Mon. Not. R. Astron. Soc. 260, 241-252 (1993)

Warrick J. Couch, ${ }^{1}$ J. S. Jurcevic ${ }^{1}$ and B. J. Boyle ${ }^{2}$ 'School of Physics, University of New South Wales, PO Box 1, Kensington, NSW 2033, Australia ${ }^{2}$ Institute of Astronomy, Madingley Road, Cambridge CB3 OHA
 Accepted 1992 June 12. Received 1992 June 4; in original form 1992 March 24

ABSTRACT

We present new results on the angular correlation function of galaxies, $w(\theta)$, and its evolution with apparent magnitude at $V R \leq 23.5 \mathrm{mag}$. The analysis has been carried out on a data set containing 116000 galaxies covering almost $4 \mathrm{deg}^{2}$ at high galactic latitudes, obtained with the Berkeley $f / 1 \mathrm{CCD}$ camera on the $3.9-\mathrm{m}$ Anglo-
 value of the power-law index with apparent magnitude limit. The strength of clustering (as measured by the amplitude of the correlation function) is found to decrease strongly with apparent magnitude, consistent with a model in which galaxy clustering is increasing at a rate $R(z) \propto(1+z)$ with cosmic epoch. As such, this result is in'standard' cold dark matter model of galaxy formation.

[^0]1 INTRODUCTION shallow depths (e.g., de Lapparent, Geller \& Huchra 1986) areas of sky (Kirshner, Oemler \& Schechter 1979; Bean et
al. 1983).

An economical if not quite so direct approach to characterizing the galaxy distribution is to analyse it in its projected
form by way of the two-point angular correlation function $w(\theta)$. While its exact relationship to $\xi(r)$ is dependent on a

 mation on clustering over a range of scales and look-back
 Sky surveys conducted on Schmidt telescopes have, with the
aid of fast measuring machines, been well utilized in de-

 scales by a power law of the form
$w(\theta)=A_{w} \theta^{-\delta}$, with an index $\delta \approx 0.8$ and an amplitude A_{w} which scales
reasonably well between samples of different depth (Groth \&
Peebles 1977; MacGillivray \& Dodd 1979; Shanks et al.
1980; Hewett 1982; Collins, Heydon-Dumbleton \&
MacGillivray 1989; Maddox et al. 1990). mology is the explanation of the formation and growth of the diverse structures (voids, filaments, clusters, superclusters) which characterize the large-scale distribution of visible matter in the Universe. Fundamental to any model which matter model, see Davis et al. 1985) are the assumed matter content of the Universe (and, in particular, its composition) and the form of the initial perturbation spectrum from which the structure grew. Here the study of galaxy clustering at past
as well as at present epochs can supply vital clues: the evolution of clustering will bear the collective imprint of all matter, visible or invisible, while the signal measured on the spectrum (Davis 1991).
 1953; Groth \& Peebles 1977). However, it requires a full three-dimensional specification of the galaxy distribution,
thus restricting such analyses to those regions of the thus restricting such analyses to those regions of the
Universe which have been surveyed in redshift. The heavy

was discordance among the photographic studies. We are
also able to study $w(\theta)$ at depths sufficiently faint to examine
the trends seen in the CCD studies.
The layout of this paper is as follows. The observations
and photometric calibrations are described in Section 2 ,
while in Section 3 we discuss the reduction procedures and
techniques used in the production of the galaxy catalogue
upon which our analysis is based. The details of our $w(\theta)$
analysis are given in Section 4 , followed by the presentation
of the results in Section 5 . The results are discussed and
conclusions are drawn in Sections 6 and 7 , respectively.

OBSERVATIONS

2.1 Instrumentation

The supernova search is being carried out at the prime focus of the AAT using a focal reducer custom-built for this
purpose. The focal reducer module contains a diainondpurpose. The focal reducer module contains a diamorberbidal aluminium mirror which reflects the $f / 3.3$ primary beain of the telescope down through three
BK- 7 refractive glass elements, converting it to an $f / 1$ beam with a plate scale of $50.53 \mathrm{arcsec} \mathrm{mm}^{-1}$. The CCD used in combination with the focal reducer is an
unthinned 1024×1024 pixel THX 31156 chip manufactured by Thomson-CSF. It has $19 \mu \mathrm{~m}$ square pixels which
 gain of $5 \mathrm{e}^{-} \mathrm{ADU}^{-1}$ and a readout noise of $10 \mathrm{e}^{-}$(rms) Being unthinned, the CCD has only red sensitivity with a
detective quantum efficiency of ~ 40 per cent over the waveภu! optics have been designed to give optimum performance over this range. The programme is being conducted through a single wide
' $V R$ ' band which, effectively, is a combination of the standard V and Kron-Cousins R bands. It represents the
most effective choice in terms of maximizing the detected most effective choice in terms of maximizing the detected
flux from any supernova event given the wavelength dependence of both the throughput of the system and the night sky
brightness. The filter element comprises a combination of

2.2 Data collection

A number of selected regions have been set up around the sky for supernova monitoring, with the main criteria in their
selection being (i) location at high galactic latitudes selection being (i) location at high galactic latitudes
$\left(|b|>50^{\circ}\right)$, and (ii) location away from the ecliptic plane (to avoid asteroids). Within each region, a $25-\mathrm{deg}^{2}$ area of sky
was divided up into an 18×18 square grid of contiguous was divided up into an 18×18 square grid of contiguous
fields, each the size covered by the $f / 1$ imager, to provide an initial target list. In order to avoid heavily saturating the CCD, which in the case of the Thomson device leaves remnant images which persist for up to 5 min after readout,
each field was inspected visually on a red UK Schmidt

242 W. J. Couch, J. S. Jurcevic and B. J. Boyle
In studies that have extended this analysis to fainter depths $m_{B} \sim 24$), using galaxy catalogues assembled from 4-m teleof concurrence. Koo \& Szalay (1984, hereafter KS) presented correlation functions which were described by a
power law with an index $\delta \approx 0.8$ to $B \sim 23$, beyond which
 1986, hereafter PI) saw a similar trend with a $\delta=0.8$ powerHowever, at $B>22.5$ their amplitudes A_{w} were roughly twice as large as those of Koo \& Szalay over the same magnitude interval. The Durham group (Stevenson et al. 1985) found saw a significant evolution in A_{w} with depth such that the This was further corroborated in a later study by the same group (Jones et al. 1988) with an even stronger evolution in Recently, a number of CCD-based studies have enabled
$w(\theta)$ analyses to be performed at considerably fainter limits $\left.m_{B} \sim 26\right)$, albeit over much smaller $\left(\ll 1 \mathrm{deg}^{2}\right)$ areas of sky. based largely on the faint $\left(24<B_{\mathrm{J}}<26\right)$ (and predominantly blue) galaxies identified in the deep CCD survey of Tyson \& scales $\theta \leq 0.06$, had little or no signal, indicating an absence of clustering amongst this population. These authors concluded that either the galaxies in question constituted an extremely subluminous population of nearby objects, or
galaxy clustering evolution had been far more rapid than allowed for by the standard gravitational instability theories. An analysis of CCD imagery of a $0.2-\mathrm{deg}^{2}$ radio-optical survey region which covered the magnitude interval
$14 \leq V \leq 26$ and scales $\theta \leq 0.45$ (Neuschaefer, Windhorst \& Dressler 1991) showed $w(\theta)$ to have a roughly constant ($\delta=0.6-0.8$) power-law slope over this entire range. Neuschaefer et al. found A_{w} to decrease monotonically with
depth down to $V \sim 25$ but below this limit A_{w} was seen to rise depth down to $V \sim 25$ but below this limit A_{w} was seen to rise
again, indicating an increase in clustering strength at these very faint magnitudes. However, the data sample suffered from incompleteness and selection effects at $V>25$, making this latter result somewhat insecure.
In this paper we present new
In this paper we present new data on the two-point
angular correlation function which cast new light on the ssues raised in both the faintest photographic studies and the deeper CCD work. The source of our data is a large set of
frames taken with a wide-field CCD imager on the $3.9-\mathrm{m}$ Anglo-Australian Telescope (AAT) as part of a search for cosmologically distant Type Ia supernovae (Couch et al. large $\left(\sim 4 \mathrm{deg}^{2}\right)$ areas of sky to faint depths which this entails provides an ideal and, in some ways, unique data base for an analysis of $w(\theta)$. The ~ 0.3 field of view of the system gives
an areal coverage comparable to that of the $4-\mathrm{m}$ photoan areal coverage comparable to that of the $4-\mathrm{m}$ photo-
graphic studies, and yet free of the photometric instabilities which are inherent to photographic plates. The effectively
long exposures realized by the monitoring procedure ensure long exposures realized by the monitoring procedure ensure graphic studies and approaches that attained in the aforementioned CCD studies. Thus we are able readily to address
the form of $w(\theta)$ over the scales and magnitudes where there

		Evolution of galaxy clustering				243
Table 1. Summary of observations.						
Mean					Average	
Region	RA(1950)	Dec(1950)	Fields	Epochs	Seeing*	Airmass
SGP	002700	-273000	20	1989 Nov 30	1.8	1.14
				1989 Dec 28	1.9	1.33
				1990 Nov 13	1.9	1.02
F249	034000	-450000	27	1989 Nov 30	1.8	1.21
				1989 Dec 28	2.0	1.30
				1990 Jan 23	2.3	1.33
				1990 Nov 13	2.5	1.13
				1990 Nov 18	2.6	1.14

standards provided zero-points which were in consistent agreement at the $\pm 0.010-\mathrm{mag}$ level. Within the small colour
range of our standards $(0.3<V-R<0.6)$ at least, there was
 Given the non-standard nature of our $V R$ band, it is useful
to give a transformation between it and the standard $B V R$
 synthetically as part of our modelling, which we describe
later in this paper (Section 6), we find that, for present-day E

The CCD images were processed through the standard steps of co-addition, bias subtraction and flat-fielding. The first

 evaluating a mean value for the pixels in the 'over-scan'
region (first five rows) of the CCD and subtracting this value region (first five rows) of the CCD and subtracting this value
from all the pixels in the frame. This procedure was made
 advantage of not introducing further noise into the data. The dark current of the Thomson CCD is sufficiently low ($<4 \mathrm{e}^{-}$ per pixel per 2000 s) that any attempts to remove it, given
our short exposure times, were unwarranted. our short exposure times, were unwarranted.
For the third step a self-flat-fielding approad

For the third step a self-flat-fielding approach was taken,
whereby up to 20 of the (co-added) frames taken throughout whereby up to 20 of the (co-added) frames taken throughout
a night were used to derive a 'superflat', a frame for which each pixel value was set equal to the median evaluated for that pixel over all the frames. This was done after having first

being retained as final targets, of which only about half were
ventually observed

 presented in Table 1. Included are the central RA and Dec. in 1950 coordinates) of each region (columns 2 and 3), the epochs at which they were observed (column 5), the average
 each occasion (column 6), and the average airmass at which
the fields were observed (column 7). The 47 observed fields,

 exposure time for each field was 300 s per night, the to provide a check on spurious images such as those caused
 all epochs, giving overall exposures of 900 and 1500 s per
field for the SGP and F249 regions, respectively. From a signal-to-noise ratio point of view, this disparity in the total exposure times is largely negated by the differ
experienced for the two regions (see Table 1).

For reasons of efficiency and to expedite the supernova tration of frames between different epochs. At the beginning of each night the pointing of the telescope and the orientation of the CCD dewar were checked using the first-epoch
$(1989$ November 30) data as a reference. This ensured that (1989 November 30) data as a reference. This ensured that
the epoch-to-epoch alignment was to within 0.03 in rotation and $5-30$ pixels in translation. This small amount of disregistration between frames had the same positive benefit as whereby the exposure of images at different physical locations on the $C C D$ leads to the averaging out of residual
effects not removed by the flat-fielding process.

A photometric calibration for the entire data set was established from the frames gathered on the night of 1990 November 13 , when all the fields used in this study were
observed in superb photometric conditions. The excellent quality of this night was ascertained from the repeated monitoring throughout the night of the E2 region sequence of Graham (1982). Six of the sequence stars were contained measured for each standard using the foro routine in the FlGARO reduction package. After making corrections for efficient $k_{V R}$ of $0.17 \pm 0.03 \mathrm{mag}$ per airmass, the instrumental magnitudes derived for each star (using a 9 -pixel diameter to give essentially 'total' magnitudes) repeated over the course of the night to better than $\pm 0.004 \mathrm{mag}(\mathrm{rms})$.
To determine photometric zero-points for our To determine photometric zero-points for our non-
standard $V R$ band, a $V R$ magnitude system had first to be defined. This we did in terms of the standard V and R bands, simply defining $V R$ to be the average of V and R :
$V R=(V+R) / 2$. The $V R$ values thus defined for the six E 2
244 W. J. Couch, J. S. Jurcevic and B. J. Boyle 3.2 Image detection and photometry
Image detection and photometry were carried out from the
co-added frames using the maces algorithm within the APM
image analysis package. This routine, like the others used
here, forms the basis for the pISA image analysis routines in
the STARLNK software collection. The imaces routine was
used to apply an isophotal detection threshold to each co-
added frame, identifying pixels lying more than 2σ (the rms
sky noise) above the mean background level. In most cases,
the 2o level corresponded to slightly less than 1 per cent of
the sky background. Images with more than three connected
pixels at this level were then accepted as being real.
Aperture magnitudes within a 5 -pixel (4.9 arcsec)
diameter were derived from the rmAGEs program for each of
the detected images. This aperture size was adopted after
establishing that it minimized the observed rms between the
aperture magnitudes obtained for the same objects on the
individual CCD frames of the same field. Overlapping
images at the detection isophote were identified and correc-
tions to their magnitudes were made using the method
described by Irwin (1985).
For each field, the correction from aperture to total
magnitude was determined by computing the difference this case simply represents the 'sky' value. This proved to be this case simply represents the 'sky' value. This proved to be vignetting and pixel-to-pixel sensitivity variations; upon
division by the superflat frame our images were typically flat division by the superflat frame our images were typically flat
to better than 0.3 per cent of sky. to better thai initial 'cleaning' of
After this initial cleaning of rames, a final stacking of the
images taken of the same field at all the different epochs was performed. To determine the translational and rotational shifts required to register frames, we used the MERGE routine
written as part of the Cambridge Automated Plate Measurwritten as part of the Cambridge Automated Plate Measur-
ing Machine (APM) image analysis package (Irwin 1985). This automatically went through the lists of images detected on the individual frames (see below) and found the optimum match between the two to provide an overall coordinate transformation from one frame to the other. A program Ashley, was then used to translate and rotate the data according to the derived transformation. The set of frames taken on 1989 November 30 was adopted as our reference
for this procedure. An example of the final product of our cleaning and co-adding processes can be seen in Fig. 1; the image shown here of the F249 \#5 field represents the coaddition of frames taken at five different epochs, giving a
total exposure time of 1500 s .

Figure 1. An example of one of our fields (F249 \#5) in its final form after frame cleaning and co-addition. It represents a total exposure of
1500 s . North is to the top, east to the left. The image is 16.7 arcmin on a side.

Evolution of galaxy clustering 245

Galactic absorption. Estimates of the amount of absorp-

 0.000 and 0.008 mag for the F 249 and SGP regions,

As a consequence of these measures, the final number of ~ 87000 in the F249 region ~ 68000 in the SGP region and

3.4 Counts of galaxies and completeness

 seeing and, to a lesser extent, the atmospheric rransparency
in which our fields (even within the same region) were observed, we expect the completeness himit of our data to vary from field to field. We judged the completeness on the
basis of the number-magnitude counts in each field, using as

 another 15 per cent reaching to $V R=24$. Notably, this
applies to the F 249 fields and SGP fields alike, with there
 being no evidence that one region goes deeper than the other.
To minimize the possibility of incompleteness having any

It is worthwhile, at this point, to compare our galaxy
counts with those of other workers as a check on our data.
 based studies (e.g., Tyson \& Seitzer 1988; Metcalfe et al.

 counts, however, are for the R_{F} band and so we have adjusted our $V R$ counts on to this system. To do so, we have
used the mean $V R-R_{\mathrm{F}}$ colours that our models predict for

 between magnitudes derived for $5-$ and 10 -pixel apertures
for several bright $(18<V R<20)$ unsaturated isolated images for several bright $(18<V R<20)$ unsaturated isolated images this manner ranged between 0.30 and 0.45 mag for the indi-
vidual fields. After the aperture correction had been applied

 magnitude relations for the faint images on each field. From that the field-to-field photometry is accurate to ± 0.1 mag.
Classification between stars and galaxies was sought by Classification between stars and galaxies was sought by
using the sTATs program in the APM image analysis package.
 for each image in the images routine [e.g. $\log ($ area) versus
magnitude] to discriminate between stellar and galaxian images. Its limitations in its application to our data are
discussed in more detail below.

3.3 Production of final catalogue

In assembling a final galaxy catalogue from the lists of object positions, classifications and magnitudes produced for each
field, the following filtering'/corrective measures were
Excision of spurious objects. Significant numbers of such
objects were unfortunately produced as a result of the difficulties our detection algorithm encountered with bright ($V R<14$) stars and with the satellite trails which appeared
on several of our frames. The software had a tendency to break these features up into subimages which were sufficiently faint to enter our magnitude range of interest
$(V R>18)$ For bright stars, this problem applied not just to the central peak but also to the diffraction spikes and an associated 'streak' feature produced by optical ghosting. We eliminated these spurious images from our catalogue by
visually identifying the features in question (on positional visually of the images detected in each field) and, in each case,
plots
defining the smallest possible rectanglar defining the smallest possible rectangular or circular excision objects within these zones were then removed from the data lists; at the same time 'mask' files flagging all the pixels within these zones were produced, to be used later in constructing the random point distributions for our $w(\theta)$ analysis (see only a ~ 3 per cent reduction of our total sky coverage. Star/galaxy separation. While our reduction sofware gave tion of a subset of the images on a pair of blue and red skylimited AAT plates, which happened to overlap with some of our SGP CCD fields, indicated that this classification was
not reliable at magnitudes fainter than $V R \sim 20$. This can be attributed to the large (0.96 arcsec) pixel size of our detector and the associated poor sampling of the point-spread function. Our procedure, therefore, was to remove all objects classified as stars that were brighter than $V R=20$ and to
retain all objects fainter than this limit. Our catalogue therefore suffers from some contamination by stars at $V R \geq 20$, but the contribution is small and, as far as $w(\theta)$ is concerned, can be estimated from the star count model of Bahcall \&

(see Section 2.3). Any point which landed in an excision zone was rejected (and a new one generated again) so that the random distribution covered an area identical to that of the
data. Unlike the pair analysis for the data points, the random
distribution was analysed by using each catalogued galaxy and evaluating the pairings it had with the random points in the same field. This approach is, in essence, no different from a random-random evaluation, given that the random sample
will be randomly distributed with respect to the galaxy will be randomly distributed with respect to the galaxy
distribution, but is preferred in practice since it provides more stable estimations of $w(\theta)$ (Shanks, private communication). This was indeed verified by comparing our results
with a few sample calculations based on a random-random normalization. Finally, to minimize any noise contribution that the
random point calculations might make, the galaxy-random pair evaluation was repeated 10 times, each time using a pair evaluation was repeated 10 times, each time using a
newly generated set of random points. From this a mean
 $w a s$ then combined with $N_{\mathrm{gg}}(\theta)$ to provide our estimate of
$w(\theta)$:
 effects of any small-amplitude large-scale gradients across

 $w_{\mathrm{rg}}(\theta)=\frac{1}{2} \frac{\bar{N}_{\mathrm{rg}}(\theta)}{\frac{N_{\mathrm{r}}}{}(\theta)}-1$, where $\bar{N}_{\mathrm{rg}}(\theta)$ and $\bar{N}_{\mathrm{r}}(\theta)$ are the summed random-galaxy and
 tion comes from the use of the observed number of galaxies within the sample boundaries as an estimate of the size of a
randomly distributed population contained within the same
 constraint', whereby the total number of pairs in the random distribution is required to be equal to the total number of
pairs in the observed distribution. Thus, if our estimate of pairs in the observed distribution. Thus, if our estimate of
$w(\theta)$ is positive at small separations, it will be forced to go negative at large separations. In our case the impact of this effect should be small since, in practice, the number density
of random points in a given field is equal to the mean galayy of random points in a given field is equal to the mean galaxy
density observed over all fields (rather than that observed in the same field). Hence the galaxy surface density is being
sampled over scales sufficiently large $\left(\sim 5^{\circ}\right)$ to dilute signisampled over scales sufficiently large $\left(\sim 5^{\circ}\right)$ to dilute signi-
ficantly the number density enhancements due to clustering.
 when presenting our results in the following section.

Figure 2. A comparison of our galaxy number counts with the ompilation of Metcalfe et al. (1991). Our data, which are shown as he filled circles and crosses (see legend), represent the number of $V R$ and transformed on to the R_{F} scale (abscissa). The errors i
individual points are too small to be plotted in the figure. Th
envelope containing the various number counts presented i envelope containing the various number counts presen
Metcalfe et al.'s comparison is indicated by the dashed lines.
envelopes within which the various counts in MSFJ's comparison lie. Clearly, our counts show excellent agreement
with the results of these other studies in terms of both slope and absolute number. They therefore provide additional confirmation of the trends seen in the number counts at these our counts at $R_{F} \geq 23(V R \sim 23.5)$ is due entirely to the effects of incompleteness (see above).

Our estimation of $w(\theta)$ involved the traditional method of
analysing the observed galaxy distribution with reference to a random distribution generated in a Monte Carlo fashion. First, the pairing of galaxies as a function of angular separation was determined by taking each catalogued galaxy in turn and evaluating the angular separations between it and all the other galaxies in the same CCD field. Evaluating the galaxy as a result of the signal in the correlation function at larger separations diminishing to the point where it was swamped
by the field-to-field systematics in the photometric calibration. The separations were binned into 23 bins of constant $\Delta \log \theta \quad$ covering the range $-2.5 \leq \log \theta \leq-0.3 \quad(11$ A similar analysis was also applied to a random point distribution. This distribution was generated by setting the number of points equal to the total number of observed weighting each field according to its total non-excised area
Evolution of galaxy clustering 247
bin. We note that, for the 18-23 and 18-23.5 mag intervals, the sample size is such that the size of these errors for the

Inspection of Figs 3-6 shows that, to $\theta \sim 0.2$, at least, our
Inspection of Figs $3-6$ shows that, to $\theta \sim 0.2$, at least, our
galaxy samples are strongly correlated at all depths and our

 spatial correlation function of the form (7) where r is proper length, C is a constant and $h(z)$ is a term introduced to provide for an evolution in clustering scale in three dimensions, it is then a matter of integrating over the sight-lines to all the galaxies contained within the appropriate volume of space to determine the projected two-dimensional
distribution and hence $w(\theta)$ (whose functional form, at least, will be a power law with index $\delta=0.8:$ Limber 1953). The most critical step in this process is accurately identifying the
volume of space sampled by the data set in question. For deep magnitude-limited samples such as ours, the determination of the associated volume himits requires a
knowledge of the galaxy luminosity function and its type dependence, the relevant K-corrections and the amount of luminosity evolution galaxies have undergone with look-back
time. The data we adopted can be summarized as follows. (1) Luminosity functions. A Schechter (1976) function
with slope parameter $\alpha=-125$ was used to represent each with slope parameter $\alpha=-1.25$ was used to represent each
of the different galaxy types ($\mathrm{E}, \mathrm{So}, \mathrm{Sab}, \mathrm{Scd}, \mathrm{Sdm}$). Characteristic absolute magnitude values, M_{V}^{*}, for each type were Peterson et al. (1986) and translating them according to the $B_{J}-V R$ colours computed from the nearby E/SO, Sab, Sbc,
Scd and Sdm spectral Values of the luminosity function normalization parameter Φ^{*} (galaxies Mpc^{-3}) for each type were also taken from
Peterson et al. MSFJ have noted that Φ^{*} is a poorly determined parameter; however, we find our conclusions remain unchanged if the slightly larger Φ^{*} values determined by Kirshner et al. (1978) or Zwicky et al. (1961-68) are used.
(2) K-corrections. Calculations for our $V R$ band were
 energy distributions of Pence (1976). Values were computed
at intervals of 0.025 in redshift out to $z=2.0$ and then leastat intervals of 0.025 in redshift out to $z=2.0$ and then least-
squares-fitted by a second-order polynomial to provide an .
$\frac{0}{3}$
0
0
0
0
0
(3) Evolutionary corrections. We took the amount of
luminosity evolution MSFJ had to invoke to explain their号 their B and R corrections (see their table 7), to provide values appropriate to our $V R$ band. (In practice, this led to adopting With this information specified and h and q_{0} set to 0.5 and 0.02 , respectively, the computational task required was an

 shift intervals (each $\Delta z \simeq 0.01$ in width) and determining the
fraction of the luminosity function of each galaxy type (and

 zero (typically $z \sim 2$).
 systematic effects of integral constraint and field-to-field photometric errors contribute to our $w(\theta)$ estimates. With udes on the largest $\left(\sim 0^{\circ} 2\right)$ scales studied here, the B factor

 corrected for. To disentangle these two effects, we can estimate the size of the offset introduced by the integral constraint from the relation

$\Delta w=\frac{1}{\Omega^{2}} \iint w\left(\theta_{12}\right) \mathrm{d} \Omega_{1} \mathrm{~d} \Omega_{2}$

(Groth \& Peebles 1977; E91). Here the integrals are over the
 observed corrected values (see below), we find the B values predicted for our M18 samples to range from 0.995 to

As a final step in the derivation of A_{w}, we correct for the
 is done by taking the 'slope-constrained' values of the

$A_{w}^{\text {corr }}=\left(\frac{N_{\text {obj }}}{N_{\text {obj }}-N_{s}}\right)^{2} A_{w}^{B}$.

Here, $N_{\text {obj }}$ (listed in column 4 of Table 2) is the total number of contaminating stars estimated from the model of Bahcall \& Soneira (1980). The correction factor calculated from
 The values of $\log A_{\omega}^{\text {corr }}$ are tabulated in column 6 of Table
2; they are also plotted as a function of limiting $V R$ magnitude in Fig. 7. Reassuringly, we see that the sets of amplitudes derived independently for the SGP and F249
regions show very close agreement. We now proceed, in the
 observed decline in amplitude with increasing d
evolution of galaxy clustering with cosmic epoch. The method for modelling the observed decline in the amplitude of $w(\theta)$ with increasing sample depth (often referred to as the 'amplitude-scaling' relation) has been well developed
and documented by a number of authors (e.g., Peebles 1973; P78; KS). To interpret our results, we utilized the technique detailed by P78 for dealing specifically with very deep samples in which cosmological, relativistic and evolutionary
effects are important. This was facilitated by the provision of the code originally written by Dr S. Phillipps for this purpose and subsequently modified by Dr L. Jones to incorporate
more up-to-date values for key parameters.
250 W. J. Couch, J. S. Jurcevic and B. J. Boyle

Figure 7. The observed amplitude-scaling relation plotted as a
function of limiting $V R$ magnitude. The correlation function

 (see text for details) are shown as the dotted, solid and dashed
curves. than a $\left(\log A_{w}\right.$, limiting magnitude $)$ - plot and the comparison
is made for slightly different passbands, it is clear that our is made for slightly different passbands, it is clear that our
data do not support such strong evolution. Importantly, data do not support such strong evolution. Importantly,
though, both our data and those of Jones et al. support a
 stable clustering or a weakening in clustering as prescribed
by the comoving model. by the comoving model.
Clearly, our result is
growth of structure in a strongly biased CDM model. Indeed, the correlation function has, in the past, provided numerous observational difficulties for the predictions of the standard CDM model. The correlation function analysis of Maddox et
al. (1991), based on the $B_{\mathrm{J}}<20.5$ APM survey, showed $w(\theta)$ al. (1991), based on the $B_{\mathrm{J}}<20.5$ APM survey, showed $w(\theta)$
to have too much signal on large ($>20 h^{-1} \mathrm{Mpc}$) scales in comparison to the CDM predictions. Similarly, in their redshift analysis of the IRAS sample, Saunders et al. (1991)
found structure on scales too large to be explained by the
 scenario runs into difficulties in explaining the present-day
distribution of galaxies, our results (as do also those of Jones distribution of galaxies, our results (as do also those of Jones
et al.) show, in addition, that the rate of growth of such structure may also be inconsistent with this model. However, we

 of the correlation function at a rate much closer to that which
is observed. is observed.
Finally, we

 plot these as well in Fig. 7. With the caveats that we have
taken their data from a $\left(\log A_{w}\right.$, integrated count) - rather
Evolution of galaxy clustering 251

 limits studied by Efstathiou et al. (1991) shows that the small
degree of clustering measured by these authors in the red band, at least, may not be abnormal.

references

Bahcall J. N., Soneira R. M., 1980, ApJS, 44, 73
Bean A. J., Efstathiou G., Ellis R. S., Peterson

Burstein D., Heiles C., 1978, ApJ, 225, 40
Collins C. A., Heydon-Dumbleton N. H., MacGillivray H. T., 1989 ,
Couch W. J., Perlmutter S., Newburg H. J. M., Pennypacker C.,
Goldhaber G., Muller R., Boyle B. J., 1992. Proc. Astron. Soc.
Aust., 9, 261
Davis M., 1991, in Latham D. W., da Costa L. A. N., eds, ASP

Davis M., Efstathiou G., Frenk C. S., White S. D. M., 1985, ApJ,

A., Couch W. J., Boyle B., 1992, in Proceedings of the
Supernova Watch Workshop. UCLA, in press. Graham J. G., 1982, PASP, 94, 244
 Hewett P. C., 1982, MNRAS, 201, 867
Jones L. R., Shanks T., Fong R., 1988, in bergeron J., Kunth D.,
Rocca-Volmerange B., Tran Thanh Van J., eds, High Redshift
and Primeval Galaxies. Editions Frontières, Gif-sur-Yvette, p. 29 and Primeval Galaxies. Editions Frontières, Gif-sur-Yvette, p. 29
Kirshner R. P., Oemler R. P., Schechter P. L., 1979, AJ, 84, 951 Koo D. C., Szalay A. S., 1984, ApJ,
Kron R. G., 1980 , ApJS, 43, 305
Limber D. N., 1953, ApJ, 117, 134
MacGillivray H. T., Dodd R. J., 1979
MacGillivray H. T., Dodd R. J., 1979 , MNRAS, 186, 69
Maddox S. J., Sutherland W. J., Efstathiou G., Loveda

 sample which cannot be directly compared with the data
obtained here. However, these authors also presented results obtained here. However, these authors also presented results
for a red-selected $(23 \leq R \leq 25)$ sample drawn from the same (Tyson \& Seitzer 1988) catalogue. In this case, a small but positive clustering signal was measured with a single-
point estimate of $w(\theta)$ taken over the range $15 \leq \theta \leq 45$
 Although there is only a $0.5-\mathrm{mag}$ overlap between this
 is at all consistent with the strength of clustering seen at the faintest limits of our data. To pursue this, we extrapolated
our observed amplitude-scaling relation, as well as that our observed amplitude-scaling relation, as well as that
predicted by the $\beta=-1$ model, down to the $R=25(V R \sim$ 25.3) limit of the red E91 sample. Taking the inferred value of A_{w} at this himit and assuming $w(\theta)$ still to be represented
by a $\delta=0.8$ power law, an estimate of $w(\theta=30$ arcsec $)$ was determined. This yielded values of 0.013 and 0.019 from the 'observed' and 'model' extrapolations, respectively, in very
 that, in the red at least, the weak level of clustering seen by of the trends seen at slightly brighter limits (in particular, the observed decline in the amplitude of clustering with increas-
Of course, the issue here may not be at all related to volun in clustering, but may rather be a question of population selection. As already suggested by E91, a blue-
as opposed to a red-selected sample may, at such faint limits, contain galaxy populations which are quite different. If faint samples start to be dominated by unusual and un-
forseen populations of objects then their observed clustering forseen populations of objects then their observed clustering
properties may well be entirely different. In this context, the ongoing expansion of the data base
upon which this study is based will be important. With the exposure of each of the fields studied here continuing to be increased, we shall eventually be able to conduct a clustering
analysis at depths comparable to that of E91. With the additional benefits of large sample sizes and a broad angular coverage, it should be possible to consolidate our understanding of galaxy clustering at faint limits and, perhaps, to We have performed a two-point correlation function analysis of a complete sample of ~ 116000 galaxies catalogued within two high galactic latitude regions, covering $3.6 \mathrm{deg}^{2}$
and contained withm the magnitude range $18 \leq V R \leq 23.5$. The salient results to emerge from our study can be summar(1) We have found that, over the separations studied $\left(\theta \leq 0^{\circ} 2\right)$, our correlation function estimates, $w(\theta)$, exhibit a (2) The slope index, δ, of the power-law fits to the data is found, within its uncertainty, to be invariant both with mag-
(3) The overall mean slope measured for our sample is $\delta=0.70 \pm 0.05$, in agreement with that observed for the nearby normal galaxy population.
Schechter P., 1976, ApJ, 203, 297
Shanks T., Fong R., Ellis R. S., MacGillivray H. T., 1980, MNRAS,
192, 209
Sharp N. A., 1979, A\&A, 74, 312
Stevenson P. R. F., Shanks T., Fong R., MacGillivray H. T., 1985,
MNRAS, 213,953
Tyson J. A., Seitzer P., 1988, ApJ, 335, 552
Zombeck M. V., 1990, Handbook of Space Astronomy and
Astrophysics. 2nd edn, Cambridge Univ. Press, Cambridge, p.
104
Zwicky F., Herzog E., Wild P., Karpowicz M., Kowal C. T.,
1961-68, Catalogue of Galaxies and Clusters of Galaxies. 6
vols, California Institute of Technology, Pasadena
252 W. J. Couch, J. S. Jurcevic and B. J. Boyle
Metcalfe N., Shanks T., Fong R., Jones L. R., 1991, MNRAS, 249, Neuschaefer L. W., Windhorst R. A., Dressler A., 1991, ApJ, 382, 32
Peebles P. J. E., 1973, ApJ, 185, 413
Peebles P. J. E., 1980, The Large Scale
Princeton Univ. Press, Prin
Pence W., 1976, ApJ, 203, 39

[^0]: Key words: galaxies: clustering - galaxies: formation - large-scale structure of Universe.

