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Abstract. The iterative two-person Prisoners' Dilemma game has been generalisedto the 
N-person case. Tile evolution of cooperation is explored by matching the Tit For Tat (TIT) 
strategy (Axelrod and Hamilton 1981) against tile selfish strategy. Extension of TIT to 
N-person situations yields a graded set of strategies from tbe softest TIT, which continues 
cooperation even if only one of tile opponents reciprocates it, to the hardest, which would 
do so only when all tile remainiug opponents cooperate. 

The hardest TIT can go to fixation against the selfish strategy provided it crosses a 
threshold frequency p,.. All the other TFT are invadab!e by tile selfish (D) or the pure 
defector strategy, while none can invade D. Yet, provided a threshold p,. is crossed, they 
can coexist stably with D. As N, the size of the group increases, the th,eshold p~ also 
increases, indicating that the evolution of cooperation is more difficult for larger groups. 
Under certain conditions, only the soft TVF can coexist stably against the selfish strategy 
D, while the harder ones cannot. An interesting possibility of a complete takeover of the 
selfish population by successive invasions by harder and harder TVF strategies is also 
presented. 

Keywords. Evolution of cooperation; gliou p selection; reciprocation; galne theory ; Tit 
For Tat. 

1. Introduction 

Expla in ing  the evolu t ion  of  coope ra t ion  within the  f r a m e w o r k  of na tura l  se lect ion 

has been  one  of  the  chal lenging p rob lems  of  evo lu t i ona ry  theory .  If two individuals  

coope ra t e ,  each of  them ought  to be be t t e r  off than  o therwise .  H o w e v e r ,  if one  of  

them ' chea t s ' ,  i .e . ,  manages  to get  the  benef i t  f rom the o the r  wi thout  coope ra t ing  

in turn,  he is l ikely to be much be t t e r  off. The  chea te r s  a re  thus expec ted  to be at a 

select ive advan tage .  Tr ivers  (1971) po in t ed  out  that  this p h e n o m e n o n  may  be 

mode l l ed  by the two-pe r son  Pr i soner ' s  D i l e m l n a  game.  Given  a choice be tw e e n  

coope ra t ion  and cheat ing ,  it is always be t t e r  to chea t  s ince the  chea te r  does  be t t e r  

than the c o o p e r a t o r  regard less  of  what  his o p p o n e n t  chooses .  Both  the p layers  thus 

opt  for  chea t ing  and are consequen t ly  worse  off than  they would  have been  had 

they c o o p e r a t e d .  Tr ivers  also showed that  if the  same  individuals  in te rac t  

r epea t ed ly  ( i t e ra ted  vers ion of  the Pr i soner ' s  D i l e m m a  game)  and can base  thei r  

choices o1,1 the ' e x p e r i e n c e '  ga ined  in the p rev ious  encoun te r s ,  chea t ing  may not  be 

the best  s t ra tegy.  H e  went  on to show that  a large deg ree  of  a s y m m e t r y  be tween  the 

benefi ts  and costs assoc ia ted  with the acts of  c o o p e r a t i o n  could lead to the 

evolu t ion  of  rec iproca l  a l t ruism.  

A formal  mode l  for  the  evolu t ion  of  c o o p e r a t i o n  based  on rec iprocal  in te rac t ions  

has been  inves t iga ted  by A x e l r o d  and H a m i l t o n  (1981). They  cons ider  the i t e ra ted  

vers ion of  the  P r i sone r ' s  D i l e m m a  gaine ,  and  a d o p t  a p robab i l i s t i c  t r e a tmen t  for  

the f requency ot! r e p e a t e d  in te rac t ions  be tween  the  same  pair  of individuals .  U n d e r  

this scenar io  a rich var ie ty  of  complex  s t ra tegies  is poss ib le .  F r o m  an analysis  of  
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these strategies they have been able to identify a set of robust and evolutionarily 

stable cooperative strategies. 

In nature, however, an individual often interacts simultaneously with several 

individuals. It is therefore of interest to model such situations as N-person versions 

of the iterr~,ted two-person game. We therefore explore in this paper the outcomes 

o f  competition between the selfish strategy anti the Tit For Tat (TFT) strategy, 

proposed by A Rapoport ,  which was highly successful in the computer tournanlent 

.organised by Axelroct (t984). An extension of TFF to N-person situations leads to a 

set of graded strategies~ ,, and we find that some of these can coexist in stable 

equilibria with the selfish strategy. 

The basic tnodel including the payoff matrices and the dynamics of genotype 

frequencies is described in w The results of competition between two interacting 

strategies are described.in w while w deals with situations involving more than 

two strategies at a time. 

2. The model 

2.1 Payoffs to the players 

The two actions open to any player in a given game are to cooperate (C) or defect 

(D). For a two-person game, the four possible combinations of the choices by the 

two players are CC, CD, DC and DD where the successive letters indicate the 

choice made by the first and the second player, respectively. The same notation can 

be used to denote the payoff obtained by the first player as a result of the choices. 

Thus, if the outcome is CD, the payoff to the first player is also denoted by CD, and 

the value of the payoff to the second player DC. We assume that the elements of 

the payoff matrix satisfy the inequality DC > CC > DD > CD as in the Prisoner's 

Dilemma. 

In an N-person game, each participant faces N -  1 opponents.  Eachcan  choose 

either C or D. The payoff to any player then depends on his strategy, as well as the 

strategies chosen by his N -  1 opponents. Let n of the opponents of a player choose 

C and let N -  1 - n  choose D. We take the payoff to a player choosing C or D as 

f(C) or .f(D), where 

,f(C) = [,,.CC+ ( N -  1 -n ) .CD] / (N-  1), 

f (D)  = [n.DC+ ( N -  1 - n ) . D D ] / ( N -  1). (1) 

In other words, we assume that the payoff accruing to a player is the average 

payoff the player would have received in a series of two-person games played with 

each of the opponents separately, the choices of strategies by each player remaining 

unaltered. 

2.2 The iterated Prisoner's Dilemma game 

In the interated version, the same participants may interact more than once. Under 

these conditions, the strategy for each game (interaction) could be specified in 

terms of the choices made by each player and his opponents in their previous 

interaction. The situations when players interact M times is customarily referred to 

as a galne consisting of 34 moves. 
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It is assumed that the game played by each group consists of at least one move. In 

one version, each game consists of exactly M moves. Alternatively, the number of 

moves in the game played by each group could be a random variable. Following 

Axelrod and Hamilton (1981), the probability of continuation of the galne is taken 

to be constant, clenoted by w. Then the probability that the game consists of exactly 

K moves is given by 

P(K) : w"-'(1 - ,v) ,  (2) 

and M, the mean number of moves in a game is 1/w. 

2.3 Dynamics of geuotype frequertcies 

Maynard Smith (1974) initiated the game theoretic approach to modelling 

competition between organisms; others have combined this with population 

genetics by equating payoffs with genetic fitnesses (Gadgil et al 1980; Hines 1980; 

Maynard Smith 1982). A similar approach is used here. 

Consider an infinite population of asexual organisms with nonoverlapping 

generations, and with frequency p and 1 - p of genotypes A and B, respectively. At 

the beginning of each generation, the population is subdivided into groups, with N 

individuals per group. Assuming random association, the frequency of groups 

containing exactly u individuals of genotype A is given by 

F(N, u ) :  (,J)p"(l _/))N-, ,  (3) 

where 

N~ 

(IY) - (N-, ,)! , , !  

Each genotype is assumed to code for a specific strategy. The payoff of an 

individual of genotype A, when it is in a group containing/t opponents of type A, 

and when K moves are made, is denoted by }5~(K, n). 

The average payoff of A is then given by 

f (A)- -  ~ F(N-  l, ,,) ~ P(K)V,,(K, ,,), (4) 
is = 0  K =  I 

where P (K) is the probability that the N-tuple plays a game consisting of exactly K 

n l o v e s .  

We assume that the average payoff of A measures the fitness of A. The mean 

fitness for the population is then seen to be 

f : pf(A) + (1 -p)f(B), (5) 

and the change in the frequency of A from the ruth to (m + l)st generation is given 

by 

p ( m +  1) : [f(A)/f] p(m). (6) 

All the offspring of a given generation mix and resettle in random associations of 

N individuals each and then repeat the cycle to give rise to the next generation. 
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Given the various payoffs associated with the strategies of the competing 

genotypes, one can thus study the changes in frequency of any genotype. This 

procedure can be readily generalised to a case where more than two genotypes 

interact. 

2.4 Elements of  the payoff  matrix 

As explained earlier (w if an individual chooses the strategy C, his payoff  for 

that game would be a linear colnbination of CC and CD (depending on the 

strategies of the rest of the competitors in the group), while a choice of D would 

make it a linear combination of DC and DD. Hence,  the average payoff  of a 

genotype would be a linear combination of DC, CC, DD and CD. It can be seen 

that if f(A) is greater than f iB)  for any value of frequency p, it will remain so if a 

constant term is added to each of the elements of the payoff matrix and/or if each is 

multiplied by a positive constant. Therefore,  without loss of generality, we can take 

DC = 1, CC = c, DD = s and CD = 0. Hence,  the effects of variation in the 

values of the elements of the payoff matrix can be explored using only two 

parameters ,  viz., c and s. 

2.5 The strategies 

We would like to explore the success of various cooperative strategies against the 

pure defector strategy. As mentioned earlier, in a two-person game, the Tit For Tat  

strategy of A Rapopor t  proved to be extremely successful in the ' tournaments '  

studied by Axelrod (1984). Hence,  we consider here possible generalizations of the 

TIT strategy to N - p e r s o n  gaines. The TFT strategy uses information about the 

choices made by the opponent  in 'the previous move (one-step memory) .  F o r '  

mathematical  convenience, we exclude strategies which can exploit other kinds of 

information (the number  of moves remaining to be played, for example).  

In an N = person game, each individual has N -  1 opponents.  We define a TFT 

strategy of the type n (0 ~< n ~< N -  1) as follows: cooperate on the first move. 

From the next move onwards, continue to cooperate  if at least n of the opponents  

have cooperated;  if not, defect in the next move. Thus, n = 0 corresponds to the 

pure cooperative strategy. In the two-person game,  n can be either 0 or 1, with 

n = 1 corresponding to the TFT strategy of Rapopor t .  In general, for an N -  person 

game, there would be N - 1  TFT strategies. The strategy with n = N - 1  is the 

hardest and n = 1 the softest TFT. For other variants of TFT strategies, see Taylor  

(1975). 

3. Competition between two interacting strategies 

We consider first the competit ion between pure D and pure C strategists followed 
by competit ion between pure D and various TFr strategies. It will be seen that 

whether one considers the total number  of moves in a game as fixed (at M), or 

whether they follow the distribution described by (2) of w the outcome is 

unchanged for a two-strategy interaction. However ,  these two lead to different 

outcomes when more than two strategies interact. This result, as well as some 

implications of assuming a fixed number  of moves,  would be discussed in w 
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3.1 Competition between pure D and pure C 

Let the frequency, of pure C in the population be p. The probability of a pure C 

finding itself in a group containing exactly n, C strategists amongst its opponents is 

F ( N - I , I  0 , according to (3). With such a composition, payoff to C 

= [n .  c -t- ( N  - 1 - n ) .  0 ] / ( N  - 1 ) 

= [ , , . c / ( N - 1 ) ] .  

If the games played by such an N-tuple consists of K moves, the payoff is 

Yc(K, n) = K . n . c / ( N - 1 ) .  (7) 

Hence, the average payoff of C in the population is 

N - I  : r  

/ ( c )  = ~v , r  l, ,,) ~V P(K). re (K,  ,,) 
n = O  K = O  

I% I -  I co. 

Z (N-1)/y,(l_/))N_,_,, Z W/C-'.( 1 . K . n . c  
- w ) . F _ -  i- , (8) 

11 = 0  H K = O  

from (4), (2), (3) and .(7). Regrouping the terms 
:ca 

c V ,'z p"(1 - p )  
f ( c )  - N - ~  / ,  

t t=O K =  I 

C 

- N - :  ( N - I ) : , . M .  

= cpM (9) 

The term in the square bracket is the average number of moves in the games 

played by an N-tuple. The payoff is thus seen to depend only on the mean value and 

not on the distribution of the number of moves in the games played. 

A very similar calculation shows that for D, 

and 

Hence 

Y,,(K. ,,) = K I I . , , + ( N -  I - , , ) . W ( N - l )  

= K s + K . ( 1 - s ) / ( N -  l), 

f ( D )  = pM(1 - s )  + Ms. (10) 

f ( D )  - f ( C )  = p. M. (1 - c) -F (1 -- p) .M.s  . (11) 

This will be > (/for all values ofp~ inclicating that O would continue to increase 

in the population for any value of p. Hence pure D goes to fixation when in 

competition with pure C. 
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3.2 Competition between pure D and hardest TFT 

The hardest TIq ~ strategist requires all the opponents to cooperate for it to COlltinue 

cooperation in the subsequent moves. Hence, in all the N-tuples where at least one 

D is present, the TIT switch over to defection after cooperating in the first move. 

Only in the N-tuple with all TIT, C is chosen in every lnove. 

If the frequency of TFT is [), it is readily seen that 

N - I  

.f(D) = Z F(N-  1, , , ) { [ ( 1  - l l , ) . ( n .  1 -t- ( N -  l - ,,).si}/(m- 1) 
/ l = 0  

-t- Z K.P(K) .s '  
K = 2  

= p ( l - s ) +  M . x  . 

Interestingly, tliis is independent of N. For the TIT, 

.i>T)-- < ] ,,=l, N - I  + ~ K.P(K).s 
K = 2  

+ F(N-i ,  N - l )  Z K.c.P(K) 
K = 2  

= p N - I ( M  -- 1) (C- -S )  + p . c .  + ( M -  1).s  . 

(12) 

(,3) 

i . e . ,  D is Comparison of (12) and (13). shows that at p=O, f ( D ) > f ( T I T ) ,  

uninvadable by TIT.. O11 the other hand, at p = 1, 

f (D)-- f (TIT)  = 1 + ( M -  1 ) . s -  M.c . 

I f  M, s and c have values such that f ( D ) < f ( C )  then TIT is also uninvadable by D. 

In fact, the line 

s = (M.c-:1)/(/14- 1), (14) 

separates the region in (c,s) space where TIT is uninvadable (below the line) from 

the one where it is ilwadable (figure 1). With increasing M, a larger region in the 

(c,d) space becomes favourable to TIT. As expected, the minimum value of M 

needed for pure TIT to be uninvadable increases with s ai!ct decreases with 

increasing c. 

For the range of parameters where TFI' is uninvadable, there is a critical value of 

p given by 

N~Y-1(/14- l ) ( c - s ) - l ) , . ( l  - c - s ) - s  = 0, (15) 

where the fitness of the competing strategies is equal. Since f (D)  increases linearly 

with p, f (C)  increases monotonically with p, f (D)  > f ( C )  at p = 0 and f (D)  <.f(C) 

a tp  = 1, there is only one solution to this equation in the range 0 = 1. Moreover,  

this equilibrium between the two strategies is unstable. In other words, once TI;T 

crosses the threshold frequency p~. (by various mechanisms, such as invasion by 

clusters, discussed by Axelrod and Hamilton 1981), it will go to fixation. 
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F'gure 1. Regions in (c,s) space where 

the Hardest  TFF is uninvadable by D. For 

a given value of M, the mean number  of 

moves in the game,  the region favourable 

to TFF lies below the corresponding line. 

It is seen from (15) that Pc increases with s and decreases with increasing M 

and/or c as expected. Other parameters remaining constant, Pc increases with 

increasing N, suggesting that evolution of cooperation bY this mechanism is more 

difficult in larger groups. 

3.3 Competition between pure D and soft TFT 

3.3a General formulation: Consider a soft TFF strategy S which continues to 

cooperate for the next move provided at least m of its opponents cooperate during 

the current move. The payoff of such a strategy in an N-tuple with n WFr strategists 

would be 

Ys(K, ~z) = K . . . c / ( N - 1 ) .  . > m ,  

= ,l. c / ( N -  l ) +  ( K - l ) . s ,  ,, < ,n. (16) 

The payoff of D in a similar situation is 

Y,o(K, ,,) = K.[, ,+(N-I-n) .s '] / (N-1) ,  n>~,n, 

= [, ,+ ( N -  l - , 0 . s ] / ( N - 1 ) + ( K -  1).s, , , < m .  (17) 

Using these equations, the expressions for the average payoffs of D and S can be 

written down explicitly. Both f(S) and f(D) are polynomials in p (the frequency of 

S in the population), with positive coeff{cients. The curves f(S) and f(D) increase 

monotonically with p and are concave upwards (e.g. figure 2). When p = 0, both D 

and S find themselves with all the N -  1 opponents as D. The average payoff of D in 

such a c a ~  is M.s, while that of S is ( M - 1 ) . s  (since it cooperates in the first 

move); D-is  thus uninvadable by S. Near p = 1, each of them have ( N - l )  

opponents ,~f the S type who cooperate for all the games. Hence, 
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Figure 2. Payoffs to TFF ( -  - - )  and D ( ) as functions of p,  tim frequency of  Soft TFF for N = 3, 

c = 0.6 and s = 0.2. A) For  M = 10, D always goes to fixation. B) For  M = 40, a stable coexistence 

between TEF and D is possible. The values of frequency p~. and p., cor respond to unstable and stable 

equilibrium, respectively. 

f (D) = M > f ( S ) =  M.c and S is invadable by D (figure 2 A ) . . U n d e r  these 

circumstances, D is expected to go to fixation. 

Interestingly, though f (D) >f(S)  at both p = 0 and p = 1, for some combination 

of the parameters  M, s ancl c, it is possible for the fitness of S to be higher than that 

of D for some intermediate values olf p (figure 2B). Under  such circumstances, the 

curves f (D) and f(S) intersect at two points; at these values of p, the two strategies 

are in equilibrium. It is seen from figure 2B that the point corresponcling to p,, is an 

unstable equilibrium, whereas the one corresponding to p.,. is a stable one. In other 

words, once the strategy S is able to cross the threshold py, it would be able to 

coexist stably with D, at a frequency p.,.. 

3.3b Soft TFTfor N = 3: For a three-person game, only one soft TVT is possible, 

viz., to continue cooperation even if only one of the other two opponents 

cooperates in the previous move. Using (16) and (17), and the procedure given in 

w average payoffs as a function of the frequency p of the TFr can be written 

as  

f (D) = p2 (M-  1 ) ( l - s )  + p ( l - s ) + M s ,  

f(S) = p 2 ( M - 1 ) s  + p[Mc-2(M-1)s]  + ( M - 1 ) s .  (18) 

The fitness of D is greater  than that of TVr at both p = 0 and p = 1. For a given 

value of M, one can determine the combination of c and s such that the two curves 

,f(TFr) and f (D) touch at one point; the fitnesses of TF[" and D are equal at that 

point whereas at any other point, f (D) is greater than f (TFr) .  Any higher value of c 

or lower value of s then yields two values o f p  (py and Px) where the fitnesses of the 

competing strategies become equal, and for p), < p < Px we have f(TFT) greater than 

f(D). Hence it is possible for the two strategies to coexist. Regions in (c, s) space 
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Figure 3. Regions in (c,s) space where a 

Soft TIT (N = 3) can coexist with D. For 

a given value of M, the region favourable 

to TFF lies below the corresponding 
curve. 

where such a coexistence be tween S and D is possible are shown in figure 3 for a 

few values o f  M. 

As expected,  the region where coexistence is possible increases with increasing 

M. Low values o f s  and  high values of c :favour coexistence.  A compar ison of figures 

1 and 3 is of interest .  It is seen from figure 1 that  as M - +  co, in the ent i re  region 

c > s ,  the hard TFT is un invadable  by D. On  the o ther  hand ,  as seen f rom figure 3 ,  

even as M---~ co, the region favourable  for a soft TFT is much smaller.  

Is there,  then,  any advantage at all which a soft TFr enjoys over a hard TFT? 

Table  1 gives the values of threshold f requencies  for various values of M for typical 

values of c and  s. It  is seen from the table that u nde r  some circumstances  the 

threshold which a soft TI~ needs to cross in order  to establish itself in a stable 

coexistence with D is lower than the one  needed  for the hard TFr. Hence ,  the 

former is more  likely to establish itself in a popu la t ion  though it would never  go to 

fixation. 

Table 1. Some values of s, c and M where a Soft TIT has a lower threshold 

frequency compared to the Hardest TIT. 

Threshold Threshold 

N c s M Soft Tier Soft TFT Hardest TFT 

3 0.85 0.25 5 S(2,1) 0.250 0.302 

3 0.75 0.15 l0 S(2,l) 0.040 0.176 

4 0.95 0.15 5 S0,1) 0.089 0.331 

4 0.85 0.15 10 S(3,1) 0.048 0.287 

4 0.85 0.25 5 S(3,2) 0.297 0.441 

4 0.65 0.05 10 S(3,2) 0.092 0.294 

5 0.65 0.05 5 S(4,1) 0.048 0.546 

5 0.50 0.05 10 S(4,1) 0-032 0.513 

5 0.95 0.15 5 S(4,2) 0.158 0.427 

5 0.99 0.35 10 S(4,2) 0.272 0.433 
5 0.75 0.25 5 8(4~,3) 0.500 0.594 

5 0.85 0.45 I'0 ~(:4;3) 0.472 0.532 
, " \ ,  \ 
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3.3c Soft TFT for N > 4 :  Using the equations described in w and the 

procedure outlined in w one can obtain the regions of coexistence (allowed 

regions) in the (c, s) space for various soft TFF strategies for any value of N. 

Qualitatively, the results are as expected. As seen from figure 4, the allowed 

regions for the softest strate.gy for N = 4 is very small, for the less soft it is slightly 

l a rge r ,  and so on. The allowed regions for all these strategies increase with 

increasing M. 

An interesting result seen from figure 4 is that a softer strategy may be able to 

coexist with D, while the harder one may be unable to do so. For example,  for 

N = 4, at c = 0.350, s = 0.03 and M = 10, S(3,1) can soexist with D, while for 

S(3,2) no coexistence is possible. 

The  advantage of the harder strategy lies in it being less prone to exploitation by 

D, while the disadvantage is in denying cooperation to some members  of its own 

kind during the process; whereas for the softer of the two strategies, the situation is 

exactly the reverse. Over a limited range of paramete r  values, the balance seems to 

tilt in favour of the softer strategy. The regions where this happens are very small, 

and are characterized by low values of s. 

It is possible to define a soft TFT not just in terms of the minimum number  of 

cooperating opponents but in terms of the proport ion of the cooperating opponents  

required by it for contintting cooperation. For  example one can define a soft TFT 

Which continues cooperation if at least half of its opponents  cooperate,  and defects 

otherwise. It is seen, however,  that the regions for such a strategy in (c, s) space 

where it can coexist with D are not independent  of N, but decrease with increasing 

N. Tl~us, the TFT strategy S(10, 5) which continued cooperation when at least 5 of 

its 10 opponents  cooperated had a larger allowed region compared to, say, S(20, 

10). 

0.4 

0 . 2  -- 

C , 1~ 

/ 

J 

0.5 1.0 

Figure 4. Regions in (c,s') space where 
Soft TFT can coexist with D, for N = 4, 
M= 2 and also M= 10. The region 
favourable to the Softest TI:~ lies below 
the dashed curves, while that for the 
harder strategy, lies below the solid 
c u r v e .  
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To understand this result, we compare the payoff to a soft TFT S(N, m) facing N 

opponents [n soft TFT and (N-n )  D's] with that to a D in a similar situation, if 

n < m, we get 

Y.v(K, n) = n.c/N+ ( K -  1)s< )~)(K, n) = n.(1 - s )  ~N-t- K.s, 

and if n > m,. still 

Y4K, ,,) = K.,I.olN < Y,)(K, ,1) = [K.,,.(1 -s)IN] + K:s . 

However,  when n = m, 

Ys(K, m) = K.m.c/N, 

while 

YD(K, m) = [,~'(1 -s)/N] + K.s. 

If the values of K and c are high enough, and that of s low enough, it is possible 

for Ys(K,n) to be greater than YD(K,n). Howwever, this is only a necessa O, 
condition. For f(S) to be greater than f(D), this advantage gained from the 

N-tuples with n = m has to more than outweigh the disadvantage attained in the 

other N-tuples. For this to happen, p, the frequency of S, should be such that the 

frequency of N-tuples with n = m is high, i.e., F(N,m) should be maximized [(3)] 

with respect to p. It can be seen that the required value of p is equal to m/N. 
However,  the maximum value of F(N,n) decreases with increasing N. For 

F(N,N/2) for example, the maximum value of F(6,3) is 0.3125, of F(8,4) is 0.2734 

and F(I0,5) is 0.2461. Hence, the allowed regions for soft TFT shrink rapidly as N 

increases, indicating once again that for large group sizes it is more difficult for 

cooperation to evolve. 

.4. Competition involving nmre than two strategies 

The next logical step is to consider interactions where more than two strategies are 

involved. It is of interest to see whether the equilibrium between a soft TFT and D is 

invadable by a harder TFT. The motivation for such an analysis is provided from the 

following results seen for N = 4 for certain combinations of c, s and M: all the soft 

strategies can coexist with D. The softest of them, S(3,1) has the lowest threshold. 

However,  its equilibrium frequency is higher than the threshold of the next harder 

strategy, S(3,2). Its equilibrium frequency, in turn, is higher than the threshold 

frequency of the hardest TFT strategy, which has the potential for tatting over the 

population completely. It is tempting to explore whether a cascade process [S(3,1) 

invading D, S(3,2) invading S(3,1) - D and S(3,3) invading S(3,2) - D] can result in 

the complete elimination of D. 

To start with, the simplest case (N = 3) is considered. The frequencies of the 

Soft TFT(S) and Hard TvF(H) are denoted by Ps and p ,  respectively, and we 

investigate whether H can invade the S-D equilibrium. For it to be able to do so, its 

payoff at this equilibrium should be higher than that of S(or D). When invading an 

S-D equilibrium, H would face, in a triplet either SS, DD or SD as opponents.  Now 

the payoff of H and S are identical against SS and DD opponents. However ,  payoff 

of H against SD is 
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eta 

= c/2-t-P(2).(1 + s ) / 2 + s . .  ~-/V P ( K ) . ( K - 2 )  
K=3 

= c/2 + [(1 +s) . (M -1) /2]  + [ ( M -  l)2/M].s , , 

while that of S against SD is simply M.cl2. 

Thus, for H to successfully invade S-D equilibrium, c should be small ancl s 

should be large. These conditions, however,  are exactly those which would render a 

stable equilibrium between D and S difficult. 

The condition for equal fitness for H and S when H invades an S-D equilibrium is 

described by (using the above values of payoffs and simplifying) 

s . ( 2 M - 1 ) - M . c  + I = 0 . (19) 

As seen in figure 5, this line cuts the s = 0 line at 1/M, and c = I line at 

( M -  1 ) / ( 2 M -  1); and in the region above the line, invasion is possible. However ,  

as seen from figure 3 [and as can be derived from (18)], these are exactly the points 

where the concave curve delineating the allowed region for S cuts the two lines 

s = 0 and c = 1 ;S  can coexist with D below this curve. Therefore,  H will never be 

able to invade the S-D equilibriurn. 

Consider now a situation where the total number  of moves in the game is fixed at 

M. As Axelrod and Hamilton (1981) have shown, pure D is an evolutionarily stable 

strategy (ESS) under such a situation. To arrive at this result they have invoked 
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Figure 5. Invasion of the Soft TUI'-D equilibrium by the Hardest TFI" for N = 3, M = 3. 

A stable equilibrium between Soft TFT-D is possible only in the region below the curve. 

Invasion by the hardest TFT is possible only in the region above the dashed line if the 

number of moves in the game is geometrically distributed with mean M, and above the 

dotted line if the number of moves in the game is fixed at M~-Accordingly, such an 

invasion is impossible for the former, while it is possible in the hatched regions for the 

latter. 
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strategies which involve a 'knowledge' of M, e.g., be a TFT upto M -  t moves and 

D at the last move, TFT upto M - 2  moves and D for the last two moves etc. We, 

however, assmne that the players have no 'knowledge' of M, and a strategy is 

defined only in terms of the choices made by the player and his opponents upto that 

m o v e .  

Thus when the games played by each triplet consists of exactly M moves, the 

payoff of H against SD becomes c/2+ (1 +s ) /2+  ( M -  2).s, while that of S against 

SD remains Mc/2. Hence, the condition for H to be able  to iiwade S-D becomes 

s. ( 2 M -  3) - ( M -  1).c + 1 > 0. (20) 

As seen from figure 5, there are two small regions, one near s = 0 and the other 

near c = 1, where a coexistence between S and D is possible, and this equilibrium 

is invadable by H. 

When such a situation occurs, under certain values of c,s and M, one can observe 

the following effect. The threshold needed for H to be able to invade D is higher 

than that needed by S. Therefore,  S has a better chance of crossing the threshold, 

and reaching a stable equilibrium with D. Now, H can invade this combination and 

eventually eliminate D. The final composition of the population would be a mixture 

of S and H, depending on the size of the initial perturbation by H. In such a 

population, C, S and H are indistinguishable. One has thus seen evolution of 

cooperation taking place successfully against a selfish (D) strategy. 

Analysis of an N = 4 case also reveals similar behaviour. When the number of 

games is distributed according to (2), no harder strategy can invade an equilibrium 

between D and the softer strategy. However,  when the number of games is fixed, 

for some range of parameter  values (a typical example being M = 2, c -- 0.85 and 

s = 0.05), one can see the equilibrium between D and the Softest [S(3,1)] being 

invadable by the next harder strategy S(3,2), and in turn, the S(3,2)-D equilibrium 

being invadable by the Hardest strategy, resulting in the complete elimination of D. 

Such a takeover of a selfish population by. successive invasions by gradually 

hardening TFT strategies may be of considerable interest. It must be emphasized, 

however, that the region in the parameter space where such behaviour is observed 

is extremely small. 

5. Discussion and conclusions 

Evolution of cooperation by reciprocation has been investigated in spatially 

structured populations. The choice of cooperation (or otherwise) by an individual is 

assumed to be influenced by the choices made by the other individuals in the group. 

Though 'strategy dependent selection' may be a better description for evolution 

occurring under this scenario, the framework of the N-person game theory is 

particularly suitable for analysing such situations (Charnov 1982; Maynard Smith 

1982; Riechert and Hammerstein 1983). Gregariously living organisms exploitil{g a 

common resource-pr imate  troops, breeding colonies of birds e t c . - s e e m  to be 

suitable systems for the applications of this model (Lombardo 1985). 

We assume that the population is subdivided into groups containing N 

individuals each. The average fitness of an individual in groups with a higher 

proportion of TKI" tends to be higher. Hence,  following Wilson (1975, 1.980)the 
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evolution of cooperation in the present model can be described as an example of 

group selection. The differences in the average fitnesses of different groups are 

caused, however, by the reciprocal interactions between individual strategies. 

Brown et aI (;1982) have presented a detailed analysis of the evolution of 

cooperation by reciprocation, using the TIT strategy. They have shown that as the 

ratio c~/~ increases (where ce is the total number of interactions which an individual 

experiences in a generation and /7 is the number of interactions which are with 

individuals perceived as strangers), the threshold required by the TFT strategy for 

invading D becomes smaller. They have very ingeniously obtained wlhies of c~ and 

/7 under a variety of conditions such as single partner/multiple partner models, 

finite/infinite memory, haploid/diploid organisms etc. and have also cast their 

model in a form such that their predictions can be compared to those made by Kin 

Selection theory. Another interesting and recent study of the evolution of 

cooperation (more specifically, helping behaviour) is by Peck and Feldman (11986). 

Using biologically plausible assumptions, they have shown that the threshold 

required by TFF :for invading D can be made arbitrarily small. They have also 

investigated simultaneous competition involving C, D, and TIT, and have reported 

an interesting situation where invasion by D of a neutral equilibrium between C 

and TFf' is initially successful, but leads eventually to fixation of TFT. Both these 

studies, however, have specifically considered situtions when population structure 

is absent. The present model, on the other hand, explores the evolution of 
cooperation in a Jtructured population. 

For two colnpeting strategies A and B, if A is able to invade B, and is, in turn, 

uninvadable by B, it is generally taken to mean that A goes to fixation. We however 

show that where fitness has a nonlinear dependence on frequencies, it is still 

possible for the two strategies to coexist in stable equilibrium even if both the above 
conditions/hold. 

The present study has also shown that for a cooperative strategy to succeed 

against a selfish (defector) strategy, under certain conditions it is better to extend 

cooperation even though there is a risk of being e,,cploited by a defector. On the 

other hand, under other conditions it is better to be more discriminating. We have 

also seen that a selfish population may be taken over by successive invasions by 

more and more discriminating strategies, though very discriminating strategy is 

unable to make any impact to start with against the selfish strategy. 

It is of interest to exalnine the effects of relaxing some of the assumptions of the 

model presented in this paper. In diploid organisms with a one-locus-two-allele 

system, the two homozygotes TT and D D  may be identified with TFF and D 

strategies. If T is recessive and if p is the frequency of T, then under 

Hardy-Wienberg equilibrium, the frequency of TF1 ~ strategists will be p2. An 

examination of (15) indicates that the threshold frequency whic!l a hard TIFF has to 

cross in order to go to fixation is higher for diploids (pc w2) compared to haploids 

(Pc) for a recessive gene. A similar result holds for a soft T I T  [(18)];  however, the 

equilibrium fi'equency (coexistence with D) is also higher. If T is dominant, the 

thresholds are lower [1 - (1 -pc)1/2], and the equilibrium frequency for a soft TFr is 

also lower. A further modification may be to consider the strategies as continuously 

val,ying traits coded for by a large number of genes. Aoki (1983, 1984) has analysed 

the evohition of TFT (and other) strategies in considerable detail, and has shown 

that biallelic lnodels lead to predictions that are qualitatively and quantitatively 
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different from those of polygenic models. A similar result is expected for the 

present model as well. 

The assumption of random association in the formation of trait groups is also 

biologically unrealistic. Wilson (1980) has indicated that the variance between 

groups for most natural populations is more than that expected under a binomial 

distribution. Several mechanisms can lead to such an increase in the var iance-  

assortative mating, kin recognition, high population viscosity etc. Tim net effect, 

however, is that the TFT are more likely to be associated with other TVr and the D ' s  

with D's. This would lower the threshold frequency for TFr's, indicating that the 

conditions for evolution of cooperation by reciprocation may be somewhat less 

stringent than predicted by the model. Finally, the assumption of infinite 

population size suppresses the effects of stochastic variations in the composition of 

groups. Studies with finite populations, which explore the effects of stochastic 

variations in group compositions and group sizes as well as in the elements of the 

payoff matrix are in progress. 

The model considered here, albeit simple, has provided some insights into tim 

different types of phenomena which may  occur during evolution of cooperation. 

The Axelrod-Hamilton approach is being successfully used for analysing conflict 

situations in a'nimals. Lolnbardo (1985) has described the nmtuat restraint in tree 

swallows as an example of the Tit For Tat strategy in an iterated Prisoner's 

Dilemma game. With more such studies forthcoming, it would be possible to verify 

the  predictions of the present m o d e l .  
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