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Iterated games are a fundamental component of economic and evolution-

ary game theory. They describe situations where two players interact re-

peatedly and have the ability to use conditional strategies that depend on the

outcome of previous interactions, thus allowing for reciprocation. Recently a

new class of strategies has been proposed, so called ‘zero determinant strate-

gies’. These strategies enforce a fixed linear relationship between one’s own

payoff and that of the other player. A subset of those strategies allows ‘ex-

tortioners’ to ensure that any increase in the own payoff exceeds that of the

other player by a fixed percentage. Here we analyze the evolutionary per-

formance of this new class of strategies. We show that in reasonably large

populations they can act as catalysts for the evolution of cooperation, similar

to tit-for-tat, but that they are not the stable outcome of natural selection. In

very small populations, however, extortioners hold their ground. Extortion

strategies do particularly well in co-evolutionary arms races between two dis-

tinct populations: significantly, they benefit the population which evolves at

the slower rate - an instance of the so-called Red King effect. This may affect

the evolution of interactions between host species and their endosymbionts.

Introduction

The Iterated Prisoner’s Dilemma (IPD) has a long history as a model for the

cultural and biological evolution of cooperation (1–9). A new class of so called

zero-determinant (ZD) strategies has recently attracted considerable attention (10–

12). Such strategies allow players to unilaterally enforce a linear relation between

the own and the co-player’s payoff. A subset consists of the so-called equalizer

strategies: these assign to the co-player’s score a predetermined value, indepen-

dent of the co-player’s strategy, see also (13). Another subset consists of the

extortion strategies: they guarantee that the own surplus exceeds the co-player’s

surplus by a fixed percentage. Press and Dyson (10) have explored the power of

ZD-strategies to manipulate any ’evolutionary’ opponent, i.e., any co-player able

to learn, and to adapt.

In their commentary to Press and Dyson, Stewart and Plotkin (11) ask: ’What

does the existence of ZD strategies mean for evolutionary game theory: can such

strategies naturally arise by mutation, invade, and remain dominant in evolving

populations?’ In evolutionary game theory, it is the population that adapts: more

and more players switch to the more successful strategies. From the outset, it may

seem that the opportunities for extortion strategies are limited. If a strategy is suc-
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cessful, it will spread, and therefore be more likely to be matched against its like:

but any two extortioners hold each other down to surplus zero. In a homogeneous

population of extortioners, it is thus better to deviate by cooperating. Extortion is

therefore evolutionarily unstable (12). However, we shall see that if the two play-

ers engaged in an IPD belong to distinct populations, the evolutionary prospects

of extortion improve significantly.

In the following, we investigate the impact of ZD-strategies on evolutionary

game theory. We show that in large well-mixed populations, extortion strategies

can play an important role, but only as catalyzers for cooperation, not as a long-

term outcome. However, if the IPD is played between members of two separate

populations evolving on different time-scales, extortion strategies can get the up-

per hand in whichever population evolves more slowly, and enable it to enslave

the other population, an interesting example of the so-called Red-King effect (14).

The Prisoner’s Dilemma (PD) game is a game between two players I and II
having two strategies each, which we denote by C (’to cooperate’) and D (’to

defect’). It is assumed that the payoff for two cooperating players, R, is larger

than the payoff for two defecting players, P . If one player cooperates and the

other defects, the defector’s payoff T is larger than R, and the cooperator’s payoff

S smaller than P . Thus the game is defined by T > R > P > S. An important

special case is the so-called donation game, where each player can ’cooperate’

(play C) by providing a benefit b to the other player at own cost c, with 0 < c < b.
Then T = b, R = b− c, P = 0 and S = −c.

In the Iterated Prisoner’s Dilemma game (IPD), the two players are required

to play an infinite number of rounds, and their payoffs PI resp. PII are given by

the limit in the mean of the payoffs per round. An important class of strategies

consists of so-called memory-one strategies. They are given by the conditional

probabilities pR, pS, pT and pP to play C after experiencing outcome R, S, T resp.

P in the previous round. (In addition, such a strategy has to specify the move in

the first round, but this has only a transient effect and plays no role in the long run

(15)). An important class of memory-one strategies consists of reactive strategies,

which only depend on the co-player’s move in the previous round (not the own).

Then pR = pT =: p and pP = pS =: q, so that a reactive strategy corresponds to

a point (p, q) in the unit square (16).

We will first define and characterize zero-determinant strategies, equalizers

and extortioners. We then investigate, in the context of evolutionary game the-

ory, the contest between extortioners and four of the most important memory-one

strategies. We will show that extortion cannot be an outcome of evolution, but can

catalyze the emergence of cooperation. The same result will then be obtained if

3



we consider all memory-one strategies: hence, extortion strategies can only get a

foothold if the population is very small. If the IPD is played between members

of two distinct populations, ZD-strategies can emerge in the population which

evolves more slowly. In particular, extortion strategies can allow host species to

enslave their endosymbionts.

Methods and Results

Definitions. Press and Dyson (10) define the class of ’zero-determinant’ strategies

ZD as those memory-one strategies (pR, pT , pS, pP ) satisfying, for some reals

α, β, γ, the equations

pR − 1 = αR + βR + γ [1a]

pS − 1 = αS + βT + γ [1b]

pT = αT + βS + γ [1c]

pP = αP + βP + γ. [1d]

We note that 1− pR and 1− pS are the probabilities to switch from C to D, while

pT and pP are the probabilities to switch from D to C. Press and Dyson showed

that if player I uses such a ZD strategy, then

αPI + βPII + γ = 0, [2]

no matter which strategy player II is using. Equalizer strategies are those ZD
strategies for which α = 0 6= β: then

PII = −γ/β. [3]

Thus player I can assign to the co-player any payoff between P and R. (Indeed,

since the pi have to be between 0 and 1, it follows that β < 0 and P ≤ PII ≤ R).

The so-called χ-extortion strategies are those ZD-strategies for which γ = −(α+
β)P , with χ := −β/α > 1. Then

PI − P = χ(PII − P ).

In this case, player I can guarantee that the own ’surplus’ (over the maximin

value P ) is the χ-fold of the co-player’s surplus. Fig. 1 shows examples of these

different ZD-strategies.
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C D p = (5/7,0,5/7,0)p = (3/7,0,5/7,2/7)

p = (1,0,0,1) = WSLS

Figure 1: The payoffs PI and PII of players I and II if both players use memory-one strategies

in an iterated Prisoner’s Dilemma (with T = 3, R = 2, P = 0 and S = −1). In each graph, the

strategy of player I is fixed to some p, whereas the strategy q of the co-player II can vary, sampling

the four-dimensional cube of memory-one strategies (the blue dots correspond to 104 different

realizations of q). (A) In general, the payoff-pairs of the two players cover a two-dimensional area,

as here, when player I applies the strategy of win-stay lose-shift, i.e., pR = pP = 1 and pS =
pT = 0. (B) However, if player I adopts a zero-determinant strategy, then the possible payoff-

pairs are restricted to a line. Two special classes of zero-determinant strategies were highlighted

by Press and Dyson (10): (C) Equalizers, i.e., strategies that set the co-player’s score to a fixed

value (the line of payoffs has slope zero), and (D) Extortioners, strategies which guarantee that

the surplus of player I is the χ-fold of the surplus of player II , i.e., PI − P = χ(PII − P ), with

χ > 1 (the line of payoffs has a positive slope, and intersects the diagonal at P ).

Press and Dyson speak of zero-determinant strategies because they use for

their proof of [2] an ingenious method based on determinants. In Appendix A,

we present a more elementary proof, following (13). Within the four-dimensional

unit cube of all memory-one strategies (pR, pS, pT , pP ), the ZD strategies form

a three-dimensional subset ZD containing the two-dimensional subsets EQ and

EX of equalizers resp. extortioners (see Appendix B). In Fig. 2 we sketch these

sets for the reactive strategies.

Extortion within one population. In order to investigate the role of extortion

in the context of evolutionary games, we concentrate on the donation game (in

the SI we provide further results for the general IPD, which show that the main

conclusions are independent of special characteristics of the donation game). We

first consider how a χ-extortion strategy Eχ fares against some of the most impor-
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Figure 2: Reactive strategies (pR = pT = p, pS = pP = q) for the donation game. All reactive

strategies (the square 0 ≤ p, q ≤ 1) are ZD strategies. The equalizer strategies are those on the

segment between ’generous TFT ’ (p = 1, q = 1 − c/b, (16)) and ’Miser’ (p = c/b, q = 0,

(30)), the extortion strategies those between ’Miser’ and TFT (p = 1, q = 0), and the ’compliant’

strategies (see (11) and Discussion) those between ’generous TFT ’ and TFT .

tant memory-one strategies, namely TFT = (1, 0, 1, 0), AllD = (0, 0, 0, 0), AllC
= (1, 1, 1, 1) and the Win-Stay-Lose-Shift strategy WSLS which is encoded by

(1, 0, 0, 1), and hence cooperates if and only if the co-player’s move, in the pre-

vious round, was the same as the own move, see (7). We note that TFT is a

ZD-strategy and can be viewed as a limiting case of an extortion strategy, with

χ = 1. For the donation game, the payoff for a player using strategy i against a

player with strategy j is given by the (i, j)-th element of the following matrix:

TFT WSLS Eχ All C All D
TFT (b− c)/2 (b− c)/2 0 b− c 0

WSLS (b− c)/2 b− c b2−c2

b(1+2χ)+c(2+χ)
(2b− c)/2 −c/2

Eχ 0 (b2−c2)χ
b(1+2χ)+c(2+χ)

0 (b2−c2)χ
bχ+c

0

All C b− c (b− 2c)/2 b2−c2

bχ+c
b− c −c

All D 0 b/2 0 b 0

[4]

Let us start with the pairwise comparisons. Eχ is neutral with respect to

AllD. It is weakly dominated by TFT , in the sense that a TFT -player does

not fare better than an extortioner against extortioners, but that interactions with

other TFT -players are giving an advantage to TFT . AllC players can invade

extortioners, and vice versa: these two strategies can stably coexist in proportions
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c(χ−1) : (b+c). Finally, WSLS dominates extortioners (in the sense that WSLS
provides a better response than extortion against itself and against extortioners).

We note that the mixed equilibrium of extortioners and unconditional cooperators

can be invaded by each of the other three strategies. The same holds for the mixed

equilibria of extortioners and unconditional defectors, if the frequency of extor-

tioners is sufficiently high. In particular, TFT can always invade such a mixed

equilibrium, but can, in turn, be invaded by WSLS or AllC. No Nash equilibrium

involves Eχ. If b < 2c, there are two Nash equilibria: a mixture of TFT , AllC
and AllD and a mixture of WSLS, AllC and AllD. If b > 2c, there exist four

Nash equilibria. In particular, WSLS is then a strict Nash equilibrium.

The replicator dynamics (17) displays for the payoff matrix continuous fam-

ilies of fixed points and periodic orbits, and hence is far from being structurally

stable: small changes in the dynamics can lead to vastly different outcomes. The

same applies to most other deterministic game dynamics (18). It seems more

reliable to consider a stochastic process which describes a finite, well-mixed pop-

ulation consisting of M players, and evolving via copying of successful strategies

and exploration, i.e., by a selection-mutation process (19–21). Selection is here

viewed as an imitation process; in each time step, two randomly chosen players A
and B compare their average payoffs PA and PB, and A switches to B’s strategy

with a probability given by (1+exp[s(PA−PB)])
−1, where s ≥ 0 corresponds to

’selection strength’. (As shown in the SI, the details of the imitation process matter

little.) Additionally, mutations occur with a small probability µ > 0 (correspond-

ing to the adoption of another strategy, each alternative being equally likely). Any

such stochastic process yields a steady state distribution of strategies.

We find that while extortioners are never the most abundant strategy, they can

play the role of a catalyzer. Indeed, if only AllD and WSLS are available, a pop-

ulation may be trapped in a non-cooperative state for a considerable time, leading

to a mutation-selection equilibrium that clearly favors defectors (see Fig. 3A). In

such a case, extortioners (Fig. 3B) and TFT (Fig. 3C) offer an escape: these

strategies can subvert an AllD population through neutral drift and selection, re-

spectively. Once defectors are rare, WSLS outperforms TFT , and it also prevails

against extortioners if the population is sufficiently large (in a direct competition,

WSLS always gets a higher payoff than Eχ if M > 1 + χ). Thus, in large popu-

lations, extortioners and TFT -players tip the mutation-selection balance towards

WSLS, and therefore increase the level of cooperation. Further expansion of the

strategy space through adding AllC has only a small effect on the steady state

(Figs. 3D and 3E), slightly favoring extortioners.

What happens when players are not restricted to the five specific strategies
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Figure 3: Evolutionary competition between some important strategies in the IPD. For various

population sizes M , the graphs show the frequency of each strategy in the mutation-selection

equilibrium. We consider two mutation regimes, the limit of rare mutations µ → 0 (top row),

for which the equilibrium can be calculated analytically, using (23) and a regime with mutation

rate µ = 0.05 (bottom row) which is explored by individual-based simulations. For the copying

process, we assume that individuals A and B are chosen randomly. A switches to B’s strategy with

a probability given by (1 + exp[s(PA −PB)])
−1, where PA and PB are the corresponding payoff

values and s ≥ 0 corresponds to ’selection strength’, cf. (21). If AllD competes with WSLS the

population is mostly in the defector’s state, independently of population size and the mutation rate

(A). However, once Eχ or TFT is added, WSLS succeeds if populations are sufficiently large

(B and C). TFT works slightly better than Eχ. Adding AllC only leads to minor changes in the

stationary distribution, which now slightly favour Eχ (D and E). Parameters: b = 3, c = 1, s = 1,

and χ = 2.

considered so far, but can choose among all possible memory-one strategies? We

study this by using the stochastic evolutionary dynamics of (22), assuming that

mutants can pick up any memory-one strategy, with a uniform probability dis-

tribution on the four dimensional unit cube; we further assume that the mutant

reaches fixation, or is eliminated, before the next mutation occurs. Overall, this

stochastic process leads to a sequence of monomorphic populations. The evolu-

tionary importance of a given strategy can then be assessed by computing how

often the state of the population is in its neighborhood. For a subset A of the

set of memory-one strategies, we denote the δ-neighborhood of A (with respect

to Euclidean distance) by Aδ, and let µ(Aδ) denote the fraction of time that the

evolving population visits Aδ. We say that Aδ is favored by selection if the evolu-

tionary process visits Aδ more often than expected under neutral evolution, i.e., if

µ(Aδ) is larger than the volume of the intersection of Aδ with the unit cube of all

memory-one strategies. We apply this concept to A = ZD, EQ, EX .

Extensive simulations indicate that neither extortioners, nor equalizers or
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Figure 4: Statistics of the evolutionary dynamics for memory-one strategies for a range of differ-

ent population sizes. We have calculated (A) the relative abundance of extortioners, equalizers,

and ZD strategies, i.e. the time spent in a δ-neighborhood, divided by the volume of the intersec-

tion of that neighborhood with the set of memory-one strategies; (B) the average strategy of the

population; (C) the average payoff. Extortioners, equalizers and ZD-strategies are only favored

for small population sizes. As the population size increases, individuals tend to apply WSLS-

like strategies, and to cooperate only after mutual cooperation or mutual defection. As a result,

the average payoff increases with population size. For the simulations, 107 mutant strategies were

randomly drawn from the space of memory-one strategies. As in (22), the switch from a monomor-

phic population using strategy X to a monomorphic population using strategy Y occured with the

probability of fixation of a single Y mutant in a population of X-residents. Parameters: b = 3,

c = 1, δ = 0.1 and s = 100.

zero-determinant strategies, are favored by selection if the population is reason-

ably large (see Fig. 4A). By contrast, very small population sizes promote the

selection of these behaviors. For extortioners, this result is intuitive: in small

populations, the fact that self-interactions are excluded yields greater weight to

interactions with players using the rival strategy, rather than with players using

the own strategy (19); this effect may even result in the evolution of spite (24, 25).

We address this point in more detail in the SI (section 2). Essentially, both ex-

tortioners and equalizers suffer from not achieving maximal payoff b − c against

themselves, which causes their inherent instability, as also stressed in (12). The

same holds for most ZD-strategies. By contrast, WSLS players do well against

their like, and therefore prevail in the evolutionary dynamics for long periods if

the population size is large, at least when b > 2c or, for more general PD games,

when 2R > T+P (see Fig. 4B and (15)). As a (possibly surprising) consequence,

larger populations also yield higher average payoffs (Fig. 4C). In the SI, we show

that these qualitative results are robust with respect to changes in parameter val-

ues, such as benefits and costs, or the strength of selection. Hence extortion is
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disfavored by evolution as soon as the population size exceeds a critical level.

Extortion between two populations. Let us now consider two species (for

instance, hosts and their symbionts), or two classes of a single species, old and

young, for example, buyers and sellers, or rulers and subjects, engaged in an

IPD game which, of course, is now unlikely to be symmetric. In such situ-

ations, extortioners may evolve even in large populations. Indeed, extortioners

provide incentives to cooperate: as shown by Press and Dyson (10), AllC is al-

ways a best response to an extortion strategy. In a single population of homoge-

neous players, this is not turned to advantage, as the extortioners’ success leads to

more interactions with their own kind. If extortioners evolve in one of two sepa-

rate populations, they will not have to interact with co-players of their own kind.

Nevertheless, their success may be short-lived, since they will be tempted to adopt

the even more profitable AllD-strategy as a reaction to the AllC co-players which

they have produced, which in turns leads to the disappearance of the AllC-players.

Extortioners can only achieve a lasting (rather than short-lived) success if the

rate of adaptation for the host population is much slower than that for the sym-

bionts. To elucidate this point, we extend our previous analysis by revisiting a

co-evolutionary model of Damore and Gore (26). These authors consider host-

symbiont interactions where each host interacts with its own subpopulation of

endosymbionts. Let us assume that these interactions are given by an IPD game.

Members of both species reproduce with a probability proportional to their fitness

(which is an increasing function of their payoffs), by replacing a randomly chosen

organism of their species. However, the two populations of hosts and symbionts

may evolve on different time scales, as measured by their relative evolutionary

rate (RER). For a relative evolutionary rate of one, hosts and symbionts evolve

at a similar pace in the evolutionary arms race, and no population is able to extort

the other (Fig. 5A). This changes drastically as soon as we increase the relative

evolutionary rate, by allowing symbionts to adapt more quickly. Fast adaptation

results in a short-term increase of the symbionts’ payoffs, since they can quickly

adjust to their respective host. In the long term, however, this induces hosts to

adopt extortion strategies (Fig. 5B), thereby forcing their symbionts to cooperate.

Thus it pays in the long run, for the host, to be slow to evolve; for the parameters

in Fig. 5B, the resulting equilibrium allocates them on average a surplus more

than ten times larger than the surplus achieved by the symbionts.
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Figure 5: Evolution of extortion in host-symbiont interactions. The graphs show two typical sim-

ulation runs for a population of 40 hosts, each having a subpopulation of 20 symbionts. For each

simulation run, the upper graph shows the average payoff for each population, whereas the lower

graph shows the Euclidean distance of each population to the set of extortioners (which can be at

most 1.5275). In the initial population all individuals cooperate unconditionally. The further evo-

lution depends on the relative evolutionary rate (RER): (A) If RER = 1, both species converge

towards AllD, and no population is able to extort the other. (B) For RER = 200, symbionts

evolve much more quickly. In the short term, they can thus increase their average payoff by

switching to a non-cooperative strategy. However, in the long term hosts apply extortion strategies

to force their symbionts to cooperate. Eventually, the hosts’ payoff exceeds b − c, whereas the

symbionts’ payoff is close to zero. To model the evolutionary process, we followed (26): When-

ever a symbiont reproduces, its offspring remains associated with the same host. Whenever the

host reproduces, the new host offspring acquires its symbionts from other hosts (horizontal trans-

mission). Mutations occur with probability µ = 0.05, by adding Gaussian noise to an entry of

the memory-one strategy of the parent (σ = 0.05). The process is run for 2, 000 host genera-

tions (corresponding to more than 106 reproduction events for RER = 1, and more than 3× 108

reproduction events for RER = 200). The other parameters were b = 3, c = 1 and s = 10.

Discussion

Our main results show that within one population, extortion strategies can act as

catalyzers for cooperation, but prevail only if the population size is very small;

and that in interactions between two populations, extortion can emerge if the rates

of evolution differ. This holds not only for the donation game (and therefore

whenever R + P = T + S), but in considerably more general contexts. In the

last part of the SI, we emphasize this robustness. We could also assume that the

players alternate their moves in the donation game (27, 28); or that the underlying

PD game is asymmetric (the definitions have to be modified in an straightforward

11



way). As noted in (10), some results hold also for non-PD games; this deserves

further investigation.

In orthodox game theory, strategy A dominates B if no matter what the co-

player does, A yields at least the payoff of B. When Press and Dyson (10) argue

that extortioners dominate their co-players, they mean that no matter what the co-

player does, the extortioner gets more. This is not quite the same, and we display

in section 2 of the SI an example which highlights the difference. Adami and

Hintze (12) stress a similar point in their title: ’Winning isn’t everything’. More-

over, when Press and Dyson speak of evolutionary players, they refer to players

who adapt their strategy in the course of an IPD-game; whereas in evolutionary

game theory, it is the population that evolves. Thus Press and Dyson analyzed

ZD strategies in the context of classical game theory, with two players locked in

contest: extortion strategies play an important role in this context, as do the more

orthodox trigger strategies, see (3, 6). In the context of evolutionary game theory,

whole populations are engaged in the game. For very small population size ex-

tortion strategies still offer good prospects. This is not surprising, as the limiting

case, a population size M = 2, reduces to the scenario analyzed by Press and

Dyson (10). In larger populations (with our parameter values, for M > 10), the

outcome is different. However, evolutionary game theory can reflect features of

classical game theory if the two interacting players game belong to two separate

evolving populations.

Extortion strategies are only a small subset of ZD-strategies. We have seen

that within large populations, the class of ZD strategies is not favored by se-

lection, in the sense that its neighborhood is not visited dis-proportionally often.

This does not preclude, of course, that certain elements of their class are favored

by selection. Thus Generous TFT (1, 1− c/b, 1, 1− c/b) does well. So do other,

less known strategies. In particular, Stewart and Plotkin highlighted a class of

strategies defined, instead of Eq. [3], by PI − R = χ(PII − R) (with χ > 1)).
A player using this strategy does not claim a larger portion of the ’surplus’, but

a larger share of the ’loss’ (relative to the outcome R of full cooperation). Re-

markably, these ’compliant’ strategies do as well as WSLS. They are the only

ZD-strategies that are best replies against themselves.

In Adami and Hintze (12), the evolutionary stability of several ZD strategies

was tested by replicator dynamics and agent-based simulations, which indepen-

dently confirms the result that these strategies do not prevail in large populations.

They used a population size M = 1024, and payoff values R = 3, S = 0, T = 5
and P = 1, i.e., a Prisoner’s Dilemma game which cannot be reduced to a dona-

tion game. Adami and Hintze also discuss the evolutionary success of ’tag-based’
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strategies, which use extortion only against those opponents who do not share their

tag. These strategies are not memory-one strategies, since they depend not only

on the previous move; rather, they use memory-one strategies in specific contexts,

which depend on the tag. Such a tag is an additional trait, which has to evolve and

risks being faked.

In interactions between different populations, a cheater-proof tag is provided

for free and extortion may accordingly evolve. In endosymbiotic relationships, as

we have seen, the species that evolves at the slower rate gains a disproportionate

share of the benefit, an instance of the so-called Red-King effect (14, 29, 30).

This requires two conditions to be met: individuals need to come from different

populations, and these populations have to evolve on different time scales. If

these conditions are fulfilled, extortioner hosts can manipulate their symbionts’

evolutionary landscape in such a way that the host’s and the symbionts’ payoffs are

perfectly correlated. This ensures that only those symbiont mutants can succeed

that are beneficial for the host. In this sense, such hosts apply an evolutionary

kind of mechanism design; they create an environment that makes the symbionts’

cooperation profitable for the symbionts, but even more profitable for themselves.

Appendix A: Proof of Eq. [2] Let us denote by PI(n) and PII(n) the play-

ers’ payoffs in round n, by si(n) the probability that I experiences outcome

i ∈ {R, S, T, P} in that round and by qi(n) the conditional probability, given

outcome i, that II plays C in round n + 1. By conditioning on round n, we see

that sR(n+ 1) is given by

sR(n)qR(n)pR + sS(n)qS(n)pS + sT (n)qT (n)pT + sP (n)qP (n)pP ,

and sS(n+ 1) by

sR(n)(1−qR(n))pR+sS(n)(1−qS(n))pS+sT (n)(1−qT (n))pT+sP (n)(1−qP (n))pP .

Hence the probability that I plays C in round n + 1, i.e., pC(n + 1) = sR(n +
1) + sS(n + 1), is given by s(n) · p = s(n) · [αgI + βgII + γ1 + g0], where

gI := (R, S, T, P ), gII := (R, T, S, P ), 1 = (1, 1, 1, 1) and g0 = (1, 1, 0, 0).
Thus w(n) := pC(n+ 1)− pC(n) is given by

αs(n) · gI + βs(n) · gII + γs(n) · 1

which is just αPI(n)+βPII(n)+ γ. Summing w(n) over n = 0, 1, ..., N − 1 and

dividing by N , we obtain

pC(N)− pC(0)

N
→ αPI + βPII + γ
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and hence Eq. [2] holds, independently of the strategy of player II . The same

proof works for any 2 × 2 game (even if it is asymmetric: one just has to replace

gII with the corresponding payoff vector). In many cases, however, there will be

no solutions to Eq. [1] which are feasible (i.e., probabilities between 0 and 1).

Appendix B: the sets ZD, EQ and EX : Elementary algebra shows that

within the four-dimensional unit cube of all memory-one strategies (pR, pS, pT , pP ),
the ZD-strategies are characterized by

(1− pR)(S + T − 2P ) + (1− pS)(P −R) + pT (R−P ) + pP (S + T − 2R) = 0,

(a three dimensional subset of the cube). Equalizers are characterized, in addition,

by

(R− P )(pS − pT − 1) = (T − S)(pR − pP − 1),

(they form a two-dimensional set) and χ-extortion strategies by pP = 0 and

pT [P − S + (T − P )χ] = (1− pS)[T − P + (P − S)χ],

(for each χ a one-dimensional set). In the special case of the donation game, these

equations reduce to

pR + pP = pS + pT ,

(b− c)(pS − pT − 1) = (b+ c)(pR − pP − 1),

pT (c+ χb) = (1− pS)(b+ χc),

respectively. The set EQ of equalizers is spanned by (1, 1, 0, 0), (c/b, 0, c/b, 0),
( 2c
b+c

, 0, 1, b−c
b+c

) and (1, 1 − c/b, 1, 1 − c/b), the set EX of extortion strategies by

(1, 1, 0, 0), (c/b, 0, c/b, 0) and (1, 0, 1, 0). All reactive strategies are ZD-strategies,

the reactive equalizers are those satisfying p − q = c/b, and the reactive χ-

extortioners those with q = 0 and p = (b+ χc)/(c+ χb) (see Fig. 2).
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