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Evolution of dynamical signature in the X-cube fracton topological order

Chengkang Zhou,1,* Meng-Yuan Li,2,* Zheng Yan,1,3,† Peng Ye ,2,‡ and Zi Yang Meng1

1Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong,
Pokfulam Road, Hong Kong SAR, China

2School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, and Guangdong Provincial Key Laboratory
of Magnetoelectric Physics and Devices, Sun Yat-sen University, Guangzhou 510275, China

3State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China

(Received 7 April 2022; revised 7 July 2022; accepted 21 July 2022; published 9 August 2022)

As an unconventional realization of topological orders with an exotic interplay of topology and geometry,
fracton (topological) orders feature subextensive topological ground-state degeneracy and subdimensional
excitations that are movable only within a certain subspace. It has been known, in the exactly solvable three-
dimensional X-cube model that universally represents the type-I fracton orders, that mobility constraints on
subdimensional excitations originate from the absence of spatially deformable stringlike operators. To unveil
the interplay of topology and geometry, in this paper, we study the dynamical signature in the X-cube model
in the presence of external Zeeman fields via large-scale quantum Monte Carlo simulation and stochastic
analytic continuation. We compute both real-space correlation functions and dynamic structure factors of
subdimensional excitations (i.e., fractons, lineons, and planons) in the fracton phase and their evolution into
the trivial paramagnetic phase by increasing external fields. We find, in the fracton phase, that the correlation
functions and the spectral functions show clear anisotropy exactly caused by the underlying mobility constraints.
On the other hand, the external fields successfully induce quantum fluctuations and offer mobility to excitations
along the subspace allowed by mobility constraints. These numerical results provide the evolution of a dynamical
signature of subdimensional particles in fracton orders, indicating that the mobility constraints on local dynam-
ical properties of subdimensional excitations are deeply related to the existence of fracton topological order.
The results will also be helpful in potential experimental identifications in spectroscopy measurements such as
neutron scattering and nuclear magnetic resonance.
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I. INTRODUCTION

The exploration of novel phases of matter beyond the Lan-
dau symmetry-breaking paradigm is one of the major themes
in modern condensed-matter physics. Within numerous im-
portant findings, topological orders that feature long-range
entanglement and their experimental detection in correlated
materials and numerical simulation in quantum lattice models
have attracted a lot of attention [1–15]. Topological excita-
tions are one of the defining features of topological orders,
such as anyons in the celebrated toric code model [3] and
its frustrated magnet realizations [8,11,16–23]. While a sin-
gle topologically trivial excitation can be created by a local
operator, pointlike topological excitations must be created in
pairs, which are located at the two endpoints of stringlike
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operators. As endpoints are exactly the boundaries of open
strings, the topological excitations are inherently related to
string operators. Since the string operators can be arbitrarily
deformed, the associated topological excitations can move
freely in the whole space.

Recently, fracton orders as an unconventional realization of
topological orders were proposed and have stimulated inten-
sive activities in many areas, ranging from condensed-matter
physics and quantum information science to high-energy
physics [24–60]. Exactly solvable models that support fracton
orders (phases) are usually stabilizer codes defined in three
and higher dimensions. In sharp contrast to the conventional
topological orders, locally indistinguishable ground-state de-
generacy (GSD) in a fracton system grows with the system
size; such interesting phenomena can be traced back to the
foliation structure built in the lattice models of three [45]
and higher dimensions [46,47]. Furthermore, while topologi-
cal excitations in higher-dimensional conventional topological
orders are characterized by topological properties, e.g., topo-
logical field theoretical description and topological braiding
data among particles and looplike excitations [61–87], topo-
logical excitations in fracton orders are unexpectedly exotic
due to mobility constraints, which can be seen from the fact
that spatially deformable string operators do not exist [27] in
exactly solvable fracton models, e.g., the X-cube model [26]
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and the Haah’s code [27] in a three-dimensional (3D) lattice.
In the literature, topological excitations in fracton orders are
dubbed fractons and subdimensional particles according to
the degree of their mobility [25], with the fracton denoting ex-
citations that are completely immobile (zero dimensional) and
the subdimensional particle denoting excitations that are still
mobile within a subspace including one-dimensional lineons
moving along straight lines (e.g., straight lines formed by
the nearest links along the x direction) and two-dimensional
planons moving within flat planes (e.g., all flat planes formed
by the nearest plaquettes that are parallel to the xy planes).
In this paper, for the sake of convenience, we also include
fractons as subdimensional particles. Interestingly, the spirit
of this nomenclature has been generalized to higher dimen-
sions, where spatially extended excitations are subject to
complicated constraints on both mobility and deformabil-
ity [46,47]. In addition, as a common feature of stabilizer
codes, all these exactly solvable fracton models have exactly
zero correlation length and trivial dynamics in the sense that
all subdimensional excitations are static, dispersionless, and
localized energy lumps above the uniform ground-state energy
background.

In the fracton phase, mobility constraints, which are geo-
metric (local dynamical) properties, have a topological origin
and can be utilized to universally characterize the phase in ad-
dition to the size-dependent formula of the subextensive GSD.
In exactly solvable models, such as the X-cube model and the
Haah’s code model, the origin of the restricted mobility of
subdimensional particles can be clearly demonstrated. How-
ever, the situation has been unclear in general lattice models
that lose exact solvability. To understand fracton phases on
a more general ground, it is highly desirable to find a model
family, such that a well-known fracton model, e.g., the X-cube
model, can be continuously deformed away from the exactly
solvable point and eventually evolves into a trivial phase via
a quantum phase transition. Interestingly, it has been known
that in the toric code model, which is a simple stabilizer
code model, anyons gain dispersive dynamics when external
Zeeman couplings are tuned on, which renders fascinating
anyon condensation of the celebrated Bais-Slingerland mech-
anism [88] at the quantum critical points between the Z2
topological order and trivial phases in 2D [8,11,16–19,21,89–
98]. Recently, such a Bais-Slingerland-like mechanism in
more general topological phases has also been generalized
to 3D [66,71,72,74]. For the purpose of the present work,
the model family, i.e., “stabilizer code + Zeeman fields,”
is intriguing [30,99–102] both theoretically and numerically,
which offers an opportunity to consider, in a more practical
way, the characterization of topological phases in a large
parameter space. Along this line of thinking, in this paper,
we aim to study fracton orders when the 3D lattice models
are driven away from exactly solvable points by turning on
Zeeman couplings, and the quantum critical points may be
signaled by condensations of subdimensional excitations. We
will especially focus on the evolution of the dynamical sig-
nature of subdimensional particles, which is still lacking in
the literature. We expect that the dynamical signature will
encode the fingerprint of fracton orders from spectroscopic
probes and exhibit the nontrivial interplay of topology and
geometry in such unconventional realization of topological
orders.

The numerical simulation of a fracton system is noto-
riously difficult and arduous, and we have improved the
calculation methods and overcome the difficulties in various
simulations. By means of quantum Monte Carlo (QMC) and
stochastic analytic continuation (SAC) [8,27,103–111], we
consider the X-cube model in the presence of Zeeman fields
and numerically study the dynamical signature of subdimen-
sional particles, i.e., fractons, lineons, and planons. The reason
for choosing the X-cube model is that this model, from the
generalized local unitary transformation point of view, cap-
tures the universal properties of the so-called type-I fracton
order [45]. In the literature, several investigations of both the
analytical and numerical sides have been performed [52,54–
56]. For instance, the classical variant of the X-cube model
is studied and thermal properties such as a moving peak in
its specific heat due to the finite size have been found [54].
In addition, with the help of QMC simulation and the per-
turbative continuous unitary transformation (pCUT) method,
the ground-state phase transitions of the X-cube model under
the single field perturbation have been confirmed to be first
order [55,56], which is tightly connected to the immobility
nature of fracton excitations. The nature of the transitions
is also systematically studied by generalizing the Z2 X-cube
model to its ZN cousins in terms of the tensor network state
representations [52]. Moreover, dispersion relations of single
quasiparticle excitations are perturbatively computed [56].

Here, with the QMC+SAC scheme, we systematically
compute real-space density-density correlation functions and
the frequency-momentum dependence of the spectral func-
tions (dynamical structure factors) of subdimensional parti-
cles. From the QMC numerical results, we find that mobility
constraints on subdimensional particles deeply influence real-
space correlation functions and spectral functions in many
aspects. Starting from the zero field limit where all subdi-
mensional particles are dispersionless, our numerical results
indicate that in the presence of quantum fluctuations generated
by the Zeeman fields, the subdimensional particles acquire
dispersive dynamics strictly under mobility constraints. After
the quantum phase transition where the fracton phase is turned
into the trivial paramagnetic phase, the anisotropic features
under mobility constraints disappear. In addition to QMC sim-
ulation, we also perform a mean-field+RPA (random phase
approximation) analysis to fit the QMC results of the spectral
functions, which shows a qualitative consistency with the
QMC results.

Our QMC results provide a set of the dynamical signa-
ture of subdimensional particles in the type-I fracton orders,
which clearly demonstrates an exotic interplay of topology
and symmetry in fracton physics and shows a sharp distinction
from the conventional topological orders. As spectroscopy
measurements, e.g., inelastic neutron scattering and nuclear
magnetic resonance, play important roles in identifying novel
phases of matter in strongly correlated materials, we expect
that the QMC results in the present work will be helpful in
experimentally identifying fracton orders in real materials.
In addition, the QMC results also present various features in
correlation functions and spectral functions, which are yet to
be fully understood, so we expect our numerical study will
stimulate further studies in the field of fracton physics from
both theoretical and numerical aspects.
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FIG. 1. An illustration of the stabilizer operators in the X-cube
model. Ac,i denotes the product of all σx in each cube (the red
shadowed cube), while Bv,i denotes the product of σz in each cross
(the red shadowed planes).

This paper is organized as follows. In Sec. II A, we in-
troduce the theoretical background of the X-cube model and
the density operator of three different subdimensional excita-
tions: fracton, lineon, and planon. A theoretical expectation on
correlation functions and dynamical structure factors is given
in Sec. II B. In Sec. III, QMC+SAC results are presented
in detail, where the comparison between QMC and mean-
field+RPA analysis is also provided. We summarize the paper
in Sec. IV. The Appendix contains several technical details of
our numerical method.

II. THE X-CUBE MODEL IN THE PRESENCE OF ZEEMAN
FIELDS

A. Model Hamiltonian and subdimensional excitations

The Hamiltonian of the X-cube model with external
Zeeman-like magnetic fields is expressed as [26,54–56,58]

H = −K
∑

i

Ac,i − �
∑
i,v

Bv,i − hx

∑
i

σ x
i − hz

∑
i

σ z
i .

(1)
As shown in Fig. 1, spin- 1

2 s are defined on links, and Ac,i (Bv,i)
denotes the product of all the σx (σz) in the each cube (cross),
respectively [26,29,54,58,112,113]. Here the summation in-
dex i in general refers to a spatial location, while its specific
meaning depends on the summed operator, for example, in
Ac,i(Bv,i, σ z

i ), i refers to the coordinates of the center of a cube
(vertex, link). As in this paper we mainly consider the distance
between operators of the same kind, this ambiguity should not
lead to any misunderstanding. There are three different kinds
of subdimensional excitations in the X-cube model, which
are lineon, fracton, and planon. A lineon corresponds to the
flipped eigenvalues of two different Bv,i terms at the same
site, which combinatorially leads to three different species of
itself. And a fracton corresponds to the flipped eigenvalue of
the cube operator Ac,i, which are completely immobile. A pair
of fractons along the x (y, z) direction corresponds to a planon

FIG. 2. An illustration of the density operators of various subdi-
mensional excitations in the X-cube model. (a)–(c) Lineons, fractons,
and planons, respectively. (d)–(f) The creation operators of lineons,
fractons, and planons, respectively, where the red spheres are the spin
contained in the creation operators.

which can move in the 2D plane perpendicular to the x (y, z)
direction.

We can obtain mobility constraints by considering the cre-
ation operators of excitations. First, fractons are generated by
membrane operators of the form W (M ) = ∏

i∈M σ z
i , where

M is a square membrane composed of parallel links; i ∈ M
means that link i is within M [see Fig. 2(e)]. Such a membrane
operator generates four fractons, respectively located at the
four corners. Therefore, moving such a fracton with another
membrane operator (i.e., apply a membrane operator to anni-
hilate the original fracton and create another one at another
site) will generate two extra fractons, which costs additional
energy. Meanwhile, a planon, as a bound state of two fractons,
is mobile along a two-dimensional manifold [see Fig. 2(f)].
As for lineons, they are created by string operators of the
form W (S) = ∏

i∈S σ x
i . Here, S is a straight string composed

of links [see Fig. 2(d)]. Similar to fractons, moving a lineon at
an endpoint of S with another string operator perpendicular to
S will create an extra lineon at the intersection point of the two
strings. Equivalently, we can say that for a W (S′) = ∏

i∈S′ σ x
i

operator, where S′ is an arbitrary string, lineons are not only
generated at its endpoints, but also its turning points. In brief,
any movement perpendicular to the direction of S is energeti-
cally unfavorable.

To investigate all these excitations in the QMC+SAC
scheme [8,9,103,108,114,115], we compute the real-space
correlation and their spectra (obtained from the SAC of dy-
namical correlation functions) in the X-cube model in both
the σx and σz basis with linear system size both L = 6 and
L = 10 (the total size is N = L3) and β = 2L. For the dynamic
correlation, the imaginary-time correlation functions in the
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lineon channel [Fig. 2(a)],

GOx (q, τ ) = 1

L3

∑
i, j

e−iq·(ri−r j )〈Ox,i(τ )Ox, j (0)〉, (2)

with Ox,i = 1
4 (Bvy,i − 1)(Bvz,i − 1), where lineons are cre-

ated by W (S) = ∏
i∈S σ x

i [Fig. 2(d)]; the fracton channel
[Fig. 2(b)],

Gn f (q, τ ) = 1

L3

∑
i, j

e−iq·(ri−r j )〈n f ,i(τ )n f , j (0)〉, (3)

with n f ,i = 1
2 (Ac,i − 1), where fractons are created by

W (M ) = ∏
i∈M σ z

i [Fig. 2(e)]; and the planon channel
[Fig. 2(c)],

Gnx (q, τ ) = 1

L3

∑
i, j

e−iq·(ri−r j )〈nx,i(τ )nx, j (0)〉, (4)

with nx,i = 1
4 (Ac,i − 1)(Ac,i+x − 1), where planons are created

by W (Mp) = ∏
i∈Mp

σ z
i [Fig. 2(f)], are measured in the QMC

simulation. Here, operators Ox, n f , and nx denote the num-
ber operator of lineon, fracton, and planon [30], respectively.
Since the ground state by definition should be vacua of all
excitations, one can verify that the expectation values of n f ,
Ox, and nx indeed vanish in the X-cube model’s ground state.
However, under the perturbation of Zeeman couplings hz and
hx, their expectation values would become nonzero, caused
by the noncommutation between Ac,i (or Bv,i) and Zeeman
fields, which corresponds to the emergence of subdimensional
excitations (see, also, Sec. 3 of the Appendix).

B. Correlation and spectral functions
influenced by mobility constraints

Theoretically, we expect correlation functions to be an
important way to characterize the fracton order of the X-cube
model with perturbative external field. To see this point, we
can compare the X-cube model with the 3D toric code model
(TCM) [3,116,117]. As a model with pure topological order,
in 3D TCM, a pair of pointlike charge excitations is generated
at the two endpoints of a string operator, and a looplike flux
excitation is generated on the boundary of an open membrane
operator. That is to say, the relation between creation oper-
ators and excitations in 3D TCM is completely topological,
i.e., excitations are always generated at the boundaries of
creation operators, while as a fracton order model, in the
X-cube model, as discussed in Sec. II A, there is no such com-
pletely topological relation between excitations and creation
operators. For example, in the X-cube model, fractons are
generated at the corners of a membrane, and lineons are not
only generated at the endpoints, but also at the turning points
of a string. As a result, fracton orders show a complicated
interplay between topology and geometry. Therefore, even
though mobility restriction results from the fracton order of
the whole system, the correlation function should also contain
information of mobility restriction, and such restriction would
have intricate ramifications into the three types of subdimen-
sional excitations.

First, we consider lineon excitations. The lineon-lineon
correlation at long distances is expected to be anisotropic due

to the one-dimensional mobility of a lineon. In real space,
for lineons that are mobile along the direction denoted as x,
the lineon-lineon correlation 〈Ox,i(τ )Ox, j (0)〉 should decay
more slowly along the mobile x direction. In momentum
space, we expect such anisotropy of the correlation function
GOx (q, τ ) to be present around the � point, as a result of the
mobility restriction. Then, we consider planon excitations. As
demonstrated in Sec. II A, a planon is composed of a dipole
of adjacent fracton excitations. There is no clear evidence that
guarantees an attractive interaction between adjacent fractons.
Thus, whether or not the composite is a well-defined pointlike
excitation at long wavelengths is hard to confirm. Due to the
existence of an intrinsic dipolelike structure of a planon, the
planon-planon correlation function should be anisotropic not
only in the fracton ordered phase, but also in the paramagnetic
phase with strong external field hz. Hence, anisotropy of the
planon-planon correlation is not necessarily related to fracton
orders. At last, we consider fracton excitations. As a fracton
is totally immobile, the fracton-fracton correlation function
at long wavelengths is expected to be isotropic. Therefore,
fracton-fracton correlation is relatively simple, and we do not
expect to read much information of fracton orders from such
correlation functions. In addition to the correlation function,
we can also expect the spectral functions of subdimensional
particles to show dispersive behavior along their movable
directions.

As the X-cube model itself is isotropic, the anisotropy of
lineon-lineon correlation at long wavelengths suggests that a
hidden rotational symmetry breaking may be related to the
type-I fracton order. As a concrete example, the X-cube model
is obviously invariant under a 90◦ spatial rotation with respect
to the x axis, while the correlation functions of lineons mobile
along the y (and z) directions do not have this symmetry. In
contrast, for pure topological orders, such as the isotropic
3D TCM, we expect the charge-charge correlation to also
be isotropic. Therefore, such anisotropy of the lineon-lineon
correlation (or an isotropy breaking) may be recognized as
a signature of type-I fracton orders. Nevertheless, in type-II
fracton orders, such as the Haah’s code [27,29,118], we do
not expect to find such spatial symmetry breaking due to the
lack of subdimensional mobile excitations.

III. NUMERICAL RESULTS AND ANALYSIS

In this section, we present our QMC+SAC results of li-
neon, fracton, and planon excitations in the X-cube model
with external Zeeman fields.

A. Numerical setting and critical fields

The numerical simulation of fracton systems is notoriously
difficult and arduous. We first begin with a few technique
details which are related to the fracton physics. We implement
our QMC simulation in the framework of stochastic series
expansion (SSE) [103], where the sampling configuration is
constructed by Taylor expansion of the partition function in
a chosen basis. In our case, it is {σz} for lineon and {σx}
for fracton in the simulation. Unfortunately, the four- (Bv,i)
and 12-spin (Ac,i) interactions in the X-cube model cause a
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FIG. 3. Phase diagram of the X-cube model in the presence of
external Zeeman fields. The blue arrows describe the scanning direc-
tion of QA in the QMC simulation. And the orange squares in (a) are
the quantum critical points observed in Fig. 1 of the Supplemental
Material in Ref. [55]. In the fracton phase, our simulation scans from
the exactly solvable point [(hx = 0, hz = 0), the blue diamond point].
And in the paramagnetic phase, we scan the X-cube model from the
paramagnetic limit point in the x direction [PLx, (hx = 2, hz = 0),
the blue diamond point] and in the z direction [PLz, (hx = 0, hz = 1),
the blue diamond point]. (b),(c) The energy per spin under the exter-
nal fields with L = 10. The red circles are measured by scanning
from the exactly solvable point, while the green triangles are from
the PLz(x) points.

glassy and fragmental configuration space, which leads to a
low efficiency in the Monte Carlo sampling. For example, on
one hand, the local update is not efficient for QMC simulation
of the X-cube model, due to the extended interactions in the
Hamiltonian. On the other hand, naively using the cluster
update algorithm [104,119], the cluster would rapidly extend
due to the Bv,i and Ac,i interactions and an extremely large
area of spin is always suggested to be flipped, but flipping
these extremely large areas has the same effect as flipping few
spins. To solve this problem, we first modify the cluster update
algorithm to slow down the cluster growth, and apply it along
with the local update in our simulation. Second, for system
size L = 10, we warm up our Markov chains from an initial
configuration from an equilibrium configuration in the L = 2
QMC simulation (spatially repeated from L = 2 to L = 10),
to help the larger size simulation to thermalize quickly. The
details of our QMC update scheme are given in the Appendix.
Our numerical simulations are carried out under the periodic
boundary condition with linear system sizes L = 6 and L =
10, and total size N = L3 and inverse temperature β = 2L.

Note that the ground state of the X-cube model is a vacuum
state of all three subdimensional excitations, which means Ox,
n f , and nx all commute with the X-cube Hamiltonian given by
Eq. (1) with hx = 0 and hz = 0. Therefore, to observe these
subdimensional excitations, the external perturbation fields
are required to introduce a fluctuation to the corresponding
operator (like Ox for lineons). Here, we apply the hx transverse
field to see lineon excitation and hz for fractons and planons.
As described in Fig. 3(a), such perturbations also lead to
a first-order phase transition from the fracton phase to the
paramagnetic phase, which can be viewed as a consequence
of the immobility of fracton excitation [52,55,56]. To compute
correlations of these excitations with better data quality, in

(a)

(d)

(g)

(j)

(m)

(p) (q) (r)

(n) (o)

(k) (l)

(h) (i)

(e) (f)

(b) (c)

FIG. 4. The real-space correlation function of lineons COx (r),
fractons Cn f (r), and planons Cnx (r). In the fracton phase with (a)–
(c) hx = 0.8 and (g)–(i), (m)–(o) hz = 0.2, while the others are in the
paramagnetic phase with (d)–(f) hx = 1.1 and (j)–(l), (p)–(r) hz =
0.4. The first, second, and third columns describe the correlation
function along the y − z, x − z, and x − y planes, respectively.

addition to the improvement in the QMC update scheme dis-
cussed above, we further utilize the quantum annealing (QA)
algorithm [120–122], in which the quantum parameter hx(z) is
slowly changed with the annealing step �hx(z) = 0.01 for a
faster convergence to the optimal state. In the fracton phase,
starting from the exactly solvable point (hx = 0, hz = 0), our
simulations scan the parameter towards (hx = 0.9, hz = 0) for
the lineon and (hz = 0.3, hx = 0) for the fracton cases, where
we apply a 2 × 105 Monte Carlo step for each annealing
step. And for measurements in the paramagnetic phase, our
simulations scan from the paramagnetic limit in the x(z) di-
rection [PLx(z)] point towards hx = 0.9 for the hx case and
hz = 0.3 for the hz. The detailed QA implementation is given
in the Appendix, Sec. A 3. In Figs. 3(b) and 3(c), the energy
per spin 〈e〉 is measured in both the fracton phase and the
paramagnetic phase with the hx and hz fields on a L = 10
system, respectively. These first-order phase transitions occur
at hx ≈ 0.9 in the hx perturbing case and hz ≈ 0.3 for the hz

case.
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FIG. 5. The lineon spectral function obtained from the QMC-SAC process and QA method. (a) The high-symmetry path we plot in all
three subdimensional excitation spectra. (b)–(d) The spectrum AOx in the fracton phase with hx ranging from 0.7 to 0.9, which are obtained
from the QMC simulation by annealing from the exactly solvable point such that the configurations in each hx are fully thermalized. (e)–(g)
Measured by scanning from the PLx point, with AOx in the trivial phase, in which hx comes from 1.0 to 1.2.

B. Correlation functions

To show the mobility constraints on subdimensional excita-
tions, we first measure their real-space normalized correlation
functions defined as

COx (r) = 〈Ox,iOx,i+r〉 − 〈Ox,i〉2

〈
O2

x,i

〉 − 〈Ox,i〉2
,

Cn f (r) = 〈n f ,in f ,i+r〉 − 〈n f ,i〉2

〈
n2

f ,i

〉 − 〈n f ,i〉2
,

Cnx (r) = 〈nx,inx,i+r〉 − 〈nx,i〉2

〈
n2

x,i

〉 − 〈nx,i〉2
. (5)

As discussed in Sec. II B, the anisotropic properties of COx and
Cnx are tightly related to their own mobility in each direction.
In Fig. 4, we present the numerical results of these correlation
functions on a L = 10 system.

The lineon-lineon correlation function COx (r) is
anisotropic in the fracton phase. Taking Ox with hx = 0.8
in the fracton phase as an example, COx (r) decays more
slowly along the x direction with the neighboring correlation
COx (x) = 0.421(3), but fast along the y and z directions
with COx (y) = 0.0003(6) and COx (z) = 0.00002(6), which
is shown in Figs. 4(a)–4(c). Such a property comes from the
mobility constraint that lineons can only move along the x
direction. And in the paramagnetic phase, the fracton order is
completely suppressed and it will be inappropriate to interpret
Ox as lineon density. Therefore, the restriction of the lineon
mobility also disappears and so does the anisotropic property.
As a result, COx (r) rapidly decays to zero along all directions,
which are given in Figs. 4(d)–4(f).

Although the fracton order can also be suppressed by
the hz field, the real-space correlation functions of planons,
Cnx (r), and fractons, Cn f (r), behave differently from their
one-dimensional cousin due to their different mobility na-
ture. For the planon, which is mobile in the y − z plane, its
correlation function Cnx decays slowly in both the y and z
directions with neighboring Cnx (y) = 0.251(6) and Cnx (z) =
0.238(8), but fast in the x direction Cnx (x) = 0.007(2) [see
Figs. 4(m)–4(o)]. Such a restriction of mobility is broken

when the model enters the paramagnetic phase. But, dif-
ferent from the lineon case, the planon operator nx can be
viewed as a composite of two neighboring fracton operators
n f in the x direction. Consequently, Cnx (r) remains anisotropic
even in the paramagnetic phase. However, it slowly decays
along its intrinsic structure direction (x direction for nx),
which is shown in Figs. 4(p)–4(r) with neighboring correlation
Cnx (x) = 0.296(8). When it comes to a fracton, it is immo-
bile in all directions. This restriction leads to the isotropic
correlation function in both fracton and paramagnetic phases,
which looks featureless compared to the correlation data in
the lineon channel. However, since the fractons are created at
four corners by a membrane operator, Cn f (x) = 0.324(6) at
the neighboring point in Figs. 4(g)–4(i), which are Cn f (x) =
0.020(1) in the paramagnetic phase [Figs. 4(j)–4(l)].

C. Dynamic structure factors

Besides the real-space correlation function, we also in-
vestigate their corresponding dynamic structure factors, i.e.,
spectral functions, AOx (q, ω), An f (q, ω), and Anx (q, ω), ob-
tained from the SAC upon the GOx (q, τ ), Gn f (q, τ ), and
Gnx (q, τ ) in Eqs. (2), (3), and (4), which, respectively,
correspond to the lineon, fracton, and planon channels.
These results are presented in Figs. 5–7, where L = 10.
These spectral functions are plotted along the momentum
path �(0, 0, 0) → X (π, 0, 0) → �(0, 0, 0) → Y (0, π, 0) →
�(0, 0, 0) → Z (0, 0, π ) → �(0, 0, 0) → R(π, π, π ), as il-
lustrated in Fig. 5(a).

In Figs. 5–7, the first rows are in the fracton phase, with
external fields hx = 0.7–0.9 in Figs. 5(b)–5(d) and hz = 0.1–
0.3 in both Figs. 6(a)–6(c) and 7(a)–7(c). Meanwhile, the
second rows show the paramagnetic phase with hx = 1.0–1.2
[Figs. 5(e)–5(g)] and hz = 0.4–0.6 [Figs. 6(d)–6(f) and 7(d)–
7(f)]. From the results, we see that for any given momentum
point, the spectral functions in all three channels do not have
signals when the frequency is below a finite value. There-
fore, the spectral functions have finite gaps in the fracton
phase, meaning that the density fluctuations of all three kinds
of subdimensional excitations must cost finite energy. This
is expected since all subdimensional excitations have finite

033111-6



EVOLUTION OF DYNAMICAL SIGNATURE IN THE … PHYSICAL REVIEW RESEARCH 4, 033111 (2022)

FIG. 6. The fracton spectral function obtained from the QMC-SAC process and QA method. (a)–(c) The spectrum An f in the fracton phase
with hz ranging from 0.1 to 0.3, which is measured by using QMC simulation and quantum annealing from the exactly solvable point. (d)–(f)
An f in the trivial phase calculated by sweeping from the PLz point, in which hz changes from 0.4 to 0.6.

single-particle gaps. Furthermore, in Figs. 5(b)–5(d), 6(a)–
6(c), and 7(a)–7(c), we find that upon increasing the external
fields, quantum fluctuations get stronger and stronger, which
causes more and more pronounced spectral signals (quantified
by brightness in the ω − k plane) in the fracton phase. And in
the paramagnetic phase shown in the second rows of Figs. 5–
7, the gaps for density fluctuations become larger and larger
upon increasing the external fields. We must stress that since
subdimensional particles are no longer well-defined excita-
tions in the trivial paramagnetic phase, rigorously speaking,
the spectral functions should no longer be interpreted as a
measurement of the density fluctuations of subdimensional
particles.

Let us first focus on the spectral function of lineons. The
peak energy (i.e., the frequency of the brightest signals) of
the spectral function of lineons is approximately given by
� ≈ 8 in both the fracton phase [Figs. 5(b)–5(d)] and the
paramagnetic phase [Figs. 5(e)–5(g)]. However, the profile
of the spectral function in the fracton phase clearly shows a

dispersion behavior along the � → X , while it is flat in the
paramagnetic phase. Theoretically, this dispersive behavior of
density fluctuations can be traced back to the free mobility of
lineons along the x direction. Moreover, in the paramagnetic
phase, the profile of the spectral function is flat over the whole
momentum space, but its peak energy becomes larger and
larger upon increasing hx, from Figs. 5(e) to 5(g).

Next, we perform a mean-field analysis of the spectral
functions of lineons, since the kinetic energy of lineons along
the dispersionless directions is strictly suppressed such that
the interaction effect is no longer negligible, which motivates
us to focus on dispersive directions. Without loss of generality,
we consider lineons mobile along the x direction. At first,
we regard Ox,i as a density operator of lineons on site i.
Then, we need to notice that the ground state of the X-cube
model perturbed by Zeeman fields is no longer a “vacuum” for
lineons, but contains a finite density of lineons. Furthermore,
by noticing that lineons are hard core and mobile within one-
dimensional subspace, and we expect the difference between

FIG. 7. The planon spectral function obtained from the QMC-SAC process and QA method. (a)–(c) The spectrum Anx in the fracton phase
with hz ranging from 0.1 to 0.3, which is measured by the QMC simulation with annealing from the exactly solvable point. (d)–(f) Anx in the
trivial phase obtained by sweeping from the PLz point, in which hz ranges from 0.4 to 0.6.
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FIG. 8. Comparison between the dynamic structure factors in
the lineon channel obtained by the mean-field+RPA method and
the QMC process. The momentum range is (X → �) along which
lineons are dispersive. The RPA results are carried out with coupling
constant J = 14. (a)–(c) are in the fracton phase with the external
field hx increasing from 0.7 to 0.9. Here, the QMC results are simu-
lated at system size L = 6.

the exchange phases of hard-core bosons and fermions to have
little influence when there are few particles in 1D (thus parti-
cles can hardly exchange positions), it is phenomenologically
reasonable to model lineons as 1D fermions with both positive
and negative energy spectra where all states with negative
energy are filled. Therefore, we propose a density-density cor-
relation function [123,124] of lineons of the following form to
fit the QMC results of spectral functions:

χ0(q, ω) =
∑
ν,ν ′

∑
k

1

V

nF
(
ξν ′

k+q

) − nF
(
ξν

k

)

ω + iη − (
ξν

k − ξν ′
k+q

) . (6)

Here, ξν
k is a gapped dispersion relation. The indices ν, ν ′ =

± and we require that ξ+
k = −ξ−

k and ξ+
k > 0. nF (ξ ) =

(eβξ + 1)−1 is the Fermi-Dirac distribution and β is the
inverse temperature. V is the volume of the system and
η is an infinitesimal real number. In addition, compared
with the result in Refs. [123,124], a k-dependent matrix
element has been omitted since here only the qualitative ten-
dency is of concern. Then, at zero temperature, χ0(q, ω) can
be reduced to χ0(q, ω) ∼ L−1 ∑

k[(ω + iη − ξ+
k − ξ+

k+q)−1 −
(ω + iη + ξ+

k + ξ+
k+q )−1], where the second term can be

safely neglected when ω > 0. Since the lineons we consider
here are only mobile along the x direction, the volume V
reduces to the linear size L upon summing over ky and
kz. To proceed further, we assume the lineon dispersion to
be ξ+

k = 4 − (4 − δ) cos(kx ), where the energy gap δ = 4 −
2hx − 1

2 h2
x + 1

8 h3
x − 53

192 h4
x + 973

4608 h5
x is taken from the pertur-

bative result in Ref. [56]. By further phenomenologically
considering a RPA approximation, i.e.,

χRPA(q, ω) = χ0(q, ω)

1 + Jχ0(q, ω)
, (7)

to effectively include the interaction effect (J is a coupling
constant), the dynamic structure factor (spectral function) can
be obtained as A(q, ω) = −ImχRPA(q, ω). Here, we set pa-
rameters η = 0.01, L = 2000, J = 14. We compare the RPA
results and QMC results in Fig. 8, which shows a qualitative
consistency between the two approaches. The QMC results in
Fig. 8 are carried out on a L = 6 system also annealing from
the exactly solvable point, but with more bins in the QMC
measurement, which help us to reduce the error in GOx and
solve out a high-quality spectral function AOx .

While a more standard slave-particle mean-field treat-
ment [125,126] is desirable, we leave it to future investigation.

As lineons, fractons, and planons are localized along some
certain directions, it will also be interesting to probe such
localizations. One of the possible ways is to compute comple-
mentary entanglement properties from both real-space cut and
momentum-space cut via techniques and observables in, e.g.,
Refs. [127–130], which we also leave to future investigations.

After analyzing the spectral function for lineons, let us
move to the spectral functions of fractons and planons. Fig-
ures 6 and 7, respectively, show the spectral functions of
fracton and planon excitations with hz changing from 0.1 to
0.6 on a L = 10 system, respectively. Since the hz term does
not commute with the Ac,i, it leads to a fluctuation of Ac,i

and causes the appearances of fractons and planons. For small
perturbation (hz � 0.3), the X-cube model stays in the fracton
phase. Figures 6(a)–6(c) show the fracton spectral function in
the fracton phase, and Figs. 7(a)–7(c) are that of a planon.
In Figs. 6(a) and 7(a), the perturbation from hz is too weak
and the dynamic signal of the fracton and planon is hard to
observe. By increasing hz, the stronger fluctuations in n f and
nx make their corresponding spectral signal more significant
from Figs. 6(a) and 7(a) to Figs. 6(c) and 7(c). The profiles
of spectral functions of both fractons and planons are flat
with peak energy � ≈ 8, which is approximately four times
the single fracton energy [56]. When hz � 0.3, the X-cube
model enters the trivial paramagnetic phase. In this case, the
profiles of the spectral functions of both fracton and planon
channels remain flat, but the peak energy becomes larger with
stronger perturbation, which are presented in Figs. 6(d)–6(f)
and 7(d)–7(f).

In summary, the most significant feature in the fracton
phases in Figs. 5–7 is that the dispersion behaviors of these
spectral functions show strong anisotropy corresponding to
their mobility restriction. For example, in Figs. 5(b)–5(d),
the profile of the spectra of the lineon in the fracton phase
clearly shows a dispersive behavior along � → X , while it is
flat in the paramagnetic phase [Figs. 5(e)–5(g)]. Meanwhile,
with the help of the mean-field+RPA method, we can re-
produce the profile of the lineon spectra along the dispersive
direction as well. In addition, for fracton spectra as shown in
Fig. 6, we see no obvious anisotropy, which is also consistent
with the totally immobile feature of fractons. As a result, we
believe the anisotropic behavior is a characteristic feature of
type-I fracton orders, where partially mobile excitations exist.

IV. SUMMARY AND OUTLOOK

Before closing this paper, let us briefly summarize our
numerical findings. In the lineon channels, by means of the
quantum fluctuations from the hx field, lineons are excited,
whose particle number becomes finite and dense in the ground
state. In the fracton phase, the real-space lineon-lineon cor-
relation shows a significant value on the neighboring points
along its one-dimensional mobile direction, e.g., the x di-
rection for Ox. Meanwhile, the peak profile of the spectral
function of Ox also presents a dispersive behavior along the
� → X direction. With the help of the mean-field theory
and RPA method by assuming an anisotropic dispersion re-
lation of lineons, we qualitatively recover the QMC results
of the spectral function of lineons, which demonstrates an
exotic connection between spectral functions and mobility

033111-8



EVOLUTION OF DYNAMICAL SIGNATURE IN THE … PHYSICAL REVIEW RESEARCH 4, 033111 (2022)

constraints on the dynamics of lineons. By comparing with
the results in the trivial paramagnetic phase, these anisotropic
properties can serve as an experimental signature of the frac-
ton order.

In the fracton and planon channels, under the perturba-
tion of the hz field, the fluctuation of the Ac,i terms leads to
the appearance of both fracton and planon excitations. The
fracton-fracton correlation function is isotropic in both the
fracton and paramagnetic phases, which is due to its com-
pletely immobile nature. However, in the planon case, its
correlation function behaves anisotropically in both phases,
but for different reasons. It is due to its mobility constraint
in the fracton phase, but is due to the intrinsic dipolelike
structure in the paramagnetic case. Such a difference leads to
a significant geometrical rotation of these anisotropic features,
which could be a very experimental signal for the purpose
of identifying the type-I, i.e., X-cube, fracton order. And,
for spectral functions, the spectral peak energies in both of
these channels in the fracton phase are nonsensitive against
the increasing hz, but become sensitive in the paramagnetic
case.

In conclusion, with the external Zeeman-like magnetic
fields pushing the X-cube model away from its exactly solv-
able point, we have improved the QMC methods to overcome
the glassy Hilbert space, and computed both real-space cor-
relation functions and dynamic structure factors in three
subdimensional excitation channels in both the fracton and
the paramagnetic phases through the method of QMC+SAC
in a wide parameter space. We have found how mobility
constraints on the local dynamical properties of subdimen-
sional excitations are correlated to the existence of fracton
topological order. This fact is simply the exotic interplay
of topology (global topological order) and geometry (local
dynamical properties) in fracton orders. As our numerical
results show different dynamical features that are yet to be
fully understood, we expect our numerical results will stimu-
late more efforts in both theoretical and numerical studies in
fracton physics. While the X-cube Hamiltonian with magnetic
fields looks intricate, it will be interesting and challenging
to analytically study the correlation and spectral functions
in the theoretical framework of slave-particle (projective
construction) techniques. Our numerical results also set a
further interesting question about the connection between the
single-particle dispersions of the lineon, fracton, and planon
channels and their density spectral functions [56]. Finally,
as spectroscopy measurements have been widely performed
in strongly correlated materials, our numerical results on the
dynamical signature will be helpful in experimental identifi-
cations of fracton orders in spectroscopy measurements such
as neutron scattering and nuclear magnetic resonance.
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APPENDIX: NUMERICAL METHOD

Here we perform our simulation for the X-cube model
using the QMC method. Taking the σx basis as an example,
we first rewrite the Hamiltonian as

H = −
∑

i

HAc,i −
∑
v,i

HBv,i −
∑

i

Hhx,i −
∑

i

Hhz,i +
∑

HC,

(A1)
with HAc,i = K (Ac,i + 3IA), HBv,i = �(Bv,i + IB), Hhx,i =
hx(σ x

i + 3I2), and Hhz,i = hz(σ z
i + I2). And, HC =

3KIA + �IB + 3hxI2 + hzI2, where IA, IB, and I2 are the
identity matrix of order 212, 24, and 2. Following the
framework of the QMC method, all of the nonzero elements
in the Hamiltonian can be read as 〈HAc,i〉 = 2K or 4K ,
〈HBv,i〉 = �, 〈Hhx,i〉 = 2hx or 4hx, and 〈Hhz,i〉 = hz.

As mentioned in Sec. III, caused by the four- (Bv,i) and
12-spin (Ac,i) interactions, the efficiency of the cluster al-
gorithms may be slowed down by the over-raptly extending
cluster [104]. To make our simulation more effective, we first
modify the typical cluster update algorithm to restrict the clus-
ter from extending. Then, we apply both the modified cluster
update and the local update in our simulations. Moreover, at
the exactly solvable point, we also deduce a helpful initial
configuration according to an equilibrium configuration of a
smaller system size simulation. Finally, due to the first-order
phase transition, we also need to utilize the QA algorithm.
Our simulation scans from the exactly solvable point in the
fracton phase measurement, and from the PLz(x) point in the
paramagnetic phase measurement (see Fig. 3).

1. Diagonal update

The diagonal update is about inserting and removing the
operators. In the inserting process, the whole number of pos-
sible insert positions is

N =

⎧⎪⎨
⎪⎩

Nc + Nv + 2Nl , hz 
= 0, hx 
= 0
Nc + Nv + Nl , hz 
= 0 or hx = 0
Nc + Nv + Nl , hz = 0 or hx 
= 0
Nc + Nv, hz = 0, hx = 0.

(A2)

Here, Nc is the total number of the cubes and Nv is for the
crosses. And Nl is the number of the spins. We prefer a posi-
tion by randomly picking a number Nx in N , which determines
the operator type that would be inserted. If 1 � Nx � Nc, we
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FIG. 9. Schematic diagrams of the off-diagonal update. The red dashed line is the region suggested to flip the spin. Under the Metropolis
process, its acceptance probability is Pf l = min(1, Wnew

Wold
). (a) The local update; (b) the cluster update. (c),(d) Two different ways when a cluster

line meets an operator.

propose to insert a HAc,i operator at the Nx cube. When Nc +
1 � Nx � Nc + Nv , a HBv,i operator is suggested to be inserted
at the Nx crosses. And, if Nc + Nv + 1 � Nx � Nc + Nv + Nl

and hx 
= 0, a Hhx,i operator is applied to the correspond-
ing spin. Moreover, when Nc + Nv + 1 � Nx � Nc + Nv + Nl

and hx = 0, or Nc + Nv + Nl + 1 � Nx � Nc + Nv + 2Nl , we
propose to add a Hhz,i operator on the Nx spin.

After an identity operator is encountered, such insertion of
the operator HD would be accepted with probability

Padd(HD) = βN〈HD〉
m − n

, (A3)

with m for the length of the configuration and n for the opera-
tor number. Noted that the value of 〈HD〉 not only depends on
the type of operator, but also the spin states at the correspond-
ing position.

In the removing case, we sweep the configuration and
remove the diagonal operator HD with probability

Prem(HD) = m − n + 1

βN〈HD〉 . (A4)

2. Off-diagonal update

When it comes to the off-diagonal update process, both
the local update and the modified cluster update are applied
in our simulation. First, there are two kinds of operators in
the configuration space, which are the pure diagonal operator
(HAc,i and Hhx,i ) and the quantum operator (HBv,i and Hhz,i ).
Due to the constant term in Eq. (A1), the diagonal elements
in HBv,i and Hhz,i are nonzero. Thus, in the configuration, the
quantum operator can be both diagonal and off-diagonal.

In the local update process, a leg of a quantum operator
(HBv,i and Hhz,i ) is selected randomly in the configuration.
Then, starting from this leg, we create all the update lines
of this vertex and go along the imaginary time until finding
another operator acting on the same position [see Fig. 9(a)].

The spins between these two operators are proposed to be
flipped [the red region in Fig. 9(a)].

For the cluster update, also starting from a randomly
picked-up vertex leg of a quantum operator, the cluster is built
following the rules as below. (1) When the cluster building
line meets a pure diagonal operator (HAc,i and Hhx,i ), it would
go through the operator directly, as Fig. 9(d) shows. (2) When
the cluster building line meets a quantum operator (HBv,i and
Hhz,i ), it would evolve in two different ways. This line can go
through the operator directly, as Fig. 9(d) shows. Or it will
be reflected from the other vertex leg, as Fig. 9(c) shows. In
each cluster update process, we pick 10% of these quantum
operators randomly and treat them in the Fig. 9(c) way in the
cluster constructing process, while the others are treated in the
Fig. 9(d) ways. Within this treatment, the cluster extending
would be slowed down, which makes the cluster update more
effective. And it is worthwhile to note that this cluster building
process would turn back into the typical cluster update with
treatment of each quantum operator in the Fig. 9(c) way.
Finally, the spins including in the cluster [the red region in
Fig. 9(b)] are suggested to be flipped.

In both of these updates, the spins included in the red re-
gion would be flipped, with the acceptances probability given
by

Pf l = min
(

1,
Wnew

Wold

)
,

Wnew

Wold
= 2n+,new−n+,old

.

(A5)

Here, n+,new(old) are the number of diagonal operators, with
〈HAc(hx )〉 = 4K (hx ) in the new (old) configuration. It means
that the weight ratio depends on the number of the overlap-
value-changing diagonal operator.
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FIG. 10. Schematic diagrams of the super-resolution process. The right figure denotes the original configuration of the small system, while
the left figure is the extended configuration for a larger system. Operator τ 0

i is mapped to new operators τ f 3(i−1)+1 to τ f 3i for each replica.

3. Deducing initial configuration

In the Monte Carlo simulation, the final results should be
independent of the initial configuration. However, a better
choice of the initial configuration is helpful to reduce the
computational cost. To find such a better choice, with the con-
cept of super-resolution, we deduce an initial configuration
of the ( f L)3β system from an equilibrium L3β configuration.
And here, in our case, the initial configuration of L = 10 is
deduced from the L = 2 result with f = 5.

Under the framework of the SSE method, the partition
function is expanded as

Z =
∑
{α}n

∑
Sm

βn(m − n)!

m!
〈α0|

n∏
i=1

Hi|α0〉. (A6)

This expansion constructs a configuration space for the Monte
Carlo sampling. Such a configuration keeps two important
features, i.e., the operator string

∏n
i=1 Hi and the initial state

|α0〉. Finding a better initial configuration by super-resolving
is to find a mapping from the configuration of L3β to that of
( f L)3β, which would make fewer mutations in physic values
observed from the QMC process, such as energy density and
magnetization. To do so, we discuss the operator string and
the initial state, respectively.

For the operator string, with the periodic boundary
condition, the super-resolution process can be viewed as
making f 3 replicas but shifting the location of the operators.
First, the operators in the original configuration are marked
as {τ 0

i }, and the length of the configuration is extended to
m → f 3m. Then, we pick up f 3n positions in f 3m randomly,
which are marked as {τ j}. And we place the τ 0

i operator
on the positions τ f 3(i−1)+1 to τ f 3i for each of the replicas.
For instance, in Fig. 10, the τ 0

1 operator is replaced on
the positions τ1 and τ2. In this way, we keep the fact that
the operators should appear uniformly in the configuration
spaces. When it comes to the initial state, note that the ground
state |GS〉 of the X-cube model is

|GS〉 =
∏ 1 + Bv,i

2

∏ 1 + Ac,i

2
|↑ ↑ · · · ↑〉, (A7)

where |↑ ↑ · · · ↑〉 denote the fully polarized
state [56,112,113]. Therefore, we prefer the fully polarized
state in the chosen basis as the new initial state of the larger
system size configuration. Starting from this new configura-
tion, with further Monte Carlo steps (�104), a new equilib-
rium configuration will be reached. In our work, we applied
such a process in the simulation at the exactly solvable point.

Then, due to the first-order phase transition caused by hx

and hz, our simulation is also required in the QA process to
achieve a faster convergence to the ground state under the

(a) (b) (c)

FIG. 11. The values of the density operators change with various fields. The red circles refer to the value in the fracton phase, while the
green triangle is in the trivial phase. (a) The density operator of fractons changing as the external Zeeman field increases. (b) The density
operator of planons and (c) for lineons case.
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external Zeeman-like magnetic fields, in which the quantum
parameter hx(z) would be exactly slowly changed and the
configuration from the last parameter result would be set as
an initial configuration for the QMC simulation at the next
parameter. Our simulation in the fracton phase of the X-cube
model scans from the exactly solvable point with an annealing
step �hx(z) = 0.01 and over 2 × 105 Monte Carlo steps at
each annealing step [120–122]. And the measurements in the
paramagnetic phase are from PLz(x) points in Fig. 3 with the
same annealing step.

Moreover, we measure the density operators changing with
the external Zeeman field, which are plotted in Fig. 11. In

Figure 11, the red circles are in the fracton phase, while the
green triangles are in the trivial phase. As it is shown, in
the fracton phase, the density operators of all three kinds
of subdimensional excitations are weak, meaning that these
subdimensional excitations are hard to be created in the
fracton phase. In contrast, these density operators have sig-
nificant values in the trivial phase, which are caused by the
strong quantum fluctuation due to the external Zeeman fields.
Meanwhile, the value of these density operators changes dis-
continuously near the quantum critical point, which is due to
the first-order phase transition nature between the fracton and
the trivial phases.
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