeled transcripts in corresponding cells. Scale bars, 2260 

20 µm. Asterisks mark lipofuscin. g, Example IR-DIC (top) and fluorescent (bottom) images obtained 2261 

from a macaque organotypic slice culture. Note the inability to visualize the fluorescently labeled 2262 

neurons in IR-DIC because of dense myelination. h, patch-seq involves the collection of morphological, 2263 

physiological and transcriptomic data from the same neuron. Following electrophysiological recording 2264 

and cell filling with biocytin via whole cell patch clamp, the contents of the cell are aspirated and 2265 

processed for RNA-sequencing. This permits a transcriptomic cell type to be pinned on the 2266 

physiologically-probed neuron. i, Example voltage responses to a 1 s, 500 pA step current injection. j. 2267 

Action potentials as a function of current injection amplitude. Primate ET neurons display shallowest 2268 

action potential-current injection relationship, perhaps partially because of their exceptionally low input 2269 

resistance. k, Voltage responses to a 1 s, 3 nA step current injection. l, Action potentials as a function 2270 

of current injection for a subset of experiments in which current injection amplitude was increased 2271 

incrementally to 3 nA. While both mouse and primate ET neurons could sustain high firing rates, 2272 

primate neurons required 3 nA of current over 1s to reach similar average firing rates as mouse ET 2273 

neurons. m, Example voltage responses to 1 s depolarizing step current injections. The amplitude of 2274 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2020. ; https://doi.org/10.1101/2020.03.31.016972doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.016972
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

the current injection was adjusted to produce ~10 spikes. Also shown are voltage responses to a 2275 

hyperpolarizing current injection. n, The firing rate of primate ET and IT neurons decreased during the 1 2276 

s step current injection, whereas, the firing rate of mouse ET neurons increased. Acceleration 2277 

ratio=2nd/last interspike interval. o, Example single action potentials (above) and phase plane plots 2278 

(below). p, Various action potential features are plotted as a function of cell type. Notably, action 2279 

potentials in primate ET neurons were reminiscent of fast spiking interneurons in that they were shorter 2280 

and more symmetrical compared with action potentials in other neuron types/species. Intriguingly, K+ 2281 

channel subunits Kv3.1 and Kv3.2 that are implicated in fast spiking physiology91 are encoded by highly 2282 

expressed genes (KCNC1 and KCNC2) in primate ET neurons (Fig. 7c) * p < 0.05, Bonferroni 2283 

corrected t-test.  2284 
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Specimen 

ID 

Age Sex Race Cause of  

Death 

PMI 

(hr) 

Tissue  

RIN 

Hemisphere 

Sampled 

Data Type 

H200.1023  43  F  Iranian 

descent  

Mitral valve prolapse  18.5  7.4 ± 

0.7  

L  SSv4 

H200.1025  50  M  Caucasian Cardiovascular 24.5  7.6 ± 

1.0  

L  SSv4 

H200.1030  54  M  Caucasian Cardiovascular  25  7.7 ± 

0.8  

L  SSv4 

H18.30.001 60 F Unknown Car accident 18 7.9 ± 

2.5 

R SSv4, Cv3, 

SNARE-seq2, 

sn-methlyome  

H18.30.002 50 M Unknown Cardiovascular 10 8.2 ± 

0.4 

R SSv4, Cv3, 

SNARE-seq2, 

snmC-seq2 

Extended Data Table 1. Summary of human tissue donors. RIN, RNA integrity number. Data type: 2286 

SMART-Seqv4 (SSv4), 10x Genomics Chromium Single Cell 3’ Kit v3 (Cv3), Single-Nucleus Chromatin 2287 

Accessibility and mRNA Expression sequencing (SNARE-seq2), Single-nucleus methylcytosine 2288 

sequencing (snmC-seq2). 2289 
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Specimen  ID Age (years) Sex Data Type 

bi005 2.3 M Cv3 

bi006 3.1 F Cv3 

bi003 1.9 M FISH 

Extended Data Table 2. Summary of marmoset specimens. Data type: 10x Genomics Chromium 2291 

Single Cell 3’ Kit v3 (Cv3). ACD Bio multiplex fluorescent in situ hybridization (FISH). 2292 

 2293 

Supplementary Table legends 2294 

Supplementary Table 1. Provisional cell ontology (pCL) terms for human, mouse, and marmoset 2295 

primary motor cortex cell types. Column headers are described as follows: pCL_id is a unique 2296 

alphanumeric identifier assigned to each provisional cell type. CL_id is the Cell Ontology (CL) identifier 2297 

for those parent cell type classes already represented in CL. pCL_name and Transcriptome data 2298 

cluster are labels given according to each species naming convention that combines information about 2299 

cortical layer enrichment and genes expressed in data cluster transcriptomes. TDC_id is a unique 2300 

identifier assigned to the transcriptome data cluster. The part_of (uberon_id) and part_of 2301 

(uberon_name) columns contain unique identifiers and names for tissue anatomic regions from which 2302 

the experiment specimen was derived, in this case primary motor cortex. The is_a (CL or pCL_id) and 2303 

is_a (CL or pCL_name) columns contain parent cell type or provisional cell type identifiers and names, 2304 

respectively. Cluster_size indicates the number of single-nucleus or cell transcriptomes that were 2305 

assigned membership to the transcriptome data cluster. Marker_gene_evidence indicates the number 2306 

of marker genes that are necessary and sufficient to define the transcriptome cell type data cluster with 2307 

maximal classification accuracy based on the NS-Forest v2.1 algorithm (see Supplementary Tables 4-2308 

6). F-measure_evidence is the f-beta score of classification accuracy from the NS-Forest v2.1 algorithm 2309 

using the marker genes listed. The selectively_expresses column lists the minimum set of marker 2310 
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genes necessary and sufficient to define the transcriptome cell type data cluster. The definition brings 2311 

together features to form a data driven ontological representation for each cell type cluster. The pCL 2312 

annotations are available at https://github.com/mkeshk2018/Provisional_Cell_Ontology and 2313 

https://bioportal.bioontology.org/ontologies/PCL. 2314 

 2315 

Supplementary Table 2. Cluster annotations for human, marmoset, and mouse in separate 2316 

worksheets. Cluster_label column identifies the RNA-seq cluster within each species. Cluster_size 2317 

column denotes the number of nuclei that reside within each cluster (cluster_label). Class column 2318 

identifies which cell class each cluster belongs to. Subclass column identifies which cell subclass each 2319 

cluster belongs to. Cross-species cluster column indicates the cross-species consensus cluster 2320 

taxonomy. DNAm_cluster_label column identifies the transcriptomic cluster (cluster_label) that is 2321 

aligned to DNAm-determined clusters. ATAC_cluster label column identifies the transcriptomic cluster 2322 

(cluster_label) that is aligned to ATAC-determined clusters.  2323 

 2324 

Supplementary Table 3. Application of Allen Institute nomenclature schema to mouse, marmoset, and 2325 

human M1 taxonomies. The “taxonomy_ids” tab lists ids and descriptions for the 11 taxonomies 2326 

included and which tab those taxonomies are shown on. The “preferred_aliases” tab shows a list of 2327 

preferred aliases for linking between taxonomies, as well as descriptions for these. The next five tabs 2328 

show nomenclatures for each of the taxonomies and have the following column headers: “tree_order” is 2329 

the order shown in the tree (if any); “cell_set_alias”, “cell_set_label”, and “cell_set_accession” are 2330 

unique identifiers, as described in the Allen Institute nomenclature page (https://portal.brain-2331 

map.org/explore/classes/nomenclature), with “cell_set_alias” including the names used in this 2332 

manuscript; “cell_set_preferred_alias” indicates which clusters correspond to the “preferred_alias”es 2333 

from the previous tab, if any; “cell_set_alias_integrated” shows linkages between single species 2334 

transcriptomics taxonomies and the integrated taxonomy; “cell_set_labels_CS191213#" columns 2335 

indicate linkages between cell sets in the transcriptomics and other modalities within a single species; 2336 
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“cell_set_descriptor” shows the type of cell set (or level of ontology); and “taxonomy_id” links to the 2337 

“taxonomy_id” tab. Finally, the “Cell class hierarchy” tab shows the ordered class, level2, and subclass 2338 

hierarchy and associated colors used as cell sets in previous tabs.  2339 

 2340 

Supplementary Table 4. NS-Forest v2.1 was used to determine cell type cluster marker genes for all 2341 

annotated levels of the human primary motor cortex cell type taxonomy defined by RNA-seq (Cv3). 2342 

“clusterName” corresponds to the annotation label, either a cell type cluster name or a parent cell type 2343 

class in the taxonomy. “markerCount” gives the optimal number of marker genes in the set that best 2344 

discriminates the label. The “f-measure” column gives the f-beta score for classification using the set of 2345 

markers. The next four columns “True Negative”, “False Positive”, “False Negative”, “True Positive” give 2346 

the confusion matrix for the label given the set of markers. Finally, “Marker 1-5” lists the gene symbols 2347 

corresponding to the optimal set of markers.  2348 

  2349 

Supplementary Table 5. NS-Forest v2.1 was used to determine cell type cluster marker genes for all 2350 

annotated levels of the mouse primary motor cortex cell type taxonomy defined by RNA-seq (Cv3). 2351 

“clusterName” corresponds to the annotation label, either a cell type cluster name or a parent cell type 2352 

class in the taxonomy. “markerCount” gives the optimal number of marker genes in the set that best 2353 

discriminates the label. The “f-measure” column gives the f-beta score for classification using the set of 2354 

markers. The next four columns “True Negative”, “False Positive”, “False Negative”, “True Positive” give 2355 

the confusion matrix for the label given the set of markers. Finally, “Marker 1-5” lists the gene symbols 2356 

corresponding to the optimal set of markers. 2357 

  2358 

Supplementary Table 6. NS-Forest v2.1 was used to determine cell type cluster marker genes for all 2359 

annotated levels of the marmoset primary motor cortex cell type taxonomy defined by RNA-seq (Cv3). 2360 

“clusterName” corresponds to the annotation label, either a cell type cluster name or a parent cell type 2361 

class in the taxonomy. “markerCount” gives the optimal number of marker genes in the set that best 2362 
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discriminates the label. The “f-measure” column gives the f-beta score for classification using the set of 2363 

markers. The next four columns “True Negative”, “False Positive”, “False Negative”, “True Positive” give 2364 

the confusion matrix for the label given the set of markers. Finally, “Marker 1-5” lists the gene symbols 2365 

corresponding to the optimal set of markers. 2366 

 2367 

Supplementary Table 7. DEGs determined by ROC test between each GABAergic neuron subclass 2368 

and all other GABAergic nuclei within each species. Columns are labeled myAUC, which contains AUC 2369 

scores > 0.7; avg_diff, which contains difference in expression between target subclass and all other 2370 

GABAergic neurons; power; pct.1, which indicates the percent of nuclei that express the gene in the 2371 

target cluster; pct.2, which indicates the percent of non-target nuclei that express the gene; cluster, 2372 

which denotes the target cluster; gene, indicating the gene that was identified as DE; and species, 2373 

which indicates the species the test was performed in.  2374 

 2375 

Supplementary Table 8. List of DEGs (from Supplementary Table 7) that is sorted according to the 2376 

order the genes appear within the heatmap. 2377 

 2378 

Supplementary Table 9. Supervised MetaNeighbor results, within- and across-species. Each row 2379 

corresponds to a unique entry for a given gene set and a given cell class, either Glutamatergic or 2380 

GABAergic. The first five columns provide information about the gene sets, namely their provenance 2381 

(SynGO or HGNC); numerical IDs; descriptive labels; manual classifications for plotting and 2382 

interpretation; and finally the number of genes included in the analysis (after subsetting to genes with 1-2383 

1 orthologs across all three species). The sixth column indicates cell class. The remaining columns 2384 

contain MetaNeighbor AUROCs for various analyses: within_species_meanROC (column 7) provides 2385 

the mean of within-mouse (column 8), within-marmoset (column 9) and within-human (column 10) 2386 

performance. For each species, tests were run with random 3-fold cross-validation, and the average 2387 
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across folds is reported. Columns 11 and 12 contain results from cross-species analyses, detailed in 2388 

the methods. Results are sorted by their AUROC across primates (column 12). 2389 

 2390 

Supplementary Table 10. DEGs determined by ROC test between each glutamatergic neuron 2391 

subclass and all other glutamatergic nuclei within each species. Columns are labeled myAUC, which 2392 

contains AUC scores > 0.7; avg_diff, which contains difference in expression between target subclass 2393 

and all other glutamatergic neurons; power; pct.1, which indicates the percent of nuclei that express the 2394 

gene in the target cluster; pct.2, which indicates the percent of non-target nuclei that express the gene; 2395 

cluster, which denotes the target cluster; gene, indicating the gene that was identified as DE; and 2396 

species, which indicates the species the test was performed in. 2397 

 2398 

Supplementary Table 11. List of DEGs (from Supplementary Table 10) that is sorted according to the 2399 

order the genes appear within the heatmap. 2400 

 2401 

Supplementary Table 12. Average expression of isoforms in human and mouse subclasses and 2402 

estimates of isoform genic proportions (P) based on the ratio of isoform to gene expression. Isoforms 2403 

were included if they had at least moderate expression (TPM > 10) and P > 0.2 in either human or 2404 

mouse and at least moderate gene expression (TPM > 10) in both species. 2405 

 2406 

Supplementary Table 13. SNARE-Seq2 metadata, cluster annotations and quality statistics. Tab 14a 2407 

indicates SNARE-Seq2 experiment level metadata (experiment name, library, patient, species, 2408 

purification, age, sex) and mapping statistics for RNA (mean UMI detected, mean genes detected) and 2409 

AC (mean fraction of reads in promoters or FRiP, mean uniquely mapped fragments grouped by 5000 2410 

base pair chromosomal bins, mean unique fragment counts per final peak locations, total number of 2411 

final nuclei). Tab 14b indicates the SNARE-Seq2 local RNA clusters for human M1 generated using 2412 

Pagoda2 (local cluster, annotated cluster name, broad cell type and abbreviation, k value used for 2413 
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Pagoda2 clustering, broad cell type markers, level 1 and level2 classes and associated markers, 2414 

unique cluster markers). Tabs 14c-d indicates SNARE-Seq2 consensus or harmonized RNA and AC-2415 

Level cluster annotations for human and marmoset M1, respectively, including annotated cluster name, 2416 

cluster order, associated subclass and class, and the number of datasets making up the clusters. Tabs 2417 

14e-f lists all metadata outlined in tabs 14a-d for all SNARE-Seq2 cell barcodes from human and 2418 

marmoset M1 samples, respectively.  2419 

 2420 

Supplementary Table 14. SNARE-Seq2 differentially accessible regions for human and marmoset M1. 2421 

Tabs 15a and 15b show SNARE-Seq2 differentially accessible regions (DARs, q value < 0.001, log-fold 2422 

change > 1) identified by AC-Level clusters (15a) or subclass level (15b) for human M1, indicating for 2423 

each chromosomal location the p value (hypergeometric test), q value (Benjamini-Hochberg adjusted p 2424 

value), log-fold change and associated cluster or subclass. Tab 15b shows subclass DARs (q value < 2425 

0.001, log-fold change > 1) for marmoset subclasses as in tab 15b. Tab 15d shows a summarization of 2426 

human and marmoset DARs detected by matched subclasses, indicating actual number of DARs 2427 

detected (tabs 15b and 15c) and the values normalized to cluster size and total number of DARs 2428 

detected per species. 2429 

 2430 

Supplementary Table 15. Cis-co-accessible sites, TF motif enrichments and differential TFBS 2431 

activities for human and marmoset M1. Tab 16a (human M1) and 16b (marmoset M1) show cis-2432 

coaccessible network (CCAN) sites for subclass distinct markers genes (Wilcoxon Rank Sum test, 2433 

adjusted P < 0.05, average log-fold change > 0.5). pct.1 indicates the percent of nuclei that express the 2434 

gene in the target cluster, pct.2 indicates the percent of non-target nuclei that express the gene. For 2435 

each cluster and marker gene, corresponding motif enrichment values (hypergeometric test) for gene-2436 

associated CCAN sites are shown (“observed” indicates number of features containing the motif, 2437 

“background” indicates the total number of features from a random selection of 40000 features that 2438 

contain the motif), and the motif associated differential chromVAR activity values identified using 2439 
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logistic regression. The full list of chromVAR differentially active TFBS activities are also provided. Tab 2440 

16c summarizes the number of CCAN-associated marker genes, associated TFBSs enriched and or 2441 

active by subclass for both human and marmoset M1. Tabs 16d and 16e show cis-co-accessible sites, 2442 

TFBS enrichments and differential activities by AC-level clusters for human and marmoset M1, 2443 

respectively, similar to that provided in tabs 16a and 16b. Tab 16f shows chromVAR differentially active 2444 

TFBS activities by consensus or harmonized cluster using logistic regression. Tabs 16g, 16h, and 16i 2445 

show cis-co-accessible sites, TF motif enrichments and differential TFBS activities for human, 2446 

marmoset and mouse M1 ChCs compared against BCs. 2447 

 2448 

Supplementary Table 16. snmC-seq2 metadata. The table shows experiment level metadata, 2449 

including species, sample name, gender, purification information, experiment nuclei numbers and pass-2450 

QC nuclei numbers. 2451 

 2452 

Supplementary Table 17. Subclass TFBS enrichment results. TFBS enrichment analysis was done 2453 

with AME 78 using JASPAR2020 motifs . Within a species, hypo-methylated DMRs in each subclass 2454 

were tested against hypo-methylated DMRs of all the other subclasses (background). DMRs and 250bp 2455 

around regions were used in the analysis. This table includes p-values and effect sizes (log2(TP/FP)) of 2456 

the analysis results. 2457 

 2458 

Supplementary Table 18. Subclass TFBS enrichment at TF cluster level. TFs in SI Tab 18 were 2459 

grouped using clusters defined in Ref 42. The table lists the most significant p-values and the largest 2460 

effect size of each TF cluster group. 2461 

 2462 

Supplementary Table 19. DEGs determined by ROC test between chandelier cells and basket cells 2463 

within each species. Columns are labeled as species, with true/false values indicating if a gene was 2464 

enriched in chandelier cells for that species. 2465 
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 2466 

Supplementary Table 20. DEGs determined by ROC test between L5 ET subclass and L5 IT subclass 2467 

within each species. Columns are labeled as species, with values of 1 indicating a gene was enriched 2468 

in the L5 ET subclass for that species. A value of 0 indicates that the gene was not enriched in the L5 2469 

ET subclass for that species. 2470 

 2471 

Supplementary Table 21. Genes with expression enrichment in L5 ET versus L5 IT that decreases 2472 

with evolutionary distance from human (human > macaque > marmoset > mouse). Columns are labeled 2473 

by species, and values indicate the log-fold change between L5 ET and L5 IT for that species. Genes 2474 

were included if they had a minimum log-fold change equal to 0.5 in human. 2475 
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