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quantification using the particle filter-Markov chain Monte

Carlo method

Hamid Moradkhani,1 Caleb M. DeChant,1 and Soroosh Sorooshian2
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[1] Particle filters (PFs) have become popular for assimilation of a wide range of
hydrologic variables in recent years. With this increased use, it has become necessary to
increase the applicability of this technique for use in complex hydrologic/land surface
models and to make these methods more viable for operational probabilistic prediction.
To make the PF a more suitable option in these scenarios, it is necessary to improve the
reliability of these techniques. Improved reliability in the PF is achieved in this work
through an improved parameter search, with the use of variable variance multipliers and
Markov Chain Monte Carlo methods. Application of these methods to the PF allows for
greater search of the posterior distribution, leading to more complete characterization of the
posterior distribution and reducing risk of sample impoverishment. This leads to a PF that is
more efficient and provides more reliable predictions. This study introduces the theory
behind the proposed algorithm, with application on a hydrologic model. Results from both
real and synthetic studies suggest that the proposed filter significantly increases the
effectiveness of the PF, with marginal increase in the computational demand for hydrologic
prediction.

Citation: Moradkhani, H., C. M. DeChant, and S. Sorooshian (2012), Evolution of ensemble data assimilation for uncertainty

quantification using the particle filter-Markov chain Monte Carlo method, Water Resour. Res., 48, W12520, doi:10.1029/

2012WR012144.

1. Introduction

1.1. Bayesian Inference

[2] Estimation of hydrologic quantities with computer
simulation models has greatly advanced in recent years.
Through the realization that uncertainty is persistent in all
layers of hydrologic prediction, the problem of streamflow
forecasting has been reevaluated by much of the scientific
community, leading hydrologists to generate hydrologic
forecasts within a probabilistic framework [Najafi et al.,
2012; Madadgar et al., 2012]. Most often, this is performed
through Bayesian inference. Bayesian methods are attrac-
tive in hydrology because they have been proven effective,
not only in statistical research but also in applications to
hydrologic modeling [Kuczera and Parent, 1998; Marshall
et al., 2004; Moradkhani et al., 2005a, 2005b; Kavetski
et al., 2006; Bulygina and Gupta, 2010; Renard et al.,
2011; DeChant and Moradkhani, 2012]. Although it is

often common to base probabilistic estimation in hydrology
from the Bayesian perspective, specifics about varying
implementations differ greatly. These differences stem from
the sources of uncertainty accounted for in the analysis,
assumptions about the form of the errors, and whether the
estimation is performed within a batch or sequential frame-
work. In the current study, the focus is on combining the
strengths of sequential and batch Bayesian methods for
improved state-parameter estimation.
[3] Sequential Bayesian estimation, often referred to as

data assimilation, is a class of methods that seek to estimate
the uncertainty associated with the input-state-output rela-
tionships of a given model, at every model evaluation in
which an observation of the system, state or output, is
available. Of these techniques, currently the ensemble Kal-
man filter (EnKF) is the most commonly used technique in
the hydrologic community [Moradkhani et al., 2005a;
Zhou et al., 2006; Hendricks Franssen and Kinzelbach,
2008; DeChant and Moradkhani, 2011a; Leisenring and
Moradkhani, 2011; Montzka et al., 2011; Nie et al., 2011;
Li et al., 2012; Liu et al., 2012]. The EnKF and its several
variants have been widely used throughout the hydrologic lit-
erature; however, several studies have highlighted problems
owing to the limiting assumptions within this technique [e.g.,
Moradkhani et al., 2005b; Weerts and El Serafy, 2006; Mor-
adkhani et al., 2006; Salamon and Feyen, 2009; Matgen
et al., 2010; Montzka et al., 2011; Plaza et al., 2012;
DeChant and Moradkhani, 2012]. Recent research has sug-
gested that the particle filter (PF) is a viable alternative to the
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EnKF in cases where the underlying assumptions are violated
[Moradkhani et al., 2005b; Moradkhani and Sorooshian,
2008; Leisenring and Moradkhani, 2011; DeChant and
Moradkhani, 2012; Rings et al., 2010; Plaza et al., 2012];
however, the viability of using the PF in certain applications
has been questioned throughout the broader data assimilation
literature. These concerns are highlighted in the following
sections, and the ways to move forward in hydrologic data
assimilation are proposed.

1.2. Bayesian Filtering Effectiveness and Efficiency

[4] Although the PF technique has been shown to be
effective in many hydrologic modeling applications, this
method has received criticism because of its large computa-
tional demand in comparison with EnKF-based approaches
[Zhou et al., 2006; van Leeuwen, 2009; Snyder et al.,
2008]. Often described as ‘‘the curse of dimensionality,’’
high-dimensional filtering requires a large ensemble size to
avoid collapse of the filter, a problem that the PF is more
susceptible to than the EnKF. Although the EnKF is better
suited to avoid ensemble collapse at lower ensemble sizes
than the PF, when the Gaussian error assumption of the
EnKF is violated, the performance is suboptimal at all en-
semble sizes [DeChant and Moradkhani, 2012]. As the
assumption of Gaussian error structure will be violated in
nearly all hydrologic applications, the PF can be an attrac-
tive alternative.
[5] All PFs are based on the Sequential Importance Sam-

pling (SIS) algorithm [Liu et al., 2001]. Although SIS alone
can be an effective PF, it is highly subject to collapse, with
only a few of the samples having significant weight. This is
referred to as weight degeneration. To avoid this problem,
resampling methods have been suggested in the statistical
literature. Resampling is the process of replicating ensem-
ble members with significant weight, while discarding sam-
ples with insignificant weight, to maintain an effective
sample that represents the system probability distribution.
These techniques include residual resampling [Liu and
Chen, 1998; Douc et al., 2005; Weerts and El Serafy,
2006], multinomial resampling [Douc et al., 2005], weighted
random resampling [Leisenring and Moradkhani, 2011],
stratified resampling [Hol et al., 2006], and systematic
resampling [Moradkhani et al., 2005b]. All of these methods
have been proven to be effective for building a posterior
density but have small differences in their implementation.
[6] Another potential strategy to improving posterior

estimation through the PF is with multimodel analysis,
through a combination of PF and Bayesian model averag-
ing (BMA) [Parrish et al., 2012]. This method is particu-
larly suited to manage errors resulting from model
structural imperfections. Unlike model averaging studies,
the current study focuses on posterior estimation within a
single-model structure; however, advancements made in
this study are compatible with PF and BMA combinations.
To improve single-model analysis within filtering, it is nec-
essary to create the most representative posterior distribu-
tion possible. This study focuses on enhancing sampling of
the posterior with Markov chain Monte Carlo (MCMC)
moves.
[7] MCMC refers to several techniques that estimate a

posterior density through simulation. Unlike the PF, which
is based on the law of large numbers, MCMC is based on

ergodic theory and estimates the posterior with a single
or multiple chains, which explore to the posterior distribu-
tion [Kuzcera and Parent, 1998; Marshall et al., 2004;
Kavetski et al., 2006; Smith and Marshall, 2008; Vrugt
et al., 2009; Jeremiah et al., 2011]. This methodology has
complementary benefits to PF techniques and may be used
to more efficiently sample from the posterior. Several stud-
ies in the statistical literature have suggested using MCMC
techniques for rejuvenating particles at each observation
time step to improve the diversity of each sample, leading
to a more complete characterization of the posterior distri-
bution [Andrieu et al., 2010; Doucet and Johanson, 2009;
Kantas et al., 2009]. This study will expand on these ideas
suitable for application to hydrologic models. Recently, we
noticed a parallel study [Vrugt et al., 2012] applying simi-
lar methods within the context of hydrologic modeling.
This study was accepted for publication while the current
study was under review. To avoid confusion with that
study, we note that the current study proposes a new adap-
tation of MCMC to the PF for improving joint state-param-
eter estimation in an entirely sequential framework in the
case of stationary parameters. The idea and preliminary
results of the current work were presented by Moradkhani
et al. [2010].

2. Theory

2.1. Posterior Inference Using Bayes Law

[8] Through Bayes law, one seeks to estimate the proba-
bility distribution of some parameters conditioned on an
observation, referred to as the posterior. The posterior dis-
tribution is represented by pð�jyÞ, which is the probability
of some parameter � given an observation y. Given that
some prior information is available about the parameters
pð�Þ, we may develop the posterior distribution through the
normalized product of the prior and a sampling distribution
(likelihood), pðyj�Þ.

pð�jyÞ ¼ pðyj�Þpð�Þ
pðyÞ (1)

In equation (1), Bayes law reduces the uncertainty about
� by conditioning it on the observation, assuming that the
prior and observation data do not provide conflicting
information.

2.2. Markov Chain Monte Carlo Method

[9] Assume that we want to estimate the posterior distri-
bution conditioned on a time series of observations
pð�jy1:T Þ, where T is the length of the observation vector.
This distribution can be estimated through Monte Carlo
simulations of � and is proportional to the product of
the likelihood (Lðy1:T j�Þ) and prior (Pð�Þ), as shown in
equation (2).

pð�jy1:T Þ / Lðy1:T j�ÞPð�Þ: (2)

Although it would be advantageous to directly sample from
this posterior distribution, parameters in most practical sit-
uations are too complex for this strategy. As this posterior
typically cannot be sampled from directly, MCMC treats
each sample as an evolving Markov chain. Each chain is
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successively iterated through a series of proposal sampling
and acceptance/rejection steps. In the proposal-sampling step,
the proposed parameters (�p) are sampled from the proposal
distribution based on equation (3).

�p � qð�pj�Þ: (3)

After sampling, the probability of the proposed parameters
may then be calculated via equation (2). Based on the prob-
ability of the proposed parameters (pð�jy1:T Þ) and the
current parameter probability (pð�jy1:T Þ), the proposed pa-
rameters may either be accepted or rejected with a proba-
bility equal to the metropolis ratio (equation (4)). Note that
equation (4) assumes that the proposal distribution in equa-
tion (3) is symmetric (qð�pj�Þ ¼ qð�j�pÞ).

� ¼ min 1;
pð�pjy1:T Þ
pð�jy1:T Þ

� �

: (4)

Acceptance with this probability yields an ergodic Mar-
kov chain, which will completely explore the posterior
distribution. For the purpose of this study, this introduc-
tion to MCMC is sufficient. Complete explanation of the
MCMC methods can be found by Kuzcera and Parent
[1998].

2.3. Sequential Bayesian Estimation of States and
Parameters

[10] Assuming that an observation is available at time t,
a modeler will be interested in estimating the posterior state
(xt) and parameter (�t) distributions conditioned on all pre-
vious observations (y1:t�1) and the current observation (yt).
Although the parameters are represented here with a time
index, this is included purely for improved readability and
understanding of practical implementation of the algo-
rithms. Parameters are assumed to be constant in time, and
thus estimation of dynamic parameters is not attempted in
this study. The posterior can be estimated according to
Bayes law, as shown in equation (5).

pðxt; �tjy1:tÞ ¼
pðytjxt; �tÞpðxt; �tjy1:t�1Þ

pðytjy1:t�1Þ
(5)

In equation (5), pðxt; �tjy1:t�1Þ represents the prior informa-
tion, pðytjxt; �tÞ represents the likelihood, and pðytjy1:t�1Þ
represents the normalizing constant. As the model is
assumed to be Markovian, Bayes law can be applied in a re-
cursive form (equation (5)) through the estimation of the
prior distribution via the Chapman-Kolmogorov equation, as
shown in equation (6).

pðxt; �tjy1:t�1Þ ¼
Z

pðxt; �tjxt�1; �t�1Þpðxt�1; �t�1jy1:t�1Þdxt�1d�t�1:

(6)

The prior distribution is estimated through the integration of
the transition probability (pðxt; �tjxt�1; �t�1Þ) and the poste-
rior at the previous time step (pðxt�1; �t�1jy1:t�1Þ). To com-
plete the calculation of the numerator in equation (5), an
assumption about the form of the residuals is made to

calculate the likelihood. This is typically a normal likelihood
function with mean zero and an assumed variance. Last, the
normalizing factor must be estimated. Although this value is
not readily available, it may be expanded to the integral of
the numerator (total probability), according to equation (7),
using the states and parameters as intermediate variables.

pðytjy1:t�1Þ ¼
Z

pðytjxt; �tÞpðxt; �tjy1:t�1Þdxtd�t (7)

By substituting equations (6) and (7) into equation (5),
sequential Bayes law can be developed to compute the
posterior distribution sequentially in time, as shown in
equation (8).

pðxt; �tjy1:tÞ ¼ pðxt; �tjyt; y1:t�1Þ

¼ pðytjxt; �tÞpðxt; �tjy1:t�1Þ
Z

pðytjxt; �tÞpðxt; �tjy1:t�1Þdxtd�t
(8)

2.4. Sequential Monte Carlo Using the Particle Filter

2.4.1. Discrete Forward Model and SIS
[11] To understand SIS, it is essential to view the hydro-

logic model in the state-space framework. This framework
assumes that the model is an order one Markov Process.
The model progresses forward at each discretized time in-
crement through a series of differential equations repre-
sented by f ð�Þ in equation (9).

x�i;t ¼ f ðxþi;t�1; u�i;t; ��i;tÞ þ !i;t: (9)

In the above equation, the model is provided with the pos-
terior states from the previous time step for ensemble mem-

ber i (xþi;t�1), the prior forcing at the current time step for
ensemble member i (u�i;t), and the prior parameters at the
current time step for ensemble member i (��i;t). Given this
information and an assumed model error (!i;t), the prior

states for ensemble member i (x�i;t) can be calculated. In
addition to the forward model operator, an observational
operator (hð�Þ) is necessary to translate the current states
into the observation space.

y0i;t ¼ hðx�i;t;��
i;tÞ þ �i;t: (10)

where the forecast for ensemble member i (y0i;t) is estimated
from the prior states and observational operator parameters
(��

i;t), with an assumed prediction error (�i;t). In equation

(10), ��
i;t represents parameters for the observational opera-

tor, which may be different from the hydrologic model
parameters. The application in this study assumes that the
observational operator parameters (��

i;t) are contained

within the hydrologic model parameter vector or are the
same as forward model parameters (��i;t), which is generally
the case in hydrologic models.
[12] SIS begins with a Monte Carlo experiment to de-

velop a discrete representation of the prior distribution.
During time steps that an observation is available, a poste-
rior is developed to reduce the uncertainty in the system.
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The filtering posterior from equation (8) is approximated
by equation (11).

pðxt; �tjytÞ �
X

Nens

i¼1
wþ
i;t�ðxt � x�i;t; �t � ��i;tÞ: (11)

where Nens represents the ensemble size, w
þ
i;t is the posterior

weight for ensemble member i at time t, and �ð�Þ is the
Dirac delta function. The first step to estimating the poste-
rior weights is calculating the likelihood. The normalized
likelihood is calculated for each ensemble member i
according to equation (13), with a sampled observation, as
shown in equation (12).

yi;t ¼ yt þ �i;t; (12)

pðyi;tjx�i;t; ��i;tÞ ¼
Lðyi;tjx�i;t; ��i;tÞ

X

Nens

i¼1
Lðyi;tjx�i;t; ��i;tÞ

¼ pðyi;t � y0i:tjRkÞ:
(13)

In equation (12), yt is the observed value at time t and yi;t
is the perturbed observation with assumed error (�i;t).
Equation (13) assumes statistical properties (Rk) of the
model prediction residuals (yi;t � y0i;t) to develop the proba-
bility of the observation through a likelihood function
�

L
�

yi;tjx�i;t; ��i;t
��

. This probability may then be applied to

equation (8), along with the prior density, to develop poste-
rior distribution. In discrete form, this calculation can be
shown by equation (14) to obtain posterior weights applied
to each ensemble member.

wþ
i;t ¼

w�
i;t � pðyi;tjx�i;t; ��i;tÞ

X

Nens

i¼1
w�
i;t � pðyi;tjx�i;t; ��i;tÞ

:
(14)

In equation (14), w�
i;t is the prior weight, which is equal to

the posterior weight at the previous time step. At this
point, the modeler has a weighted sample of model real-
izations. From this sample, information about continuous
posterior can be estimated. Of particular interest may be
the expected value of a given state, which is shown in
equation (15).

E½xt; �t� �
X

Nens

i¼1
wþ
i;t � ðx�i;t; ��i;tÞ: (15)

2.4.2. Resampling Algorithms

[13] As SIS strictly weights and updates the weights of
the discrete samples, the necessary sample size scales expo-
nentially with both the degrees of freedom in the system
and the length of the observation period. If the total uncer-
tainty in the system becomes too large, there will be too
few samples with meaningful weights, leading to collapse
of the ensemble, or weight degeneration. Occurrence of
weight degeneration can be examined by calculating the
effective sample size, as shown in equation (16). Typically,

a threshold for the minimum effective sample size is set,
which indicates the occurrence of degeneration.

Neff ¼
1

X

Nens

i¼1
ðwþ
i;tÞ
2 (16)

[14] Resampling algorithms are capable of removing
problems of weight degeneration, but may have problems
with insufficient representativeness. Although the ensemble
members can be resampled to meaningful locations within
the state-parameter space, the posterior may still incom-
pletely represent the uncertainty in the system, leading to
partial or full collapse of the ensemble, referred to as sam-
ple impoverishment. This case is a problem with basic
resampling PFs as depicted in the resampling step (step 2)
of Figure 1. Note that several of the ensemble members are
at the same value, leading to incomplete representation of
the posterior. A number of techniques may be applied to
achieve higher variability in ensemble members including
small random noise [Moradkhani et al., 2005b; Salamon
and Feyen, 2009], kernel smoothing [Moradkhani et al.,
2005a], and MCMC methods [Andrieu et al., 2010].

3. Proposed Methodology

3.1. Algorithm Description

[15] This study proposes a new approach to sequential
state-parameter estimation, in the case of stationary param-
eters, motivated by distinctive features of the PF and
MCMC. This method was developed to reduce the occur-
rence of sample impoverishment in Sequential Importance
Resampling (SIR), while considering the multidimensional
correlation structure between the parameters and state vari-
ables. The main concern with the SIR algorithm is the treat-
ment of parameters. Although basic resampling of states
appears to be sufficient because states are dynamic quanti-
ties, parameter moves must be applied after resampling to
maintain diversity throughout the ensemble and converged
to the correct parameter distribution. The SIR method pro-
posed by Moradkhani et al. [2005b] handles this problem
by adding a small error term to the parameters after each
resampling step, as shown in equation (17), or it could be
through kernel smoothing of parameters as described in
Moradkhani et al. [2005a].

��i;tþ1 ¼ �þi;t þ "i;t "i;t � Nð0; sVarð ��i;tÞÞ; (17)

where Nð0; sVarð��i;tÞÞ represents a random sample from
the Gaussian distribution with mean 0 and variance
sVarð��i;tÞ, where Varð��i;tÞ is the variance of the prior pa-
rameters at the current time step and s is a small tuning pa-
rameter. As this method adds noise to the resampled
parameters prior to moving to the next time step, it is essen-
tial to avoid over disbursing the parameters, or significantly
changing the distribution, while applying enough noise to
allow for adequate diversity within the ensemble. Previous
work with this algorithm has applied s values between
0.005 and 0.025 to achieve this [DeChant and Moradkhani,
2011a; Leisenring and Moradkhani, 2011; DeChant and
Moradkhani, 2012]. Although some success has been found
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Figure 1. Visualization of the proposed algorithm.
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with this method, larger moves are desirable to allow for
maximum search of the posterior. To achieve this in a sys-
tematic way, MCMC steps are adapted to this framework.
The benefit of using MCMC moves is that larger noise val-
ues can be used, and the metropolis acceptance ratio is
applied to avoid moving outside the filtering posterior. The
application of this acceptance criterion is shown schemati-
cally in steps 4 and 5 of Figure 1.
[16] Achieving effective use of MCMC requires a few

considerations. First, creation of proposal parameters must
be well adapted to the problem, maximizing the efficiency
of these moves. Here, we suggest that this can be achieved
with equation (17), assuming that the s value is properly
chosen. This technique is compared with the popular differ-
ential evolution method in a following study (C. DeChant
and H. Moradkhani, manuscript in preparation). Second,
we must develop a method to calculate the parameter prob-
ability that includes all prior information, which is an issue
that is not explicitly managed in Vrugt et al. [2012]. In the
current study, a probability distribution is fit to the filtering
posterior parameters at the previous time step to allow for
estimation of the full posterior distribution. A smoothing
methodology may also be used to manage prior parameter
probability by retaining/calculating all parameter trajecto-
ries ; however, this is avoided here as the focus is improve-
ment of sequential data assimilation and maintaining
minimal computational demand. Third, the proposed algo-
rithm only resamples at time steps in which the effective
sample size drops below a given threshold, which is set to
Neff
2
in this application. By setting a resampling threshold,

the algorithm becomes much more efficient. To explain the
movement of data through the algorithm, a flowchart is pro-
vided in Figure 2.
[17] In Figures 1 and 2, all steps in the filtering method-

ology with MCMC moves are illustrated. The first two
steps are the basic SIS and resampling methods. After
resampling, it becomes necessary to add a move step, creat-
ing a proposal distribution (step 3). An effective search
allows for larger moves, but larger moves require the abil-
ity to reject parameter samples that move outside the filter-
ing posterior distribution (pð�i;tjy1:tÞ), thus ensuring that
parameters do not diverge. To determine whether to accept
a proposed parameter, the probabilities of the resampled

parameters (�þi;t) and proposed parameters (�
p
i;t) must be

calculated (step 4). The probability of the proposed joint
state parameters, pðxpi;t; �

p
i;tjy1:tÞ, is calculated according to

equation (18), and the probability of the resampled state pa-
rameters is calculated similarly.

pðxpi;t; �pi;tjy1:tÞ / pðyi;tjxpi;t; �pi;tÞpðxpi;t; �pi;tjy1:t�1Þ

¼ pðyi;tjxpi;t; �pi;tÞpðxpi;tj�pi;t; y1:t�1Þpð�pi;tjy1:t�1Þ;
(18)

where x
p
i;t is a sample from the proposal state distribution at

the current time step, �pi;t is a sample from the proposal

parameter distribution, yi;t is the current observation sam-
ple, and y1:t�1 represents all past observations. Note that in
step 4 of Figure 2, the proposal initial states are a function
of the posterior states from the previous time step

ðxpi;t�1 ¼ xþi;t�1), the posterior forcing uþi;t, and the proposal

parameters, which is a key difference between the current
work and Vrugt et al. [2012]. Adjusting states within the
MCMC moves, in addition to parameters, as presented by
Vrugt et al. [2012], poses the question that if the water
balance in the model is preserved. The method proposed
here retains the water balance and leads to the case that

pðxpi;tj�pi;tÞ ¼ pðxþi;tj�þi;tÞ, thus eliminating the need to estimate
the proposal state probability. In addition, pðyi;tjxpi;t; �pi;tÞ is
calculated based on the same likelihood function used in
equation (13). To calculate the proposal parameter probabil-

ity, pð�pi;tjy1:tÞ, an assumption must be made about the prior
parameter distribution (filtering posterior at previous time

step) to estimate pð�pi;tjy1:t�1Þ. The prior parameters are
assumed to fit marginal Gaussian distributions with mean �t
and variance �2t . Although a joint distribution would be pre-
ferred in this scenario, marginal priors are selected because
the parameters have nonlinear relationships, and thus have a
joint distribution that is difficult to fit. To calculate prior
probability based on the Gaussian distribution, weighted
mean and variance values of the filtering posterior must be
calculated. Mean and variance values are calculated as
follows:

�t ¼
X

Nens

i¼1
wþ
i;t�1�

�
i;t�1; (19)

�2t ¼
X

Nens

i¼1
wþ
i;t�1ð��i;t�1 � �tÞ2: (20)

With the mean and variance of the parameters, it is possible
to calculate the prior probability of the proposal parame-
ters, based on the filtering posterior at the previous time
step, and subsequently calculate the posterior proposal pa-
rameter probability. The proposal and resampled parame-
ters are then compared via the metropolis acceptance ratio
to determine the acceptance probability in equation (21).

� ¼ min 1;
pðxpi;t; �pi;tjy1:tÞ
pðxþi;t; �þi;tjy1:tÞ

 !

: (21)

The Metropolis Algorithm is acceptable because the pro-
posal distribution is assumed to be symmetric, as it is
sampled from a Gaussian distribution. Acceptance of the
new parameters is shown in step 5 of Figure 1. Through
this acceptance/rejection step, the algorithm ensures that
the parameters remain in the filtering posterior density, as
shown in step 6 of Figure 1. After a single iteration, the
algorithm moves to the next time step. Though several iter-
ations could be performed, one is suggested in this study to
remain similar in computational demand to the method of
Moradkhani et al. [2005b]. It is assumed that one iteration
is sufficient for three reasons. First, the algorithm is well
informed as to the correct jump distance for parameters,
based on prior ensemble properties, thus moves should be
very efficient. Second, a large number of chains are used,
one from each ensemble member, allowing for effective
characterization of the posterior after one iteration. Last,
the algorithm is performed over a long data set, which
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allows for many resample-move steps to reach the correct
posterior parameters.

3.2. Jump Rate Tuning with Variable Variance
Multiplier

[18] Effective implementation of any MCMC algorithm
requires well-adapted jump rates to effectively search the
posterior distribution. Optimal jump rates for a Gaussian

proposal distribution were suggested by Roberts and
Rosenthal [2001] as follows:

s ¼ 2:38
ffiffiffiffiffiffi

2d
p : (22)

In equation (22), the jump rate is a function of the number
of dimensions (d), leading to an acceptance rate of about

Figure 2. Flowchart of the PF-MCMC algorithm.

W12520 MORADKHANI ET AL.: EVOLUTION OF ENSEMBLE DATA ASSIMILATION USING PF-MCMC W12520

7 of 13



28%, with respect to the five-dimensional hydrologic
model (HyMOD) examined in this study. Such a method
for jump rate estimation is adopted in Vrugt et al. [2012],
even though they acknowledge that this may not be optimal
in a sequential framework. It is suggested here that higher
acceptance rates are beneficial in sequential estimation
because high sample diversity is essential to representing
the posterior with a minimal sample size. As an unknown
acceptance rate is optimal for sequential estimation, it
would be convenient if this value could be estimated auto-
matically. In a parallel study, Leisenring and Moradkhani
[2012] suggested a method of sequential scale factor esti-
mation in the SIR algorithm called variable variance multi-
pliers (VVM). VVM may be used to sequentially find the
most fitting variance scaling factor in the PF-SIR and PF-
MCMC algorithms. In this study, VVM are adapted to the
PF-MCMC framework to tune the jump rates automati-
cally. It is, however, noted that there are some minor differ-
ences between the VVM methodology in Leisenring and
Moradkhani [2012] and the methodology here.

"̂t ¼ jy0t � ytj; (23)

ubt ¼
y0t � yt0 75 if y0t > yt

yt0 25 � y0t if y0t < yt
;

(

(24)

ert ¼ 	 median
"̂ðt�lagÞ:t
ubðt�lagÞ:t

� �

� 1
� �

þ 1; (25)

st ¼ ert � sðt�lagÞ:t : (26)

In the above equations, y0t is the forecast expected value, yt
is the observation, y0t75 and y

0
t25 correspond to the 75% and

25% forecast quantiles (interquartile range), respectively,
and st is the scale factor at the current time step. The appli-
cation of VVM in this study assumes that the median ratio
of the absolute error ("̂ðt�lagÞ:t) to one half the width of the
interquartile range (ubðt�lagÞ:t), over some predefined lag
time, should be close to one. Leisenring and Moradkhani
[2012] found that ubt is optimally calculated from the 95%
predictive bounds, which differs from the implementation
proposed in this study. This adjustment to the methodology
is due to differences in complexity of the modeling frame-
work and differences in observed data between the two
studies. Regardless of the predictive bounds used to calcu-
late ubt, a ert value larger than one indicates a need to
increase the parameter spread, as the predictive distribution
is too narrow, and a ert value less than one indicates the
parameter spread must be decreased, as the predictive dis-
tribution is too wide. To implement this algorithm within
the HyMOD model, it is helpful to use some smoothing
value (	), which is set to 0.5 in this study, and a maximum
jump between each time step, set to 0.05 in this study, to
avoid overadjustment of scale factors. Each of these values
was tuned to the model and data of this study, based on reli-
ability metrics, and may need to be examined further when
applied to different models/data sets. A running median of
the VVM is necessary with the data in this study because
outliers in the streamflow residuals inflate the mean. Here,

a running median of the previous 100 time steps is used. It
is important to note that a random walk is developed at
each time step with the application of VVM to PF-MCMC.
Although one iteration is used at each time step in this
application, the estimated multiplier and variance would
remain constant over subsequent iterations at a given time
step, maintaining an invariant posterior distribution.

4. Case Studies

[19] In this study, both a synthetic and a real experiment
were performed to compare the ability of the proposed meth-
odology and the original SIR methodology to estimate the
posterior. In addition to the original SIR algorithm, an algo-
rithm using VVM to determine the correct scaling factor for
SIR is also compared in the analysis for consistency; how-
ever, this method is implemented only when the effective
sample size indicates resampling should be performed to
remain computationally consistent with the original SIR algo-
rithm. Both the synthetic and real experiments are performed
on the HyMOD model. Throughout the analysis, the method
of Moradkhani et al. [2005b] will be referred to as PF-SIR,
SIR with VVM will be referred to as PF-SIRV, and the pro-
posed methodology will be referred to as PF-MCMC.
[20] In these experiments, several performance measures

will be used, most of which are described in DeChant and
Moradkhani 2011b, 2012] (i.e., Nash-Sutcliffe efficiency
(NSE), Predictive quantile-quantile (QQ) plot, reliability,
and sharpness). Note that in the current study, the reliability
and sharpness metrics are represented with ’ and ", respec-
tively; however, in DeChant and Moradkhani [2012], these
measures were � and 
. This change in notation is made to
avoid confusion with the notation in the description of
MCMC techniques. In addition, a new probabilistic verifica-
tion measure is proposed here, referred to as confidence, and
is shown in equations (27)–(30). In these equations, zt is the
quantile of the predictive distribution in which the observa-
tion is located at time t, P1,i and P2,i represent the ith upper
and lower quantiles, Wi is the frequency that the observation
falls between the ith predictive bounds, and C is the confi-
dence value. A positive C value indicates overconfidence
(too little spread), and a negative C value indicates undercon-
fidence (too much spread).

zt ¼

X

N

i¼1
�i

N
�i ¼

1 yt > y
0
i;t

0 yt < y
0
i;t

;

(

(27)

P1;i ¼ i=N ; P2;i ¼ 1� i=N ; (28)

Wi ¼
1

T

XT

t¼1 �t �t ¼
1 P1;i < zt < P2;i

otherwise 0
;

(

(29)

C ¼ 1

N=2

XN=2

i¼1 ðP2;i � P1;iÞ �Wi: (30)

4.1. Time-Lagged Replicates

[21] Robust analysis of hydrologic data assimilation tech-
niques requires repeated experiments over multiple different
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flow regimes. To achieve this, DeChant and Moradkhani
[2012] proposed breaking a 40 year data set from Leaf
River, Mississippi, into multiple different time periods. This
allows for multiple calibrations of the model in years with
different streamflow characteristics. Furthermore, a valida-
tion of the posterior parameters from each calibration is per-
formed on a separate time period. Examining the accuracy
of posterior parameters over a separate validation time pe-
riod allows for independent analysis of the calibrated pa-
rameters. Following the methods presented in DeChant and
Moradkhani [2012], this study performs 21 calibration rep-
licates for HyMOD, with the starting date of each replicate
separated by 500 time steps. Each calibration is performed
over 2000 days with the latter 1000 days used for calcula-
tion of performance measures, providing 1000 days for the
parameters to converge to a reasonable distribution. After
calibration with real data, validation is performed on a sepa-
rate 2000 day time period, using the posterior parameters
from the last time step of each calibration and state estima-
tion via the PF. A validation experiment is not necessary on
the synthetic analysis because the convergence to the true
parameters can be directly evaluated.

4.2. Synthetic Study

[22] A synthetic study was chosen to illustrate the ability
of the algorithms to estimate predefined parameters, in the

presence of known errors. This is performed according to
the framework of Moradkhani [2008]. Model states and
outputs are generated with predefined parameters and
observed forcing data, which are assumed to be the true
values. Filtering is then performed on this synthetic data
set, and convergence of the parameters to the predefined
values is evaluated. In this experiment, precipitation is
assumed to follow a lognormal distribution with a 25% rel-
ative error, potential evapotranspiration is assumed to fol-
low a normal distribution with a 25% relative error, and
streamflow observations are assumed to follow a normal
distribution with a 15% relative error. This is chosen based
on DeChant and Moradkhani [2012].
[23] This study is performed with the HyMOD model,

which is a parsimonious, conceptual, lumped hydrologic
model, originally developed by Boyle et al. [2000]. The
model contains five state variables and five parameters : �,
Bexp, Cmax, Rs, and Rq. Accurate convergence to predefined
parameters is examined with the synthetic case. Note that
parameters are assumed to be constant, as was stated in sec-
tion 2.3. For a more detailed description of the model proc-
esses, see Moradkhani et al. [2005b].
[24] Comparison of the convergence of each parameter

from the three filters is shown in Figure 3. From Figure 3, it
is observed that the Rq, Bexp, and Cmax parameters are very
identifiable, as was suggested by Moradkhani et al. [2005b],

Figure 3. Streamflow prediction and convergence of the parameter distributions for the PF-SIR,
PF-SIRV, and PF-MCMC for the synthetic experiment designed according to Moradkhani [2008] over
18 months. The upper panels show streamflow estimation with 95% predictive bounds for the PF-SIR,
PF-SIRV, and PF-MCMC; the black line is the expected value and the dots are the observations. The
lower panels show the parameter evolution for the above three methods. The light gray region is the
95% bounds, the dark gray is the interquartile range, the black line is the mean value, and the black trian-
gle is the predefined parameter value.
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and all methods estimate them accurately. Unlike these
three parameters, � and Rs are less identifiable. Although all
methods appear to perform similarly in locating the proper
parameters, small differences can be observed in the behav-
ior of the techniques. In examining the 95% and interquartile
bounds for each method, the PF-SIRV and PF-MCMC allow
for more movement in the quantiles than the PF-SIR. In
fact, the PF-SIRV and PF-MCMC perform much larger and
time-varying adjustments, leading to larger parameter search
area. An increase in parameter search area is preferable
because it will reduce the chance of sample impoverishment,
particularly at lower ensemble sizes. Further evidence that
PF-SIRV and PF-MCMC are more robust against sample
impoverishment is suggested in the analysis of the perform-
ance measures.
[25] Comparison of the ensemble prediction from each

method is provided in Figure 4. In this figure, the predictive
QQ plot is generated through a combination of all 21 model
runs. Lumping results from 21 model runs ensures that ran-
dom fluctuations in performance are averaged out, allowing
for more reliable analysis. These 21 replicates were per-
formed over four different ensemble sizes (50, 100, 300,
and 500) to highlight the difference in performance with
respect to ensemble size. In general, a trend toward increas-
ing reliability and decreasing overconfidence is observed
with increasing ensemble size. In comparison of all three
filters, the results suggest that the PF-MCMC and PF-SIRV
are more robust in avoiding sample impoverishment than
the PF-SIR, especially at low ensemble sizes. Both PF-
SIRV and PF-MCMC provide considerably accurate repre-
sentation of uncertainty when implemented with more than
100 ensemble members, whereas PF-SIR remains overcon-
fident at 500 ensemble members. This result suggests that
the proposed algorithms are providing more diversity in
posterior parameters, leading to a more accurate representa-
tion of uncertainty. To support this finding, the average per-
formance measures for all 21 replicates, at different
ensemble sizes, were calculated and presented in Figure 5.
In the upper left subplot of Figure 5, the PF-MCMC and
PF-SIRV approach a high NSE value at lower ensemble
sizes than the PF-SIR. This indicates that the PF-MCMC
and PF-SIRV produce a more accurate expected value at

lower ensemble sizes. In addition, at nearly all ensemble
sizes, the PF-MCMC and PF-SIRV provide a more reliable
estimate of uncertainty (higher ’ and " values) than the
PF-SIR and approaches a confidence value below 0. This
indicates that the PF-MCMC and PF-SIRV become under-
confident at high ensemble sizes, whereas the PF-SIR
remains overconfident at nearly all ensemble sizes. This
provides further support that the PF-MCMC and PF-SIRV
are providing increased diversity in the posterior parame-
ters, leading to a more accurate estimation of the posterior
distribution. Although PF-MCMC is expected to improve
on PF-SIRV in avoiding underconfidence (likely due to
over dispersion in parameters), the performance of the two
is similar in this application. The benefits of using the PF-
MCMC over the PF-SIRV will be examined through the
analysis of results from the real data experiment.

4.3. Real Data Study

[26] A study using streamflow observations, from the
Leaf River basin, is provided to examine the performance
of the proposed algorithm in a real streamflow forecasting
scenario. This experiment is performed over the same 21
time periods as the synthetic study and with the same error
assumptions, except that there is assumed to be model pre-
diction error. This error is normally distributed with a
standard deviation equal to 30% of the prediction value.
[27] Similar to Figure 4, Figure 6 shows that the PF-

SIRV and PF-MCMC approach a more reliable distribution
at a smaller ensemble size than the PF-SIR. As explained in
the synthetic analysis, this is a result of improved parame-
ter search methods, which avoid sample impoverishment.
Unlike the synthetic study, the PF-SIR remains biased at all
ensemble sizes; however, this is avoided in the other two
filters. The PF-SIR displays an inability to predict low
flows, which is seen as a high bias in Figure 6. This over-
prediction suggests that the PF-SIR may not be capable of
fully characterizing the posterior distribution, particularly
the portion of the posterior parameter distribution related to
baseflow. As the PF-MCMC and PF-SIRV have a larger
search path for each parameter, both accurately explore the
posterior distribution, leading to an accurate estimation of
all flows. Further support for the results in Figure 6 are
shown in the performance measures presented in Figure 7.

Figure 4. Predictive QQ plots of the three filters for joint
state-parameter estimation in a synthetic experiment for
various ensemble sizes.

Figure 5. Performance measures of the three filters for
joint state-parameter estimation in a synthetic experiment
for various ensemble sizes.
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Figure 7 shows that PF-MCMC and PF-SIRV approach a
high NSE value at very low ensemble sizes, indicating an
accurate prediction. Unlike the synthetic experiment, PF-
SIR is unable to create an expected value (reflected in NSE
metric) with the same accuracy as PF-MCMC or PF-SIRV
at any ensemble size. In addition, probabilistic measures
reveal more reliable results from the PF-MCMC and PF-
SIRV than the PF-SIR. The contrast between the results
from the synthetic and real experiments highlights the
strong impacts model error can have on these techniques.
Another important note from Figure 7 is that the PF-SIR
again shows a tendency toward overconfidence in compari-
son with the PF-MCMC and PF-SIRV methods. The

PF-MCMC and PF-SIRV methods are able to reduce this
overconfidence by increasing the parameter search area,
and thus creating an ensemble that is more representative
of the true posterior distribution.
[28] All previous analysis showed that the PF-SIRV per-

forms equivalently with the PF-MCMC method. This sug-
gests that the VVM method is capable of locating the
posterior parameters equally as well as the PF-MCMC. Up
to this point, the motivation for using the metropolis accep-
tance criteria is not apparent. To further the performance
assessment of the PF-SIRV and PF-MCMC, a validation of
the posterior parameters of each method must be examined.
In this validation, a state estimation experiment is per-
formed with the posterior parameters at the final time step
of each calibration from PF-SIRV and PF-MCMC. The val-
idation results for the PF-SIRV and PF-MCMC are shown
in Figure 8. PF-SIR is excluded from the validation results
as they are not competitive with the PF-SIRV and PF-
MCMC; however, full results of the PF-SIR for both
HyMOD and the Sacramento soil moisture accounting
model are available in DeChant and Moradkhani [2012].
During the validation, the PF-MCMC estimated parameters
produce a marginally higher ’ value than PF-SIRV at all
ensemble sizes above 100, suggesting different perform-
ance between the two methods, which was not observed in
the calibration. This contrast between calibration and valida-
tion highlights a benefit of using an MCMC step after the
resample-move step. While the PF-MCMC may either
accept or reject the adjusted parameters, ensuring an accu-
rate sample, the PF-SIRV keeps every adjusted parameter.
By only accepting the valid parameter adjustments, the PF-
MCMC maintains more meaningful parameter distribution
than the PF-SIRV, leading to slightly more reliable probabil-
istic prediction. Although the results suggest that only minor
improvements in parameter estimation can be achieved by
the PF-MCMC over PF-SIRV, these results will likely be
significant in problems of greater dimensions.

Figure 6. Predictive QQ plots of the three filters for
state-parameter estimation using streamflow data assimila-
tion for various ensemble sizes.

Figure 7. Performance measures of the three filters for
joint state-parameter estimation with real streamflow for
various ensemble sizes.

Figure 8. Performance measures of the PF-SIRV and PF-
MCMC filters during the validation for various ensemble
sizes.
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5. Discussion and Conclusion

[29] This study proposes an improved PF algorithm for
hydrologic prediction. To improve the PF-SIR algorithm,
the new algorithm uses MCMC moves to increase parame-
ter diversity within the posterior distribution. This allows
for a more complete representation of the posterior distribu-
tion, reducing the chance of sample impoverishment and
leading to a more accurate streamflow forecast. The algo-
rithm proposed in this article was tested in both synthetic
and real case studies, with the parsimonious HyMOD
model, to examine convergence and streamflow prediction
properties of PF-MCMC in comparison with PF-SIR and
PF-SIRV. Results from each experiment highlight the
effects of improved parameter estimation via PF-MCMC
and also make a strong case for the use of VVM proposed
by Leisenring and Moradkhani [2012].
[30] Synthetic analysis showed that all three filtering

methods in this study are capable of locating predefined pa-
rameters. This highlights the sensitivity of each algorithm
to the correct parameters and supports the conclusion
that PFs can effectively locate the proper posterior parame-
ters [DeChant and Moradkhani, 2012; Leisenring and
Moradkhani, 2011; Moradkhani et al., 2005b]. Such a con-
clusion conflicts with the assertion in Vrugt et al. [2012]
that the PF cannot properly locate the posterior parameters
due to shortcomings in their application. Although all
methods were capable of locating the correct parameters,
the PF-MCMC and PF-SIRV appear to be capable of creat-
ing a more reliable prediction at lower ensemble sizes than
the PF-SIR. This is attributed to the improved parameter
search in the PF-MCMC and PF-SIRV, leading to greater
parameter diversity. This greater parameter diversity
reduces the potential for sample impoverishment. As the
PF-MCMC and PF-SIRV are more robust against sample
impoverishment, both are capable of running at lower en-
semble sizes, making these filters more efficient. To prove
the increase in efficiency with the new algorithm, Figure 9
is presented. In this figure, the run time for the PF-SIR, PF-
SIRV, and PF-MCMC at ensemble sizes from 10 to 1000
ensemble members is compared. From this figure, it is
observed that PF-MCMC has only slightly greater computa-
tional demand at each ensemble size than PF-SIR and PF-
SIRV. PF-MCMC requires about 14% more time to run at
each ensemble size than PF-SIR. As the PF-MCMC and PF-
SIRV provide reliable prediction at around 200 ensemble
members, whereas PF-SIR requires around 1000 ensemble

members, the PF-MCMC and PF-SIRV significantly reduce
the computational demand.
[31] Analysis of these techniques with real data is also

provided in the results section. This analysis shows how the
inclusion of model error affects the estimation of parame-
ters and streamflow. Results from real data support the find-
ing that PF-MCMC and PF-SIRV are capable of avoiding
sample impoverishment at lower ensemble sizes than
PF-SIR and that the PF-MCMC and PF-SIRV avoid bias
that occurs in the PF-SIR prediction. This high bias is a
result of poor baseflow characterization from the PF-SIR.
Similar results for the PF-SIR were found in DeChant and
Moradkhani [2012]. In addition to examining the perform-
ance of these algorithms during calibration, a validation
was performed to examine the accuracy of the posterior
parameters. During validation, PF-MCMC showed small
improvements over PF-SIRV. Although both PF-MCMC
and PF-SIRV performed nearly identically during calibra-
tion, the PF-MCMC produced slightly more reliable predic-
tions than the PF-SIRV during validation, suggesting that
PF-MCMC more accurately estimated the posterior param-
eters. By applying the metropolis acceptance criteria, PF-
MCMC was capable of more accurately identifying the pa-
rameters at ensemble sizes greater than 100; however, this
resulted in only minor benefits with the HyMOD model.
Although the PF-MCMC showed only marginal improve-
ments over PF-SIRV in this study, the benefits of PF-
MCMC will likely be more apparent in models of greater
complexity (C. DeChant and H. Moradkhani, manuscript in
preparation). Overall, results in this study suggest that
through a combination of VVM and the metropolis algo-
rithm, it is possible to improve the exploration of the poste-
rior parameters in hydrologic data assimilation, leading to
improved streamflow predictions.
[32] Results from both synthetic and real experiments

suggest that the PF-MCMC algorithm is a more efficient
and accurate filter than the PF-SIR. The PF-MCMC algo-
rithm allows for larger, but accurate, parameter moves,
leading to a more diverse ensemble than the standard PF-
SIR. By creating a more diverse ensemble, PF-MCMC is
more robust against problems of sample impoverishment.
This allows for implementation with smaller ensemble sizes,
which makes the filter more efficient than the PF-SIR.
Although these results support the hypothesis that MCMC
moves can improve the PF, it is necessary to provide a more
robust analysis to confirm this conclusion. To add further
analysis, a subsequent study (C. DeChant and H. Moradkhani,
manuscript in preparation) examining the effects of algorith-
mic modifications, particularly the assumptions of Gaussian
parameter distributions and proposal distribution generation,
and different model structures on the behavior of the PF-SIR,
PF-SIRV, and PF-MCMC algorithms was performed.
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