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Evolution of cooperation on temporal networks
Aming Li1,2,3, Lei Zhou 1,4, Qi Su1,5, Sean P. Cornelius3,6,7, Yang-Yu Liu 7,8✉, Long Wang 1✉ &

Simon A. Levin 4✉

Population structure is a key determinant in fostering cooperation among naturally self-

interested individuals in microbial populations, social insect groups, and human societies.

Traditional research has focused on static structures, and yet most real interactions are finite

in duration and changing in time, forming a temporal network. This raises the question of

whether cooperation can emerge and persist despite an intrinsically fragmented population

structure. Here we develop a framework to study the evolution of cooperation on temporal

networks. Surprisingly, we find that network temporality actually enhances the evolution of

cooperation relative to comparable static networks, despite the fact that bursty interaction

patterns generally impede cooperation. We resolve this tension by proposing a measure to

quantify the amount of temporality in a network, revealing an intermediate level that maxi-

mally boosts cooperation. Our results open a new avenue for investigating the evolution of

cooperation and other emergent behaviours in more realistic structured populations.
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Explaining the evolution of durable, widespread cooperative
behaviour in groups of self-interested individuals has been a
challenge since the time of Darwin1–8. In response,

researchers have turned to the critical role played by the under-
lying interaction networks, in which nodes represent individuals
and links represent interactions9,10. It has been shown that the
nontrivial population structures represented by both homo-
geneous2–4,9,11–13 and heterogeneous10,14,15 networks permit the
formation of stable clusters of cooperators (altruists), which
achieve higher individual payoffs while also resisting exploitation
from defectors (egoists). As such, both theoretical
analysis4,9,10,15–20 and behavioural experiments21–28 point to
network structure as a key ingredient for the emergence of
cooperation.

However, these and other deep insights about the evolution of
cooperation generally rely on a key assumption that the under-
lying interaction network (contact graph) of individuals is time-
invariant (i.e., static). In practice, this assumption is often vio-
lated, especially in social networks, which tend to be formed from
an ever-changing amalgam of short-lived interactions. For
example, emails and text messages represent near-instantaneous
and hence ephemeral links in the corresponding temporal net-
work29. Even in cases where interactions have non-negligible
durations—such as phone calls, or the face-to-face interactions
between inpatients in the same hospital ward—the network
structure is in constant flux.

Recently, it has been shown that the temporality of edge acti-
vations can noticeably affect various dynamical processes, ranging
from the information or epidemic spreading30–33 to network
accessibility34 to controllability35. It is natural to expect that tem-
porality will have a similarly profound effect in social systems, in
which the relevant dynamical laws are strongly tied to the presence
(or absence) of network links. There is a large body of work
studying coevolutionary dynamics—in which the changes to the
network structure are a direct result of the underlying dynamics
(e.g., players strategically switching partners to shun defectors)36–41.
Yet these mechanisms, though important, are just a few among
many that influence the structure of real social networks, stressing
the importance of studying temporality exogenous to the social
dynamics. On this front, we mention one notable work that
explored the impact of temporal social contacts on the evolution
of cooperation, and claimed that the temporal dynamics of social
ties favours selfish behaviour42. And yet, given some profound
advantages of temporal networks recently discovered in the
context of dynamics and control35, we are compelled to ask
whether, under certain circumstances, temporality might actually
enhance cooperation.

Here we study the evolution of cooperation on empirical and
synthetic temporal networks first, and surprisingly, we find that
temporal networks can facilitate the evolution of cooperation. We
further investigate the impacts of bursty behaviour (namely, short
timeframes of intense activity followed by long windows of
relative silence)—a hallmark of many real social interaction
patterns43,44. We find that this facet of temporality is actually
detrimental to the emergence of cooperation, instead facilitating
the spread of egoists. Finally, we rationalise the previous findings
by introducing a measure of temporality in networks, and show
analytically that an intermediate level most favours cooperation.
We confirm the generality of our results over different types of
synthetic networks, varying interaction time scales, updating rules
(both synchronous and asynchronous), and game dynamics.

Results
Modelling framework. We conduct our investigation in the
setting of classic evolutionary game theory9,11,14, in which two

players interact by each choosing a strategy of cooperation (C) or
defection (D). When their strategies agree, each player receives a
payoff R (P) for mutual cooperation (defection). When the
players’ strategies disagree, the defector receives a payoff T while
the cooperator receives S. These outcomes can be encoded in the
payoff matrix

C D
C

D

R S

T P

� �

whose entries give the payoff under all possible combinations of
strategies. For simplicity, we shall first focus on the widely-
studied case of the (weak) Prisoner’s Dilemma9,14,45,46, which
without loss of generality corresponds to the setting R ¼ 1;T ¼ b
and S ¼ P ¼ 0. This leaves a single temptation parameter, b > 1,
which captures the potential advantage of defecting over
cooperating9.

Figure 1 illustrates the essence of our modelling framework.
We consider the above game played out between pairs of adjacent
nodes on a time-varying network, which we represent by a
sequence of separate networks (snapshots) on the same set of N
nodes. Starting from empirical contact sequences (i.e. time-
stamped interactions), these snapshots are constructed by
aggregating social contacts over successive, non-overlapping
windows of Δt (Fig. 1a and b), which determines the set of links
active in a given snapshot. As a point of comparison, we also
create a corresponding static network by aggregating all social
contacts in the dataset.

To capture the interactions occurring on these networks, we
initially set an equal probability for each individual (node) to
choose C or D in the population on the first snapshot. In each
round, every individual i plays the above game with each of its
neighbours, accumulating a total payoff Pi. Afterwards, the player
may change his or her strategy by randomly imitating that of a
neighbour. In our simulations, we employ a commonly used
updating rule that models a tendency to imitate success14.
Specifically, each player i may pick a neighbour j (having payoff
Pj) from its ki neighbours, and then imitate j’s strategy with
probability ðPj � PiÞ=ðDkdÞ provided Pj > Pi. Otherwise, player i
keeps his/her current strategy. Here D ¼ T � S and kd is the
larger of ki and kj. We repeat this procedure a total of g times
before changing the network structure to the next snapshot
(Fig. 1c). In this way, g is a parameter that controls the timescale
difference between the dynamics on the network versus the
dynamics of the network. We continue running the game for a
total of G rounds, and then measure the average fraction of
cooperators (fc) over another 2,000 rounds, similar to the
canonical procedure used in static networks14,15. Note that, in a
departure from previous studies36–41, here the time-varying
nature of the networks is completely exogenous, not being
coupled to the game dynamics (by, for example, players changing
whom they interact with to shun defectors). This allows us to
independently study the effect of network temporality on the
dynamics of the game.

Temporal networks facilitate the evolution of cooperation. Our
principal result is that temporal networks generally enhance
cooperation relative to their static counterparts. What’s more,
they allow it to persist at higher levels of temptation, b. Figure 2
shows the equilibrium fraction of cooperators fc for temporal
networks formed from social contacts in four empirical datasets:
attendees at a scientific conference (ACM conference)47, students
at a high school in Marseilles, France in two different years48,49

(Student 2012, and Student 2013), and workers in an office
building in France (Office 2013)50. In each of these systems we
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observe a broad range of g over which fc is greater in the temporal
network than in its static counterpart, at almost all values of b.
Strikingly, this is true even for small Δt; in this case the network’s
links are distributed over a large number of snapshots, leaving
little network scaffolding on which to build stable clusters of
cooperators. Nonetheless, there exists a range of g that can
compensate for this sparsity, again giving temporal networks the
victory in terms of enhancing cooperation. Indeed, we find that
the only scenario in which temporal networks result in less
cooperation than static networks is when g is small. In this limit,
the evolutionary timescale is comparable to the dynamical time-
scale, and patterns of cooperation have no time to stabilise before
being disrupted by the next change in network structure. This
squares our results with the previously-mentioned conclusion
that temporality inhibits cooperation (Supplementary Fig. 1),
which was obtained from the regime of a single game per snap-
shot (g ¼ 1) with comparatively infrequent strategy updates42.
Interestingly, regardless of the value of g, our simulations show a
rapid and on-average monotonic convergence of the cooperator
fraction toward equilibrium (Supplementary Fig. 2)—similar to
the temporal profile previously found in co-evolving random
networks51.

As there are many factors that might affect evolutionary
outcomes15,52,53, we have studied numerous alternative setups as
well. These include: (i) using the original time scale of network
edges (Supplementary Fig. 1), (ii) asynchronous updating of
strategies (Supplementary Fig. 3), (iii) alternative social dilemmas
like the canonical Stag-Hunt (S < P <T <R) and Snowdrift
(P < S <R<T) games, and the general Prisoner’s Dilemma with
S < P (Supplementary Figs. 4 and 5), and finally (iv) a different
strategy update rule that allows players to imitate worse-
performing neighbours54 (Supplementary Fig. 6). None of these

modifications alter our main finding that time-varying network
structure generally enhances the evolution of cooperation.

To test whether this result depends on idiosyncrasies of the
temporal patterns in real social systems, we have also simulated
games on synthetic temporal versions of Erdős-Rényi (ER)55 and
scale-free (SF)56 networks (see Methods). Here too we find that
with almost any level of temporality, cooperators have an easier
time gaining footholds in the population (Fig. 3). Interestingly, we
find that temporal versions of SF networks yield a higher fc, all
other things being equal, than the temporal ER networks (Fig. 3
and Supplementary Fig. 7). As such, the well-known result that
heterogeneous degree distributions enhance cooperation in static
networks also holds in temporal networks14. Note that our results
here are robust to changes in the size and average connectivity of
the networks under consideration (Supplementary Figs. 7 and 8).

Effects of burstiness on the evolution of cooperation. Analyses
of the temporal patterns of human interactions in email57, phone
calls57,58, and written correspondence43 have revealed a high
degree of burstiness—periods of intense activity punctuated by
relative lulls—resulting in a heavy-tailed inter-event time dis-
tribution43. Such temporal correlations in activity have been
shown to have effects on network dynamics above and beyond
those of temporality alone, for instance accelerating the spread of
contagions59,60. We have established that burstiness is present to
varying degrees in each of the four datasets we study (Supple-
mentary Fig. 10), prompting us to ask whether it helps or hinders
the evolution of cooperation.

We address this question by shuffling each dataset, randomis-
ing the source, target, and timestamp of each social contact (see
Methods). We stress that this randomisation has the effect of
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erasing bursty behaviour at the level of individual nodes. Figure 4
shows that, in every temporal network we consider, cooperation
is improved after randomisation, suggesting that bursty behaviour
impedes the evolution of cooperation. Indeed, due to the
heterogeneity of active times embedded in bursty behaviour of
different players, it is harder for cooperators to form stable
clusters to obtain benefits from mutual cooperation in order to
compensate for the losses against defectors9,25. For the effects of
other null models that permute only the structure or the time
stamps of the contacts, please refer to Supplementary Figs. 11–14,
where we also show that the above results are robust to alternative
randomisation protocols. Furthermore, this is true for nearly all
choices of parameters Δt, g, and b. But how do we reconcile the
fact that burstiness is inimical to cooperation with our previous
observation, namely that temporality generically promotes it?

Cooperation is maximised at intermediate temporality. The
burstiness and the parameters g and Δt encode three different
facets of temporality. Specifically, g captures the relationship
between the dynamical/structural timescales; Δt on the other
hand indicates the extent to which the network structure is spread
over time; finally, the burstiness represents time correlations in
the network structure. To understand the effects of these para-
meters in a unified way, we define the following measure of the
temporality T of a temporal network with M snapshots as

T ¼ 1
M � 1

XM�1

m¼1

P
i;j jaijðmÞ � aijðmþ 1ÞjP

i;j maxfaijðmÞ; aijðmþ 1Þg:

Here aijðmÞ is the connectivity between nodes i and j in snapshot
m, being 1 if the nodes have a contact in the associated time
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with degree exponent 2:5 constructed by the static model70, choosing a
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the gap of the results obtained from temporal and static networks, while
large g does not necessarily reduce the gap (Supplementary Fig. 9). Here
M ¼ 100, the network size N ¼ 1000, and average degree hki ¼ 10. The
robustness of the corresponding results for other parameters and other
methods of generating synthetic temporal networks has been verified (see
Supplementary Fig. 7).
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window and 0 otherwise; the above fraction equals 0 for any two
nearby empty networks without links. This measure captures the
tendency of a randomly-chosen link to change status (either
active to inactive, or vice versa) in the next snapshot. By con-
struction, we always have 0< T ≤ 1, with T ¼ 0 occurring in the
limit where network topology does not change (i.e. a static net-
work), and T ¼ 1 corresponding to the case where all links in a
given snapshot are different from those in the previous snapshot.

Figure 5 shows the values of T for both the original and
randomised versions of each of the four datasets we study. We see
that at Δt ¼ 1, the original data tend to display high temporality,
which decreases upon randomisation, suggesting that most
interactions (links) in these systems last less than 1 hour.
Considering our earlier finding that the cooperation level fc
increases after randomisation (Fig. 4), this suggests that too-high
temporality hinders the spread of cooperation, instead fostering
egoistic behaviour. On the other hand, we find that a too-low
value for T is also associated with diminished cooperation
(Supplementary Fig. 16). Altogether, the picture that emerges is
one of an intermediate regime—a sweet spot of temporality at
which cooperation is maximally enhanced relative to static
systems.

Theoretical analysis. Having demonstrated that an intermediate
level of Δt facilitates cooperation most, we are prompted to
theoretically explain this observation. We model temporal net-
works theoretically using the activity-driven model33. Here, a
node can either be active—in which case it forms links with an

average l randomly-chosen other nodes—or inactive, in which
case its links (if any) come from other active nodes. We denote by
ai the probability that node i is active in a given snapshot. Let Na
denote the total number of players in the snapshot m having a
specified activity value a, and let Dm

a denote the expected number
of those that are defectors. Also, we will denote by μ (λ) the
average probability for a defector (cooperator) to become a
cooperator (defector) in the next round.

Staring from a specific snapshot m, the number of defectors in
the next snapshot, Dmþ1

a arises as a sum of three contributions: (a)
defectors in the current snapshot (i.e. Dm

a ), minus (b) the number
of them that convert to cooperators (i.e. μDm

a ), plus (c) the new
defectors converted from cooperators in the last round. Note that,
in (c), new defectors can arise either as (i) active cooperators who
interact with (and imitate) neighbouring defectors (i.e.
ðNa � Dm

a Þal
R
da0Dm

a0=N
� �

λ), or (ii) inactive cooperators who
nonetheless share a link with an active defector and imitate that
defector’s strategy (i.e.

R
da0Dm

a0a
0l Na � Dm

a

� �
=N

� �
λ, where ðNa �

Dm
a Þ=N is the probability that cooperators with active probability

a are selected to interact with an active defector). Combining
these contributions, we can write a self-consistent equation for
the evolution of Dm

a

Dmþ1
a ¼ Dm

a � μDm
a þ Na � Dm

a

� �
al
Z

da0Dm
a0
λ

N
þ
Z

da0Dm
a0a

0l
Na � Dm

a

N
λ:

ð1Þ

When we take the continuum limit with respect to the time m,
the above equation corresponds to the following system of
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Fig. 4 The intrinsic bursty behaviour in human interactions suppresses the maintenance of cooperation. For each dataset, we show the difference
fRPTREc � fORIc between the frequency of cooperators fRPTREc in temporal networks generated from each datsaset after randomly permuting both the
timestamps and edges (RPTRE) which erases the burstiness inherent to human interaction data (see Methods), and fORIc over the original scenarios. By
construction, at any fixed value of b, each curve here sums to at most 1 with the corresponding curve in Fig. 2 from a–d. We see that the frequency of
cooperators generally increases after the bursty behaviour is destroyed, suggesting that correlations in activity within a social network are antagonistic
toward the formation of cooperation. Note that for clarity of presentation, we did not plot the case for g ¼ 5000. However, all results for each dataset after
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differential equations

∂mD ¼ �μDþ λlhaiDþ λlQ

∂mQ ¼ �μQþ λlha2iDþ λlhaiQ
;

�
ð2Þ

where D is the number of defectors, Q ¼
R
daDaa, and hai (ha2i)

is the first (second) moment of a over all players. The first
expression in Eq. (2) is obtained by integrating over all values of a
and ignoring the second order terms (i.e. QmDm here). The
second expression comes from multiplying both sides of Eq. (2)
by a and then integrating out (see Supplementary Note 1 for
details). Regardless of the parameter values, this system possesses
an equilibrium at D ¼ Q ¼ 0, corresponding to the complete
absence of defectors. We can determine its stability by linearising
to obtain the corresponding Jacobian matrix

J ¼
�μþ λlhai λl

λlha2i �μþ λlhai

� �
;

which has eigenvalues �μþ λlhai± λl
ffiffiffiffiffiffiffiffi
ha2i

p
. When the largest

eigenvalue is positive (equivalent to λ=μ> 1=½ðhai þ
ffiffiffiffiffiffiffiffi
ha2i

p
Þl�),

the equilibrium is unstable, meaning that defectors can never die
out in the population. Interestingly, this equation is consistent
with the epidemic threshold previously derived for activity-driven
temporal networks33, where there λ is the infection rate per
contact and μ is the recovery rate. Indeed, whether defection or
infection, the denominator captures the rate of spread of a small
perturbation around an equilibrium (in this case D ¼ 0), with
both density (hai) and degree heterogeneity (ha2i) facilitating that
spread.

The threshold for defection to gain a foothold in the
population can be related to the network structure as follows.
Considering that the average number of links for each player is
k ¼ 2lhai, we know that the probability for a defector to spread
its strategy is λk. Hence a nonzero fraction of defectors will break
out if λk=μ≥D*, where D* is the threshold defined by

D* ¼ 2hai
hai þ

ffiffiffiffiffiffiffiffi
ha2i

p : ð3Þ

We see that the increase of defectors is triggered (inhibited) by
λ (μ), where the bigger (smaller) λ (μ) is, the more cooperators
(defectors) switch to be defectors (cooperators). Therefore,

beyond the criterion λk=μ≥D* governing the existence of
defectors, D* quantifies the difficulty for defectors to take over
the whole network. Numerical validations for this threshold are
shown in Supplementary Fig. 17, where we also show our
analytical approximations of this threshold agree with the
findings of canonical evolutionary dynamics in the case where a
strategy’s payoff determines the change of its frequency.

Equation (3) tells us that the defection threshold in an activity-
driven temporal networks is in part determined by the typical
activity level a of its nodes. To obtain the value of D* for a given
temporal network, we can estimate the activity probability of
node i in the snapshot m as ami ¼ kmi =ki, where k

m
i and ki are the

degree of i in the snapshot and the corresponding static network.
The average activity over a given snapshot m with N individuals
is then am ¼

PN
i¼1 a

m
i =N . Then for the jth moment of a of the

whole temporal network with M snapshots, we calculate it by
haji �

PM
m¼1ðamÞ

j=M. For each of the empirical datasets we
study, we find that the threshold for the outbreak of defection
reaches its maximum when Δt is at an intermediate level (Fig. 6),
echoing our previous result of a Goldilocks regime of temporality
maximally conducive to cooperation.

We can understand the link between the model predictions and
the data by rewriting the threshold (3) as D* ¼ 2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þVarðaÞ=E2ðaÞ

p ,

where VarðaÞ ¼ ha2i � hai2 and EðaÞ ¼ hai For small Δt,
individuals tend to be less active in each sparse snapshot (small
EðaÞ implies small D*), which in turn gives more chance for
defectors to spread their strategy pairwisely as it is the Nash
equilibrium. For large Δt, however, due to the heterogeneity of
interactions over different snapshots (large VarðaÞ implies small
D*), clusters of cooperators have less chance to stabilise. Only at
an intermediate Δt can cooperators outspread defectors, and the
combination of high EðaÞ and low VarðaÞ leads to a high barrier
to defection (D* � 1) (Fig. 6).

Discussion
We have shown that temporal networks, both empirical and
synthetic, generically enhance the emergence of cooperation
relative to their static counterparts. Remarkably, this central
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finding holds even after the underlying contact sequences are
randomised, thereby destroying topological (e.g. clustering) or
temporal (e.g. bursts) correlations in the data. Altogether, this
suggests that temporality—and temporality alone—is sufficient to
improve cooperation. Indeed, after randomisations, we find that
the level of cooperation is actually improved, demonstrating that
the bursty nature of human interactions hinders the maintenance
of cooperation to some degree. Finally, we demonstrate that the
temporality of a network determines the fate of cooperators, with
cooperators flourishing at intermediate values of network
temporality.

The temporal networks considered here should be contrasted
with coevolutionary dynamics, in which the changes in network
structure are tied to the dynamics of the relevant social dilemmas.
For example, several important mechanisms elucidate that coop-
eration can be boosted by strategic migration36,40, and deliberate
switching of interaction partners to avoid defectors37,61,62. How-
ever, it is unlikely the temporality characterising real social
interactions is driven exclusively (or even primarily) by strategic
switching in pursuit of a given objective47–50. This underscores the
importance of studying cases in which the temporality is exo-
genous to the game dynamics, allowing an independent assess-
ment of how the former affects the latter. As such, the agnostic
view of the nature of temporality we have taken here represents a
fundamental strength of our approach.

We have shown that our main conclusions are not artifacts of
the specific empirical networks considered here, nor do they
qualitatively change under different parameterisations. None-
theless, future investigations such as appropriate behavioural
experiments that incorporate network temporality and relevant
phenomena like burstiness are warranted. Though we have shown
that our results are unchanged when considering only subsets of
the network (Supplementary Fig. 18), disregarding very short-
lived contacts (Supplementary Fig. 19), changing the clustering
coefficient (Supplementary Figs. 20 and 21), or using different
starting network types (Supplementary Fig. 22), real systems
display considerable variability, including different characteristic
timescales for population evolution (Supplementary Fig. 23).
Accordingly, future analysis of interactions at different spatial and
temporal scales will be necessary to understand the full implica-
tions of temporality. Toward this end, the long tradition of
combining tools from network science and statistical physics63

with evolutionary game theory will no doubt continue to pay
dividends.

Another natural extension of the current work is to consider
group interactions, which involve the interactions among indi-
viduals who are not directly connected with one another64–66.
These interactions generate much more dynamical complexity
than pairwise interactions alone67. In microbial populations, for
example, pairwise outcomes can predict the survival of three-
species competitions with accuracy as high as 90%, yet infor-
mation on the outcomes of three-species competition is still
needed in order to predict scenarios over larger numbers of
species with high accuracy68. Moreover, the menu of strategies
can be expanded beyond the simple dichotomy of cooperation
versus defection, which represents only one axis of a broader
landscape of moral behaviour69. For example, three-strategy
games analogous to rock-paper-scissors may present a more
nuanced picture of the detailed interactions characterising
microbial communities, ecosystems, and human societies alike.

Methods
Empirical temporal networks and datasets. We construct temporal networks
from empirical datasets collected by the SocioPatterns collaboration (http://www.
sociopatterns.org) by aggregating contacts into undirected network links over time
windows of Δt (Fig. 1a). Thus the active time interval for the snapshot m is from
ðm� 1ÞΔt to mΔt, and a link between i and j exists in that snapshot if players i and
j interact at least once in that time period (Fig. 1b). We obtain a static network in
the limit where Δt ¼ T, where T is the last timestamp in the data, resulting in a
single snapshot containing all links.

Synthetic temporal networks. We generate temporal analogues of networks with
heterogeneous or homogeneous degree distributions with specified network size N
and average degree hki by first generating a base static network, using the static
model70 and the Erdős-Rényi model55, respectively. We then form M snapshots by
randomly and independently choosing a fraction p of edges to be active in each
one. We have verified that our results hold under more sophisticated generative
models that build temporal networks from a static network backbone, such as the
activity-driven model33.

Randomisations of empirical datasets. We consider four widely-used null
models29 to randomise the empirical datasets: Randomised Edges (RE) where we
randomly choose pairs of edges ði; jÞ and ði0; j0Þ, and replace them with ði; i0Þ and
ðj; j0Þ or ði; j0Þ and ðj; i0Þ with equal probability provided this results in no self loops;
Randomly Permuted Times (RPT), where we shuffle the timestamps of the con-
tacts, leaving their sources and targets unaltered; Randomly Permuted Times +
Randomised Edges (RPTRE) which consists first of RPT followed by RE; and Time
Reversal (TR), where the temporal order of the contacts is reversed.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All empirical datasets analysed in this work are publicly available through the
SocioPatterns collaboration (http://www.sociopatterns.org).

Code availability
The computer codes used in this work are available at https://github.com/
leizhougetbetter/TemporalNetworks.
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