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Abstract

It has been shown that natural selection favors cooperation in a homogenous graph if the benefit-to-cost ratio exceeds the
degree of the graph. However, most graphs related to interactions in real populations are heterogeneous, in which some
individuals have many more neighbors than others. In this paper, we introduce a new state variable to measure the time
evolution of cooperation in a heterogeneous graph. Based on the diffusion approximation, we find that the fixation
probability of a single cooperator depends crucially on the number of its neighbors. Under weak selection, a cooperator
with more neighbors has a larger probability of fixation in the population. We then investigate the average fixation
probability of a randomly chosen cooperator. If a cooperator pays a cost for each of its neighbors (the so called fixed cost
per game case), natural selection favors cooperation if the benefit-to-cost ratio is larger than the average degree. In
contrast, if a cooperator pays a fixed cost and all its neighbors share the benefit (the fixed cost per individual case),
cooperation is favored if the benefit-to-cost ratio is larger than the harmonic mean of the degree distribution. Moreover,
increasing the graph heterogeneity will reduce the effect of natural selection.
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Introduction

Evolution of cooperation is one of the most important

theoretical questions in evolutionary biology and social biology

[1–4]. In the framework of evolutionary game theory, cooperation

has been studied in a variety of game theoretical models such as

the Prisoner’s Dilemma [1–3]. It is well known that in

unstructured populations, natural selection favors defectors over

cooperators [2–3]. This means that in a population where all

individuals have the same chance to interact with each other,

defectors will have a higher average payoff than cooperators (i.e.

natural selection will increase the relative abundance of defectors

and drive cooperators to extinction). However, in more realistic

populations, different individuals interact with different subsets of

the whole population. This kind of structure can be described by

means of complex networks (or graphs), in which players of an

evolutionary game occupy the vertices of a network, and the edges

denote the links between individuals in terms of game dynamical

interaction.

A great deal of research has been devoted to explain the

influence of network structure on the evolution of cooperation.

Pioneering work by Nowak and May [5] unveiled that a spatial

lattice where each player interacts only with his/her four (or eight)

immediate neighbors is a viable mechanism for the emergence of

cooperation. The success of their model has attracted considerable

attention, subsequent studies including not only theoretical

investigations [6–14] but also economic experiments [15–17]. In

these studies, the spatial structure retains homogeneity (or

regularity) since every individual is topologically identical to any

other individual in the population. However, empirical evidence

shows that most networks related to interactions in the real world

are heterogeneous in that some individuals have many more

neighbors (i.e. have higher degree) than others [18–23]. Repre-

sentative networks include the random network [24–25], Small-

World network [26–27] and scale-free network [28–29]. Many

recent researches have revealed that graph heterogeneity dramat-

ically enhances cooperation in complex networks [30–36], in

particular for the scale-free network [37–42]. Although there are

many differences in the models considered in this literature (e.g.

different update rules, payoff structure, network clustering, etc.),

one of the main reasons behind the increase of cooperation levels

in the scale-free network is that hubs are usually occupied by

cooperators, which ensures their long term success in the

evolutionary process. The same occurs when the network structure

is coevolving together with the strategy dynamics [43–48]. If

neighboring pairs of cooperators are more stable than pairs that

include at least one defector, cooperators are more likely to have

higher degree, which gives rise to highly cooperative heteroge-

neous networks.

Recently, Ohtsuki et al. [49] extended the approach of Nowak

and May [5] and developed a theoretical model based on the

simplified Prisoner’s Dilemma (PD) game to investigate the

evolution of altruistic cooperation on a graph (or a social network)

where a donor pays a cost, c, for the recipient to get a benefit, b.

They alleged that natural selection favors the emergence of

cooperation if the benefit of the altruistic act, b, divided by the

cost, c, exceeds the average degree of the graph, k, i.e. b=cwk.
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They considered a population of N individuals consisting of

cooperators and defectors (where the population size N is fixed),

and assumed that: (i) a cooperator helps all individuals to whom it

is connected, i.e. if a cooperator is connected to k other individuals

and i of those are cooperators, then its payoff is bi{ck; (ii) a

defector does not provide any help, but it can receive the benefit

from neighboring cooperators, i.e. if a defector is connected to j
cooperators, then its payoff is bj; (iii) the fitness of an individual is

given by its baseline fitness plus the payoff, where strong (weak)

selection means that the payoff is large (small) compared to the

baseline fitness; and (iv) for the evolutionary dynamics, in each

time step, a random individual is chosen to die, and the neighbors

compete for the empty site proportional to their fitness (this

process is called ‘death-birth’ updating). Ohtsuki et al.’s theoretical

results show that if all individuals have the same number of

neighbors, denoted by k, then the fixation probability of a single

cooperator exactly equals 1=N if there is no selection, and, under

weak selection, it is larger than 1=N if b=cwk.

However, Ohtsuki et al.’s theoretical analysis [49] is based only

on a regular graph where all vertices have the same degree.

Numerical simulations in their paper show that the fixation

probabilities of cooperators in heterogeneous graphs deviate from

the theoretical prediction. Thus, a more challenging question is to

derive the relation between the fixation probability and the graph

heterogeneity. In general, the heterogeneity of a graph (or a social

network) can be described by the mean and variance of its degree

distribution [34,50]. The degree distribution of a graph, denoted

by p(k), gives the frequency of vertices with degree k for

k~1,2, � � �, or, alternatively, p(k) is the probability that a

randomly chosen individual has exactly k neighbors.

In this paper, we develop and analyze the connection between

p(k) and the fixation probabilities of cooperators when selection is

weak that provides a new theoretical explanation for the effect of

graph heterogeneity on the evolution of cooperation.

Methods

Consider a connected graph with N vertices and with degree

distribution p(k). Similar to Ohtsuki et al. [49], the individual at

each vertex is either a cooperator in interactions with all of the

neighbors or a defector. We label these N vertices as vertex 1,

vertex 2, � � �, vertex N, respectively, and the degree of vertex i is

denoted by ki for i~1,2, � � � ,N. For an individual at vertex i, its

degree ki can be also expressed as ki~ki,Czki,D where ki,C is the

number of its neighbors with strategy C (cooperation) and,

similarly, ki,D the number of its neighbors with strategy D
(defection) (see Figure 1). The average degree of the graph,

denoted by z, is z~
PN

i~1 ki=N, or z~
P

k kp(k). On the other

hand, the strategy of the individual at vertex i is denoted by si with

si[fC,Dg for i~1,2, � � � ,N, i.e. if this individual is a cooperator

(or a defector), then si~C (or si~D).

In our model, if there exists an edge between two vertices i and j
for 1ƒi,jƒN, then we use (i,j) to denote a directed edge from

vertex i to vertex j. For the interaction between two individuals at

vertices i and j, we consider the two directed edges (i,j) and (j,i)
equivalent. Notice that the total number of the directed edges in

the graph is zN . Thus, the proportion of the directed edges

starting from the cooperators in the total directed edges, denoted

by QC , can be given by QC~
P

si~C ki=zN , i.e. QC denotes a ratio

of the total degree of cooperators to the total number of directed

edges. Similarly, the proportion of directed edges starting from the

defectors, denoted by QD, is QD~
P

si~D ki=zN~1{QC . It is easy

to see that if ki~z for all i~1,2, � � � ,N (i.e. all vertices have the

same degree), then QC exactly represents the proportion of

cooperators in the population (i.e. the frequency of strategy C in

the population). For a general heterogeneous graph, we will use

the time evolution of QC to measure the evolution of cooperation.

We also assume that an individual is randomly chosen to die,

and its neighbors compete for the empty site proportional to their

fitness, i.e. the ‘death-birth’ updating process [49,51–52]. For a

randomly chosen defector, let fC denote the fitness of its C-

neighbors and fD the fitness of its D-neighbors. These are given by

fC~(1{v)zvhC and fD~(1{v)zvhD, respectively, where

the parameter v measures the intensity of selection with 0ƒvƒ1
[49,51–52], and hC (hD) is the expected payoff of its C-neighbors

(D-neighbors). Similarly, for a random chosen cooperator, let gC

denote the fitness of its C-neighbors and gD the fitness of its D-

neighbors, which are gC~(1{v)zvlC and gD~(1{v)zvlD,

respectively, where lC (lD) is the expected payoff of its C-neighbors

(D-neighbors).

For the expected payoffs of both C- and D-individuals, two

cases are considered in our model, called the fixed cost per game

and the fixed cost per individual, respectively [33]. For the fixed

cost per game, a cooperator pays a cost c for each of its neighbors

to get a benefit b [49]; and for the fixed cost per individual, a

cooperator with k neighbors pays a cost c=k for each of its

neighbors to get a benefit b=k, i.e. a cooperator will provide a

combined fixed benefit b to all its neighbors and pay a fixed cost c

equally shared by all its neighbors [33]. Notice also that the

conditional probability that a neighbor of a Y -individual is a X -

individual is given by qX jY ~
P

si~Y ki,X=
P

si~Y ki for

X ,Y[fC,Dg. Thus, for a randomly chosen D-individual with

degree k, the expected payoffs of its C- and D-neighbors are

hC~(z{1)qCjCb{zc and hD~(z{1)qCjDb, respectively, in the

case of fixed cost per game. In the case of fixed cost per individual,

these expected payoffs are hC~(z{1)qCjCvb{c and

hD~(z{1)qCjDvb, respectively, where vb~
P

~kk (b=~kk)p(~kk) is the

expected benefit from a C-neighbor (see Supporting Information

S1). Similarly, for a randomly chosen C-individual with degree k,

the expected payoffs of its C- and D-neighbors are

lC~(z{1)qCjCbzb{zc and lD~(z{1)qCjDbzb, respectively,

in the case of fixed cost per game, and lC~(z{1)qCjCvbzb=k{c

and lD~(z{1)qCjDvbzb=k, respectively, in the case of fixed cost

per individual (see Supporting Information S1).

If a defector with degree k is randomly chosen to die, then the

probability that this individual has exactly kC neighbors with

strategy C and kD neighbors with strategy D is
k!

kC !kD ! (qCjD)kC (qDjD)kD . Thus, the probability that the change of

QC equals exactly DQC~k=zN in one time step is

Figure 1. The vertices and degrees in a heterogeneous graph.
The N vertices are labeled vertex 1, vertex 2, � � �, vertex N . The degree
of vertex i is ki , and ki~ki,Czki,D where ki,C is the number of C-
neighbors and ki,D the number of D-neighbors.
doi:10.1371/journal.pone.0066560.g001
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Pr DQC~
k

zN

� �
~p(k)Qk,D

X
kCzkD~k

k!

kC !kD!
(qCjD)kC (qDjD)kD

kCfC

kCfCzkDfD

,

ð1Þ

where Qk,C (Qk,D) denotes the proportion of vertices with degree

k that are in strategy C(D). Similarly, if a cooperator with degree

k is randomly chosen to die, then the probability that the change

of QC equals exactly DQC~{k=zN is

Pr DQC~{
k

zN

� �
~p(k)Qk,C

X
kCzkD~k

k!

kC !kD!
(qCjC)kC (qDjC)kD

kDgD

kCgCzkDgD

:

ð2Þ

We next derive the time evolution of QC under weak selection.

Weak selection means that the payoff from the game represents

only a small contribution to fitness [2]. In a heterogeneous graph,

this requires that the payoff for the player with highest degree is

small compared to the baseline fitness, i.e., vkmax%1, where

kmax~ maxfkiji~1,:::,Ng. In the limit of weak selection, the

expected change of QC , denoted by DQC , in the time interval

(t,tzDt) is approximated by EfDQCg~½v(z{2)QC(1{QC)
(b{zc)=N(z{1)�Dt for the fixed cost per game and

EfDQCg~½v(z{2)QC(1{QC)(vb{c)=N(z{1)�Dt for the fixed

cost per individual (this follows from Eq (1) and Eq (2) as shown in

Supporting Information S1). For both cases, the variance of DQC is

VarfDQCg~½2Efk2g(z{2)QC(1{QC)=N2z2(z{1)�Dt (see also

Supporting Information S1). So, from the theory of diffusion

approximation [53], if the initial value of QC is s (with 0vsv1),

then the fixation probability of cooperation, denoted by r(s), is

r(s)~sz
1

1zcd

:vN

2
(b{zc)s(1{s) ð3Þ

for the case of fixed cost per game, and, similarly,

r(s)~sz
1

1zcd

:vN

2
(vb{c)s(1{s) ð4Þ

for the case of fixed cost per individual (the mathematical proofs of

these two equations are shown in Supporting Information S1). In

both Eq.(3) and Eq.(4), cd is the square of the relative deviation of

the degree distribution (i.e. cd~Varfkg=z2 where

Varfkg~Efk2g{z2 is the variance of the degree distribution)

and provides a measure of heterogeneity for the graph.

Results

It is easy to see that for both Eq.(3) and Eq.(4), if v~0, then

r(s)~s. That is, under neutral selection, the fixation probability of

a single cooperator with degree k exactly equals k=zN. To test the

effect of graph heterogeneity on neutral selection, two graphs are

considered in Figure 2; namely, the scale-free network and the

random graph. The simulation results match the theoretical

prediction well: if there is no selection, then the fixation probability

of a single cooperator is uniquely determined by the number of its

neighbors. In a heterogeneous graph, if there is no selection, then

the fixation probability of a single cooperator with degree k is

larger (less) than 1=N if kwz (kvz). This implies that the

condition that the fixation probability of a randomly chosen

cooperator is larger (or less) than 1=N cannot be used as a criterion

to estimate whether cooperation will be favored by natural

selection in a general heterogeneous graph, the degree of the

cooperator must also be considered. This is different from the

situation for a homogeneous graph [49].

When there is weak selection (i.e. vw0 but vkmax%1), the term

vN(b{zc)s(1{s)=2(1zcd ) in Eq.(3) denotes the effect of natural

selection on cooperation for the case of fixed cost per game. In

particular, cooperation will be favored by natural selection (i.e.

Figure 2. Effect of an individual’s degree on the fixation probability under neutral selection. The scale-free network (generated
according to [28]) and the random graph (generated according to [62]) are used to test the effect of graph heterogeneity on neutral selection (v~0).
For each of these two graphs, the total population size is N~1000 and the fixation probability of a single cooperator is measured using the fraction
of runs where cooperators reached fixation out of 3|107 runs (based on 103 graphs and 3|104 runs per graph). The simulation results are plotted in
Figure 2A for the scale-free network and in Figure 2B for the random graph. For both Figures 2A and 2B, the x-axis denotes the number of a single
cooperator’s neighbors and the y-axis the fixation probability of cooperation. In each of Figures 2A and 2B, the three solid lines represent the
theoretical predictions of fixation probabilities for three average degrees, where z~4,6,8 in Figure 2A and z~10,20,30 in Figure 2B, and diamonds,
squares and triangles denote the simulation results. It is clear that the simulation results match the theoretical prediction well.
doi:10.1371/journal.pone.0066560.g002
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r(s)ws) if the benefit-to-cost ratio b=c is larger than the average

degree z of the graph. Although this result is similar to Ohtsuki et

al. [49] (obviously, if all individuals have the same degree, then

cd~0 and Eq.(3) is exactly the same as Ohtsuki et al.’s theoretical

result), we also notice that the term 1=(1zcd ) represents how

selection favoring cooperation is affected by the graph heteroge-

neity. Specifically, for given average degree z and weak selection

parameter v, the absolute size of the term

vN(b{zc)s(1{s)=2(1zcd ) will decrease with the increase of

cd . That is, an increase in graph heterogeneity will reduce the

effect of selection. Simulation results in Figure 3 show this

tendency. The fixation probability approaches that of neutral

selection as cd increases.

Similar to Eq.(3), r(s)ws if b=cw1=v in Eq.(4) for the case of

fixed cost per individual where 1=v~ 1P
k

p(k)
k

is the harmonic mean

of the degree distribution. Since 1=vƒz with equality if and only if

the graph is homogeneous, if selection is weak, then cooperation

should be more easily favored by natural selection in a

heterogeneous graph. To examine whether this theoretical

prediction is true, simulations for four graphs are considered:

two Small-World networks (denoted by SW-I and SW-II), a

random graph (denoted by RD) and a scale-free graph (denoted by

SF). For all four graphs, the total population size is taken as

N~500 and three different average degrees are considered. The

simulation results are plotted in Figure 4, which show the fixation

probability of a single cooperator in the case of fixed cost per game

for different values of the benefit-to-cost ratio, b=c. In order to

satisfy the weak selection condition vkmax%1, v~0:01 for SW-I,

SW-II and RD (Figure 4A) and v~0:001 for SF (Figure 4B). The

theoretical predictions present a good approximation to the

numerical results, i.e. the relationship between the benefit-to-cost

ratio and the harmonic mean of the degree distribution in a

heterogeneous graph determines whether cooperation will be

favored by natural selection.

Discussion

Ohtsuki et al. [49] argued that the following simple rule that

arises from their theoretical analysis of the homogeneous graph

should also hold in general: the fixation probability of a single

cooperator is larger than 1=N if b=c is larger than the average

degree of the graph. Later, Tomohiko [54] provided a more

accurate approximation based on the average degree of the

nearest neighbors. In this paper, we find that the fixation

probability of a cooperator depends crucially on its degree. In

our theoretical framework, a new state variable QC is used to

measure the time evolution of cooperation in a heterogeneous

graph, which is the proportion of the total degree of cooperators in

the total directed edges, instead of the frequency of cooperators in

the population.

If all individuals have the same number of neighbors, then QC

equals the frequency of cooperators and so Ohtsuki et al.’s method

is a special case of our model. On the other hand, for the expected

payoff of an individual, two cases are considered, called the fixed

cost per game and the fixed cost per individual, respectively. In the

case of fixed cost per game, a cooperator pays a cost c for each of

its neighbors to get a benefit b; and in the case of fixed cost per

individual, a cooperator with k neighbors pays a cost c=k for each

of its neighbors to get a benefit b=k, i.e. a cooperator will provide a

combined fixed benefit b to its all neighbors and pay a fixed cost c
equally shared by its all neighbors. For the evolution of

cooperation in a heterogeneous graph, our main results show that

(i) under neutral selection, the fixation probability of a single

cooperator depends linearly on the number of its neighbors, i.e.

the more neighbors a single cooperator has, the larger its fixation

probability; (ii) under weak selection, cooperation is favored by

natural selection if the benefit-to-cost ratio, b=c, is larger than the

average degree, z, in the case of fixed cost per game or if the

benefit-to-cost ratio, b=c, is larger than the harmonic mean of the

degree distribution, 1=v, in the case of fixed cost per individual;

and (iii) the heterogeneity of a graph is measured by the square of

the relative deviation of the degree distribution, cd , and under

weak selection, the effect of selection will decrease with the

increase of cd .

Our analysis provides an insight for understanding the evolution

of cooperation in a heterogeneous graph. In the case of fixed cost

per game, Ohtsuki et al.’s simple rule [49] is still valid on average.

However, numerical simulations in their paper show that the

Figure 3. Effect of graph heterogeneity on the fixation probability under weak selection and fixed cost per game. Simulation results
for the fixation probability in random graphs and scale-free graphs with different heterogeneities are shown in Figure 3A and 3B, respectively (see the
generation of these graphs in Supporting Information S1). In Figure 3A, N~1000 and z~20. The benefit-to-cost ratio is taken as b=c~ 16, 20, 24, 28
and 32, respectively, and the selection intensity is v~0:0005. In Figure 3B, N~1000 and z~10. The benefit-to-cost ratio is taken as b=c~ 5, 10, 15, 20
and 25, respectively, and the selection intensity is v~0:001. In both Figures 3A and 3B, the x-axis denotes cd and the y-axis the fixation probability of
a single cooperator with z neighbors. The fixation probability is measured using the fraction of runs where cooperators reached fixation out of 107

runs. The dash line r~0:0005 in Figure 3A and the dash line r~0:001 in Figure 3B denote respectively the fixation probability under neutral selection
(v~0). Both Figures 3A and 3B show the tendency that for all different values of b=c, fixation probability approaches that of neutral selection as cd

increases.
doi:10.1371/journal.pone.0066560.g003
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fixation probabilities of cooperators in heterogeneous graphs such

as the scale-free graph are lower than the theoretical prediction.

There are two possible reasons. On the one hand, the strength of

selection decreases as the graph heterogeneity increases, which

implies that the fixation probability is more sensitive to random

effects in a strongly heterogeneous graph. Therefore, compared to

homogenous graphs, more simulation periods are needed to

calculate the fixation probability. In our paper, fixation probabil-

ities of cooperators were found by using either 107 or 5|107 runs

(which is ten times the number of runs used in Ohtsuki et al.’s

simulations) and our simulation results are closer to the theoretical

prediction. On the other hand, the selection intensity (v~0:01) in

Ohtsuki et al.’s simulations is not weak enough. In a heterogeneous

graph, a cooperator with many neighbors pays significantly higher

than a cooperator with few neighbors. This makes the survival of

large degree cooperators very difficult.

In a real population, as pointed out by Santos et al. [33], there is

no reason for every cooperator to contribute the same amount to

each game in which he/she participates. Santos et al. [33] then

introduced the concept of fixed cost per individual. When the

contribution per individual is fixed, their simulations showed that

there is an impressive boost of cooperation for scale-free graphs

under the case of fixed cost per individual compared to the case of

fixed cost per game. In fact, the promotion of cooperation is due to

the " symmetry breaking" of the game [35]. That is, the payoff

difference between cooperator and defector in a single game is no

longer c, but inversely proportional to the number of games each

player plays. This then gives an evolutionary advantage to large

degree cooperators. Our theoretical results confirm Santos et al.’s

finding. Since the harmonic mean of the degree distribution

decreases as the graph heterogeneity increases, social diversity

promotes the emergence of cooperation.

Ohtsuki et al. [49] indicated that in social networks, people

might have a substantial number of connections, but only very few

of them are strong. Hence, they thought that the ‘effective’ average

degree of many relevant networks could be small, thereby making

selection of cooperation on graphs a powerful option. Obviously,

for the case of fixed cost per game, our results provide a reasonable

theoretical explanation for Ohtsuki et al.’s conjecture. In fact, the

low connectivity on average is more favorable for the emergence of

cooperation for the case of fixed cost per individual since the

harmonic mean of the degree distribution is less than the average

degree in general. It is important to point out that, although

cooperation will be favored by natural selection when the average

degree is low, the fixation probability of a single given cooperator

increases when it has more neighbors.

Graph heterogeneity should be one of the most important

characteristics of natural and social networks. Our study analyzes

the effect of graph heterogeneity under weak selection only, and a

further question is how to explain the effect of strong selection.

Evolution of cooperation under strong selection in a heteroge-

neous graph have been considered by several authors [30–34,55–

58]. Unfortunately, our theoretical methods cannot be easily

extended to the situation with strong selection. In fact, it has been

shown that analytical predictions obtained in the pair approxi-

mation leads to an apparent contradiction with simulation results

even in regular graphs [11,59–61]. In our opinion, other

theoretical methods such as the " macro-dynamics" approach

developed by Pinheiro et al. [57–58] are then better able method

to explain the evolution of cooperation under strong selection in a

heterogeneous graph.

Supporting Information
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heterogeneous graph: Fixation probabilities under neu-
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Figure 4. Effect of the fixed cost per individual on the fixation probability under the weak selection. Four heterogeneous graphs, SW-I
(the Small-World graph generated according to [27] with rewiring probability 0.1), SW-II (the Small-World graph generated according to [27] with
rewiring probability 1), RD (random graph generated according to [62]) and SF (scale-free graph generated according to [28]) are used to test the
theoretical predictions. Simulation results for the fixation probability of a single cooperator with z neighbors in SW-I, SW-II and RD are shown in
Figure 4A. For z~4,6,8, the harmonic means of the degree distribution are 1=v&3:90, 5:90, 7:90 in SW-I, 1=v&3:53, 5:51, 7:51 in SW-II, and 1=v&3:00,
4:82, 6:83 in RD, respectively. The vertical dash line represents the harmonic mean of degree distribution, 1=v, for each of z~4,6,8, where the red,
green and blue vertical dash lines correspond to SW-I, SW-II and RD, respectively. Figure 4B shows the simulation results for the fixation probability of
a single cooperator with 4z neighbors in SF. For z~8,12,16, the harmonic means of the degree distribution are 1=v&5:72, 8:76, 11:83, respectively.
The vertical dash line represents the harmonic mean of degree distribution, 1=v, where the blue, green and red vertical dash lines correspond to
z~8,12,16, respectively. In both Figures 4A and 4B, the x-axis denotes the benefit-to-cost ratio, b=c, the y-axis the fixation probability, and the
horizontal dash-point line denotes the fixation probability of a single cooperator under neutral selection (i.e. v~0) which is k=zN . The fixation
probability of a single cooperator is measured using the fraction of runs where cooperators reached fixation out of 5|107 runs (based on 103 graphs
and 5|104 runs per graph). Both Figures 4A and 4B show that the theoretical predictions present a good approximation to the numerical results.
doi:10.1371/journal.pone.0066560.g004
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