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Evolution of Central Pattern Generators for Bipedal
Walking in a Real-Time Physics Environment

Torsten Reil and Phil Husbands

Abstract—We describe an evolutionary approach to the control
problem of bipedal walking. Using a full rigid-body simulation of a
biped, it was possible to evolve recurrent neural networks that con-
trolled stable straight-line walking on a planar surface. No propri-
oceptive information was necessary to achieve this task. Further-
more, simple sensory input to locate a sound source was integrated
to achieve directional walking. To our knowledge, this is the first
work that demonstrates the application of evolutionary optimiza-
tion to three-dimensional physically simulated biped locomotion.

Index Terms—Bipedal walking, evolutionary algorithms, evolu-
tionary robotics, physics, recurrent neural networks.

I. INTRODUCTION

B IPEDAL walking is a difficult task due to its intrinsic insta-
bility and developing successful controller architectures

for this mode of locomotion has proved substantially more dif-
ficult than for other types of walking [1].

There is considerable interest in this matter from disciplines
as diverse as robotics, computer graphics, virtual reality, and bi-
ology. However, previous approaches have been based on con-
ventional control strategies. As will be discussed shortly, this
brings about considerable complications and limitations. In ad-
dition, past work has been constrained by only limited available
means to simulate the physics of the body to be controlled, thus,
making it either necessary to build robots or resort to simplified
models in simulation.

Given the inherent difficulties in designing stable con-
trollers for natural-looking bipedal walking, it was decided to
investigate the use of evolutionary robotics techniques [2] in de-
veloping recurrent dynamical neural-network-based controllers
for the task. This paper describes successful experiments in
evolving controllers for a realistically simulated biped.

The structure of the paper is as follows. We first review
previous work on controller architectures for bipedal walking.
These are subsequently contrasted with the approach taken
here: evolutionary robotics. Section II describes the implemen-
tation of both the biped and the neural controller, as well as the
evolutionary algorithm (EA) used in this research. As shown
in the subsequent results section, this combination succeeded
in producing natural-looking bipedal walking. Section IV
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addresses the integration of sensory input and describes a
corresponding successful experiment. The paper closes with a
discussion of the research.

A. Related Work

The major thrust of research on bipedal walking has come
from computer graphics and robotics. In the case of the former,
animation techniques such as motion capture [3] have come to
dominate the area. Motion capture essentially implies filming
the desired human behavior and using the obtained data to an-
imate a computer generated equivalent. The advantage of this
approach is clearly the ability to immediately generate realistic
bipedal motion dynamics. However, Laszloet al. [4] make it
clear that motion capture does not provide us with sufficient un-
derstanding to create more general walking motions, especially
when conditions are unpredictable, when new motions need to
be generated, or when dealing with nonhuman characters.

These shortcomings can be overcome by a second approach,
which is based on a semiphysical representation of the biped
and a controller to create movement patterns. With techniques
such as inverse kinematics and inverse dynamics, virtual limbs
can be placed at the desired positions and the required forces are
computed accordingly.

Several workers [4], [5] have followed this approach to create
computer animations of humans. The equations of motion are
either produced specifically for the model to be animated or
are generated with available packages [5], [6]. Typically, a fi-
nite-state machine determines the control actions (with cyclic
states such as heel contact, toe contact, unloading, or flight [4],
[5], [7]) and special forms of limit cycle control may be applied
to achieve the necessary stability [4]. The animated end results
of these efforts closely resemble natural motion patterns, but
may nevertheless fail to convince the human eye in specifically
designed “motion Turing tests” [5] (these tests confront human
subjects with computer generated and real-life animations and
ask them to discern between the two). This lack of realism is
a direct consequence of the controller architecture employed; a
state machine does not readily produce the fluctuations typical
of real locomotion. More significantly, it cannot easily be ex-
tended to integrate sensory input. Furthermore, the creation of
state machines can be a cumbersome process, as states have to
be identified, implemented and fine-tuned by hand for each type
of gait to be modeled [5].

Bipedal locomotion in robots is subject to the physical laws
of the natural world and hence short cuts like motion capture
are not available. Bipedal robots with varying complexities have
been produced and controlled by several researchers [8]–[16].
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Fig. 1. MathEngine implementation of the biped. Note that although two bodies are used to implement the knee, only one body is necessary.

TABLE I
WALKER DIMENSIONS AND MASSES

MathEngine bodies are combined to composite bodies.

Fig. 2. Recurrent neural network used to control bipedal walking. Shaded
nodes are motor neurons. Connections are bidirectional and asymmetric.

As with computer graphics models, the corresponding controller
architectures are typically based on state machines with special
algorithms added on top to provide the necessary stability. Most
recently, Prattet al.[14] have used Virtual Model Controllers for
planar bipedal robots. Here, virtual mechanical components are
attached to the robot and exert real actuator torques or forces.
For example, avirtual dog track bunnyis used to maintain a de-
sired velocity in a planar biped robot. A state machine changes
the virtual component connections or parameters at each state
transition. Together with a set of simple rules for, e.g., height,
pitch, and speed stabilization, this allows a more intuitive devel-
opment of stable controller architectures and eases the problem

TABLE II
ANGLE LIMITS OF BIPED JOINTS

Values were obtained heuristically.

of mathematical tractability encountered in previous attempts
[13]. In addition to testing and optimising control strategies on
the real robot, Pratt and Pratt [17] have used a rigid-body simu-
lation [6] to create a realistic model of a biped. This allowed ef-
ficient experimentation with the robot’s natural dynamics (such
as passively swinging legs).

In summary, with few exceptions, such as Miller [18], who
utilizes reinforcement learning for training a neural net, pre-
vious approaches to bipedal walking have been based on engi-
neering techniques like state machines and conventional control
theory. As remarked on earlier, this causes a number of prob-
lems: 1) mathematical tractability; 2) manual optimization; 3)
limited extendability; and 4) limited biological plausibility. It is
argued here that the evolutionary robotics approach presented
below has the potential to overcome the first three constraints
by improving on the last one, biological plausibility.

B. Evolutionary Robotics

Evolutionary robotics was introduced as an alternative to the
hand design of robot controllers, especially for autonomous
robots acting in uncertain and noisy domains [19], [20]. EAs
are used to search spaces of controllers (and potentially body
and sensor layouts too) described by a set of variables encoded
on the artificial genotype. The fitness function is usually
task-based, i.e., high scores are achieved by controllers that
enable the robot to perform the desired task well. These con-
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Fig. 3. Motor connections between controller and walker. Hips have two DOFs each (sagittal, i.e., front to back, and lateral); knees have one DOF each (sagittal).

Fig. 4. Encoding scheme. Chromosome index is shown in general form (n is the number of nodes) and for special case ofn = 10 (in brackets). Parameters are
encoded as real values. Ranges in the boxes represent upper and lower bounds of the respective parameter types.

trollers are nearly always in the form of some kind of artificial
neural network (ANN). The evolutionary search algorithm’s
job ranges from optimizing the parameters of a fixed-archi-
tecture ANN [21]–[23] to exploring complex network spaces
where the architecture and many properties of the nodes and
connections are under evolutionary control [24], [25].

There have been many successful applications of evolu-
tionary robotics to date, ranging from simple reactive behaviors
in wheeled robots with infrared proximity sensors [22], [26],
through visually guided behaviors in simple wheeled robots
[27], [28], to fairly complex nonreactive behaviors in simple
wheeled robots [29] and a variety of locomotion controllers for
six- and eight-legged robots [30]–[34]. For far more detailed
reviews of the field, see [2] and [37].

To date, evolutionary robotics techniques have not been
applied to a task as dynamically unstable as controlling
bipedal locomotion.1 It is this inherent instability (generally,
two-legged walkers will fall over without continuous active
control) that provides severe challenges to the hand design
of such controllers, especially if smooth natural walking is
required. However, given the success of evolved locomotion
controllers for relatively stable hexapod and octopod robots
[30]–[34], it was deemed appropriate to investigate the use of
such techniques for developing bipedal locomotion controllers.

1While other researchers such as Rodrigues [35] and de Garis [36] did use
evolutionary optimization in the context of bipedal walking, to the authors’
knowledge, no research has so far demonstrated the applicability of evolved
recurrent neurocontrollers for a real-time and physically realistic biped simula-
tion.

As will be seen later in this paper, evolutionary robotics
methods were indeed successful in finding stable controllers
for bipedal walking.

II. I MPLEMENTATION

A. The Biped

1) MathEngine Bodies and Joints:Unlike previous, em-
bodied approaches, the agent to be controlled here is modeled
using the rigid body dynamics simulation software developer’s
kit (SDK) of MathEngine. This allows the evaluations to be
run significantly faster than real time [36] and, thus, greatly
increases the efficiency of the evolutionary approach.

MathEngine’s Fast Dynamics Toolkitwas developed to
overcome the two most pressing problems in the simulation of
physics: complexity and speed. Programmed in C, it supports
bodies, joints, contacts, and forces, the attributes of which
can be set by the user [39]. Once set up, a physical world is
integrated by the engine over time in user-defined intervals.
The SDK used here (1.0.5) is shipped with an OpenGL and
Direct3D renderer to visualize the scene.

The implementation of the bodies for this research is char-
acterized by the need to capture the fundamental features of
a biped while limiting the body’s complexity and degrees of
freedom. Thus, the model used here consists of two articulated
legs connected by a link. Thirteen MathEngine bodies and 11
joints are used to implement these structures, as illustrated in
Fig. 1 (because each leg consist of two composite bodies with
two spheres and one connecting link each, the present imple-
mentation uses two bodies for each knee).
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TABLE III
INITIALIZATION (I) AND MUTATION (M) DISTRIBUTIONS FORDIFFERENT

PARAMETERS TYPES

Standard deviation and separate means of Gaussian distribution are shown.

The degrees of freedom (DOFs) of the joints are: 1) hip joint:
two DOFs (pitch/roll) and 2) knee: one DOF (pitch), giving a
total of six DOFs.

Although important for real walking (for example in birds
or humans), feet and ankle joints are not implemented. They
impose additional DOF and would, therefore, considerably in-
crease the controller’s search space. In addition, the capabil-
ities of MathEngine SDK 1.0.5 make realistic foot-floor con-
tact a computationally expensive endeavour (due to the need for
multiple contact points). Sphere-plane contacts (sphere radius: 8
cm) provide an uncomplicated and fast alternative and are used
instead. As will become clear later, this simplification does not
come at a noticeable cost in terms of the overall body dynamics.

2) Actuators: Muscle action is modeled by proportional
derivative (PD) controllers [5], [40], which are essentially
equivalent to damped torsional springs. Theirmodus operandi
is characterized by the following:

(1)

where is torque force, is the spring constant, is damping
constant, is the desired angle, andis the current angle.

Rather than directly defining the strength of actuator forces,
the controller updates the natural orientation of the PD con-
troller (the desired angle of the limb). Equation (1) is then used
to compute the force necessary to move the limb to that po-
sition. The spring constant and damping value determine the
strength and the tendency to oscillate. Their values therefore
significantly influence the realism of movements. By means of
manual experimentation, values of and were
found to be appropriate and are used for all actuators.

The PD approach largely eliminates the need to physically
limit joint angles since the same effect is achieved by con-
straining the range of . Table I shows the constraints used for
the biped introduced earlier. In addition, PDs provide control
at the mechanical level as they automatically reduce any dis-
crepancy between the current and desired angle; whether this
discrepancy has come about by a controller-mediated updated
value or by the dynamics of the physical world is irrelevant. As
a consequence, the tendency of limbs, e.g., to buckle under the
mass of the body is counteracted directly by the PDs, which
otherwise would be accomplished by the neural controller.

B. Controller Architecture

Legged locomotion is characterized by cyclic activity of the
limbs. In vertebrates and many invertebrates, the underlying
rhythmic neural activation patterns are created by designated
network structures called central pattern generators (CPGs)
[41]. The defining feature of these is a high degree of recur-

(a)

(b)

Fig. 5. Distributions of distances covered by (a) unstable and (b) stable
individuals. Top individuals of a total of 100 different evolutionary runs are
shown. Bin size: 1 m.

rency, which greatly biases the dynamics of the system toward
cyclic activation patterns.

In order to capitalize on comparable inherent dynamics, the
controller architecture used in this research is based on a re-
current neural net, the structure of which is depicted in Fig. 2.
(Similar networks have been used successfully as CPGs by [42]
and [32], in both cases for multilegged robots.)

Each network consists of ten fully interconnected neurons.
Besides the weights, the behavior of a node is governed by two
other parameters, a time constant, and a bias . At each iter-
ation (time step: 0.02 s), the activity of theth neuron is com-
puted according to

(2)

where is the time constant of theth neuron, is its activity,
is the output from theth neuron, and is the weight from

the th to the th neuron.
The corresponding output is calculated as follows:

(3)

where is the bias of the th neuron.
Nodes 1 to 6 are special in that they control the biped’s actu-

ators and they can therefore be considered to be motor neurons.
Their outputs (from 0.0 to 1.0) are scaled to map to the angle
limits listed in Table II. Fig. 3 schematically depicts the motor
connections.
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Fig. 6. Fitness graph of representative stable controller evolution. Top fitness (black) and average fitness (grey) are shown.

Fig. 7. Motor neuron activation levels of top individual of generation 120 (see Fig. 6).

C. Evolutionary Algorithm

1) Encoding Scheme and Population Parameters:The pa-
rameters to be optimized are weights, time constants and biases.
The encoding scheme spatially separates the three types in the
chromosome (see Fig. 4).

Parameter values are coded as real numbers, with different
ranges for each data type. Following [42] and [32], these are
[ 16.0, 16.0] for the weights, [0.5, 5.0] for the time constants,
and [ 4.0, 4.0] in the case of the biases. The assignment of
these ranges is simplified by the spatial separation of the types;
similarly, different mutation rates and sizes can be applied.
While the former remains constant throughout the chromo-
some, the differential implementation of the latter is necessary
due to the varying parameter value ranges. This is achieved
by using Gaussian distributions. Table III shows the mutation
sizes in form of standard deviations from mean zero. Values
exceeding the allowed range are clipped to the maximally
permitted level. (This is known to create disproportionate
accumulations around the clipping points [43], which were,
however, found to be negligible in this work.)

The mutation rate is calculated so as to cause on average one
change per chromosome. Thus, for larger networks, an accord-
ingly lower rate per locus is applied. Together with typically
small mutation sizes (see Table III), this ensures that the evo-

lutionary search is local and gradual. Each population consists
of 50 individuals and its individual controllers are initialized
with randomized values using the initialization distributions of
Table III. Rank-based selection is used for reproduction with a
fittest fraction of 0.5 (this essentially means culling the bottom
half of the population and replacing it with a copy of the top half
[44]). No crossover operations are applied both on theoretical
(no identifiable functional units in the genotype and phenotype
structure [45]) and empirical grounds (recent experimental evi-
dence on lack of efficiency of crossover in this problem domain
[25]).

2) Evaluation of Controllers:Despite the complexity of
bipedal locomotion, it is possible to reduce the fitness function
to the following two components:

1) maximize distance travelled from origin;
2) do not lower center of gravity below a certain height.

The first objective implicitly includes the locomotion com-
ponent, while at the same time rewarding walking in a straight
line rather than in circles (note that this would not be true for
maximize overall distance travelled). The second goal com-
bines two further factors: it penalizes falling down as well
as grotesque movements. (Much of the second point is al-
ready prohibited by constraining the joint angles in the physical
model.) To improve efficiency evaluations are terminated early
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Fig. 8. Motion sequence of biped controlled by top individual of generation
120 (see Fig. 6). Frame order is from left to right and top to bottom.

if they are unpromising, i.e., as soon as the second objective
is not met. Hence, the fitness function for a biped on an-
walking plane can be expressed as follows:

(4)

where is the fitness, and are the planar components of the
walker position, and is the time of the evaluation termination.
Evaluations are started with all neuron activations set to zero and
with the biped set to an upright stance. One run is performed per
evaluation, with a maximum possible length of 50 s each.

III. RESULTS

Populations of randomly initialized individuals were evolved
according to the fitness criteria outlined above. In order to yield
meaningful statistics, 100 evolutionary runs were conducted,
each consisting of 120 generations. Fig. 5 shows the distribu-
tion of the distances covered by the top individual of each run
in the last generation. For reasons of clarity, the distributions
for unsuccessful (unstable) and succesful (stable) controllers are
shown separately.

Evaluations of individuals in Fig. 5(a) were terminated pre-
maturely because their center of gravity fell below the specified
height (see Section II-C2). Individuals of Fig. 5(b), on the other
hand, did not fall over in the given amount of time (50 s). Addi-
tional trials with such controllers showed them to be capable of
walking for an indefinitely long period. They can therefore be
regarded as stable.

The fraction of evolutionary runs leading to stable walkers
was 10%, of which the average walking distance was 20.577 m
( ). This compares to an average walking distance of
7.878 m ( ) for the unstable walkers. Fig. 6 shows the
fitness graph of a run resulting in such a stable controller. The
neural activation patterns of the top controller in generation 120

Fig. 9. Preprocessing of two signal values (a andb) resulting in final signal
values. Difference is divided by the sum of the two signal strengths to give a
stronger directional signal close to the sound source. This also causes the signal
to vanish with the biped facing the sound source.

Fig. 10. Each node of RNN receives as input the preprocessed signal values.

are depicted in Fig. 7. Fig. 8 contains a biped motion sequence
of the evolved controller.

All controllers evolved in the course of the experiments
walked in a straight line, a direct result of the fitness function
(4). Backward walking controllers were also evolved, albeit at
a lower frequency than their forward counterparts. The overall
diversity of walkers was large; gaits differed markedly from
each other both in terms of speed (as seen in Fig. 5) and use
of limbs. Knee movements in particular showed considerable
variation ranging from fully swinging to constantly extended.
Moreover, several gaits displayed asymmetry, both in stride
length and limb use.

A. Efficiency of Evolutionary Runs

The fact that only 10% of evolutionary runs led to stable
walking appeared to indicate room for improvement. For the
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Fig. 11. Fitness graph of bipedal walking with sensory integration. Population was seeded with individuals from the run depicted in Fig. 7.

majority of unsuccessful controllers, analysis showed that the
little distance they did cover was controlled by the settling phase
of the recurrent net. We, therefore, added an additional fitness
criterion that actively rewarded cyclic activity. This markedly
increased the proportion of successful runs (to 80%), but was not
reflected in a proportionate improvement of the overall time ef-
ficiciency (i.e., successful controllers per processor cycle). The
reason for this lies in the fact that, even in the original configura-
tion, unsuccessful controller evaluations are aborted early (see
Section II-C2), thus, taking up only limited computational re-
sources.

IV. I NTEGRATING SENSORYINPUT

The controllers described in Section III are purely
rhythm-generating structures. Although sufficient to pro-
duce stable walking behavior in a nonfluctuating environment,
they are not capable of dealing with rough terrain or responding
to external stimuli. In order to achieve this, sensory input
must be integrated and the CPG activity modified accordingly.
A simple set of experiments was carried out to explore the
potential to integrate basic sensory input and will be described
now.

The biped is to walk toward the equivalent of a sound source.
It is equipped with two “ears,” the inputs of which are prepro-
cessed to give a single signal which becomes stronger with de-
creasing distance from the source.2 In addition, the signal van-
ishes when the biped is directly facing the source (see Fig. 9).
The signal is fed into the CPG as depicted in Fig. 10. The pop-
ulation is initialized uniformly with clones of the top individual
from the run depicted in Fig. 6. The CPG weights are clamped,
but the weights of the ten connections between the sensory node
and the RNN nodes are under the control of the EA. At each
evaluation, the biped starts from its default position and is pre-
sented successively with two sound source locations. Because
the task is to approach the signal as closely as possible, the fit-
ness function is the negative distance of the walker to the sound

2This approximation does not hold true when the biped is very close to the
sound source (i.e., when the distance to the source is comparable with the dis-
tance between the agent’s ears).

Fig. 12. Trajectories of biped with sensory integration (two runs are shown).
Signals are located at [�3;�10] and [3,�10]. Run one: left. Run two: right.

source at the time of termination (as caused by the conditions
outlined in Section II-C2) or the natural end of the evaluation
(after 50 s).

A. Results

Fig. 11 depicts an evolutionary run with the population
seeded with individuals from the run depicted in Fig. 6. The
graph is characterized by an initially strong increase in fitness,
but it fails to reach the maximum fitness value of zero.

As illustrated in Fig. 12, the controller succeeded in walking
toward the respective signal positions in the two runs. However,
visual analysis of the walkers made clear that the gait becomes
unstable close to the respective signal sources. This is particu-
larly true for the second (right) run.

To further investigate the ability of the sensors to modulate
the net’s activity pattern as well as to examine the reasons for
the eventual instability, the neuronal activation patterns of the
two runs were recorded and are represented in Fig. 13.

The activation graphs indicate that the turning behavior
is at least partly achieved by modulating the amplitude of
the right hip sagittal motor neuron (which controls the front
to back movement), with a decrease resulting in right (top
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(a)

(b)

Fig. 13. Neural activation graph of bipedal walking toward (a) right and (b) left signal. Only activation of right hip sagittal (i.e., front to back) neuron is shown.
(Other neural activations did not differ markedly from those of Fig. 7).

graph) and an increase resulting in left (bottom graph) turning.
Additional experiments were carried out, including evolution
of the behavior from scratch (i.e., unseeded populations) and
evolution with seeded populations but with evolvable CPG
weights. However, neither of these additional experimental
series produced results superior to those documented above.

V. DISCUSSION

Despite an extremely simple fitness function, the EA
employed in this research was capable of producing stable
straight-line walkers without the use of proprioceptive sensory
input. EAs rely on evolvable systems and the gradual nature
of the fitness graphs (e.g., Fig. 6) indicates that the recurrent
networks used here can indeed be optimized in a continuous
gradual manner. This notion has recently been corroborated
by Rendel [47], who has shown that the fitness landscape
underlying the current controller architectures is very smooth.
For example, it was possible to gradually modify the amplitude
and period of specific motor neuron cycles without affecting
those of others.

A further characteristic of the current setup is the ability to
create a large diversity of gaits, both in terms of speed and the
use of limbs. Several gaits showed considerable similarity to
human walking, although this was not specifically selected for.
A potential way to further increase the realism of the motion
is to select for minimum energy expenditure (a simple mea-
sure for this would be the average actuator activity). It is ex-
pected that this fitness component will particularly reward the
use of knees. In the current implementation, several controllers
walked with extended legs because this is concomitant with a

large stride length. Humans, however, use the momentum of a
forward-swinging lower leg, which is energetically more favor-
able [17].

The evolved controllers were further characterized by non-
repetitive activity cycles; instead, small fluctuations were ob-
served (see Fig. 7). Similar fluctuations have elsewhere been
found to contribute to the perceived realism of simulated lo-
comotive behavior [48]. Real bipedal walking contains fluctu-
ations in successive cycles and it is the lack of these that the
human eye picks upon in other artificial walking bipeds.

The preliminary experiments on the integration of sensory
input indicate that CPG activity can indeed be modified by ex-
ternal stimuli in a meaningful way (Fig. 13). However, it is clear
that the current sensory architecture is insufficient to modulate
the biped’s behavior and retain stability. For example, the simple
preprocessing function causes large destabilizing fluctuations if
the biped is close to the signal source. This problem is further
intensified by the lack of active balancing mechanisms. The in-
tegration of proprioceptive (e.g., limb positions and velocities)
and vestibular (balance) input is, therefore, a necessary next step
to achieve more interactive and robust behavior.

A question that was not systematically explored is in how far
the network size affects the efficiency of the approach, both in
terms of search space as well as internal dynamics of the net.
With the current architecture, a linear increase in the number of
nodes leads to an quadratic increase of the corresponding search
space. A possible way to circumvent this problem is to employ
identical subnetworks for each leg. Such a constellation seems
to reflect the natural arrangement of coupled oscillators more
accurately [49], [50] and has been successfully used elsewhere
in the context of multilegged locomotion [42], [51].
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We would like to reiterate that the stable walkers arrived at
did not require proprioceptive input to achieve stable walking
in a straight line. This corroborates results obtained elsewhere
[52] that show that mechanical walkers can attain stable
straight-line walking on a planar surface without active balance
control. While those bipeds were mechanically fine tuned
to exploit gravity as an energy source, the implementation
presented here relies on evolutionary optimization to fine tune
active actuation.

We believe that the neuroevolutionary approach described
here brings about several major benefits: 1) it is fully automated;
hence, changes in morphology or actuator implementations can
be easily accommodated by reevolving the controllers; 2) the
diversity of locomotive behaviors is large because the system
does not requirea priori knowledge as to how to solve the con-
trol problem; and 3) the evolved controllers are computationally
very cheap (typically taking up 0.5% of the processing power re-
quired by graphics and physics).

VI. CONCLUSION

We have demonstrated the suitability of an evolutionary
robotics approach to the problem of stable three-dimensional
bipedal walking in simulation. The current implementation is
capable of walking in a straight line on a planar surface without
the use of proprioceptive input. However, the use of the latter
will become necessary to stabilize the biped on uneven terrain
or in response to directional changes. The neural controller
employed in this research lends itself to the incorporation of
such additional input.

The quality of the results is expected to further improve by a
refined fitness function, as well as a shift toward coupled neural
oscillators instead of a single network. Furthermore, it is de-
sirable to incorporate biomechanical knowledge about human
walking in order to make maximum use of the passive dynamics
of the bodies. These aspects are currently being implemented.

In theory, the results obtained here are directly transferable
to embodied robots. In practice, however, there are likely to be
complications due to a possible lack of accuracy of the physics
engine. It remains to be seen whether this “reality gap” can
be crossed with appropriate techniques such as noise envelopes
[26].
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