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We propose a minimalist stochastic model of multilevel (or group)
selection. A population is subdivided into groups. Individuals
interact with other members of the group in an evolutionary game
that determines their fitness. Individuals reproduce, and offspring
are added to the same group. If a group reaches a certain size, it
can split into two. Faster reproducing individuals lead to larger
groups that split more often. In our model, higher-level selection
emerges as a byproduct of individual reproduction and population
structure. We derive a fundamental condition for the evolution of
cooperation by group selection: if b�c > 1 � n�m, then group
selection favors cooperation. The parameters b and c denote the
benefit and cost of the altruistic act, whereas n and m denote the
maximum group size and the number of groups. The model can be
extended to more than two levels of selection and to include
migration.

finite populations � prisoner’s dilemma � group selection �
fixation probability � stochastic process

Competition between groups can lead to selection of coop-
erative behavior. This idea can be traced back to Charles

Darwin, who wrote in 1871: ‘‘There can be no doubt that a tribe
including many members who..were always ready to give aid to
each other and to sacrifice themselves for the common good,
would be victorious over other tribes; and this would be natural
selection’’ (1). The first mathematical model of group selection
was proposed in 1945 by Sewall Wright (2). The enthusiastic
attempt of early group selectionists to understand all of the
evolution of altruism from this one perspective (3, 4) has led to
vigorous criticism and a general denial of such ideas for decades
(5–8). Only a small number of biologists continued to work in
this area (9–19). Over many years, D. S. Wilson was the main
proponent of the idea of group selection (20–22). Nowadays,
there seems to be a renewed interest in the subject, as demon-
strated by many empirical and theoretical studies (23–28). The
current analysis of group selection is also closely related to the
attempt at understanding the simultaneous effect of natural
selection on multiple-levels (29–31). In our opinion, group
selection is an important organizing principle that permeates
evolutionary processes from the emergence of the first cells to
eusociality and the economics of nations.

Consider a population that is subdivided into groups. The
fitness of individuals is determined by the payoff from an
evolutionary game. Interactions occur between members of the
same group. We model stochastic evolutionary dynamics. In any
one time step, a single individual from the entire population is
chosen for reproduction with a probability proportional to its
fitness. The offspring is added to the same group. If the group
reaches a critical size, n, it will divide into two groups with
probability q. The members of the group are randomly distrib-
uted over the two daughter groups, see Fig. 1. With probability
1� q, the group does not divide, but a random individual of the
group is eliminated. Therefore, n resembles the maximum
number of individuals in a single group. The total number of
groups is constant and given by m; whenever a group divides,
another group is eliminated. These assumptions ensure that the
total population size is constrained between a lower bound, m,
and an upper bound, mn.

Our simple model has some interesting features. The entire
evolutionary dynamics are driven by individual fitness. Only
individuals are assigned payoff values. Only individuals repro-
duce. Groups can stay together or split (divide) when reaching
a certain size. Groups that contain fitter individuals reach the
critical size faster and, therefore, split more often. This concept
leads to selection among groups, although only individuals
reproduce. The higher-level selection emerges from lower-level
reproduction. Remarkably, the two levels of selection can op-
pose each other.

Any evolutionary game can be analyzed in our framework, but
here, we focus on the interaction between cooperators and
defectors. Cooperators pay a cost, c, which ensures that other
members of the same group receive a benefit, b. Defectors pay
no cost and provide no benefit. Defectors benefit from cooper-
ators that are present in the same group. In any mixed group,
defectors have a higher payoff than cooperators. In homoge-
neous groups, however, cooperators have a higher payoff than
defectors. This tension might allow for the evolution of coop-
eration. Our aim is to calculate the associated fixation proba-
bilities. Therefore, we study the effect of population structure on
pure selection dynamics.

Imagine that a single cooperator is added to a population of
defectors. What is the probability, �C, that this cooperator gives
rise to a lineage that replaces all defectors and takes over the
entire population? As long as the cooperators exist in mixed
groups, the odds are against them, but, if by chance, a homo-
geneous cooperator group arises, then the emerging higher-level
selection works for them. Conversely we can also calculate the
fixation probability, �D, of a single defector that is added to a
population of cooperators. Here, the situation is reversed. The
invading defectors are initially favored by individual selection in
mixed groups but, later, opposed by the emerging higher-level
selection among homogeneous groups. We argue that selection
favors cooperation if the fixation probability �C is greater than
the inverse of the population size, which is greater than �D.

In general, even our very simple model is too complicated to
allow an exact calculation of the fixation probabilities. We can
make progress, however, by assuming that splitting of groups
occurs only very rarely (small q). Then, most groups are at their
maximum carrying capacity and consist of only cooperators or
only defectors when they split. Therefore, the fixation probability
is simply the product of the fixation probability of a single
individual in a group times the fixation probability of this group
in the population. In this limit, the model becomes a hierarchy
of two Moran processes, one for individuals and one for groups.
A similar setup was studied by Paulsson (31) in the context of
plasmid replication in bacteria.

For the fixation probability of one cooperator in a group of
n � 1 defectors, we obtain �C � [1�n]�[1 � (b � cn � c)w�2].
For the fixation probability of one cooperator group in a
population of m � 1 defector groups, we obtain �C � [1�m]�[1 �
(b � c)(m � 1)w�2]. The intensity of selection is given by the
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parameter w. Both results hold for weak selection (small w). Note
that the lower-level selection within a group is frequency-
dependent and opposes cooperators, whereas the higher-level
selection between groups is constant and favors cooperators.

In the case of rare group splitting, the fixation probability of
a single cooperator in the entire population, is given by the
product �C � �C�C. It is easy to see that �C � 1�(nm) leads to
b�c � 1 � [n�(m � 2)]. If this inequality holds, then cooperators
are advantageous once both levels of selection are combined. In
Supporting Text, which is published as supporting information on
the PNAS web site, we also show that the same condition implies
that defectors are disadvantageous once both levels of selection
are combined. We note that at least m � 3 groups are needed
for cooperation to have any chance (see Fig. 4, which is published
as supporting information on the PNAS web site).

For a large number of groups, m �� 1, we obtain the simplified
condition

b
c

� 1 �
n
m

. [1]

The benefit-to-cost ratio of the altruistic act must exceed one
plus the ratio of group size over number of groups. This
condition is intuitively appealing: Smaller group sizes and larger
numbers of groups favor cooperators. In the limit m �� n, all we
need is b � c, which is the basic requirement for evolution of any
altruistic behavior.

Fig. 2 demonstrates the perfect agreement between our
calculation and numerical simulations for small splitting prob-
ability, q. The simulations are also performed for q � 1, which
means that groups always split once they reach the maximum
size. Larger q favors cooperators, because splitting of mixed
groups can occasionally lead to homogeneous cooperator
groups. Therefore, Eq. 1 is pessimistic. For larger q, even smaller
values of b�c are enough to favor the evolution of cooperation.
In particular, we also observe that, for larger q, already m � 2
groups can be enough to favor cooperation.

Fig. 1. The population is subdivided into m groups. Individuals interact
within a group in terms of an evolutionary game. The payoff of the game is
interpreted as fitness. At each time step, an individual from the entire pop-
ulation is chosen for reproduction proportional to fitness. The offspring is
added to the same group. If a group reaches the maximum size, n, then it splits
with probability q. In this case, the individuals of the group are randomly
assigned to the two daughter groups, and another randomly chosen group is
eliminated (to maintain a constant number of groups). With probability 1 �
q, a randomly chosen individual from the groups is eliminated. Although only
individuals reproduce, there are two levels of selection. At the lower level,
individuals compete with others in the same group. At the higher level, groups
compete with each other; groups that contain fitter individuals have more
reproductive events and, therefore, split more often. This dynamic population
structure favors the evolution of cooperation if the benefit-to-cost ratio of the
altruistic act exceeds 1 plus the ratio of group size divided by the number of
groups: b�c � 1 � (n�m).

Fig. 2. The critical benefit-to-cost ratio, b�c, for which cooperators and
defectors fixate with the same probability is shown for a fixed group size, n �
10 (a) and for a fixed number of groups, m � 10 (b). The numerical simulations
for q � 10�3 (circles) agree perfectly with the theory for weak selection and
q �� 1 given by b�c � 1� n�(m � 2); see Eq. 24 in Supporting Text. Simulations
for q � 1.0 (triangles) show that the critical b�c is even smaller when q is larger:
More frequent group splitting favors cooperators. All simulations are per-
formed for weak selection, w � 0.1.
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We can relax the assumption that groups represent perfect
boundaries and allow for some migration of individuals between
groups. Migration can be seen as ‘‘noise’’ of group selection. At
any one time step, there is a (small) probability, �, that a random
individual moves to another group. Migration enables defectors
to invade and take over groups of cooperators. The reverse is
also possible but less likely. Including migration, cooperators are
favored over defectors provided

b
c

� 1 � z �
n
m

. [2]

The benefit-to-cost ratio has to exceed the same term as before
plus the average number of migrants z � ��q arising from one
group during its lifetime. (The lifetime of a group is defined as
the time between the foundation of the group and its elimination
caused by the splitting of another group.) Again, Eq. 2 holds in
the limit of weak selection, w �� 1, and rare group splitting, q ��
1. We have also assumed that m �� 1; the condition for any m
is shown in Supporting Text. For m �� n, Eq. 2 means that the
benefit-to-cost ratio must exceed one plus the average number
of migrants arising from one group. Fig. 3 again illustrates the
excellent agreement between our theory and numerical data
from computer simulations.

We can extend our analysis to more than two levels of
selection. On the lowest level, there is frequency-dependent
selection between cooperators and defectors. On all higher
levels, there is constant selection between groups, groups of
groups (metagroups), and so on. If there are h levels of selection
with population sizes m1, . . . , mh, then we find that a single
cooperator is an advantageous mutant if

b
c

� 1 �
m1

�h � � i�2
h mi

. [3]

This result holds for weak selection on all levels and ignoring
migration. For h � 2, we recover our earlier finding. Note that
Eq. 3 implies, for example, that h � 2 levels of selection with
m2 � 6 groups have the same effect as h � 3 levels of selection
with m2 � 3 groups and m3 � 4 metagroups.

There is a long-standing tradition of comparing group selection
with kin selection (7, 29, 30, 32–39), and, often, the distinction
between these two approaches is blurred. Our present model can be
interpreted as describing purely cultural evolution: Groups consist
of genetically unrelated individuals, and successful groups attract
new individuals, which learn the strategies of others in the same
group. For this interpretation, kin selection seems to be inappro-
priate. But our model can also be interpreted as describing genetic
evolution, in which case, the members of the same group could be
said to be more related than members of different groups, and the
machinery of kin selection might apply. It would be interesting to
see how the mathematical methods of kin selection can be used to
derive our central results given by Eqs. 1–3 and what assumptions
are needed for such a derivation. The problem is that the typical
methods of kin selection are based on traditional considerations of
evolutionary stability, which are not decisive for games in finite
populations (40).

In summary, we have presented a minimalist model of mul-
tilevel selection that allows the analytic calculation of a critical
benefit-to-cost ratio of the altruistic act required for the evolu-
tion of cooperation. If b�c � 1 � n�m, then a single cooperator
has a fixation probability that is greater than the inverse of the
population size, and a single defector has a fixation probability
that is less than the inverse of the population size. Hence, this
simple condition ensures that selection favors cooperators and
opposes defectors. The condition holds in the limit of weak
selection and rare group splitting. The parameters n and m
denote the maximum group size and the number of groups. If we
include migration, the fundamental condition becomes b�c �
1 � z � n�m, where z is the average number of migrants arising
from one group during its lifetime. These simple conditions have
to hold for the group selection of altruistic behavior.
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Figure 4: If individual reproduction is much more frequent than group splitting

(q " 1), then a single cooperator invading a population of defectors must first take

over its group and then this cooperator group must take over the entire population.

In this case, it is interesting to observe that m = 2 groups are not enough for the

evolution of cooperation. We only need to investigate group size n = 2, because

larger groups always favor defectors. In the mixed group, the cooperator has payoff

S and the defector has payoff T ; the cooperator is chosen for reproduction with

probability [1 + wS]/[2 + w(S + T )]. In the homogeneous groups, cooperators have

payoff R and defectors have payoff P ; a cooperator is chosen for reproduction with

probability [1 + wR]/[2 + w(R + P )]. The product of these two probabilities cannot

exceed the inverse of the population size, 1/4, given the Prisoner’s Dilemma ranking,

T > R > P > S. For larger values of q, however, cooperators can be favored

even for m = 2 groups, because splitting of mixed groups can occasionally lead to

homogeneous groups of cooperators.
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Supporting Text

1. Frequency-Dependent Selection in a Single Group

Consider a Prisoner’s Dilemma with the payoff matrix





C D

C R S

D T P



. [1]

We have T > R > P > S. Consider a group of size n with i cooperators and n − i

defectors. The fitness of cooperators and defectors are, respectively,

f(i) = 1 − w + w
R(i − 1) + S(n − i)

n − 1
[2]

g(i) = 1 − w + w
T i + P (n − i − 1)

n − 1
. [3]

The parameter w measures the contribution of the game to the fitness (the intensity

of selection). In each time step, an individual is chosen at random proportional to its

fitness. It produces an identical offspring that replaces a randomly chosen individual.

A single defector reaches fixation in a group of n − 1 cooperators with probability

φD =
1

1 +
∑n−1

k=1

∏k
i=1

f(n−i)
g(n−i)

, [4]

see Refs. (1-3). The corresponding fixation probability of a single cooperator is

φC =
1

1 +
∑n−1

k=1

∏k
i=1

g(i)
f(i)

. [5]

For weak selection, w " 1, the fixation probabilities within the group reduce to (4)

φD ≈
1

n

[

1 +
w

6
δD

]

[6]

φC ≈
1

n

[

1 −
w

6
δC

]

, [7]

1



where

δD = (2T − 2R + P − S)n − (T − 4R + 2P + S) [8]

and

δC = (T − R + 2P − 2S)n + (T + 2R − 4P + S). [9]

2. Multiple Groups

Consider now a population with m different groups, which all have a maximum size

n. Therefore, the maximum population size is N = mn. Because each group must

contain at least one individual, the minimum population size is m. In each time step,

an individual is chosen from the entire population with a probability proportional to

its fitness. This individual produces an identical offspring that is added to the same

group. If the group size is greater than n after this step, then either a randomly

chosen individual from the group is eliminated (with probability 1− q) or the group

splits into two groups (with probability q). Each individual of the splitting group

has probability 1/2 to end up in each of the daughter groups. One daughter group

remains empty with probability 21−n. In this case, the splitting process is repeated

to avoid empty groups. In order to keep the number of groups constant, a randomly

chosen group is eliminated whenever a group splits into two.

In the limit of small splitting probabilities, q " 1, two approximations can be

made: (i) most groups have size n and (ii) most groups are homogeneous when they

split. Hence, for q " 1 the fixation probability of a single defector, ρD, is the product

of the fixation probability within the group, φD, and the fixation probability of the

defector group in the whole population, ΦD:

ρD = φDΦD. [10]

2



Similarly, the fixation probability of a single cooperator, ρC , is the product of

the fixation probability within the group, φC , and the fixation probability of the

cooperator group, ΦC :

ρC = φCΦC . [11]

In the following, the fixation probabilities ρD and ρC are calculated for two different

scenarios for q " 1. First, we study the basic process without migration, then we

add migration. In both cases, we can derive simple equations for weak selection,

w " 1.

2.1. No Migration

In homogeneous defector groups, individuals have fitness g(0). In homogeneous

cooperator groups, individuals have fitness f(n). New defector groups arise when an

individual from a defector group is selected for reproduction, and the group splits,

replacing a cooperator group. Hence, the probability to decrease the number of

cooperator groups from j to j − 1 is the product of these probabilities given by

Pj,j−1 = q
g(0)(m− j)

f(n)j + g(0)(m − j)

j

m
. [12]

The number of cooperator groups grows from j to j + 1 with probability

Pj,j+1 = q
f(n)j

f(n)j + g(0)(m − j)

m − j

m
. [13]

Although q " 1 is necessary for these assumptions, the value of q cancels in the fol-

lowing, because the fixation probabilities depend solely on the ratio Ωj = Pj,j−1/Pj,j+1

= g(0)/f(n). The fixation probability of a single defector group in a population of

cooperator groups is given by

ΦD =
1

1 +
∑m−1

k=1

∏k
j=1 (Ωm−j)

−1 . [14]

3



Similarly, the fixation probability of a single cooperator group is

ΦC =
1

1 +
∑m−1

k=1

∏k
j=1 Ωj

[15]

For weak selection, w " 1, we have Ωj ≈ 1 − (R − P )w, and, therefore, the

probabilities that a single defector group or a single cooperator group takes over the

population are, respectively,

ΦD ≈
1

m

[

1 −
w

2
(m − 1)(R − P )

]

[16]

and

ΦC ≈
1

m

[

1 +
w

2
(m − 1)(R − P )

]

. [17]

Combining Eqs. 6 and 16 as well as 7 and 17, the fixation probabilities for single

defector and cooperator individuals are

ρD =
1

N

[

1 + w

(

+
δD

6
−

m − 1

2
(R − P )

)]

[18]

and

ρC =
1

N

[

1 + w

(

−
δC

6
+

m − 1

2
(R − P )

)]

. [19]

For m = 1, the Eqs. 18 and 19 reduce to the equations for a single group given

by Eqs. 6 and 7. For m ≥ 2, the population structure determines which kind of

individuals are advantageous; i.e., whether their fixation probability is higher than

the fixation probability of a neutral mutant, 1/N . For weak selection, cooperators

are advantageous if the condition ρC > 1/N holds. This leads to

(T − R + 2P − 2S)n < 3m(R − P ) − (T + 5R − 7P + S). [20]

4



On the other hand, defectors are advantageous, if ρD > 1/N . This inequality leads

to

(2T − 2R + P − S)n > 3m(R − P ) + (T − 7R + 5P + S). [21]

Note that cooperators and defectors can be advantageous simultaneously. For

example, for the payoff matrix T = 5, R = 3, P = 1, and S = 0 with m = n = 8

from Eqs. 20 and 21 we have ρC > 1/N and ρD > 1/N . Therefore, it is interesting

to ask when cooperators fixate with higher probability than defectors, ρC > ρD. This

inequality leads to

n(T − R + P − S) < 2(m − 2)(R − P ). [22]

For the interpretation of this condition, it is convenient to rewrite the payoff matrix

as




R S

T P



 =





b − c −c

b 0



 , [23]

which describes a subset of all Prisoner’s Dilemmas. Here, c is the cost of cooperation

and b the benefit from cooperation. From Eq. 22 we find that cooperators will

dominate defectors if

b

c
> 1 +

n

m − 2
. [24]

Interestingly, we note that m = 2 groups are not enough to favor cooperators over

defectors, which can also be seen in Eq. 22. The intuitive reason is described in

Figure 4. Observe that smaller group sizes, n, and larger group numbers, m, favor

cooperation. For the limit of many groups, m % 1, we obtain the simplified condition

b

c
> 1 +

n

m
. [25]

5



Note that the inequalities Eqs. 20 and 22 both lead to condition Eq. 24 with payoff

matrix Eq. 23, whereas Eq. 21 reduces to the opposite condition. Therefore, b/c >

1+n/m is equivalent to ρC > 1/N > ρD (for large m, weak selection and rare group

splitting).

2.2. Migration

Let us now introduce the possibility that individuals can migrate between groups.

An offspring has the probability λ to migrate to a random group. If the new group

exceeds the maximum size, n, after the arrival of the migrant, then a randomly

chosen individual from the group is removed with probability 1 − q. The arrival of

the mutant leads to the splitting of the group with probability q.

If migration is rare, λ " 1, a migrant has either invaded the whole group or is

eliminated before the next migration or group splitting takes place. Because q " 1

and λ " 1, migration processes in which the group is split occurring with probability

λq are neglected. Defector groups arise when a member of a defector group produces

an offspring that migrates to a cooperator group and reaches fixation. They also

arise when a defector group splits and replaces a cooperator group. For q " 1 and

λ " 1, groups are usually homogeneous when they split or when a new migrant

arrives. Therefore, new defector groups arise with probability

Pj,j−1 =
1

q + λ

g(0)(m− j)

f(n)j + g(0)(m− j)

j

m
[q + λφD] . [26]

New cooperator groups emerge with probability

Pj,j+1 =
1

q + λ

f(n)j

f(n)j + g(0)(m− j)

m − j

m
[q + λφC ] . [27]

The quotient of these two probabilities simplifies to

Ωj =
Pj,j−1

Pj,j+1
=

g(0)

f(n)

q + λφD

q + λφC

[28]
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For weak selection, Ωj can be written as Ωj ≈ 1 − Γw. Here, Γ is given by

Γ =
n

λ + qn

[

q(R − P ) −
λ

2
(T − R + P − S)

]

[29]

For the fixation probabilities, we obtain

ρD =
1

N

[

1 + w

(

+
δD

6
−

m − 1

2
Γ

)]

[30]

and

ρC =
1

N

[

1 + w

(

−
δC

6
+

m − 1

2
Γ

)]

. [31]

Consider a population structure in which cooperators dominate, i.e., which fulfills

the condition shown in Eq. 25. Because migration favors defectors, there is a critical

λc defined by ρC = ρD for which cooperators no longer fixate with higher probability

than defectors. The critical λc is given by

λc = nq
2m − 4 + n

(

1 − T−S
R−P

)

2 − mn
(

1 − T−S
R−P

) [32]

For payoff matrix Eq. 23, this can be written as

λc = nq
(m − 2)

(

1 − b
c

)

+ n

1 − b
c
− mn

. [33]

Cooperators fixate with higher probability if the migration rate λ is below the critical

migration rate λc. This is equivalent to

b

c
> 1 +

n + mλ
q

m − 2 − λ
qn

. [34]

For λ = 0, we obtain Eq. 24 again. Note that z = λ/q is exactly the number of

migrants arising from a group before it is eliminated. For small q, the time in which

a group grows back to n after the splitting can be neglected. A certain group is
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eliminated due to the splitting of another group with probability p = q(m − 1)/m2.

Hence, the average lifetime of a group is T = 1/p ≈ m/q. Because the probability

that this group produces a migrant is λ/m in each time step, it produces z = λ/q

migrants during its lifetime. Note that, on average, a group splits once during its

lifetime. For n % 1, we have, from Eq. 34

b

c
> 1 +

n

m − 2
+ z

m

m − 2
. [35]

If the number of groups is large, m % 1, we obtain from Eq. 35

b

c
> 1 + z +

n

m
. [36]

3. Multilevel Selection

Here, we extend our analysis to an arbitrary number of levels of selection that we

denote as h. The fitness is frequency-dependent only on the lowest level with group

size m1 = n, where the fixation probability of a cooperator for weak selection is

Φ1
C(m1) = φC ≈

1

m1

(

1 −
w

2
(c m1 + b − c)

)

. [37]

On the remaining h − 1 levels, the fitness is constant. The probability that a

metagroup of cooperators at level i takes over a population consisting of mi − 1

metagroups of defectors is

Φi
C(mi) ≈

1

mi

[

1 +
w

2
(mi − 1)(b − c)

]

, [38]

valid for weak selection. If all splitting probabilities qi are small, the fixation

probability of a single cooperator is simply the product of the fixation probabilities

on the different levels, ρc =
∏h

i=1 Φ
i
C(mi). Again, we ask under which circumstances
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a single cooperator reaches fixation with higher probability than a neutral mutant,

ρc > 1/N , where the population size is N =
∏h

i=1 mi. For weak selection, this

condition reduces to

b

c
> 1 +

m1

−h +
∑h

i=2 mi

. [39]

For h = 2, we recover again the condition Eq. 24. For h > 2, only the sum of the

number of metagroups on the different levels enters. Levels that consist of just one

metagroup do not contribute at all.

4. Other Stochastic Processes

Our results hold not only for the frequency dependent Moran process, but also extend

to other models of population dynamics. Consider the following process: (i) Select

two individuals at random. Because only mixed pairs can change the state of the

population, we discuss only the case in which a cooperator and a defector are chosen.

(ii) Replace the defector (payoff g) by a copy of the cooperator (payoff f) with

probability p = 1/2 + w′(f − g)/(2C), where C is the maximum possible payoff

difference. The cooperator is replaced by a copy of the defector with probability 1−p.

For weak selection, w = w′/C " 1, this process has the same fixation probability as

the frequency dependent Moran process (5). Hence, the conditions shown in Eqs. 24

and 34 derived for weak selection are the same for this process. Another possibility

is to choose p = 1/(1+exp[(g−f)w]) instead of the linear dependence on the fitness

described above. This also leads to the same fixation probability and, hence, again,

to the same conditions for small w.
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