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Abstract: Constrained layer damping (CLD) is a highly effective passive vibration control strat-
egy if optimized adequately. Factors controlling CLD performance are well documented for the
flexural modes of beams but not for more complicated mode shapes or structures. The current
paper introduces an approach that is suitable for locating CLD on any type of structure. It fol-
lows the cellular automaton (CA) principle and relies on the use of finite element models to
describe the vibration properties of the structure. The ability of the algorithm to reach the
best solution is demonstrated by applying it to the bending and torsion modes of a plate. Con-
figurations that give the most weight-efficient coverage for each type of mode are first obtained
by adapting the existing ‘optimum length’ principle used for treated beams. Next, a CA algor-
ithm is developed, which grows CLD patches one at a time on the surface of the plate according
to a simple set of rules. The effectiveness of the algorithm is then assessed by comparing the
generated configurations with the known optimum ones.

Keywords: passive vibration control, vibration damping, constrained layer damping, cellular
automata

1 INTRODUCTION

A common way to reduce vibrations in plate, shell
and other thin-walled structures is to apply surface
damping treatments. When the damping treatment
is applied as a single-layer coating, sometimes
known as free layer damping, the principal energy
dissipation mechanism involves direct, in-plane
strains induced in the damping material. Viscoelastic
polymers operating in the transition zone are often
used as the damping material as they have a high
material loss factor [1].
Significant increases in energy dissipation can be

achieved by attaching a stiff layer known as the con-
straining layer (CL), on top of the viscoelastic layer
(VL). This occurs because large shear strains are gen-
erated in the damping material. To be effective, how-
ever, such constrained layer damping (CLD) systems

must be optimized in terms of materials used and
configuration of the treatments applied. Key par-
ameters controlling performance were identified sev-
eral decades ago using analytical models developed
for slender beams [2–5]. Since then, many studies
have been carried out to improve the damping of
structures, fully or partially covered with CLD. Exist-
ing theoretical understanding is adequate for opti-
mizing CLD for the flexural vibrations of beams.
However, in structures consisting of plate and shell-
like elements, vibration mode shapes can differ con-
siderably and hence the approach has to be more
general.
The desire to apply CLD to more complicated

structures has encouraged researchers to consider
global optimization methods in conjunction with
finite element (FE) analysis. The genetic algorithm
(GA) for example, has been used in several CLD
design studies [6–8]. This approach [9, 10] is based
on the notion of ‘survival of the fittest’: within a popu-
lation of feasible solutions, those yielding the best
results are retained to the next generation while the
poor solutions are eliminated. The GA is a powerful
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global approach but is computationally expensive for
FE-based optimization because of the large number
of possible treatment locations.
An alternative optimization approach involving FE

analysis is the use of algorithms based on cellular
automata (CA) principles [11]. During the last two
decades, CA algorithms [12–14] have been used to
simulate biological phenomena, which are well
known for having an intrinsic optimization schedule.
Thus, by mimicking the evolution of the biological
phenomena, it is possible for CA to drive a physical
system towards its optimum. For example, Wardle
and Tomlinson [15] used CA, inspired by cell
growth in living organisms to locate a free layer
damping coating on a vibrating plate in a more effi-
cient manner. As the optimum location of a free
layer coating is dictated by the surface strain on the
host structure, its optimization is therefore reason-
ably intuitive. The current paper instead, considers
the use of CA in optimizing the more challenging
case of CLD where several different parameters con-
trol the performance. Note that this study does not
discuss one of the most obvious ways to improve
the performance of a CLD treatment, namely to
increase the loss factor of the damping material
itself. Instead, it focuses on achieving a configuration
that uses a given material as effectively as possible.
The structure of this paper is as follows: important

and relevant findings reported in the literature
regarding CLD and the CA approach are briefly
described in sections 2 and 3 respectively; section 4
contains a description of the way in which the per-
formance of the model used in this study is evaluated
and includes optimum CLD for a representative but
easily defined case (namely first bending and torsion
modes of a plate); an appropriate algorithm utilizing
CA is introduced in section 5 and its performance is
tested by applying to the plate; finally, conclusions
regarding the suitability of the CA approach for this
problem and possible future studies are summarized
in section 6.

2 OPTIMIZATION OF CLD

Over the years, many have studied the optimization
of CLD on beam-like structures. Energy dissipation
in CLD occurs through deformations induced in the
viscoelastic material (VEM). In most cases, shear is
the dominant mechanism. Though high levels of
damping can be achieved where out-of-plane defor-
mations occur, this regime occurs in a relatively
narrow (and unusual) design space, which is easy to
define [16]. It is therefore not considered further
here. Instead, this section briefly considers relevant
findings in the literature regarding the optimization
of shear-dominated damping.

Analytical work on beams treated with CLD [2–5]
has identified two parameters that govern damping
effectiveness. The geometric parameter is related to
the stiffness increase caused by the addition of the
CL. It controls the maximum damping achievable.
For most commonly used configurations of conven-
tional CLD, the geometric parameter can be simpli-
fied to show that

h � Hhv

Ectc
Ehth þ Ectc

ð1Þ

where h is the modal loss factor, H a constant, hv the
material loss factor at the specific frequency and
temperature, E the Young’s modulus, t the thickness,
and the subscripts h and c refer to the host structure
and CL, respectively.
The shear parameter is the relative shear stiffness

of the damping layer normalized by the extensional
stiffness of the CLs. The effectiveness of CLD is extre-
mely sensitive to this parameter and its optimization
has been the focus of several papers [5, 17, 18]. For
example, in 1987, Lifshitz and Leibowitz [18] devel-
oped a numerical program to optimize the uniform
thickness of each layer of a beam for a large variety
of boundary conditions. Note that the shear par-
ameter does not alter the maximum damping
achievable–its value controls whether or not the
maximum (for a given geometric parameter) is
achieved.
In the literature, the shear parameter is expressed

in a number of different ways as researchers adapted
its definition to suit the needs of their particular
study. In order to avoid confusion, in this work refer-
ence will instead be made to the stiffness ratio, C,
which is defined as

C ¼
shear stiffness of VL

in-plane stiffness of CL
¼

GvL
2
c

Ectctv
ð2Þ

where G is the shear modulus, L the length, t the
thickness, and subscripts v and c refers to the visco-
elastic and CLs, respectively. Note that C is identical
to the shear parameter used in a number of other
works [19, 20], and is generally used when the CL is
relatively flexible in comparison to the host structure.
By considering a CLD treatment attached to a host

structure under uniform strain, Plunkett and Lee [19]
showed that an optimum configuration occurs when
C �10. They demonstrated this on a beam with CLD,
which had the treatment cut into appropriate length
segments [19]. An extension of this work by Demoret
and Torvik [20] showed that as the non-uniformity of
the strain on the host increases, the optimum stiff-
ness ratio C can be as high as 40. An examination of
results showing damping levels achieved for plates
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treated with different sized patches of CLD has shown
that optimum performance on plate bending modes
is achieved for the same range of C values [21].
To help with the design of CLD for box-section

beams, Marsh and Hale [22] introduced the three-
spring model shown in Fig. 1. They set kv to be the
shear stiffness of the VL and kc to be the in-plane stiff-
ness of the CL. It can be seen that the stiffness ratio C
used in the current paper is equal to kv/kc.
The reliance of damping performance on treatment

location and coverage area has been demonstrated
numerically for beams [23, 24], frames [25] and
plates [21, 26]. The optimum location occurs where
the surface strain energy of the host structure is high-
est (i.e. at point of high modal curvature). By altering
the thickness of an initially uniform VL, Lunden [23]
showed that a non-uniform distribution could
improve performance–amplitude reductions of 40
per cent are reported. An optimization approach
that allowed both treatment layers (CL and VL) to
be redistributed is presented by Lumsdaine and Pai
[27]. They applied the sequential quadratic program-
ming (SQP) algorithm to a treated beam and showed
that for a fixed amount of VEM coverage, there exists
an optimum thickness for the base layer of the CLD
structure.
For the context of the work presented here, import-

ant findings from the literature are given below.

1. The stiffness of the CL and the loss factor of the VL
are the most significant parameters that affect the
maximum damping achievable.

2. It is usually desirable to locate CLD at points of
high modal curvature.

3. The stiffness ratio (C) controls the efficiency of a
given CLD treatment. It is a function of the thick-
ness and moduli of both layers in the CLD treat-
ment and thus controls factors such as the
optimum patch size.

In practice, a designer often has a limited choice of
CLDmaterials available due to environmental factors
(thermal and chemical), fabrication issues (for
example, doubly curved surfaces) and the fact that
commercial CLD is supplied in a few preset thickness
combinations. As a result, optimized performance is
not always the main factor affecting the decision

regarding the nature of the treatment chosen. Thus
to provide good performance, it is important to
select carefully, the correct shape and location of
the treatment to be applied.

3 CA ALGORITHMS

Biological phenomena are well known for their intrin-
sic optimization schedules. In fact, over the last 30
years or so, biological metaphors have proved invalu-
able in the design of powerful computational pro-
cedures for optimization. The most well known
example of this is of course the genetic algorithm
and its various evolution-based variants [9]. More
recent developments include the Ant Colony Meta-
phor [28] and various approaches motivated by the
human immune system [29]. In fact, despite the
fact that these algorithms are formally optimization
routines in the sense that they aim to maximize or
minimize a given objective function, there is now a
body of evidence that nature does not always seek
to optimize. Ben-Haim [30], among others, argues
that in many cases, nature will not actually seek to
optimize, but will rather seek a solution which
simply satisfies appropriate performance criteria.
This strategy of ‘satisficing’ rather than optimizing
has the significant advantage that it can provide sol-
utions, which are robust against uncertainty in the
specification of the problem; it can be proved for-
mally that ‘optimal’ solutions are fragile against
uncertainty [30]. The cellular automata approach dis-
cussed in this paper falls into the class of algorithms
which satisfice rather than optimizing; the algorithm
in this case is designed to drive the solution towards a
satisfactory performance rather than optimizing a
formal objective.
The cellular automaton (CA) achieves its perform-

ance objectives through the interactions between
entities (individual cells of the ‘organism’), respon-
sible for ensuring the appropriate performance of
the system as a whole. A simple example from
nature is the balancing of cells in bone through the
twin processes of birth and death. The birth process
produces new cells (and strengthens existing ones)
around the parts that are highly stressed. The death
process weakens and eventually kills cells that are
not being utilized fully. In this way, bone adapts to
perform its mechanical function while maintaining
an appropriate weight [31]. The process of bone
remodelling does not then formally maximize the
‘strength-to-weight’ ratio of the bone, but iterates
towards a system, which satisfies appropriate per-
formance criteria. The power and generality of the
CA approach arise from the fact that a set of simple
interacting processes with limited individual capa-
bility are able to construct arbitrarily complicated

Fig. 1 Three-spring model of a CLD system
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systems. In fact, it is known that particular CA
schemes are Turing machines and thus universal
computers [14].
Often, this complicated system is homogeneous in

terms of complexity of its constituent processes, i.e.
the rules for evolution of the individual cells are the
same throughout the organism. This is the case for
bone.
Formally, a CA is a mathematical idealization of a

physical system in which space and time are discrete
[14]. The design domain is divided into a lattice of
cells, each one capable of performing only a set
of simple operations. Also, each cell may be in one
of the finite number of states, S. These states are
updated synchronously in discrete time steps, t,
according to identical local rules, R; and these rules
depend on the present states of the cell and its neigh-
bours within a certain proximity (neighbourhood).
Equation (3) shows the evolution of the state of
each cell at discrete position r, where r þ D designates
the cells belonging to a given neighbourhood of the
CA

Sðr; t þ 1Þ ¼ RðSðr; tÞ; Sðr þ D1; tÞ ; . . . ; Sðr þ DN ; tÞÞ

ð3Þ

Figure 2 shows commonly used CA neighbour-
hoods. The CA neighbourhood does not have any
restrictions on size or location, except that it has to
be the same throughout the entire lattice. The lattice
structure, however, is not limited to regular shape; an
irregular shape of lattice is also possible (in this case,
the neighbourhood is defined in terms of connectivity
rather than ‘shape’). The class of algorithms specified
by the rule of equation (3) is very large and encom-
passes, among others, the class of finite difference
algorithms used to evolve the solutions of partial
differential equations.
The principle of a CA-based algorithm is that over-

all global behaviour of a system can be computed by
cells that only interact with their neighbours based on
local conditions. In general, because of their univer-
sal nature [14], it is possible to simulate any system
using CA by modifying the structural and local

rules; where the structural rules are the shape of the
cell, number of dimensions, and the type of neigh-
bourhood. One can approach the construction of a
CA model for a given problem in two ways. In the
first approach, one has a non-formalized task,
which requires a thorough understanding on the
nature of the corresponding problem and some
experience in dealing with CA. In the case of bone
remodelling for example, the approach would be to
generate rules, which encapsulate the engineering
objective of preserving strength while controlling
weight. This is the approach taken here. A more
formal approach is based on a type of system identi-
fication where rules can be learnt from data [12].
In the current paper, an algorithm based on the CA

principle is used to locate CLD treatments on a plate
with free boundary conditions. The effectiveness
(damping per unit added mass) is evolved in accord-
ance with appropriate performance criteria for the
lowest vibration modes of the plate. Starting with a
single cell, the approach used causes the CLD patch
to grow until a satisfactory size and location are
achieved. While the process is not formally one of
optimization, one can obtain solutions better than
those previously observed in the literature, simply
by making the performance criteria appropriately
stringent.

4 DEVELOPMENT OF AN APPROACH TO TEST
THE EFFECTIVENESS OF CA FOR CLD

As this piece of work aims to show how the CA
approach can be used to assist in the design of CLD
treatments for general structures, care has been
taken to ensure that methods used are readily avail-
able and resource-efficient. To achieve this, the
approximate modal strain energy method [32], in
conjunction with a commercial FE analysis software
package, is used to estimate the performance of
CLD treatments considered. It is important to note,
however, that the CA method described in this
paper is equally compatible with more accurate cal-
culation methods: the CA rules do not depend on
the method chosen to evaluate the cost function.
This section provides an explanation of the modelling
approach used and the basis for testing the perform-
ance of the developed algorithm.
The host structure chosen for this study is a

rectangular plate with free boundaries. The reason
for this choice is that a plate provides a good compro-
mise between a system with independently verifiable
optimum coverage and the need to apply the CA
approach to a structure with a two-dimensional
dynamic strain field. The lowest frequency vibration
modes of plate-like structures involve out-of-plane,
flexural deformations. Two types of mode shape are

Fig. 2 Commonly used neighbourhoods; hatched areas

show (a) the Von Neumann neighbourhood, and

(b) the Moore neighbourhood of the black

elements
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most common: those for which all node lines are
parallel and those for which at least one node line is
perpendicular to the others. For ease of identifi-
cation, these are referred to as bending and torsion
modes respectively in this paper.
The plate is modelled using quadratic FEs: eight

noded offset shells are used to represent the host
structure and CL while the viscoelastic material is
modelled using 20 noded solid elements. While
many researchers have developed special shell
elements for more efficient modelling CLD on struc-
tures, these are not used here because they are cur-
rently not available in general purpose commercial
FE code. The chosen FE mesh gave a grid of 10 �

10 mm2 elements on the surface of the plate. This is
the result of initial studies aimed at achieving a com-
promise between the need for computational
efficiency and the need to get good calculation accu-
racy and spatial resolution for the CA. Dimensions
and materials properties for the host structure and
CLD treatment are given in Table 1.
A variety of different approaches can be used to

represent the viscoelastic properties of the damping
material. While it is well known that the complex
modulus of a viscoelastic material varies dramatically
with temperature and frequency, most analytical
work is carried out under isothermal conditions. In
the work presented here, the complex modulus is
also assumed constant over all frequencies. For the
purposes of demonstrating the CA approach and
when vibration modes are considered individually,
this is a reasonable simplification as the exact
design of CLD rarely changes natural frequencies by
more than 10 per cent. The consequences of ignoring
this change are minimal as the level of uncertainty
arising from material characterization (including
batch variability and the use of the temperature–
frequency superposition method) is usually at least
20 per cent. However, should several vibration
modes spanning a significant frequency range be
considered simultaneously, a calculation strategy
that takes frequency dependence in to account
would be necessary.
The final approximation is associated with the use

of the modal strain energy approach itself. It is well

known that this approach, in its simplest form, can
provide overestimates of damping and underesti-
mates of natural frequency for systems with high
material loss factors (hv) as it ignores the complex
part of the stiffness matrix during the eigenvalue
extraction routine. When applied to a CLD patch,
the approximation leads to an underestimation of
the magnitude of the stiffness ratio C. For example,
a typical polymer used in CLD is ISD112 (from 3M)
whose material loss factor hv, at room temperature,
is in the range 0.8 to 1 depending on the frequency.
Equation (2) implies that the optimum length of a
given patch might be overestimated by no more
than 20 per cent if the effect of material loss factor
is ignored. This is consistent with reports in the litera-
ture that the optimum length is only weakly depen-
dent on the loss factor of the VL [19, 20]. Methods
for improving the accuracy of the modal strain
energy approach are described elsewhere [33, 34]
and can easily be used if required. However, in the
work presented here, this is not considered necessary
as the aim is to demonstrate the CA approach.
To allow direct comparison between patches of

different size, the effectiveness of a particular CLD
treatment is quantified as the loss factor ratio per
unit added mass. The Modal Strain Energy approach
gives

Loss factor ratio ¼
h

hv

¼
Uvisc

Utotal
ð4Þ

where h is the modal loss factor, Uvisc is the modal
strain energy in the VL and Utotal is the total strain
energy for that mode.
In order to assess the ability of the CA approach

developed to generate satisfactory treatments, identi-
fication of the characteristics of a weight-efficient
coverage is necessary. The general 3-spring model
of Marsh and Hale [22] (see Fig. 1) suggests that an
optimum stiffness ratio exists for modes of any struc-
ture treated with CLD. While there is abundant infor-
mation relating to the optimization of flexural modes
for beams (and hence by analogy, a reasonable start-
ing point for the plate bending modes), guidelines for
the optimization of CLD for plate torsion modes are
not available in the literature. This section therefore
contains a brief study in which the concept of the
optimum stiffness ratio is applied to bending and tor-
sion modes in plates.
CLD treatments are located near the centre of the

plate and calculations are carried out to understand
the effect that patch size and VL modulus had on
the damping performance achieved. Practically this
is achieved in the FE analysis by altering the
Young’s modulus of the VL (and hence the shear
modulus Gv).

Table 1 Geometric and material properties used

Host
structure

Viscoelastic
layer

Constraining
layer

Young’s
modulus (GPa)

70 Various 70

Poisson’s ratio 0.3 0.45 0.3
Density (kg/m3) 2700 1100 2700
Thickness (mm) 3 0.25 0.3
Width (mm) 300 Various Various
Length (mm) 450 Various Various
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For the plate studied, the second and fourth modes
had deformations similar to beam flexure modes.
Figure 3 shows the damping effectiveness for mode
2 (first bending mode) when the treatment length is
60 mm and the width varies from 40 to 100 mm. It
can be seen that an optimum shear modulus exists
near Ev ¼ 40 MPa. It can also be seen that the opti-
mum modulus is independent of the width of the
treatment. This is consistent with expectation as
bending occurs along the length of the plate for this
mode. It is interesting to note, however, that the
peak damping effectiveness decreases somewhat as
the width of the treatment increases. Thus, for bend-
ing modes, a thin strip of damping treatment is more
efficient for a given added mass.
Figure 4 shows the equivalent plot for the damping

effectiveness of mode 4. In this case, the optimum
modulus varies as the bending is in the width

direction (perpendicular to mode 2). For the opti-
mum stiffness ratio, C, to be constant, optimummod-
ulus values should relate to patch width according to
equation (2). For this mode it is reasonable to assume
that the limits of the patch in the width direction give
the ‘effective length’. Figure 5 shows the damping
effectiveness plotted against the value of C calculated
in this way. It can be seen that the curves for different
patch sizes overlay one another as expected. It can
also be noted that the peak effectiveness occurs
near C ¼ 10, similar to the results reported for
beams [19].
The plot showing damping effectiveness against

VEM modulus for the first torsion mode (mode 1) is
presented in Fig. 6. Comparison with earlier figures
shows that the peak damping obtained for the torsion
mode is around 35 per cent lower than that for the
bending modes. However, the similarity between
the torsion and bending curves – the presence of an

Fig. 3 Damping effectiveness against VEM Young’s

modulus for mode 2 (first bending mode in

length direction) with treatment length 60 mm

and width varying from 40 to 100 mm

Fig. 4 Damping effectiveness against VEM Young’s

modulus for mode 4 (first bending mode in

width direction) with treatment length 60 mm

and width varying from 40 to 100 mm

Fig. 5 Damping effectiveness against stiffness ratio C

for mode 4 (first bending mode in width

direction) with treatment length 60 mm and

width varying from 40 to 100 mm

Fig. 6 Damping effectiveness against VEM Young’s

modulus for mode 1 (first torsion mode) with

treatment length 60 mm and width varying

from 40 to 100 mm
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optimum modulus value – suggest that the 3-spring
model, and therefore the concept of optimum stiff-
ness ratio, is also valid for plate torsion modes. How-
ever, the appropriate mathematical representation
for kv and kc for the torsion mode is not obvious.
In an attempt to improve understanding of CLD

behaviour in the torsion mode, the surface strain on
the host structure is examined. Plots showing nor-
malized in-plane direct and shear strains are pre-
sented in Figs 7 to 9. These figures show that the
centre of the plate is subject primarily to in-plane
shear strain while the edges experience direct strains
associated with local out-of-plane bending. Shear
strain levels are around five times higher than those
for direct strains. This is in contrast to the bending
modes where direct strains in the bending direction
dominate.
The CLD configurations suitable for structures sub-

jected to in-plane shear have been reported for
cylindrical shafts subjected to torsional vibrations
[35]. As shear stresses acting on an element can be
transformed to direct stresses at 458 [36] (see
Fig. 10), helical strips of CLD are found to be effective
for shafts. In the same way therefore, one can expect
that CLD strips oriented at 458 would be effective in
damping plate torsional vibrations. It should

therefore be possible to obtain the optimum length
using equation (2).
The above analogy is verified numerically by ana-

lysing a smaller 100 � 100 mm2 plate whose other
properties are identical to the first one. For this
study, the FE mesh density is increased: the length
and width of each element is reduced from 10 to
1 mm. This allowed a CLD strip oriented at 458 to
be represented with reasonable accuracy using a
grid oriented at 08 (see Fig. 11). The strip is set to
extend over seven elements in the width direction
while the length is varied from 36 to 76 elements.
(Note that actual length and width of the strip are
obtained by multiplying the number of elements by
p
2.) The plate is then subjected to in-plane shear

deformation and the loss factor ratio estimated
from the strain energy levels in each layer of the
system using equation (4). This calculation is
repeated for different values of VEM modulus and
strip length. Figure 12 shows the damping effective-
ness against stiffness ratio C. It can be seen that
curves for different strip lengths overlay one another
showing that the analogy is correct. It can also be
seen that the optimum loss factor occurs when the
stiffness ratio, C ¼10, which is similar to that of the
bending mode (see Fig. 5).

Fig. 7 Contour plot of normalized direct strain in the

length direction for mode 1

Fig. 8 Contour plot of normalized direct strain in the

width direction for mode 1

Fig. 9 Contour plot of normalized in-plane shear strain

for mode 1

Fig. 10 Alternatives for representing the pure in-plane

shear condition
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One difference between the pure shear and bend-
ing cases is that the pure shear element is subjected
to a direct strain equal in magnitude but opposite
in sense acting perpendicularly to the strip. This indi-
cates that a strip subjected to shear of the host struc-
ture will also have an optimum width. Unlike the
bending mode where thin strips of damping treat-
ment are most efficient for a given added mass, one
could therefore expect wider strips of CLD to perform
better for the torsion mode. This possibility is again
tested using the model of the smaller plate described
above. The length of the CLD strip is fixed at the opti-
mum (36 elements when Ev ¼ 14.2 MPa) and the
width increased from 10 to 40 elements. The

maximum damping effectiveness obtained is plotted
against strip width in Fig. 13. It can be seen that the
optimum width is approximately 30 elements.
The work on the small plate models uniformly

shows that the patch extent in the direction of the
principal strain is clearly the correct measure of Lc
in equation (1). A final check is carried out by consid-
ering the damping effectiveness for mode 1 (torsion)
of the original (larger) plate as a function of stiffness
ratio obtained using the effective length for shear
strain. Results presented in Fig. 14 show that the
curves for different patch sizes almost overlay. This
indicates that the approach used is appropriate–the
differences can be attributed to the fact that the tor-
sion mode causes some bending as well as in-plane
shear on the host structure.

Fig. 11 Mesh showing plate subjected to uniform

strain with CLD strip oriented at 458

Fig. 12 Damping effectiveness against stiffness ratio C

for plate subjected to pure shear with length of

CLD coverage varying from 36 to 76 elements

Fig. 13 Damping effectiveness against treatment width

for plate subjected to pure shear (when the

length of the VEM coverage is 36 elements

and the VEM modulus is 14.2 MPa)

Fig. 14 Damping effectiveness against stiffness ratio C

for mode 1 (first torsion mode) with treatment

length 60 mm and width varying from 40 to

100 mm
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5 DESCRIPTION AND EVALUATION OF CA FOR
LOCATING CLD

This section contains a description of an algorithm
employing CA that locates CLD on a host structure,
with an aim of maximize damping performance. Its
effectiveness is evaluated by comparing results with
those obtained using the stiffness ratio approach
described in the previous section. To allow compari-
son between the two methods, no changes are made
to the host structure, mesh density, layer thickness,
and material properties.
The algorithm presented here starts with an

untreated structure. The aim of the algorithm is to
build up a treatment on the surface of the host struc-
ture by adding patches individually. The size, shape
and location of each patch is optimized, though
once its position is fixed, it is not altered. The CA
rules that define this process are summarized below.

1. The procedure starts by adding one cell of the
damping treatment (one element of CL on top of
one element of VL) on the plate at the point of
highest modal strain energy density. This locates
the patch in the optimum zone on the plate.

2. The damping effectiveness (loss factor ratio
divided by added mass) is calculated using FE for
four new patches each comprising the original
cell plus one side of the von Neumann neighbour-
hood. The configurations considered are illus-
trated for a patch that is initially two cells in size
as shown in Fig. 15).

3. The configuration with the highest damping effec-
tiveness is selected for the next iteration. In this
way, at each iteration, the patch extends in the
direction that gives the greatest increase in effec-
tiveness. As an example, the selected patch illus-
trated in Fig. 15(f) assumes patch (c) gives the
highest damping effectiveness.

4. The growth of a particular patch is terminated
when addition of elements ceases to give an
improvement in damping effectiveness, i.e. the
effectiveness of all of the four new patches is less
than that of the one selected in the previous iter-
ation. A ‘stay-out’ zone is then activated around
the completed patch in order to avoid overlapping

of subsequent patches. The Moore neighbourhood
is used as the ‘stay-out’ zone in the work presented
here. The procedure then continues by starting a
new patch as described in section 1.

The stopping point for this iteration scheme can be
selected by the user as a preset number of patches, a
desired overall coverage, or a predefined damping
level.
The above set of CA rules is applied to the plate

model, one run each for the first two modes (bending
and torsion, respectively). In this study, the modulus
of the VEM is set to be 87 MPa (i.e. Gv ¼ 30 MPa). In
each case, the procedure is terminated when 120
cells (out of a possible 1350) are activated–this relates
to coverage of approximately 9 per cent. This level of
coverage is achieved after approximately 200 iter-
ations and is sufficient to show whether the evolved
CLD treatment is similar to that expected using the
concept of optimum stiffness ratio.
Figure 16 shows the coverage obtained for mode 2

(first bending mode). The developed treatment takes
the form of a series of thin strips, four elements in
length, oriented along the length of the plate. For
comparison, an ‘optimized’ coverage for mode 2 is
also devised based on the findings from section
4. From the contour plot of the strain energy density
for this mode (Fig. 17), it can be seen that the highest
values (and hence best damping treatment locations)
lie in a width-wise strip across themiddle of the plate.
In addition, a stiffness ratio of C ¼ 0, gives an

Fig. 15 Steps involved in patch growth: (a) initial patch and neighbourhood; (b)–(e) different

patches analysed; (f) new patch and neighbourhood

Fig. 16 CLD coverage obtained for mode 2 (first

bending mode) using CA algorithm
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optimum patch length of 42 mm (approximately four
elements). Noting that for bending modes, narrow
strips are more effective than wide ones, the configur-
ation shown in Fig. 18 is obtained. Values of damping
effectiveness achieved by each of these treatments
are presented in Table 2. Both give values close to
1.3 for the bending mode. Comparison with perform-
ance curves presented in section 4 shows that this
value is the highest reached for bending modes.
This shows that the algorithm presented is able to
find the optimum configuration for the bending
mode. Note that in both cases, the patches are four
elements in length and one element in width. Not
surprisingly, for these configurations, the damping
effectiveness for the torsion mode is significantly
lower (around 0.4).
The CLD configuration achieved when applying

the CA to the torsion mode (mode 1) is shown in
Fig. 19. The CLD treatment appears as a number of
strips, each three elements in width, oriented either
along or across the plate. It should be noted that
the effective patch length in the direction of principal
strain near the centre of the plate (at 458) is 42 mm–
the same as would be predicted by the optimum

stiffness ratio. Damping effectiveness (Table 2) is
around 0.8 for the torsion mode; a similar level to
the best values observed for the rectangular patch
in section 4 (see for example, Fig. 6). This is the best
value achievable using patches oriented at 08 or 908
to the plate; a condition enforced by the use of the
von Neumann neighbourhood. For the bending
mode, the damping level achieved by this configur-
ation remains high (above 0.9) as the strip width is
almost optimal.
In section 4, it is shown that for areas dominated by

in-plane shear on the host structure, the optimum
patch is nearly square and rotated through 458. CA
evolution for the torsion mode (Fig. 19) shows strips
that are far from square. This apparent inconsistency
can be explained by considering the effective length
of the patch in the direction of the principal strains.
Figure 20 shows rectangular and square patches
oriented at 458 to the strain direction in the host
structure. It can be seen from the figure that much
more of the rectangular patch is working optimally,
i.e. having optimum length in the strain direction.
In simulations shown so far, the evolution is

stopped when the coverage reached 120 cells.
Figure 21 shows the evolution of the CLD coverage
for the torsion mode up to 37 per cent (achieved
after 800 iterations). It is interesting to note that the
algorithm produces long strips near the centre,

Fig. 17 Contour plot of SE density on the surface of the

host structure for mode 2 (heaving shading

indicates low strain energy density)

Fig. 18 CLD coverage obtained for mode 2 using

optimum shear stiffness ratio

Fig. 19 CLD coverage obtained for mode 1 using CA

algorithm

Table 2 Comparison of damping effectiveness for

different configurations

Approach used

Loss factor ratio
per unit added
mass

Mode 1 Mode 2

Optimum stiffness ratio for mode 2 0.408 1.295 Fig. 18
Cellular automata configuration
optimized for mode 2

0.396 1.322 Fig. 16

Cellular automata configuration
optimized for mode 1

0.827 0.933 Fig. 19
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where in-plane shear strain is the dominant host
structure deformation. Away from the centre, where
direct strains become more important, the patches
are smaller, close to the optimum length suggested
by the stiffness ratio.
The results show that highly efficient treatments

can be built up relatively quickly. By comparison, a
genetic algorithm that uses a realistic population
size of 50 would get through only a few generations
for the same number of FE runs. For example, 200
iterations (required for 9 per cent coverage using
CA) would be achieved after only four generations
while for reliable results, typically more than a hun-
dred generations are required. Note that population-
based routines are often preferred over more

traditional methods such as Downhill Simplex or
Simulated Annealing for this type of problem as
they are better at handling local minima.
One potential weakness of the CA approach is that

it may lead to suboptimal results if the deformation
around a given patch changes significantly on
addition of new patches. While it is reasonable to
assume that mode shapes do not change dramatically
from adding CLD for most treatments, it may become
a source of error when particularly thick or heavy CLs
are studied.

6 CONCLUSIONS

The current paper has demonstrated numerically,
the use of the CA approach to apply CLD treatments
to structures. While work in this paper has used a
plate with free boundary conditions as the host struc-
ture in conjunction with the modal strain energy
approach, the approach should work for any struc-
ture and calculation method provided a reasonably
regular FE mesh could be created. The approach
has been shown to be well suited to problems
where the CLD treatment is relatively thin compared
with the host structure.
In order to assess the ability of the algorithm based

on CA to drive the solution towards an efficient cover-
age, the effect of the configuration of CLD on the
bending and torsion modes of the plate is studied.

Fig. 20 Rectangular (a) and square damping (b)

treatment oriented at 458 under tension in the

horizontal direction (black shows treatment

working optimally)

Fig. 21 Evolution of CLD coverage obtained for mode 1 using CA algorithm (a) 4 per cent,

(b) 15 per cent, (c) 26 per cent, and (d) 37 per cent
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Performance is shown to be controlled by the
stiffness ratio (shear stiffness of VL divided by exten-
sional stiffness of CL). For bending modes, it is shown
that thin strips of treatment oriented in the direction
of flexure are the best. For torsion mode, as the centre
of the plate deforms primarily in shear, the optimum
patch is approximately square and is rotated
through 458.
The CA approach is shown to produce a near-

optimal treatment for the bending mode. As the CA
rule used did not allow the treatment to grow diagon-
ally, the results for the torsion mode are good rather
than perfect: the best configuration that could have
been achieved using a rectangular patch with edges
parallel to the plate is obtained.
The presented work shows that the CA approach

can be used to design effective CLD treatments.
Interesting extensions to this work would be to
develop an algorithm that allows patches to grow
diagonally and to compare the CA approach with
other methods such as patch placement using a gen-
etic algorithm [8].
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APPENDIX

Notation

C shear stiffness ratio
Ec Young’s modulus of CL
Gv shear modulus of viscoelastic
kc stiffness of spring representing the CL
kv stiffness of spring representing the VL
Lc characteristic strip length
r cell location
R local rules
S state of cell
t iteration step
tv thickness of VL
tc thickness of CL
Utotal total modal strain energy in structure
Uvisc modal strain energy in VL

D cell neighbourhood
h modal loss factor of structure
hv material loss factor of VL
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