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Ancient duplication events and a high rate of retention of extant pairs of duplicate genes have contributed to an abundance of
duplicate genes in plant genomes. These duplicates have contributed to the evolution of novel functions, such as the
production of floral structures, induction of disease resistance, and adaptation to stress. Additionally, recent whole-genome
duplications that have occurred in the lineages of several domesticated crop species, including wheat (Triticum aestivum),
cotton (Gossypium hirsutum), and soybean (Glycine max), have contributed to important agronomic traits, such as grain
quality, fruit shape, and flowering time. Therefore, understanding the mechanisms and impacts of gene duplication will
be important to future studies of plants in general and of agronomically important crops in particular. In this review, we
survey the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of
duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton
genes, and the evolutionary impact of gene duplication.

Distinct from other eukaryotic genomes, plant ge-
nomes tend to evolve at higher rates, leading to higher
genome diversity (Kejnovsky et al., 2009; Murat et al.,
2012). For example, differences in genome size be-
tween closely related plant species are much larger
than between other closely related eukaryotes. Among
dicotyledonous species that diverged approximately
150 million years ago (MYA), genome size ranges from
merely 63 Mb in the carnivorous Genlisea margaretae
(Greilhuber et al., 2006) to approximately 150 Gb in
the canopy plant Paris japonica (Pellicer et al., 2010).
This 2,000-fold difference in genome size among di-
cots is in stark contrast to that observed among the
mammalian species that also radiated approximately
150 MYA (Warren et al., 2008), where genome size
ranges from approximately 1.6 Gb in Carriker’s
round-eared bat (Smith et al., 2013) to approximately
8 Gb in the tetraploid red viscacha rat (Gallardo et al.,
1999).

Plant genomes also have an abundance of duplicate
genes. Whole-genome duplication (WGD) has occurred
multiple times over the past 200 million years of an-
giosperm evolution (Lyons et al., 2008; Soltis et al.,
2009, 2014; Lee et al., 2013; Renny-Byfield andWendel,
2014), and genomic sequencing continues to reveal
new events (Velasco et al., 2010; D’Hont et al., 2012;
Wang et al., 2012; Lu et al., 2013; Myburg et al., 2014;
Wang et al., 2014b). In contrast, the most recent WGD

event occurred approximately 450 MYA in the lineage
leading to humans (Panopoulou et al., 2003; Dehal and
Boore, 2005) and approximately 200 MYA in the
budding yeast lineage (Wolfe and Shields, 1997; Kellis
et al., 2004). Strikingly, many plant species also com-
prise mixed populations of diploid and polyploid in-
dividuals, illustrating the prevalence of polyploidy in
plants (Husband et al., 2013). For example, 2.4% of
Lythrum salicaria populations have both diploid and pol-
yploid individuals (Kubatova et al., 2008), and this per-
centage is even higher (greater than 60%) for Chamerion
angustifolium (Sabara et al., 2013) and Actinidia chinensis
(Li et al., 2010).

WGD, or polyploidization, is an extreme mechanism
of gene duplication that leads to a sudden increase in
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both genome size and the entire gene set. However, it is
not the only mechanism that gives rise to duplicated
genes. In general, gene duplication generates two gene
copies; this theoretically allows one or both to evolve
under reduced selective constraint and, on some occa-
sions, to acquire novel gene functions that contribute to
adaptation. There is little question that duplicate genes
have contributed to novel traits over the course of plant
evolution (Van de Peer et al., 2009b). Through com-
parative analyses of an ever-increasing number of plant
genome sequences and functional genomic data sets,
we now have an unprecedented understanding of how
genes are duplicated, how duplicated genes evolve
new functions, and the impact of gene duplication on
genome evolution (Conant and Wolfe, 2008; Freeling
et al., 2015; Soltis et al., 2015).
Gene duplication is but one type of genomic change

that can lead to evolutionary novelties. Novel func-
tions can arise from the co-option of existing genes
(True and Carroll, 2002), new genes can arise de novo
from intergenic space (Tautz and Domazet-Lošo, 2011;
Schlötterer, 2015), and new transcriptional regulatory
sites can come into existence that alter gene expres-
sion (Wray et al., 2003). In addition, although in this
review we focus only on genes, the duplication of
other genomic features, including regulatory regions
(Nourmohammad and Lässig, 2011), transposable ele-
ments (TEs; Lisch, 2013), and repeat elements (Sharopova,
2008), has been reported to influence gene expression
and function. Nonetheless, gene duplication remains of
specific interest both because of the abundance of plant
gene duplicates and their potential to contribute to
plant novelties. The goal of this review is to provide an
overview of our current state of knowledge about plant
gene duplication and its significance. We first focus on
the prevalence of gene duplication in plants and the
mechanisms that contribute to gene duplication. We
then discuss the fate of duplicate genes and the factors
that influence whether a duplicate is retained or not.
Finally, we consider the influence of duplicate genes on
the evolution of plant species and agronomically im-
portant traits.

PREVALENCE AND MECHANISMS
OF DUPLICATION

Predominance of Duplicate Genes in Plant Genomes

In the green lineage, gene numbers range from 8,166
in the unicellular green alga Ostreococcus tauri (Derelle
et al., 2006) to approximately 95,000 in bread wheat
(Triticum aestivum; Brenchley et al., 2012). What pro-
portion of genes within each species have shared
common ancestry due to duplication (Fitch, 1970)? Al-
though a paralog is well defined conceptually, the cri-
teria (e.g. the threshold sequence similarity) and data
sets used to identify paralogs vary among studies, and
thus direct comparisons are difficult. For example, be-
tween 16% (barley [Hordeum vulgare]) and 49% (rice

[Oryza sativa]) of plant genes were defined as paralogous
based on transcript data (Blanc and Wolfe, 2004a); how-
ever, genome sequence data have yielded paralog fre-
quencies as high as approximately 75% in soybean
(Glycine max; Schmutz et al., 2010). In Arabidopsis
(Arabidopsis thaliana), the estimate of duplicate gene con-
tent ranges from 47% (Blanc and Wolfe, 2004a) to 63%
(Ambrosino et al., 2016) due to differences in genemodels,
methodology, and parameters (i.e. similarity cutoffs).

To obtain a comparable estimate of duplicate gene
number across plant genomes, we applied a common
methodology and similarity threshold to identify du-
plicate genes in 41 sequenced land plant genomes (Fig.
1). On average 64.5% of plant genes are paralogous,
ranging from 45.5% in the bryophyte Physcomitrella
patens to 84.4% in apple (Malus domestica). Given that
ancient and/or fast-evolving paralogs are not easily
detected due to sequence divergence, these percentages
are likely underestimates. Total genic content is corre-
lated significantly with both paralog content (r2 = 0.46,
P , 7e-6) and the presence of a reported polyploidiza-
tion event (r2 = 0.35, P, 8e-4), demonstrating the large
contribution of duplication, particularly WGD, to dif-
ferences in gene content among plant species.

Another way to illustrate the preponderance of plant
duplicates is to look at the number of paralogs within
gene families (Dayhoff, 1976). In a survey of eight di-
verse plant species, the percentage of genes belonging
to gene families ranges from 40% in the green alga
Chlamydomonas reinhardtii to 95% in the lycophyte
Selaginella moellendorffii, with most species having in
excess of 65% familial genes (Guo, 2013). Although the
proportion of familial genes in plant genomes is high,
there can be dramatic differences in the size of gene
families across species due to lineage-specific expan-
sions (Lespinet et al., 2002). For example, one of the
largest families in plants is the protein kinase super-
family, which has 426 members in the unicellular green
alga C. reinhardtii and 2,532 in Eucalyptus grandis (Lehti-
Shiu and Shiu, 2012). Another example illustrating the
variation in plant gene family size is the large difference
in the number of transcription factors, which can differ
more than 10-fold among plant species (Jin et al., 2014).

At the other extreme, some genes have few or no
paralogs. For example, there is only one Arabidopsis
gene encoding DNA gyrase A, despite the fact that re-
peated rounds ofWGDwould have generated gyrase A
duplicates in the past. Thus, not all gene families are
created equal. What contributes to these large differ-
ences in gene family size? Integrated analysis of gene
family and functional annotation data led to the finding
that plant genes involved in transcriptional regulation,
signal transduction, and stress response tend to have
paralogs (Blanc and Wolfe, 2004b; Maere et al., 2005;
Shiu et al., 2005; Hanada et al., 2008) but those involved
in essential functions, such as genome repair, genome
duplication, and organelles, tend not to (Li et al., 2016).
The correlation between duplication and function also
appears to be influenced by how duplicates are made
(Hanada et al., 2008). For example, transcription factors
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have higher than average retention after WGD (Maere
et al., 2005) but not after local duplication (Hanada
et al., 2008). Therefore, to understand how duplication
impacts gene content, it is necessary to knowhowgenes
are duplicated.

Mechanisms of Gene Duplication

Duplication is a form of mutation in which a genomic
region is replicated and, in some cases, is inserted into
a physically separate location. Multiple mechanisms

contribute to gene duplication (Fig. 2). Considering the
impact on gene content, the most dramatic form of gene
duplication involves duplication of an entire chromo-
some or the whole genome (Fig. 2A). Ancient WGD
events have taken place in the common ancestors of
seed plants (approximately 340 MYA) and of angio-
sperms (approximately 170 MYA; Jiao et al., 2011).
Subsequently, three rounds of WGD events (referred to
as a, b, and g) took place in the Arabidopsis lineage
(Blanc et al., 2003; Bowers et al., 2003). In some cases,
WGD events involve genome triplication, as is the case
for Brassica rapa (Lysak et al., 2005), the wild radish

Figure 1. Duplication events and paralagous gene content in selected plant species. Left, Phylogeny of selected plant species.
Duplication (squares), triplication (hexagons), and undefined (circles) polyploidization events are indicated on the tree. Middle,
Total (blue) and duplicated (pink) gene numbers in each species. A gene is regarded as duplicated if it is significantly similar to
another gene in a BLAST (Altschul et al., 1997) search (identity$ 30%, aligned region$ 150 amino acids, expect value# 1025).
Right, Species names. The data used to generate this figure were obtained from CoGe and Phytozome 11 (Lyons and Freeling,
2008; Lyons et al., 2008; Goodstein et al., 2012) as well as genome annotations for Eucalyptus grandis (Myburg et al., 2014),
Panicum virgatum (Lu et al., 2013), P. patens (Rensing et al., 2008), Salix purpurea (Phytozome), Populus trichocarpa (Tuskan
et al., 2006), and Spirodela polyrhiza (Wang et al., 2014b). References for the information aggregated on CoGe can be found at
https://genomevolution.org/wiki/index.php/Plant_paleopolyploidy.
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Raphanus raphanistrum (Moghe et al., 2014), and bread
wheat (Salse et al., 2008). Even higher levels of poly-
ploidization also have been observed (e.g. octoploid
cultivated strawberry [Fragaria 3 ananassa]; Byrne and
Jelenkovic, 1976). Paleopolyploidy events are thought
to be rare, as only a handful of recognizable events
occurred over the past 200 MYA (Van de Peer et al.,
2009a). Nonetheless, the frequency of paleopolyploid-
ization is much higher in plants than in any other eu-
karyotic lineage (Otto and Whitton, 2000). In addition,
although the survival rate of nascent polyploids remains
largely unclear (Soltis et al., 2015), diploid and polyploid
cytotypes frequently coexist (Ramsey and Schemske,
1998). Given the frequency of ancient and more recent
WGD events in plants, it is not surprising that WGD
accounts for the majority of duplicate genes. In Ara-
bidopsis, for example, approximately 60% of genes
have at least one paralog in a corresponding syntenic
block derived from one of three WGD events (Bowers
et al., 2003).

The contribution of WGD to existing duplicates is
likely much higher than estimated based on analyses of
syntenic duplicates, because someWGD syntenic blocks,
particularly those arising from older events, are no
longer recognizable due to genome rearrangements,
insertions, and deletions. Thus, some of the duplicates
that cannot currently be ascribed to WGDmay actually
be WGD duplicates. Alternatively, they could be de-
rived from subgenomic duplication events, which in-
clude tandem duplication (Zhang, 2003), duplication
mediated by TEs (Jiang et al., 2004), segmental dupli-
cation (Bailey et al., 2002), and retroduplication (Drouin
and Dover, 1990; Brosius, 1991). Tandem (or local)
duplication (Fig. 2B) results from unequal crossing-over
events and leads to a cluster of two to many paralogous
sequences with no or few intervening gene sequences
(Zhang, 2003). The number of tandem duplicates in
plants varies widely, from 451 (4.6% of gene content)
in Craspedia variabilis to 16,602 (26.1%) in apple (Yu
et al., 2015). In Arabidopsis, the proportion of tandem

Figure 2. Mechanisms of gene duplication. A, WGD,
or duplication of genes via an increase in ploidy. B,
Tandem duplication, or duplication of a gene via
unequal crossing over between similar alleles. C,
Transposon-mediated duplication, or duplication of a
gene associated with a TE via replicative transposi-
tion. D, Segmental duplication, or duplication of
genes via replicative transposition of LINE elements in
the human genome. The extent and causative ele-
ments of segmental duplication are ill defined in
plants. E, Retroduplication, or duplication of a gene
via reverse transcription of processed mRNA.
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duplicates is close to the average of approximately 9%
observed for 39 plant species. One challenge in estimat-
ing the contribution of tandem duplication to duplicate
gene content is that, in the case of recent duplication
events, paralogous copies may be misannotated as a sin-
gle gene. For example, there are two SEC10 paralogous
genes involved in exocytotic vesicle fusion, but these
genes make up only one locus in the assembled
Arabidopsis genome (Vukašinovi�c et al., 2014). Thus,
misassembly contributes to an underestimate of tan-
dem genes, and this issue is likely significant as most
plant genomes are of draft quality.

In contrast to tandem duplication, which takes place
locally, other subgenomic duplication mechanisms form
dispersed duplicates. These mechanisms likely involve
repetitive sequences and/or replicative transposition by
TEs (Alleman and Freeling, 1986; Kapitonov and Jurka,
2007). In the case of TE-mediated gene duplication (Fig.
2C) in plants, gene capture by Mutator-like elements
(MULEs) is the most prominent example (Bennetzen,
2005). There are approximately 3,000 rice Pack-MULEs
that collectively contain approximately 1,000 fragmented
or whole-gene sequences (Jiang et al., 2004). There are a
similar number of Helitrons (approximately 2,800) in
maize (Zea mays; Du et al., 2009) but only 46 Pack-
MULEs in Arabidopsis (Jiang et al., 2011). This differ-
ence potentially reflects the historical difference in TE
activity. Interestingly, Pack-MULEs preferentially ob-
tain genic sequences (Ferguson et al., 2013), and a
subset of Pack-MULE-carried genes are expressed and
appear to be under selection (Hanada et al., 2009c).
However, the mechanisms underlying this preferential
acquisition and the functions of the acquired genes re-
main unclear. Similarly, in mammals, long interspersed
nuclear elements and long terminal repeat retroposons
are implicated in the generation of recent duplicates
(Bailey et al., 2003; She et al., 2008) in a process referred
to as segmental duplication (Fig. 2D; Bailey et al., 2002).
Note that this is distinct from the original use of seg-
mental duplication in the plant literature, which re-
ferred to rearranged genomic regions derived from
WGDs (Arabidopsis Genome Initiative, 2000). Al-
though both Pack-MULEs and mammalian segmental
duplicates are associated with TEs, it remains unclear if
they are generated via similar mechanisms.

Another TE-associated mechanism that generates dis-
persed duplicates is retroduplication (Fig. 2E; Drouin and
Dover, 1990; Brosius, 1991). Here, mRNAs are reverse
transcribed into DNA and inserted into the genome.
These duplicate genes are referred to as retrogenes. Sim-
ilar to Pack-MULEs, more retrogenes are found in rice
(1,235) than in Arabidopsis (251; Wang et al., 2006;
Abdelsamad and Pecinka, 2014), which also may reflect
differences in past and current TE activity. In Drosophila
melanogaster, retrogenes tend to be derived from genes
that are highly expressed in germ-line tissues (Langille
and Clark, 2007). However, because the regulatory se-
quences in the promoter are usually not duplicated, ret-
rogenes were initially considered dead on arrival (Graur
et al., 1989). However, there are several examples of

functional retrogenes in mammals and D. melanogaster
(Kaessmann et al., 2009). There is also evidence that plant
retrogenes may be functional. Rice retrogenes have per-
sisted longer than would be expected for nonfunctional
elements and are under selection (Wang et al., 2006). In
addition, studies in rice and Arabidopsis found that be-
tween one-fourth and one-third of retrogenes, respec-
tively, have similar expression patterns to their parental
genes (Sakai et al., 2011; Abdelsamad and Pecinka, 2014),
and in Arabidopsis specifically, retrogene expression is
up-regulated in pollen (Abdelsamad and Pecinka, 2014).
However, while the functions of a few retrogenes have
been examined inArabidopsis (Abdelsamad andPecinka,
2014), the overall functional significance of these dupli-
cates has yet to be fully demonstrated.

Taken together, WGDs and tandem duplications ac-
count for the majority of plant duplicates, but TE-based
mechanisms and retroduplication also generate a sig-
nificant number of duplicates. It should be noted that,
for example, in Arabidopsis, these mechanisms com-
bined account for approximately 70% of duplicate genes.
It remains to be determined if the remaining 30% were
generated by some unknownmechanism or if there was
a failure in assigning a duplication mechanism either
due to the age-related erasure of specific signatures
(i.e. synteny, proximity, and repeats) or too-stringent
methods used to assign a mechanism.

GENE DUPLICATE LONGEVITY
AND PSEUDOGENIZATION

Half-Life of Duplicate Genes

Despite the contribution of multiple duplication mech-
anisms and the variance in genome size, plant gene
content remains relatively similar across land plant
species. Considering that at least five rounds of WGD
took place in the land plant lineage leading to
Arabidopsis (Bowers et al., 2003; Jiao et al., 2011) and
assuming that the common ancestor of land plants had
approximately 10,000 genes, the number of genes in
extant species would be 320,000 even without taking
into account other duplication mechanisms. This ex-
pected gene number is approximately 10 times higher
than the actual gene number in Arabidopsis and indi-
cates extensive gene loss over time. Thus, although
some duplicates have survived over millions to hun-
dreds of millions of years, the predominant fate of
most duplicates is loss (Li, 1983; Maere et al., 2005;
Hanada et al., 2008). The preponderance of duplicates
in plant genomes is driven mainly by the high rate of
duplications over evolutionary time accompanied by
the preferential retention of some duplicates.

How long will a duplicate survive after duplication?
Assuming that the mutational process that leads to
duplicate loss is stochastic, the longevity of a duplicate
gene can be estimated in the form of half-life (i.e. the
amount of time for half of the duplicates derived from a
single event [e.g. WGD] to be lost; Lynch and Conery,
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2000). The genome-wide half-life of Arabidopsis du-
plicates is estimated to be 17.3 million years (Lynch and
Conery, 2003). For example, if a WGD event happened
in the Arabidopsis lineage 17.3 MYA, we would expect
that approximately 50% of the duplicates from that
event will have been lost. As mentioned earlier, there
have been multiple WGDs in the Arabidopsis lineage,
so we can evaluate the consistency of duplicate half-life
by considering these events independently. The most
recent a WGD took place approximately 50 to 65 MYA
(Bowers et al., 2003; Beilstein et al., 2010), and the ob-
served duplicate survival rate ranges from 13.3% (Blanc
et al., 2003) to 16.3% (Maere et al., 2005). Based on this
information, the half-life estimate of aWGD duplicates
is 17.2 to 24.8 million years. Although this is not far off
from the genome-wide estimate of 17.3 million years
(Lynch and Conery, 2003), a duplicates in general have
a longer half-life than when all duplicates are consid-
ered. How about a more ancient WGD? The g dupli-
cation likely took place approximately 140 MYA
(Bowers et al., 2003; Moore et al., 2007), and 4.4% of
duplicates are still retained (Maere et al., 2005). This
implies a longer half-life, 31.3 million years, compared
with a duplicates. On the other hand, certain gene
families across angiosperms show bias against having
paralogs from older WGD events, suggesting that their
half-lives are shorter than average (Li et al., 2016). This
difference in estimated half-life between the a and g

WGD events suggests that duplicate longevity is not
constant over time; the rate of duplicate loss appears to
decrease as the time since duplication increases, per-
haps because a greater proportion of older duplicates
are retained due to selective constraints.
Based on studies comparing duplicate and singleton

(no closely related paralog) genes, the longevity of
duplicates may be influenced by molecular and bio-
logical functions (Maere et al., 2005; Hanada et al.,
2008), structural features (Jiang et al., 2013), number of
protein interactions (Makino and McLysaght, 2012),
and parent of origin (Song et al., 1995). Additionally,
duplication mechanisms have different impacts on
gene content. For example, WGD increases gene con-
tent dramatically but happens relatively infrequently.
In contrast, tandem duplication, although affecting a
limited number of genes, can increase or decrease gene
number every meiotic division. These types of features
that may affect duplicate retention are not taken into
account when estimating genome-wide half-life (Lynch
and Conery, 2003), and thus significant deviations are
expected. Nonetheless, whether certain types of dupli-
cates have longer or shorter half-lives, even the most
conservative estimates suggest that most duplicates are
lost relatively quickly after they are generated.

Mechanisms of Duplicate Gene Loss

The process of duplicate loss may involve deletion of
the entire duplicate sequence and/or pseudogenization
through loss-of-function mutations (Fig. 3A). If two

duplicate genes are completely identical, there should
not be a penalty for deleting either copy. In reality,
however, duplicates are rarely equal. For example,
copies derived from TE-mediated duplication, retro-
duplication, or tandem duplication may be missing
parts of the parent gene-coding and/or regulatory re-
gions. In these cases, loss of the new duplicate will
likely incur no fitness penalty. Even in WGD, particu-
larly when it involves allopolyploidy (merging of two
related, but not identical, genomes), the patterns of
duplicate loss are far from random (Thomas et al.,
2006). The wholesale loss of duplicates is an important
feature of fractionation, the reduction of genic content
post WGD (Freeling et al., 2012). Analysis of syntenic
blocks produced by the a WGD in Arabidopsis
revealed that genes in one duplicate block were lost
preferentially (Thomas et al., 2006). This fractionation
bias has been observed in several plant species, in-
cluding Gossypium raimondii (diploid cotton; Renny-
Byfield et al., 2015), maize (Schnable et al., 2011), and
B. rapa (Cheng et al., 2012). Importantly, this bias ap-
plies only to gaps in syntenic blocks that span multiple
genes but not to gaps resulting from deletions of single
genes (Thomas et al., 2006). Simulations of fractionation
based on yeast data suggest that the observed bias in
gene loss requires deletion events covering multiple
genes and that random, single gene losses alone do not
explain the observed pattern of fractionation (van Hoek
and Hogeweg, 2007). What is the basis for fractionation
bias? Looking across multiple WGD events, fractiona-
tion appears biased against duplicates with reduced
expression level and promoter complexity (Schnable
et al., 2012). Supporting this idea, analysis of lowly
expressed genes in Arabidopsis suggests that they may
be undergoing more rapid divergence and possibly
pseuodgenization (Yang et al., 2011).

Nonfunctional duplicates are not always deleted;
plant genomes are littered with thousands of appar-
ently degenerated, nonfunctional duplicates referred to
as pseudogenes (Benovoy and Drouin, 2006; Guo et al.,
2009; Zou et al., 2009a). Pseudogenes are identified
based on their similarity to annotated genes and the
presence of disabling mutations (e.g. premature stop
codons and frame shifts in protein-coding genes) that
lead to presumed loss of function (Vanin, 1985). Al-
though pseudogenes are presumably nonfunctional, a
small subset of pseudogenes in rice andArabidopsis are
clearly expressed (Yamada et al., 2003; Thibaud-Nissen
et al., 2009; Zou et al., 2009a). There are three potential
explanations for pseudogene expression. First, some
pseudogenes may have been falsely predicted due to
misannotation. An example is the rice ent-KAURENE
SYNTHASE LIKE2 gene, which had mispredicted cod-
ing regions (Tezuka et al., 2015). This issue will likely be
less prominent as transcript-based annotations improve
(Law et al., 2015). The second explanation is that some
pseudogenes may still be functional as truncated pro-
teins or as RNA. For example, apomixis in the grass
Paspalum simplex is hypothesized to be the conse-
quence of antisense regulation by the transcript of a

Plant Physiol. Vol. 171, 2016 2299

Origin and Evolution of Duplicate Genes

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
lp

h
y
s
/a

rtic
le

/1
7
1
/4

/2
2
9
4
/6

1
1
5
3
3
8
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



pseudogene related to the ORIGIN RECOGNITION
COMPLEX3 gene (Siena et al., 2016). However, there is
no direct evidence that the pseudogene is responsible

for the antisense transcript. Finally, some pseudogenes
may have become pseudogenized relatively recently
and are in the process of complete decay. This is

Figure 3. Potential fates of duplicate genes.
Duplicate genes can be pseudogenized/lost
(A), retained by selection on existing func-
tions (B–E), or retained by selection on novel
functions (F and G). Models of selection on
existing function include the following: gene
dosage, or retention of both duplicates because
of a beneficial increase in expression (B);
duplication-degeneration-complementation
(DDC)/subfunctionalization, or retention of
both duplicates to preserve the full com-
plement of ancestral functions (C); dosage
balance, or retention of both duplicates to
maintain the stoichiometric balance (D);
and paralog interference, or retention of
both duplicates to prevent interference be-
tween the products of each paralog (E).
Models of selection on novel functions in-
clude the following: neofunctionalization,
or retention of both duplicates because of a
gain of function post duplication (F); and
escape from adaptive conflict (EAC), or re-
tention of both duplicates that allows for the
independent optimization of conflicting an-
cestral functions (G).
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consistent with the finding that expressed pseudogenes
tend to be derived from more recent duplication events
(Zou et al., 2009a). In addition, pseudogenes, expressed
or not, tend to have elevated nonsynonymous (amino
acid-changing) substitution rates (Zou et al., 2009a),
indicating that they are not subject to the same degree of
selective pressure as their intact relatives.
Do duplicates have similar propensities for pseudo-

genization? In B. rapa and R. raphanistrum, which ex-
perienced a recent genome triplication event, there are
significantly more pseudogenes than in the related
species Arabidopsis and Arabidopsis lyrata, which did
not experience a recent WGD (Moghe et al., 2014). Also,
there is a significant, positive correlation between gene
family size and the number of pseudogenes within
families (Zou et al., 2009a). Thus, in general, the more
members of a family that are duplicated, the more los-
ses occur. However, this correlation is far from perfect
(Zou et al., 2009a), indicating that other factors are
important. One such factor is gene function. For ex-
ample, Arabidopsis pseudogenes tend to have func-
tional relatives playing roles in disease resistance,
specialized (secondary) metabolism, cell wall modifi-
cation, and protein degradation (Zou et al., 2009a), but
transcription factor and receptor-like kinase families
tend not to have pseudogenes (Hanada et al., 2008). In
addition, pseudogenes tend to be derived from tandem
duplicates (Hanada et al., 2008), although this may be
due to the higher rate of tandem duplication compared
with other duplication mechanisms. Taken together,
duplicate longevity depends on functional role and
duplication mechanism, which necessarily means that
there is a significant bias in the kinds of duplicates that
are retained.

MECHANISMS FOR RETENTION OF
DUPLICATE GENES

Genetic Drift and Genetic Redundancy

Over the course of plant evolution, hundreds of
thousands of new genes were created by duplication,
and most of these duplicates were lost over time.
Nonetheless, considering that more than half of the
gene content in most plant species consists of dupli-
cates, some duplicates have clearly escaped this fate.
Why do some duplicates persist while others are lost?
Models for duplicate gene retention in general have
been reviewed elsewhere (Innan and Kondrashov,
2010; Maere and Van de Peer, 2010); here, we will focus
on examples of duplicate retention in plants (Fig. 3, B–
G). It is important to note that these models are not
mutually exclusive. For example, selection on both
duplicates to maintain dosage balance (Fig. 3D) con-
tributes to increased duplicate longevity, which may
allow time for the evolution of novel functions (Fig. 3F;
Veitia et al., 2013). Here, we discuss each model inde-
pendently to emphasize the distinct mechanisms that
contribute to duplicate retention. First, we discuss the

idea that both duplicates are retained without a sig-
nificant change in function, either because insufficient
time has passed for deleterious mutations to accumu-
late or because there is selection pressure to retain re-
dundant functions.

Assuming that mutations accumulate randomly and
that selection is not a factor, genetic drift will be the
dominant factor influencing the frequency of mutant
alleles (Kimura, 1968, 1983). In this case, amutation that
appears in a gene would take approximately four Ne
generations to become fixed (where Ne is effective
population size; Kimura and Ohta, 1969). In Arabi-
dopsis, which has an estimatedNe of 250,000 (Cao et al.,
2011) and a winter annual life cycle for most accessions
(Michaels et al., 2004), the time to fixation is approxi-
mately 1 million years. When a pair of duplicates is
considered, the situation is more complicated because
either copy can be lost without affecting fitness. As-
suming that the time for a recent WGD to sweep
through the population is negligible, the time to fixation
is a function of Ne, the fitness effect of the loss of both
duplicate genes, and themutation rate at the duplicated
loci (Kimura and King, 1979). The average time to fix-
ation is estimated to be between three and 20 Ne gen-
erations. In Arabidopsis, this translates to an average
fixation time of between 0.75 and 5 million years. Thus,
it is expected that some duplicate genes potentially
survive for several million years due to genetic drift and
not because their presence is beneficial. In this situation,
some duplicates may be decaying functionally even
though there is no apparent sign of pseudogenization
(Lehti-Shiu et al., 2015). However, if drift were the only
factor affecting retention and the expected time to de-
letion was approximately 1 million years, we would
expect a much lower genome-wide duplicate half-life
(mean lifetime approximately 1.44 3 half-life). Thus, a
substantial number of duplicates are most likely under
selection (i.e. loss of function in either of the duplicates
is expected to reduce the fitness of the individual).

Alternatively, duplicate retention might occur via se-
lection for genetic redundancy (or genetic buffering),
where the effects of a null mutation are ameliorated (or
buffered) due to the presence of an intact, duplicate copy
(Zhang, 2012). The prediction is that developmental or
physiological phenotypes are only obvious when a gene
and one or more of its relatives (paralogs) are mutated
(Nowak et al., 1997). Consistent with the idea of genetic
redundancy, phenotypic effects when one copy of a
duplicated pair is disrupted are significantly smaller
compared with those observed when a singleton gene is
disrupted in Arabidopsis (Hanada et al., 2009a). How-
ever, claims of genetic redundancy between duplicates
thus far are based on the absence of grossmorphological,
developmental, and/or behavioral phenotypes in highly
controlled environments. Thus, relatively subtle pheno-
typic changes or conditional phenotypes resulting from
mutations in one duplicate copy, which may have fit-
ness consequences, may not be detected. Additionally,
although redundancy may be beneficial in a way that
is analogous to a fail-safe in an engineered system
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(McAdams and Arkin, 1999; Kitano, 2004; Kondrashov,
2010), it remains to be shown how selection can act in
anticipation of future need to favor redundancy. Al-
though long-term conservation of redundant dupli-
cates is feasible in simulated situations, it requires
perfect equivalency in gene functions and in mutation
rates between the two duplicates (Nowak et al., 1997),
which is highly unlikely. After gene duplication, var-
ious degrees of functional redundancy are expected.
But the redundant functions can be present not nec-
essarily because they are useful but because there has
been insufficient time for their loss. Due to the chal-
lenges in experimentally assessing the functional and
fitness contributions of duplicates, the true extent of
genetic redundancy and whether redundancy is the
cause or consequence of duplicate retention remain
unclear.

Selection on Existing Functions

Duplicates can be retained without acquiring new
functions via one of the following four mechanisms:
gene dosage increase (Ohno, 1970), DDC (Force et al.,
1999), gene balance (Freeling and Thomas, 2006), and
paralog interference (Baker et al., 2013). Ohno (1970)
recognized that, in situations where increased gene
dosage confers an advantage by meeting metabolic
demands, the presence of duplicate copies is benefi-
cial (Fig. 3B). Unlike redundancy, the robustness of
duplicates is clearly selectable (McAdams and Arkin,
1999; Kitano, 2004; Kondrashov, 2010); although the
molecular function of the duplicates may be unchanged,
the effect of increased dosage is new.Models of budding
yeast gene networks suggest that WGD likely con-
tributed to increased flux in the glycolytic pathways,
which confers a fitness benefit in high-Glc environ-
ments (van Hoek and Hogeweg, 2009). Similarly, in
Arabidopsis, duplicate retention after WGD is as-
sociated with reactions with high metabolic flux
(Bekaert et al., 2011), suggesting that increased gene
dosage results in increased metabolic activity, which
may be beneficial. The impact of duplicate gene
dosage is emphasized in a recent review (Conant
et al., 2014).

In DDC or subfunctionalization (Fig. 3C; Force et al.,
1999), after duplication of a multifunctional gene, each
copy randomly loses subfunctions of the original gene
(degeneration), and because each duplicate loses dif-
ferent subfunctions, both copies have to be kept to
maintain the original, ancestral functionality (comple-
mentation). An important point to emphasize is that
duplicate retention through DDC does not require any
new evolved functions, just partitioning of the old ones.
Evidence suggests that DDC has occurred at the level
of protein function (Aklilu et al., 2014; Aklilu and
Culligan, 2016), at the level of gene expression (Duarte
et al., 2006; Throude et al., 2009; Zou et al., 2009a;
Ma et al., 2015), and at both levels simultaneously
(Geuten et al., 2011). Under DDC, subfunctions are

assumed to be independently mutable, and it is ex-
pected that the ancestral functions are partitioned sym-
metrically among duplicates. Interestingly, the pattern of
functional partitioning between duplicates tends to be
highly asymmetric, where one copy tends to have sig-
nificantly more subfunctions than its paralog, compared
with what would be expected randomly (Zou et al.,
2009b). Thus, either subfunctions are not independently
mutable and/or other factors affect the partitioning of
subfunctions.

An alternative model for duplicate retention is the
gene balance hypothesis (Birchler et al., 2005; Birchler
and Veitia, 2007, 2010). Under one version of this
model, after WGD, duplicate genes that are dosage
sensitive tend to be retained (dosage balance; Fig. 3D;
Thomas et al., 2006). The idea is that duplication of a
gene whose product has a greater number of molec-
ular interactions (e.g. protein-protein or protein-
DNA interactions) will lead to a dosage imbalance if
all its interactors remain single copy. The individual
harboring the duplicate will then have reduced fit-
ness due to this imbalance. A higher degree of im-
balance is expected for gene products with a higher
number of interactions. In this situation, the dupli-
cation of just one gene will likely have a deleterious
effect. But when this highly connected gene is du-
plicated along with its interactors in a WGD event, its
retention is favorable because its removal would lead
to imbalance. Consistent with gene balance, the ex-
pression patterns of highly interconnected genes tend
to be more highly correlated than random duplicates
(Lemos et al., 2004). Furthermore, there is a greater
correlation between the expression patterns of WGD
duplicates than between tandem duplicates (Casneuf
et al., 2006; Arabidopsis Interactome Mapping Con-
sortium, 2011).

Gene balance also can result from mechanisms
other than dosage balance. In situations where mo-
lecular interaction is important for gene function,
degenerative mutations in one duplicate copy may
interfere with the functions of its paralog (paralog
interference; Fig. 3E). These degenerative mutations
will be selected against, leading to retention of both
duplicates (Bridgham et al., 2008; Baker et al., 2013).
Paralog interference is distinct from dosage balance in
two respects. First, paralog interference occurs at the
level of protein interaction and is independent of
changes in the amount of gene products. Second, it is
relevant specifically to situations where the formation
of homomultimers is important for the ancestral gene
function. The sequestration of interactors by the de-
generate copy effectively creates an imbalance but
not in dosage. Given that homomultimerization is
prominent in multiple protein families such as tran-
scription factors (Amoutzias et al., 2008), paralog in-
terference may have a significant contribution to
duplicate retention post WGD (Kaltenegger and Ober,
2015). Note that paralog interference also is distinct
from DDC, which requires degenerative mutations to
explain retention.
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Contribution of Selection on New Functions to
Duplicate Retention

Duplicates, although originally sharing the same
functions, may acquire new functions. If these functions
are beneficial, selection will act to retain both dupli-
cates. Two models that explain duplicate retention due
to the acquisition of novel adaptive functions are neo-
functionalization (Ohno, 1970) and EAC (Des Marais
and Rausher, 2008). Under the neofunctionalization
model, one duplicate retains the ancestral function
while its paralog gains a novel function (Fig. 3F). If
the novel function contributes to better fitness, selec-
tion should maintain both duplicates. Note that deter-
mining whether neofunctionalization has taken place
requires knowledge of gene functions prior to duplica-
tion. Some examples where neofunctionalization after
duplication has likely contributed to duplicate retention
include MADS box transcription factors involved in the
evolution of novelfloral structures (He and Saedler, 2005;
Hu et al., 2015b; Zhang et al., 2015), 4,5-dioxygenase
and cytochrome P450 genes that contribute to pig-
ment variation in Caryophyllales (Brockington et al.,
2015), and the recruitment of duplicated primary me-
tabolite genes into specialized metabolite pathways
(Durbin et al., 2000). At the gene expression level, it is
estimated that approximately 10% of Arabidopsis du-
plicate genes have gained a novel response to stress
conditions (Zou et al., 2009b), although it remains to be
determined whether these novel responses are adap-
tive or not.
Similar toDDC, EAC (Hittinger and Carroll, 2007; Des

Marais and Rausher, 2008) predicts subfunctionalization
followed by the specialization of duplicates, but in
EAC, novel functions arise prior to duplication (Fig.
3G). Subsequent subfunctionalization allows the
separate functions of the ancestral gene to evolve in-
dependently. Thus, the distinguishing characteristic
of EAC is improvement of the original ancestral
function in one duplicate and of the novel function in
the other (Des Marais and Rausher, 2008). EAC also is
similar to the classic neofunctionalization model in
that duplication allows further adaptive changes to
accumulate, but the neofunctionalization model pos-
tulates that, after duplication, only one copy acquires
a novel function. Under both neofunctionalization
and EAC, duplicates are retained due to their adap-
tive contribution: individuals with duplicates that
have novel and/or optimized functions are expected
to have higher fitness compared with individuals
with single copies. In contrast, under DDC, the du-
plicates do not provide an adaptive edge compared
with the single-copy gene. Because of the requirement
that the novel function existed prior to duplication,
EAC is likely particularly relevant to genes that
are nonessential and not highly conserved but are
highly liable to selection (Sikosek et al., 2012). Examples
of EAC in plants include improved enzymatic ac-
tivity on ancestral flavonoid substrates after dupli-
cation of dihydroflavonol-4-reductase leading to

adaptive changes in anthocyanin synthesis (Des Marais
and Rausher, 2008) and salicylic acid/benzoic acid/
theobromine enzymes, where improved enzymatic
activities likely are under positive selection (Huang
et al., 2012).

The models that we have presented here as distinct
may actually involve a combination of different mech-
anisms. For example, EAC invokes both the neo-
functionalization and DDCmodels to explain duplicate
retention. Similarly, under the subneofunctionalization
model (He and Zhang, 2005), the expected outcome of
duplication is first the partitioning of ancestral func-
tions followed by neofunctionalization in both dupli-
cates. Subneofunctionalization is distinct from EAC,
however, in that the total number of unique functions of
the duplicate pair is expected to exceed the number of
original functions. This is consistent with the finding
that the numbers of protein interactions among two
duplicate genes are higher than those of randomly
paired singletons (He and Zhang, 2005). Paralog
interference does not require adaptive change as a
mechanism for duplicate retention, but subsequent
neofunctionalization may resolve interference in a
way that further increases the adaptive value of both
duplicates (Baker et al., 2013; Kaltenegger and Ober,
2015). Taken together, the retention of a duplicate
may involve any individual or combination of the
above mechanisms, and it is of interest to know the
relative contributions of each. Although some studies
have explicitly compared different models of reten-
tion (Yang et al., 2006), the major obstacle to assessing
the mechanisms of duplicate retention remains the
inference of ancestral function, which requires a
number of assumptions and is hypothetical. Thus,
assessing the relative contributions of each duplica-
tion mechanism, or combination of mechanisms, to
duplicate retention remains a major challenge.

PROPERTIES OF RETAINED DUPLICATES

Evolutionary Rate of Duplicates

After gene duplication, the rate of evolution (se-
quence substitutions) should increase, at least initially,
because the presence of two copies relaxes selection
against previously deleterious mutations (Scannell
and Wolfe, 2008). Consistent with this expectation,
duplicates display relaxedpurifying selection (Carretero-
Paulet and Fares, 2012) as well as differences in
sequence structure, such as length of the coding region
and the size and distribution of indels (Wang et al.,
2013a). This increase in evolutionary rate is not nec-
essarily equal for both copies: the proportion of WGD
duplicates with evidence of asymmetric evolution
ranges from 21.2% in maize to 68.3% in P. patens
(Carretero-Paulet and Fares, 2012). Additionally, after
a recent genome triplication approximately 25 MYA,
13% to 19% of B. rapa and R. raphanistrum paralogs
evolved asymmetrically (Moghe et al., 2014). This pattern
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is expected under the neofunctionalization model, where
one copymaintains the original functionwhilemutations
that contribute to new functions accumulate in the other
copy. However, this pattern also can be explained by the
gradual loss of function in one copy: once one degener-
ative mutation has occurred in one duplicate, the chance
for a second mutation to occur in the same duplicate is
expected to be higher. Thus, for any particular case of
asymmetry, the underlying cause needs to be deter-
mined, and neofunctionalization cannot be assumed by
default.

Asymmetry in evolutionary rate demonstrates dif-
ferential evolution between duplicate copies, but what
about relative to the previous, unduplicated copy? To
assess whether duplication is associated with altered
evolutionary rates, three different comparisons can be
made. First, a duplicate pair can be compared with the
putative ancestral gene. This is exceedingly difficult
due to the challenges associatedwith inferring ancestral
function. Second, a duplicate pair can be compared
with a closely related singleton (that was duplicated in
the past but whose paralogs were lost). In this case, the
duplicates and singletons have common ancestry and,
presumably, similar functions. An exemplary study of
this type provides evidence for asymmetric sequence
evolution of both WGD and small-scale duplicates in
multiple plant species (Carretero-Paulet and Fares,
2012). Third, all duplicates (genes with paralogs) can be
compared with all singletons (those with no obvious
paralog) in order to assess the average trend. In Ara-
bidopsis, the nonsynonymous (amino acid-changing)
substitution rates of duplicates tend to be lower com-
pared with those of singletons (Yang and Gaut, 2011).
The apparently more constrained evolution among
duplicate genes can be the consequence of gene balance
and/or paralog interference, but there can be other
confounding factors that complicate the comparison of
duplicates and singletons. For example, the evolution-
ary rate differences between duplicates and singletons
can reflect differences in gene functions (discussed be-
low) and sequence features such as protein domains,
which tend to be longer, more numerous, and more
highly conserved in duplicates than in singletons
(Chapman et al., 2006). Additional sequence features
differ between singleton and duplicate genes across
multiple plant species (Jiang et al., 2013), but it remains
to be seen whether these features contribute to the dif-
ference in evolutionary rate or are themselves conse-
quences of duplication.

Expression Patterns of Duplicates

In addition to sequence differences, duplicate genes
can have divergent expression patterns. At the tran-
scriptional level, approximately 70% of duplicate pairs
in Arabidopsis have significant differences in transcript
levels (Ganko et al., 2007). In Gossypium (cotton), the
transcript levels of 99.4% of the duplicates derived from
a WGD event that occurred 60 MYA have diverged

(Renny-Byfield et al., 2014). Expression divergence at
the protein level also has been documented (Hu et al.,
2015a). This divergence in expression may be under
selection due to subfunctionalization and/or neo-
functionalization. However, this difference in expres-
sion could result from fractionation among WGD
duplicates (Schnable et al., 2011) that may not be subject
to selection, at least initially. If expression differences
were purely neutral, paralogs from younger duplica-
tion events would be expected to have more similar
expression profiles. Yet the correlation between dupli-
cate expression similarity and the timing of duplication
(using synonymous substitution rate as a proxy) is
weak, and the direction of correlation is not consistent
between WGD (positive) and tandem (negative) du-
plicates (Haberer et al., 2004; Ganko et al., 2007). This is
also true in rice (Li et al., 2009) and poplar (Populus spp.;
Rodgers-Melnick et al., 2012). Thus, expression diver-
gence is not an entirely neutral process. In contrast,
there is a highly significant negative correlation be-
tween nonsynonymous substitution rate and expres-
sion similarity between duplicates (Ganko et al., 2007).
That is, the more divergent the protein sequences are,
the more similar the expression profiles. Assuming that
the duplicates that contribute to this pattern are in-
dispensable, it would appear that duplicates will be
retained if they have sufficiently large differences in
either expression profiles or sequences and, in some
cases, a combination of both. Consistent with this no-
tion, younger duplicates that are essential (lethal when
mutated) do, in fact, have more divergent expression
profiles compared with older, essential duplicate genes
(Lloyd et al., 2015). In this case, the large difference in
expression patterns of young duplicates contributes to
the lack of buffering effect if one duplicate is lost.

Expression divergence between duplicates can arise
due to differences at various stages of expression reg-
ulation. First, differences in cis-regulatory elements
between Arabidopsis duplicate genes explain, in part,
why duplicates have different responses to stressful
environments (Zou et al., 2009b). InGossypium hirsutum
(allotetraploid cotton), 40% of homologs derived from a
recentWGDdisplay transcriptional divergence that can
be attributed to cis-regulatory divergence between the
diploid progenitors (Chaudhary et al., 2009). This result
also is consistent with a recent study that found diver-
gence in DNaseI footprints in the promoters of recently
duplicated genes, suggesting that they are regulated by
different sets of transcription factors (Arsovski et al.,
2015). The degree of regulatory interaction divergence
is dependent on the duplication mechanism: most
WGD-derived duplicates share some regulatory inter-
actions, while non-WGD duplicates tend not to have
overlapping regulators (Arsovski et al., 2015). Gene
body methylation is found to impact transcription
(Lister et al., 2008; Takuno and Gaut, 2012), and di-
vergence in methylation pattern between duplicates
is significantly, although rather weakly, correlated
with expression divergence in Arabidopsis (Wang
et al., 2014a), rice (Wang et al., 2013b), and cassava
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(Manihot esculenta; Wang et al., 2015a). Beyond
transcriptional regulation, duplicates with divergent
microRNA-binding sites tend to have more divergent
expression profiles (Wang and Adams, 2015), and
duplicates also can differ significantly in alternative
splicing. For example, in hexaploid bread wheat, 42%
and 61% of alternative splicing events differ between
homologous gene pairs in chromosome 3A-3B and 3A-
3D comparisons, respectively (Akhunov et al., 2013).
In Arabidopsis, 85% of a WGD and 89% of tandem
duplicates have divergent alternatively spliced forms
(Tack et al., 2014).
Much like evolutionary rate, the expression of du-

plicates as a whole can be significantly different from
that of singletons (Holstege et al., 1998; Seoighe and
Wolfe, 1999). In plants, duplicates tend to be consis-
tently more highly expressed than singletons in mul-
tiple plant species (Jiang et al., 2013). Conversely,
while breadth of expression also is higher in duplicates
in general, the trend is not universal. The differences in
chromatin accessibility between duplicates and sin-
gletons may provide an explanation for expression
level differences: in Arabidopsis, the promoter regions
of duplicate genes have nearly twice as many DNase I
hypersensitive sites compared with singleton genes
(Arsovski et al., 2015). Taken together, these studies
highlight the molecular mechanisms that underlie
expression divergence between duplicates and be-
tween duplicates and singletons. The challenge now
is to distinguish between the expression differences
that contribute to differences in duplicate functions
and those with no significant impact.

Functions of Duplicates

Given that some, although not all (e.g. gene balance),
models of duplicate retention involve selection on gain-
or loss-of-function mutations, we expect to find evi-
dence of functional difference in duplicate pairs. For the
purposes of this review, we classify functions into two
different categories: molecular function and biological
process-based function. Molecular function is defined
as the molecular activity of a gene product (e.g. protein-
protein interaction). Analysis of Arabidopsis inter-
actome data revealed that duplicates tend to have
different interaction partners (Carretero-Paulet and
Fares, 2012; Guo et al., 2013). Nearly half of all WGD
duplicate pairs are completely diverged,with no shared
protein-protein interactions (Guo et al., 2013). Younger
duplicate pairs tend to have more shared interactions,
but a similar portion of young (92.7%) and old (97.3%)
duplicates have at least some divergence in protein-
protein interactions. Greater discordance in protein-
protein interactions tends to be correlated with decreased
expression similarity and a greater number of distinct
protein domains (Guo et al., 2013). Duplicate genes
as a whole encode proteins with significantly more
protein-protein interactions compared with singleton
genes (Alvarez-Ponce and Fares, 2012). However,

while genes derived from WGD have greater regula-
tion connectivity, tandem and WGD duplicates show
no significant differences in the number of associated
protein-protein interactions (Carretero-Paulet and
Fares, 2012).

The function of a gene also can be defined as the
impact of its gene product on a biological process. There
is a large body of experimental evidence demonstrating
how biological process functions differ between two
plant duplicates. For example, paralogous MADS do-
main transcription factors control different aspects of
plant development, and this functional divergence is
due to changes in both promoter and coding regions
(McCarthy et al., 2015). To summarize how the bio-
logical processes involving duplicates differ from those
involving singleton genes, one approach is to examine
annotated gene functions. Importantly, the functional
differences between duplicates and singletons are
heavily influenced by the duplication mechanism. For
example, Arabidopsis WGD duplicates involved in
signal transduction and transcriptional regulation tend
to be retained (Blanc and Wolfe, 2004b; Seoighe and
Gehring, 2004; Maere et al., 2005; Shiu et al., 2005). On
the other hand, Arabidopsis and rice genes in Gene
Ontology (GO; Ashburner et al., 2000) categories rele-
vant to response to environmental stress tend to be
tandemly duplicated (Rizzon et al., 2006; Hanada et al.,
2008), and Arabidopsis genes that are transcriptionally
responsive to stress have experienced lineage-specific
expansion due mainly to tandem duplication (Hanada
et al., 2008). To assess if the functional biases in dupli-
cate retention are consistent across species, the enrich-
ment of GO terms in WGD and tandem duplicates was
evaluated in six flowering plants (Jiang et al., 2013). The
overrepresentation of GO terms was found to be anti-
correlated between WGD and tandem duplication
within each species. However, only a subset GO terms
(transcriptional regulation, ribosomes/translation,
amino acid synthesis, and kinase activity) had the same
pattern of enrichment in the majority of species (Jiang
et al., 2013). This is consistent with another study that
found differences between the functions of WGD and
tandem genes but little correlation between the overall
pattern of GO category enrichment in duplicate genes
across four plant species (Carretero-Paulet and Fares,
2012). Conversely, gene families that are common
across sequenced angiosperms are biased toward
single-copy status and retained as such in all species
except those with a recent WGD (less than 50 MYA;
Li et al., 2016). Although GO-based analysis has
been informative, there can be significant issues
with its use (Rhee et al., 2008), particularly because
there are differences in the quality of functional
annotation for different genomes. Further meta-
analysis using compiled experimental data across
species, which is routinely done in evo-devo studies
of floral evolution, for example (Fornoni et al., 2016),
may provide the required resolution and accuracy
to assess functional differences between duplicates
and singletons.
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Taken together, duplicate and singleton genes have
significantly different sequence properties, expression
patterns, molecular functions, and biological roles.
These properties can be used to construct quantitative
models that can predict whether a duplicate will be
retained or not. Among the properties that distinguish
duplicates from singletons, which ones are more im-
portant? Based on duplicate genes from six flowering
plant species, the number of unique protein domains
(another metric for the number of functions), nucleotide
diversity, and GC content were found to be the most
important predictors (Jiang et al., 2013). In another
study,wheremultiple sequence properties, measures of
conservation, molecular functions, and biological net-
work information were consolidated in a single quan-
titative model to predict retention (Moghe et al., 2014),
it was shown that no single property could accurately
distinguish between duplicates and singletons. How-
ever, models that used only GO terms, sequence, and
conservation features could predict duplicates equally
well as models including the full set of features (Moghe
et al., 2014), highlighting the importance of these fea-
tures in duplicate retention.

EVOLUTIONARY, ECOLOGICAL, AND AGRONOMIC
IMPACTS OF GENE DUPLICATION

Contribution of Duplicate Genes to Evolutionary Novelty

A common theme among models of duplicate re-
tention is that, for both copies of a gene to be main-
tained, differences in function, expression, or interaction
occur in one if not both paralogs. In some cases, du-
plicates will acquire novel functions and contribute
to evolutionary novelties. For certain duplicates, evi-
dence for a novel function can be seen in the mor-
phological phenotypes caused when they are knocked
out, and the presence of such a phenotype is correlated
with the extent of sequence and expression divergence
(Hanada et al., 2009b). The impact of duplication on
evolution has been discussed in depth (Van de Peer
et al., 2009b). Here, we focus on plant examples and
classify evolutionary novelties into three types: (1)
novel molecular function (e.g. expression in a novel
context or interaction with a new protein); (2) novel
plant structure/function that results from a new mo-
lecular function (e.g. a new floral organ or a new cell
type); and (3) novel adaptive traits that result from a
novel structure/function (e.g. disease resistance). This
distinction is important because the novel functions/
structures in types 1 and 2 need not be adaptive and,
thus, may be novel without being selected for. What is
the evidence that gene duplication has contributed to
these three types of novelties in plants?

Novel molecular functions acquired after gene du-
plication can easily be seen in the context of gene ex-
pression. For example, Arabidopsis duplicates have
likely accumulated novel environmental responses
(Zou et al., 2009b) and novel developmental regulatory

patterns (Liu et al., 2011). Novel leaf gene expression
patterns also are observed for some maize duplicate
genes (Hughes et al., 2014). However, a novel expres-
sion pattern is not necessarily adaptive. In the case of
novel environmental responses, some of these re-
sponses may be adaptive (Zou et al., 2009b), but direct
evidence is not available. Duplication also has con-
tributed to the generation of novel metabolic functions.
Specialized metabolism genes are retained preferen-
tially following tandem duplication (Yu et al., 2015),
and tandemly duplicated clusters have been found in
multiple plant species (Kliebenstein andOsbourn, 2012;
Nützmann and Osbourn, 2014). Interestingly, some
specialized metabolic genes likely arose from neo-
functionalized duplicates of primary metabolism genes
(Qi et al., 2006), and further duplications of specialized
metabolic genes have likely contributed to additional
novel biochemical activities (Field and Osbourn, 2008;
Takos et al., 2011). In some cases, these duplicates are
implicated in defense against herbivores and microbes
as well as in attracting pollinators (Mizutani and Ohta,
2010; Moghe and Last, 2015). However, the adaptive
significance of most novel biochemical activities has yet
to be demonstrated.

There also is evidence that duplicate genes have
contributed to novel plant structures/functions, and in
some cases, there is clear adaptive significance. A key
example is the specification of floral organ identity by
MADS box transcription factors (Bowman et al., 1989;
Sommer et al., 1990; Coen and Meyerowitz, 1991;
Theissen, 2001). Although the MADS box gene family
originated prior to the divergence between major eu-
karyotic lineages (Gramzow et al., 2010), extensive
duplication events have resulted in the expansion of
MADS box genes involved in floral development
(Purugganan et al., 1995; Kramer et al., 1998, 2006;
Causier et al., 2010). Many MADS box paralogs appear
to have redundant functions (Vandenbussche et al.,
2004; de Martino et al., 2006; Geuten and Irish, 2010),
but others have clearly diverged in function (Airoldi
and Davies, 2012). Some examples include the di-
vergence of the AP3/TM6 paralogs in petunia (Pe-
tunia hybrida) due to a change in regulatory elements
(Rijpkema et al., 2006), the modification of preexisting
floral regulators leading to the development of novel
floral organ types in the Ranunculales (Kramer et al.,
2007; Rasmussen et al., 2009), and the lineage-specific
expansion and divergence of the DEFICIENS genes in
orchids (Orchidaceae spp.), giving rise to unique floral
features (Mondragón-Palomino and Theissen, 2011).
These examples highlight the importance of duplication
and divergence of floral identity genes as a major con-
tributor to the evolution of floral morphology. This
process also has likely been important to the evolution
of vegetative organs. For example, a duplicated KNOX
transcription factor has acquired a novel regulatory
pattern that regulates leaf shape and aboveground ar-
chitecture in plants (Furumizu et al., 2015). Finally,
duplication can contribute to the interactions of plants
with other organisms: the duplication of a receptor-like
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kinase gene originally involved in mycorrhizal symbi-
osis gave rise to the lysin motif receptor-like kinase
SILYK10 in tomato (Solanum lycopersicum), which likely
adopted a new role in nodulation with clear adaptive
significance (Buendia et al., 2016). These are but a few
examples of evolutionary novelties that can be found in
the large body of plant genomic and functional studies.
It should be emphasized that a novel molecular

function may not necessarily contribute to a novel plant
structure/function. In addition, a novel plant structure/
function may not necessarily be adaptive. The challenge
lies in not only determining the presence of a novel
activity but also assessing its adaptive significance.
Using the disease resistance (R) genes as an example,
tandem duplication (Rizzon et al., 2006; Yu et al., 2015)
and WGD (Cannon et al., 2002; Plocik et al., 2004;
Zhang et al., 2014) have contributed to a net gain of R
genes over the course of plant evolution. Based on
detailed functional studies of selected R genes, they
are important for eliciting proper host defense re-
sponses; thus, their presence is clearly adaptive (Dangl
and Jones, 2001; Jones and Dangl, 2006). In addition,
strong positive selection driving sequence divergence
between some R gene duplicates has been noted
(Bakker et al., 2006; Ratnaparkhe et al., 2011). Thus, the
proliferation of R genes has been hypothesized to be
an indication of their adaptive value (Holub, 2001).
Nonetheless, R genes belong to one of the most highly
variable gene families (Clark et al., 2007) and tend to
have an excess of pseudogenes (Zou et al., 2009a). A
substantial number of R genes may not be under se-
lection, and for those that are, assessing the adaptive
significance is challenging because the biotic factors
that interact with the R gene products are largely un-
known. This challenge is not specific to R genes but
applies to any duplicate gene thought to contribute to
increased fitness.

Ecological Impacts of Duplicate Genes

The evolutionary innovations ascribed to duplicate
genes can have important ecological implications. Gene
duplication has contributed to developmental nov-
elties that facilitate interactions between plants and
other species. For example, the evolution of floral
characteristics is strongly associated with functional
groups of pollinators (Fenster et al., 2004). The concept
of a pollinator syndrome suggests that selective pres-
sure exerted by pollinators results in the convergent
evolution of a common set of floral traits. In orchids,
the majority of species have only a single pollinator
(Tremblay, 1992), but the evolution of specialized mor-
phology for certain pollinators has occurred multiple
times (Johnson et al., 1998). According to the orchid
code hypothesis, the proximal cause of the diversity
of orchid floral structures can be attributed to two
DEFICIENS-like transcription factor duplication events
followed by gain and/or loss of function in different
orchid lineages (Mondragón-Palomino and Theissen,

2008, 2009). Similarly, the duplication and subsequent
diversification of CYCLOIDEA2-like transcription fac-
tors inMalpighiaceae is thought to have been important
for the evolution of bilateral symmetry (zygomorphic)
in flowers from radial symmetry (actinomorphic;
Zhang et al., 2010).

In addition to developmental novelties that facili-
tate ecological interactions, duplicate genes are im-
portant components in the evolutionary arms race
between plants and pathogens/herbivores. Plant de-
fense against herbivores involves specialized me-
tabolites such as the glucosinolates in Brassicales
(Demain and Fang, 2000; Halkier and Gershenzon,
2006) and novel glucosinolate pathway components,
which likely derived from duplication events (Edger
et al., 2015). In particular, the retention of the core Trp
pathway gene duplicates derived from the b WGD
event appears to have led to the evolution of the glu-
cosinolate pathway (Edger et al., 2015). Similarly, the
previously noted function and expansion of R gene
families are suggestive of the importance of R gene
duplication in the interactions between plants and
pathogens.

Interestingly, aside from plant-nonplant interactions,
both R genes and specialized metabolic genes also can
impact plant speciation. Speciation results from barriers
in gene flow, which can arise at different times during
development and can involve many different mecha-
nisms, frommolecular to environmental (Rieseberg and
Willis, 2007). At the genetic level, incompatibility be-
tween related species can be explained by the Bateson-
Dobzhansky-Muller model, which involves negative
epistasis between two or more divergent loci in hybrids
(Orr, 1996). After gene duplication, differential loss of
function or patterns of subfunctionalization between
duplicate loci can, in some situations, result in net loss
of function for certain gamete combinations (Force and
Lynch, 2000).

Multiple examples of negative interactions resulting
from copy number variation and reciprocal silencing
of duplicate genes were observed in a survey of spe-
ciation genes (Rieseberg and Blackman, 2010). For
example, R gene duplicates have been hypothesized to
play an important role in speciation due to their ability
to induce necrosis in hybrids (Bomblies and Weigel,
2007). Defensive compounds such as glucosinolates
may function as part of a pollinator syndrome (Demain
and Fang, 2000; Halkier and Gershenzon, 2006), which
can serve as a reproductive barrier. Hybrid incom-
patibility has been shown to result from the differ-
ential expression of tandemly duplicated receptor-like
kinases that are involved in innate immunity in Ara-
bidopsis (Smith et al., 2011) and by negative inter-
actions between tandemly duplicated clusters of
receptor-like kinases and subtilisin-like proteases
in wild rice (Oryza rufipogon) and domesticated rice
(Chen et al., 2014).

Because a change in ploidy levels is expected to result
in instant reproductive isolation, WGD is seen as a
major mechanism of plant speciation (Ramsey and

Plant Physiol. Vol. 171, 2016 2307

Origin and Evolution of Duplicate Genes

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
lp

h
y
s
/a

rtic
le

/1
7
1
/4

/2
2
9
4
/6

1
1
5
3
3
8
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Schemske, 1998). Consistent with this expectation, there
is a significant correlation between the presence of a
recent WGD event and the number of extant species in
Brassicaceae, Cleomaceae, Fabaceae, Poaceae, and
Solanaceae (Soltis et al., 2009). Similarly, an estimated
15% of speciation events in angiosperms and 31% in
ferns were associated with an increase in ploidy
(Wood et al., 2009). Duplication also has been associ-
ated with the evolution of interspecies interaction in
plants (Edger et al., 2015) as well as the evolution of
novel structures/functions in angiosperms (Soltis and
Soltis, 2016), which are thought to be important to
speciation and diversification. The radiation of plant
species appears to lag significantly behind WGDs,
which has led to the proposition that WGD and the
subsequent development of novel traits primes a
population for speciation by a subsequent dispersal
event (Schranz et al., 2012; Tank et al., 2015). Consis-
tent with this model, the timing of recent ploidy events
in angiosperms is clustered around the Cretaceous-
Paleogene extinction (Vanneste et al., 2014), and
WGD events and speciation events in conifers oc-
curred around the time of the Permian-Triassic ex-
tinction (Lu et al., 2014; Li et al., 2015b). However,
while the lag-modulated association between WGD
and diversification has been shown to be significant
(Tank et al., 2015), the connections between WGD and
species radiation are correlational, not cause and ef-
fect. Neopolyploid lineages are more prone to extinc-
tion than diploids (Mayrose et al., 2011), which is
consistent with the observation that the rate of neo-
polyploidization in plants is high yet detectable spe-
ciation events due to WGD are relatively rare (Otto
and Whitton, 2000; Ramsey and Schemske, 2002; Jiao
et al., 2011; Moghe and Shiu, 2014). Given that speci-
ation by WGD is rare, the correlation between WGD
and radiating events may be because they are unlikely
to be observed in association with dispersed events.

Taken together, gene duplications, both small and
large scale, may be important in plant adaptation to
variable abiotic and biotic environments, in speciation,
and in contributing to the diversity of angiosperm
species. Although there is indirect evidence, direct
demonstration of the role of duplicate genes in eco-
logical adaptation is challenging to come by. In a
landmark study examining the genetic basis of how
plants adapt to their local environment, 15 fitness
quantitative trait loci were identified using an Ara-
bidopsis recombinant inbred population derived
from a Swedish accession and an Italian accession
(Ågrena et al., 2013). Interestingly, one major quanti-
tative trait locus contains the C-REPEAT-BINDING
FACTOR (CBF) locus, which has three CBF genes
known to control plant cold tolerance (Gehan et al.,
2015). In the Italian population, CBF2 is nonfunctional,
resulting in reduced cold tolerance. Although this is
not an example of a new duplicate attaining a novel,
adaptive function, it provides direct evidence of the
importance of duplicate genes in influencing species
range due to abiotic constraints.

Contribution of Duplicate Genes to Agronomic Traits

Gene duplication facilitates the evolution of novel
traits that can be subjected not only to natural selection
but also to artificial selection, which is important to crop
improvement. A recent review has summarized studies
revealing that duplicate genes derived from polyploidy
can be key to crop domestication and the evolution of
stress resistance/tolerance traits (Renny-Byfield and
Wendel, 2014). Many crop plants have experienced
relatively recent WGDs: 1.5 MYA in G. hirsutum (Li
et al., 2015a), 13 MYA in soybean (Schmutz et al., 2010),
and 0.5 MYA and approximately 3.5 MYA in wheat
(Brenchley et al., 2012). In bread wheat, polyploidy
contributed to the grain free-threshing character con-
trolled by complex interactions between the duplicate
Q transcription factors (Zhang et al., 2011) and to the
soft grain character controlled by the Hardness locus
(Chantret et al., 2005). It is also hypothesized that poly-
ploidization has contributed to the expansion of wheat
storage protein genes (Brenchley et al., 2012). In
G. hirsutum, the recentWGDhas resulted in up-regulation
and increased selection of fiber genes on the A(t) sub-
genome compared with the progenitor genes, which is
correlated with the production of longer, spinnable fi-
bers (Li et al., 2015a). Similarly, in soybean, nodulation
and oil production gene duplicates tend to be retained
post WGD (Schmutz et al., 2010) and may contribute to
soybean domestication traits. Based on comparative
genomic evidence, it is also argued that selection in
Brassica napus has led to the preservation of duplicate
oil biosynthesis genes (Chalhoub et al., 2014). Although
not all of the above examples provide direct evidence,
they are suggestive of the impact of gene duplication,
particularly polyploidy, on agronomically relevant
traits.

In addition to WGD, smaller scale duplications can
contribute to agronomic traits. Given that a number of
genes involved in plant stress tolerance or resistance are
found in tandem clusters and display copy number
variation (Ellis et al., 2000), it is expected that tandem
duplication has played a major role in these traits. For
example, the NBS-LRR gene family, whose members
have roles in biotic stress resistance, are highly variable
between rice cultivars (Yang et al., 2008). In terms of
abiotic stress tolerance, one prominent example is the
rice Submergence1 (Sub1) tandem cluster, which con-
tains multiple ethylene-responsive factor genes (Sub1A,
Sub1B, and Sub1C) and is involved in submergence
tolerance (Fukao et al., 2006). Through comparisons of
rice cultivars and wild rice species, it was shown that
the Sub1A haplotype likely arose recently, potentially
after rice domestication (Fukao et al., 2009).

Tandem duplicates also are implicated in the evolu-
tion of other agronomic traits. For example, copy
number variation in a tandem duplicated region con-
trols rice grain size diversity, an important quality trait
(Wang et al., 2015b). This region contains two copies of
Grain Length on Chromosome7 (GL7) that are homologs
of the Arabidopsis LONGIFOLIA gene, which regulates
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cell elongation. Tandem duplication leads to elevated
levels of GL7 expression and increased grain length
(Wang et al., 2015b). Based on comparisons of wild and
domesticated pepper (Capsicum annuum) species, tan-
dem duplicate genes involved in capsaicin biosynthesis
have likely contributed to the diversification of pun-
gency in peppers (Qin et al., 2014), which may be the
basis of pungency variation among domesticated pep-
per varieties. Additionally, domesticated tomato pro-
vides an example where an agronomic trait was
influenced by transposon-mediated duplication. Fruit
shape difference between domesticated andwild (Solanum
pimpinellifolium) tomato is due to the increased expres-
sion of IQD12 after retrotransposon-mediated dupli-
cation to a new genomic region (Xiao et al., 2008).
In the previous sections, we have discussed several

domestication-related traits that can be attributed to
gene duplications. One obvious omission is flowering
time. When plants are grown in new environments, the
change in photoperiod makes selection for proper
flowering time essential. In sunflower (Helianthus
annuus), the expression of Flowering Locus T (FT) du-
plicates is central to the control of flowering time
(Blackman et al., 2010). During sunflower domestica-
tion, a dominant negative mutation likely occurred in
the FT1 duplicate and contributed to delayed flower-
ing. Another example is the Heading Date1 (HD1) locus,
which encodes a member of the CONSTANS tran-
scription factor family (Liu et al., 2015). In sorghum
(Sorghum bicolor), foxtail millet (Setaria italica), and rice,
mutant HD1 orthologs have contributed to delayed
flowering time; however, the presence of distinct mu-
tations in each lineage suggests independent origins
over the course of parallel domestication (Liu et al.,
2015). In summary, because of their abundance and the
potential for functional divergence and the acquisition
of new functions, duplicate genes have contributed to
the evolution of morphological, nutritional, and phys-
iological traits in crops.

FUTURE DIRECTIONS

Studies based on accumulating comparative and
functional genomic data have contributed to our
understanding of the life cycle of duplicated genes,
including their origins, longevity, mechanisms of re-
tention, molecular functional implications, and im-
pacts on plant evolution and ecology. Nonetheless,
there are still many unresolved questions (see “Out-
standing Questions”). Although metrics like half-life
provide a good indicator of the average behavior of
duplicate genes, there is large variance in duplicate
longevity (Lynch and Conery, 2003; Maere et al., 2005).
Why are some duplicates retained longer than pre-
dicted by the average half-life? What are the factors
contributing to short-lived duplicates? The answers to
these questions lie in a better understanding of re-
tention mechanisms, including neofunctionalization,
dosage effect, EAC, DDC, gene balance, and paralog

interference. In particular, the challenge is to determine
the relative contributions of these retention mecha-
nisms. Another challenge is that knowledge of func-
tional divergence alone is insufficient to distinguish
between retention mechanisms. Knowledge of ances-
tral functions and expression state, which can only be
inferred, also is required.

The retention mechanisms outlined above all involve
natural selection on existing and/or novel functions.
Thus, there must be a fitness cost if one of the dupli-
cates is lost. There are but a few studies that have di-
rectly addressed the fitness contribution of duplicates
(DeLuna et al., 2008; Qian and Zhang, 2014). Instead,
the great majority of studies on plant duplicate genes
have focused on morphological, developmental, and/
or physiological phenotypes of loss-of-function mu-
tants in highly controlled environments. In many cases,
the lack of a phenotype when one duplicate is lost is
attributed to genetic redundancy (Hanada et al., 2009a).
Although genetic redundancy is an authentic phe-
nomenon, one cannot rule out the possibility that the
specific environment requiring the function of the ap-
parently redundant duplicate has not yet been identi-
fied. It is also possible that there are subtle phenotypes
that remain undetected but have significant fitness
consequences (Ågrena et al., 2013). Testing these two
possibilities requires assessing the fitness cost of loss-of-
function mutations in the field, preferably in native
environments. Recent studies of Arabidopsis local ad-
aptation show that it is feasible to detect minute fitness
effects (Ågrena et al., 2013). In addition, especially for
recently duplicated genes (i.e. from duplication events
that occurred approximately 1 MYA), one cannot rule
out the possibility that some duplicates persist because
not enough time has passed for them to be removed by
genetic drift, even though they are no longer functional
(Kimura and Ohta, 1969). This is particularly true for
selfing plants like Arabidopsis, where even deleterious
alleles are not efficiently eliminated (Bustamante et al.,
2002). Given the diversity in life histories and envi-
ronments encountered by different plant species,
knowledge of the past history (i.e. history of selection,
bottlenecks, gene flow, changes in effective population
size, and mating system) will be necessary to better
estimate the contribution of drift to the persistence of
duplicates. This knowledge can be partially acquired from
comparative studies of variation in duplicate gene content
within and between related plant species. Initiatives like
the Arabidopsis 1001 Genomes Project (Cao et al., 2011)
and parallel efforts in other species may soon provide
some insights in this regard.

Genome-wide studies of duplicate genes have re-
vealed that retained duplicates tend to have particular
patterns at the sequence, expression, and molecular
function levels (Ganko et al., 2007; Carretero-Paulet and
Fares, 2012; Jiang et al., 2013). However, each pattern
can only marginally predict duplicate retention (Jiang
et al., 2013; Moghe et al., 2014), and there remains much
unexplained variance evenwhenmost factors that have
been shown to be correlatedwith retention are combined
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in a single predictive framework (Jiang et al., 2013;
Moghe et al., 2014). This suggests that additional, un-
known factors may contribute to duplicate retention.
Considering that the function of a gene is directly or
indirectly influenced by many other genes, the retention
of a duplicate gene should be influenced by other genes
that are closely linked to the duplicate in the gene net-
work (i.e. in the same functional module), a possibility
consistent with the expected outcome of the gene-
balance model (Birchler et al., 2005; Birchler and Veitia,
2007, 2010). This network idea can be pushed to an even
higher level of organization by asking how other mod-
ules influence the retention of duplicate genes in an en-
tire module. Thus, a systems-level understanding (i.e.
knowledge of the architecture of the gene networks and
the nature of the connections between genes) is essential
to assess how duplicates are influenced by other net-
work components. This knowledge will be helpful not
only for addressing the rather esoteric question of how
duplicate genes are retained but also for understanding
how duplicate genes collectively influence molecular
functions, physiology, and development in plants. For
example, due to the high rate of transcription factor re-
tention, a gene is not only regulated by transcription
factors from different families but also bound by multi-
ple members of the same family (Macneil and Walhout,
2011). The expression level of the gene in question is thus
determined by a large number of duplicate factors.
Without a systems-level understanding of how dupli-
cates differ in their functions, it will not be possible to
gain a complete picture of how a gene is regulated.

Ultimately, our interest in studying duplicate genes
lies in their evolutionary, ecological, and agronomic
impacts. Although the acquisition of novel molecular
functions among duplicates is common (Blanc and
Wolfe, 2004b), this alone is not sufficient to conclude
that there was an impact on evolution. An apparently
novel function (e.g. a new biochemical activity, pattern

of expression, or interaction) with no effect on fitness
could have been fixed by genetic drift. When a dupli-
cate pair is retained because of dosage sensitivity and
paralog interference, an unrelated change in function
may be misidentified as a functional novelty. Further-
more, apparent novelty at the single gene level may
result from larger scale changes in the genome follow-
ing WGD, such as fractionation (Schnable et al., 2011).
To be able to claim that natural selection is important,
either a direct study of fitness or molecular evidence of
a nonneutral mutation is required. Similarly, the con-
tribution of duplication to the diversification of a mul-
titude of plant traits has been explored, but few have
examined the adaptive significance of those traits
(Ågrena et al., 2013; Gehan et al., 2015). More examples
illustrating the impact of novel traits on plant adapta-
tion are needed.

Understanding the impact of duplicated genes is
important in light of the challenges facing agriculture
in the 21st century, including both the old problems of
yield, disease resistance, and stress tolerance as well as
new issues related to global climate change. Addressing
the grand challenge of food security will not only re-
quire improving our ability to modify plant traits
(Halpin, 2005) but also our ability to identify the caus-
ative loci of desirable traits (Mickelbart et al., 2015) and
the genomic context in which they exist (Vaughan et al.,
2007). In this regard, a continuing effort to understand
how duplicate genes have contributed to novel func-
tions, expansion of gene families, and the structure of
the genome as a whole is necessary. Considering how
duplicate genes have contributed to evolutionary nov-
elties and diversity in plants, understanding the evo-
lution of duplicate gene functions holds the key to
understanding the future of both natural and domes-
ticated populations, particularly in light of impending
environmental shift due to global climate change.
Received April 2, 2016; accepted May 17, 2016; published June 10, 2016.
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