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Abstract 

Genetic correlations between traits can bias adaptation away from optimal phenotypes 

and constrain the rate of evolution. If genetic correlations between traits limit adaptation 

to contrasting environments, rapid adaptive divergence across a heterogeneous landscape 

may be difficult. However, if genetic variance can evolve and align with the direction of 

natural selection, then abundant allelic variation can promote rapid divergence during 

adaptive radiation. Here, we explored adaptive divergence among ecotypes of an 

Australian native wildflower by quantifying divergence in multivariate phenotypes of 

populations that occupy four contrasting environments. We investigated differences in 

multivariate genetic variance underlying morphological traits and examined the 

alignment between divergence in phenotype and divergence in genetic variance. We 

found that divergence in mean multivariate phenotype has occurred along two major axes 

represented by different combinations of plant architecture and leaf traits. Ecotypes also 

showed divergence in the level of genetic variance in individual traits, and the 

multivariate distribution of genetic variance among traits. Divergence in multivariate 

phenotypic mean aligned with divergence in genetic variance, with most of the 

divergence in phenotype among ecotypes associated with a change in trait combinations 

that had substantial levels of genetic variance in each ecotype. Overall, our results 

suggest that divergent natural selection acting on high levels of standing genetic variation 

might fuel ecotypic differentiation during the early stages of adaptive radiation. 
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Introduction 

Evolutionary biologists have long sought to understand the processes that have created 

the dramatic diversification of species we see in nature (1). Adaptive radiation is one 

process that drives the creation of biological diversity and occurs when groups of 

organisms colonize and rapidly adapt to heterogeneous environments, leading to 

divergence and speciation (2). Differences in directional selection between environments 

can favour adaptive phenotypic divergence between populations and lead to the 

formation of ecotypes (3, 4), provided sufficient genetic variation is present in 

populations exposed to spatial variation in natural selection (5). However, experimental 

work on understanding how spatial variation in natural selection creates adaptive 

radiation across a heterogeneous landscape is rare (e.g., 6, 7, 8). 

Replicate populations that occupy similar environments and possess similar phenotypes 

can be used as natural experiments to explore how genetic and phenotypic variation has 

evolved during adaptive divergence. Populations that experience similar environments 

often evolve similar phenotypes, creating strong correlations between habitat and 

morphology (9-11).  Populations adapted to similar environments may evolve specific 

combinations of traits, creating discontinuous phenotypes between contrasting 

environments across a heterogeneous landscape (12). For example, stickleback fish have 

exhibited rapid morphological adaptive divergence into a novel environment via the 

repeated fixation of alleles from standing genetic variation (13, 14), and Anolis lizards 

have repeatedly evolved specialized limbs in similar habitats on different islands (7, 15, 

16).  

Correlations between habitat and morphology are often examined on single traits in 
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isolation, but natural selection typically acts on multiple traits simultaneously (17-20). 

Consequently, adaptation can favour the evolution of beneficial combinations of traits 

within an environment and create adaptive divergence in multivariate phenotypes 

between contrasting environments (21-23), potentially underlying the origin of ecotypes 

during adaptive radiation (2, 3, 24). Since populations exposed to the same environment 

can also diverge as a consequence of random drift, quantifying ecotypic divergence 

requires comparing the divergence in multivariate phenotypes among ecotypes to 

differences among replicate populations within an ecotype (25-27). Stronger 

morphological divergence between ecotypes from contrasting environments than between 

populations within environments suggests that differences in the environment have 

promoted divergence (16, 23, 28), and such experimental systems can be used to identify 

how divergent natural selection has created adaptive morphological diversification during 

an adaptive radiation (29).  

The magnitude of additive genetic variance in the direction of selection determines the 

rate of adaptive phenotypic evolution, but the availability of genetic variance in 

multivariate phenotypes depends on the extent of genetic correlation between traits (25, 

27, 30-32). Genetic correlations among traits concentrate genetic variation into particular 

trait combinations at the expense of other trait combinations (33). When genetic 

correlations bias the distribution of genetic variation away from the direction of selection, 

constraints on the rate of adaptive evolution are likely (34). The additive genetic 

variance-covariance matrix (G) summarises the genetic relationships between traits, 

providing the framework to investigate multivariate phenotypic evolution (27). 

Adaptation is expected to bias evolution along the multivariate axis of greatest genetic 
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variance (gmax) (2, 28, 29, 35) at least in the early stages of divergence as there is little 

reason to expect that the major axis of additive genetic variance will be in a similar 

direction to that of natural selection following colonization of a novel environment (29).  

In practice, not only will divergent selection change the phenotypic mean, but it may also 

result in the evolution of the genetic variance underlying traits during adaptation. For 

example, rare alleles held at mutation selection balance may become beneficial when 

exposed to a new environment, rapidly altering the phenotype mean as well as the 

distribution of genetic variance (36, 37). If genetic variance can align with the direction 

of natural selection, then adaptation from standing genetic variation may explain how 

rapid divergence occurs during adaptive radiation. In attempting to characterize an 

adaptive radiation, ideally we would understand what divergence in multivariate mean 

phenotype has occurred, explore how genetic variance underlying multivariate 

phenotypes has evolved and then quantify how changes in genetic variance align with 

changes in multivariate phenotypic mean. Here, we report a set of experiments that 

enabled us to determine how the phenotypic mean and genetic variance have diverged in 

the early stages of an adaptive radiation. 

We investigated the adaptive radiation of Senecio lautus, an herbaceous wildflower 

across a heterogeneous landscape. Senecio lautus is a species complex native to 

Australia, New Zealand and several Pacific Islands. Although S. lautus contains many 

taxonomic species, we focussed on varieties within S. pinnatifolius, which are native to 

Australia and occupies a diverse array of habitats. We investigate divergence of 

populations from four distinct habitats; coastal headlands (S. pinnatifolius var. maritimus; 

Headland ecotype), coastal sand dunes (S. pinnatifolius var. pinnatifolius; Dune ecotype), 
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moist tableland rainforests (S. pinnatifolius var. serratus; Tableland ecotype) and dry 

sclerophyll woodland (S. pinnatifolius var. dissectifolius; Woodland ecotype) (38, 39). 

Ecotypes from these habitats display strong morphological differentiation associated with 

the different environments and plants maintained their field morphology when grown 

under common garden conditions, indicating that phenotypic differences between 

populations have a strong underlying genetic basis (38-41). Transplant experiments have 

revealed that these ecotypes are adapted to their local environments (42-44), where 

extrinsic reproductive isolation is strong, but intrinsic reproductive isolation is weaker, 

suggesting barriers are largely geographic and ecological (42-45). Phylogenetic and 

population genetic analyses have revealed two major clades of taxa of low genetic 

differentiation yet high morphological diversity. Divergence between clades is less than 

one million years, and some ecotypes (coastal and alpine) have formed independently 

multiple times (46, 47), suggesting that, similar to other systems (e.g., African cichlids 

(48) and the Caribbean Anolis lizards (16)) the S. lautus species complex has recently 

undergone parallel evolution and adaptive radiation.  

To investigate how divergence in mean multivariate phenotype has occurred within and 

between ecotypes, we sampled seeds from replicate populations of each of the four 

ecotypes, which were then grown under common garden conditions. In these populations 

we measured ten traits related to plant architecture and leaf morphology. Using a 

breeding design, we then estimated additive genetic (co)variance matrices for each 

ecotype for the same ten morphological traits and quantified divergence in genetic 

variance between ecotypes. Finally, we investigated whether divergence in genetic 
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variance and divergence in phenotypic mean aligned to investigate how adaptive 

divergence has occurred during adaptive radiation. 

Results 

Glasshouse experiments  

We collected seeds from four populations for each ecotype (Supplementary Table S1). 

Populations occupy small patches of habitat, which restricted us to sampling seeds from 

30-45 individuals per population. Seeds were taken from individuals at ten metre 

intervals to reduce the risk of sampling close relatives. To compare divergence in 

phenotype mean with divergence in genetic variance we conducted two separate 

glasshouse experiments. In the first experiment we grew 16 individuals from four 

populations of each ecotype (ecotype n = 4; population n = 16; total n = 242), which we 

used to estimate divergence in multivariate phenotype mean. In the second experiment 

we used a North Carolina II breeding design to estimate genetic variance components for 

two populations of each ecotype (ecotype n = 4; population n = 8; total individuals = 

1,259).  

To estimate genetic variance we grew two generations of plants in the glasshouse. To 

establish the parent generation we grew seeds collected from the natural populations and 

crossed them using a breeding design. Only one seed from each individual sampled in the 

field was grown because seeds taken from the same plant were likely pollinated by 

different individuals, making parentage uncertain. Within each population half the 

individuals were designated sires (n = 17-23 per population; Supplementary Table S2) 

and the other half dams (n = 15-23 per population; Supplementary Table S2). Each sire 

was then randomly crossed to two dams according to a North Carolina II breeding design, 
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where variance between paternal half-siblings represent one quarter of the additive 

genetic variance (49). Three to four offspring for each full-sibling family produced from 

these crosses were grown and phenotyped in a glasshouse experiment conducted in 2015, 

which totalled 934 individuals.  

Estimating genetic variance requires large sample sizes and breeding designs, which 

logistically restricted us to only two populations for each ecotype. However, measuring 

divergence in multivariate phenotype mean is best achieved using a hierarchical 

framework by assessing differences between ecotypes, taking into account differences 

between populations within ecotypes. We used the first experiment to represent 

divergence in mean multivariate phenotype because it contained four populations, 

providing three degrees of freedom, while the second experiment only provided one 

degree of freedom. However, differences in mean phenotypes between populations grown 

in both experiments did not change considerably (Supplementary Figure S3), verifying 

the use of the first glasshouse experiment to represent divergence in phenotype mean for 

the second experiment.  

Divergence in multivariate mean phenotype 

The four ecotypes displayed visually striking differences in leaf morphology (Figure 1A) 

and plant architecture (Figure 1B) under common garden conditions, suggesting a strong 

association between morphology and habitat. A multivariate analysis of variance 

(MANOVA) indicated there was significantly more variation between ecotypes than 

could be accounted for by variation within ecotypes (Wilks’ lambda λ = 1.09x10
-04

, F3,12 

= 6.76, P = 0.002). Multivariate phenotypic divergence between ecotypes explained 

much more of the total variance (62%) than divergence between populations within 
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ecotypes (11%), highlighting a strong and consistent pattern of ecotypic divergence. 

From the MANOVA we calculated the phenotypic divergence matrix (D matrix) of 

population means, which described divergence between ecotypes in multivariate space 

(27, 28, 50). The first eigenvector of D (dmax) explained 67% of the divergence in 

multivariate mean phenotype, created by differences in traits relating to plant size in one 

direction and leaf shape in the other direction (Figure 1C), and separated the Tableland 

and Woodland ecotypes (Figure 1D). The second vector (d2) explained 32% of the 

variation, created by plant size and leaf complexity in one direction, and number of 

indents and circularity in the other direction (Figure 1C), and separated the Headland and 

Woodland from the other ecotypes (Figure 1D). The third eigenvector (d3) explained only 

3% of divergence (Figure 1C), and was primarily associated with the number of 

branches. 
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Figure 1 Ecotypes show strong differences in (A) leaf morphology and (B) plant architecture. (C) 

Eigenanalysis of D showed that multivariate divergence in mean occurred in two major axes created by 

different combinations of plant architecture and leaf traits. Numbers in bold represent trait loadings higher 

than 0.25. (D) The score for each population calculated from the eigenanalysis of D showed that 

populations from the same ecotype group together. The first eigenvector separated Tableland and 

Woodland from the remaining ecotypes, while the second eigenvector separated the Woodland and 

Headland from the remaining ecotypes.  

Genetic variance underlying plant morphology  

Many of the observed heritabilities for univariate traits exceeded the magnitude of 

sampling error in our experimental design, although there was considerable variation in 

the magnitude of heritability among populations (Figure 2). For example, the Headland 

ecotype displayed high (h
2
 > 0.4) and significant heritabilities for architecture traits and 
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leaf area, while the same traits in the Woodland ecotype had lower heritabilities that did 

not exceed sampling error in 4 of 5 cases (Figure 2).   

 

Figure 2 Observed heritabilities (filled circles) compared to the distribution of randomly estimated 

heritabilities (unfilled circles). Dashed lines represent 95% HPD intervals. Architecture traits showed very 

high heritabilities in the Headland and Tableland, while heritabilities for all traits were much lower in the 

Dune and Woodland ecotypes. Traits: 1 = Height, 2 = Stem length / width, 3 = # branches, 4 = Stem 

diameter, 5 = Leaf area, 6 = Perimeter
2
 / Area

2
, 7 = Circularity, 8 = # indents, 9 = Indent width, 10 = Indent 

depth. 

Genetic correlations tended to be positive among architecture traits, but negative among 

leaf shape traits (Supplementary Table S4).  Genetic correlations between these two trait 

types tended to be negative. Overall, the magnitude of genetic correlations were relatively 

weak, which was reflected in the relatively low proportion of genetic variance accounted 

for by the leading eigenvalue of G in each ecotype (Table 1). The Headland ecotype was 

the only ecotype that had > 50% of the genetic variance in gmax, while the other ecotypes 
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showed a much more uniform distribution of genetic variance across eigenvectors (Table 

1 and Figure 3).  Visual inspection of the eigenvectors (Table 1) suggested a consistent 

pattern in three of the ecotypes, where the linear combinations of gmax had higher loading 

from architectural traits, while linear combinations with stronger contributions from leaf 

traits captured smaller amounts of genetic variance (Table 1). The Woodland ecotype was 

the exception, where both architectural and leaf traits were represented in eigenvectors 

containing both high and low genetic variance. Most eigenvalues of G were significantly 

higher than expected from sampling error in all four ecotypes (Figure 3). 
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Table 1 Eigenanalysis of G showed that architecture traits contributed to the genetic variance contained in 

gmax for all ecotypes except the Woodland. Leaf shape traits were only represented in eigenvectors with low 

genetic variance. Numbers in bold denote trait loadings higher than 0.25. Traits: 1 = Height, 2 = Stem 

length / width, 3 = # branches, 4 = Stem diameter, 5 = Leaf area, 6 = Perimeter
2
 / Area

2
, 7 = Circularity, 8 = 

# indents, 9 = Indent width, 10 = Indent depth. 
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-0.68 -0.11 -0.38 0.45 0.14 -0.18 -0.08 0.17 0.24 -0.18 

9 0.03 0.22 -0.70 0.37 -0.08 -0.21 -0.28 -0.18 0.23 0.33 
 

0.27 0.37 -0.10 0.38 -0.42 0.32 -0.21 -0.20 0.39 -0.33 

10 -0.01 -0.72 -0.07 0.40 0.08 0.26 0.21 0.21 0.40 0.07 
 

0.22 0.12 -0.16 0.04 -0.04 0.15 0.58 0.73 0.11 -0.08 
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Figure 3 Observed eigenvalues of G (filled circles) compared to the distribution of random eigenvalues of 

G (unfilled circles). Dashed lines represent 95% HPD intervals. The Headland was the only ecotype that 

showed a much higher amount of variance in gmax, while the remaining ecotypes exhibited a similar 

partitioning of genetic variance among eigenvectors. 

Divergence in multivariate genetic variance among ecotypes 

To compare differences in G among ecotypes we used a genetic covariance tensor. We 

found three significant eigentensors of G that explained 38%, 10% and 7% of the 

divergence in genetic variance between ecotypes, respectively. All three eigentensors 

described more divergence in genetic variance than expected by sampling error alone 

(Supplementary Figure S5). The coordinates of the ecotypes in the space of the 

eigentensor revealed how each ecotype contributed to differences in genetic variance. We 

were only able to detect significant differences between ecotypes in the first eigentensor 

(E1) (Supplementary Figure S6). We therefore concentrate our analysis on the first 
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eigentensor (Table 2), while the full tensor analysis can be found in Supplementary Table 

S7.  
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Table 2 Table summary of the covariance tensor analysis of G, α denotes the magnitude of the difference 

between matrices described by the eigentensor, with the proportion of variance in parentheses. Eigenvector 

and λ represents the eigenanalysis of the eigentensor, giving the linear combinations of traits that describe 

the difference in the eigentensor. Lambda describes the amount of variation in the eigentensor that each 

eigenvector explains (with the proportion of variance in parentheses), with the trait loadings quantifying the 

contribution of each trait to differences in variance. Only the first eigentensor is presented with the full 

summary located in Table S7. Numbers in bold denote trait loadings higher than 0.25, suggesting they 

contributed to the difference in the eigenvector of the eigentensor. Plant architecture traits accounted for the 

greatest difference in genetic variance. Traits: 1 = Height, 2 = Stem length / width, 3 = # branches, 4 = 

Stem diameter, 5 = Leaf area, 6 = Perimeter
2
 / Area

2
, 7 = Circularity, 8 = # indents, 9 = Indent width, 10 = 

Indent depth. 

 

      Architecture traits 
 

Leaf morphology traits 

Eigen- 

tensor 
𝛼 

Eigen-

vector 
λ 1 2 3 4 5 

 
6 7 8 9 10 

E1 
1.23 

(0.38) 
e1,1 

-0.95 

(0.61) 
-0.24 -0.44 0.04 -0.50 -0.62 

 
0.07 -0.08 0.22 -0.01 -0.21 

  
e1,2 

-0.27 

(0.17) 
0.24 -0.50 -0.82 0.07 0.12 

 
-0.02 0.02 -0.06 0.04 0.01 

  
e1,3 

-0.08 

(0.05) 
0.47 -0.15 0.18 0.53 -0.58 

 
0.05 0.14 -0.01 -0.22 0.21 

  
e1,4 

0.08 

(0.05) 
0.02 -0.02 -0.01 0.25 0.15 

 
-0.41 -0.10 0.72 -0.28 -0.37 

  
e1,5 

-0.06 

(0.04) 
0.09 -0.70 0.52 0.03 0.46 

 
0.12 -0.04 -0.03 0.00 0.05 

  
e1,6 

-0.04 

(0.02) 
0.76 0.15 0.09 -0.59 0.08 

 
-0.17 0.04 0.08 -0.02 0.02 

  
e1,7 

0.03 

(0.02) 
-0.24 -0.11 0.02 -0.16 0.02 

 
-0.56 0.50 -0.30 -0.47 0.17 

  
e1,8 

0.02 

(0.01) 
0.02 -0.11 0.10 0.11 -0.15 

 
-0.68 -0.30 -0.17 0.59 0.07 

  
e1,9 

0.02 

(0.01) 
0.14 0.01 0.07 0.11 -0.03 

 
0.00 0.09 -0.47 -0.02 -0.86 

  
e1,10 

0.00 

(0.00) 
0.01 0.02 -0.04 -0.05 -0.01 

 
-0.06 -0.78 -0.29 -0.54 0.08 
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The first eigentensor was dominated by the first eigenvector (e1,1), a linear combination 

of plant architectural traits and leaf area that explained 61% of the divergence in genetic 

variance between ecotypes for E1 (Table 2).  The first three eigenvectors of E1 described 

divergence in genetic variance underlying different aspects of architecture traits and leaf 

size, accounting for 83% of the difference in genetic variance in E1. In contrast, 

differences in genetic variance underlying leaf shape traits (e1,4 and e1,7 – e1,10) together 

only explained 9% of the difference in genetic variance between ecotypes for E1 (Table 

2). The coordinates of the ecotype G matrices in the space of the first eigentensor showed 

that divergence in genetic variance between the Headland ecotype and the Dune and 

Woodland ecotypes were responsible for the divergence in genetic variance described by 

the eigentensor (Figure 4A). Projection of e1,1 through the original G matrices quantified 

the contribution of each ecotype to the major axis of divergence in genetic variance, with 

results providing further evidence that divergence in genetic variance was created by 

differences between the Headland ecotype and the Woodland and Dune ecotypes (Figure 

4B). Therefore, the Headland ecotype has diverged the most from the other ecotypes in 

genetic variance for plant architecture and leaf size. 
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Figure 4 (A) Mean and 95% HPD intervals for the coordinates of each ecotype G matrix in the space of the 

first eigentensor (E1) of G. (B) Mean and 95% HPD intervals for the projection of the leading eigenvector 

from the first eigentensor of G through the original ecotype G matrices. The Headland ecotype showed 

strong divergence in additive genetic variance from the Dune and Woodland ecotypes. 

Aligning divergence in phenotype mean with divergence in genetic variance 

Projection of eigenvectors from the first eigentensor of G (e1,1 – e1,10), through D 

quantified the alignment between divergence in genetic variance and divergence in 

phenotypic mean. The e1,1 trait combination described greater divergence in mean than 

expected by chance (Figure 5), suggesting that substantial divergence in genetic variance 

was associated with divergence in phenotypic mean. However, two eigenvectors 

associated with leaf shape traits (e1,4 and e1,7) also described a large amount of divergence 

in phenotypic mean, suggesting that small genetic changes were also associated with 

phenotypic divergence. These results suggest that evolution of continuous traits occurs 

when natural selection creates changes in the distribution of additive genetic variation. 
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Figure 5 Projection of eigenvectors of the first eigentensor of G through the observed (filled circles) and 

randomised (unfilled circles) D matrices. Dashed lines represent 95% HPD intervals for the projections 

through the randomised D matrices. Eigenvector one showed a strong association with divergence in mean 

phenotype. However, eigenvectors four and seven also explained a large amount of variance in divergence, 

suggesting small changes in genetic variance also explained large variance in divergence.  

Adaptation is expected to move along the line of greatest genetic variance (gmax) (29), but 

gmax itself might change during the early stages of adaptive divergence if natural selection 

or genetic drift change allele frequencies in genes responsible for trait variation in the 

system. Eigentensors represent differences in the entire space of genetic variance, so to 

explore whether changes in specific axes of genetic variance aligned with divergence in 
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phenotype mean we quantified the alignment between changes in the orientation of 

ecotypic gmax and g2, with divergence in phenotype mean. First we converted gmax and g2 

into (co)variance matrices using  

 Cij = A
ij
 A

ij

T
 (1) 

where A
ij
 represents the ith vector of G (gmax or g2) for the jth ecotype. This approach 

resulted in four (co)variance matrices that represented gmax for the four ecotypes (Cgmax), 

and four matrices that represent g2 (Cg2). Conducting separate covariance tensor analyses 

on Cgmax and Cg2 gave the divergence in the orientation of gmax and g2 between ecotypes. 

The first eigentensor of both tensor analyses captured large differences between ecotypes 

for both eigenvectors of G, where E1 described 51% of divergence in gmax and 48% of 

divergence in g2. The corresponding eigenvectors of eigentensors represented the axes of 

greatest divergence in the orientation of gmax and g2. The first two eigenvectors of E1 (e1,1 

and e1,2) for gmax and g2 described most of the difference in variance explained by the first 

eigentensor (gmax e1,1 = 50% and e1,2 = 42%; g2 e1,1 = 50% and e1,2 = 38%).  

Projection of the eigenvectors from the first eigentensor of Cgmax and Cg2, through the 

observed and random D matrices (using equation 6) quantified the amount of divergence 

in mean phenotype associated with divergence in the orientation of the major 

eigenvectors of ecotype G. For gmax, both e1,1 and e1,2 accounted for more divergence in 

phenotype mean than expected by chance (Figure 6A). For g2, only eigenvectors 

associated with very small divergence in orientation (e1,3, e1,4 and e1,6) described a similar 

amount of divergence in phenotype mean (Figure 6C). Therefore, strong differences in 

the orientation of gmax, but not g2 aligned with divergence in mean phenotype, suggesting 
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that additive genetic variance has aligned with the direction of natural selection for each 

ecotype.   

 

Figure 6 Projection of eigenvectors from the first eigentensor taken from tensor analyses conducted on (A) 

Cgmax, (B) C′gmax, (C) Cg2 and (D) C′g2, through the observed (filled circles) and random (unfilled circles) D 

matrices. Confidence intervals represent 95% HPD intervals for the projection through the random D 

matrices. Divergence in the orientation of gmax, but not g2 described strong divergence in mean phenotype. 

Including divergence in the length of gmax and g2 did not change the result, suggesting that differences in 

the amount of genetic variance in each eigenvector of G was not associated with phenotypic divergence. 

Differences between ecotypes in eigenvectors of G can also be due to differences in 

length. To identify whether differences in the length of the original eigenvectors 

contributed to describing divergence in phenotype mean we repeated the analysis for 

equation 1 and included the length of the original eigenvector using 

 Cʹ′ ij = (A
ij
 λ

ij
) A

ij

T
 (2) 

where A
ij
 represents the ith vector of G (gmax or g2) for the jth ecotype, with λ

ij
 the 

associated eigenvalue. Cʹ′ ij then represents differences in the orientation and length of 

gmax and g2 (Cʹ′gmax and Cʹ′g2). A tensor analysis on Cʹ′gmax and Cʹ′g2 found that E1 

described 85% and 65% of the variation in the orientation and length of gmax and g2, 

respectively. The first two eigenvectors described most of the difference in E1 for both 
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gmax (e1,1 = 84% and e1,2 = 12%) and g2 (e1,1 = 50% and e1,2 = 49%). Projection of e1,1 and 

e1,2 for Cʹ′gmax and Cʹ′g2, through the observed and random D matrices showed that 

including information about divergence in the length of the eigenvectors of G did not 

change the results appreciably. For Cʹ′gmax (Figure 6B), e1,1 and e1,2 together described 

less divergence in mean, whereas eigenvectors that described only very minor changes in 

the length and orientation of gmax described more divergence in mean than for orientation 

alone (Figure 6A). Therefore, differences in orientation, but not the length of gmax 

described divergence in mean phenotype. For Cʹ′g2 (Figure 6D), e1,1 and e1,2 together 

described more divergence in mean phenotype than orientation alone (Figure 6C), 

suggesting that some differences in the length, but not orientation of g2 was associated 

with divergence in mean phenotype.  

Discussion 

The conceptual framework underlying Simpson’s adaptive landscape connects 

evolutionary processes such as natural selection and genetic drift, to species 

diversification during adaptive radiation (1, 51, 52). The conceptual adaptive landscape is 

represented as a bivariate phenotypic space overlaid with a fitness surface where 

topographical peaks represent fitness optima. Adaptation on the adaptive landscape 

occurs when a population climbs a fitness peak in phenotypic space, with divergence 

occurring when populations climb different peaks (52). Movement across an adaptive 

landscape can occur when selection on additive genetic variance shifts the population 

mean towards a fitness peak (1). If a common ancestor colonizes multiple environments, 

the adaptive landscape will be represented by the same phenotypic space with a different 

fitness surface for each environment. Natural selection in each environment will pull the 
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phenotype mean towards fitness peaks in different areas of phenotypic space, creating 

adaptive divergence. However, when the axis of greatest additive genetic variance aligns 

away from the direction of selection, adaptation is expected to take an indirect route 

towards the fitness peak, constraining the rate of adaptation (28, 29).  

Incorporating the concept of the adaptive landscape into an empirical context has a 

number of challenges. Few empirical studies have used the adaptive landscape to 

investigate patterns and processes underlying diversification (but see 53, 54), and 

incorporating the role of the underlying genetic variance in patterns of divergence are 

also rare (Chenoweth et al 2010). Furthermore, adaptive radiations typically involve 

suites of traits, and characterizing divergence in phenotypic mean and genetic variance is 

more complex than the conceptual representations of two phenotypic traits and fitness. 

Here, we have shown how to use consistent ecotypic divergence among replicate 

populations of S. lautus to investigate adaptive divergence across the adaptive landscape 

by exploring the association between divergence in multivariate phenotype mean and 

divergence in genetic variance in an early adaptive radiation.  

Multivariate divergence in mean phenotype and genetic variance among ecotypes 

Multivariate phenotypic divergence was stronger between ecotypes than within ecotypes, 

indicating environment specific phenotypes have arisen due to similar natural selection 

regimes on populations that share similar habitats (55, 56). Phenotypic divergence was 

very strong in two axes, separating Tableland and Woodland from the remaining 

ecotypes in one axis, and Dune and Headland from the remaining ecotypes in the other 

axis (Figure 1). Additional evidence for natural selection creating divergence comes from 

the repeated and independent evolution of parapatric pairs of Dune and Headland 
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populations along the coastline, with pairs separated by large distances (tens to hundreds 

of kilometres) (46, 47, 57). These patterns of replicated evolution across a wide 

geographical scale are similar to those documented in sticklebacks (14), African cichlids 

(48) and Anolis lizards (16).  

We also found divergence in the distribution of additive genetic variance underlying the 

same morphological traits, driven largely by the Headland ecotype. Heritabilities were 

very different between ecotypes, with higher values observed for architecture than leaf 

traits, especially in the Headland ecotype. Divergence in multivariate genetic variance 

was captured by one major axis representing plant architecture traits, while leaf 

morphology traits explained very little divergence in genetic variance. Ecotypes therefore 

varied both in the magnitude of genetic variance in the traits included in our study, and in 

distribution of genetic variance across multivariate phenotypic space. In particular, the 

Headland ecotype had more genetic variance that was highly concentrated into a few trait 

combinations.  

The Tableland and Headland ecotypes showed higher heritabilities and higher genetic 

variance in linear combinations of architecture traits, which was reflected by contrasting 

architectural phenotypes. The prostrate form of the Headland ecotype is especially 

contrasting to the other ecotypes and is typical of many plants occupying exposed 

environments subject to strong winds (10, 58). Highly diverged genetic variance 

underlying plant architecture in the Headland ecotype suggests that differences in natural 

selection required strong genetic changes to create the prostrate phenotype beneficial in 

the headland environment. Plant architecture for the Tableland ecotype was similar to the 

Dune and Woodland ecotypes, but more extreme in terms of overall plant size, 
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potentially due to selection for larger plant size in a rainforest environment (59-61). 

Therefore, natural selection along genetic pathways common to the Dune, Woodland and 

Tableland ecotypes may have created larger plants in the Tableland environment. 

Aligning divergence in phenotype mean with divergence in genetic variance  

During the initial stages of adaptive divergence, the association between the direction of 

natural selection on multivariate phenotypes and the distribution of genetic variance is 

expected to determine evolutionary trajectories. However, over time the direction of 

selection alone is expected to dominate adaptive divergence between habitats, regardless 

of the underlying genetic architecture (25, 29). In our experiment, the presence of strong 

divergence in G itself argues against making an implicit assumption of a stable ancestral 

G matrix and its influence on divergence in phenotype. Our results are consistent with 

several studies that found differences in G following very recent divergence (62-64), 

suggesting that rapid adaptive divergence may occur when new environments are 

colonized and the distribution of genetic variance aligns rapidly with the direction of 

natural selection. 

For recently derived ecotypes of S. lautus, we have shown that divergence in G aligned 

with divergence in phenotypic mean, suggesting that during adaptation natural selection 

has changed the distribution of genetic variance. More specifically, changes in the 

orientation of gmax but not the orientation of g2 were associated with changes in 

phenotype mean. Therefore, the linear combination of traits with the greatest genetic 

variance may have changed orientation towards the direction of selection, facilitating 

rapid adaptive divergence. Perhaps the simplest explanation for finding an association 

between divergence in mean and divergence in the major axis of genetic variance would 
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involve a selection response based on alleles segregating at low frequency. Initially rare 

alleles maintained by mutation-selection balance would contribute little to genetic 

variance (36, 37). After colonization of a novel habitat some may become beneficial and 

rise in frequency during adaptation, contributing more substantially to levels of additive 

genetic variation in traits under selection (65).  

Trait combinations with strong contributions from plant architecture traits accounted for 

most of the divergence in genetic variance. There is some evidence to suggest that plant 

architecture traits may be controlled by many genes of small effect (66, 67), and in 

mammals body size is determined by numerous genes of small effect, many of which are 

at low frequency (Kemper et al. 2012). Divergence among these ecotypes in plant 

architecture might have been based to some extent on such alleles. In contrast, linear 

combinations of leaf morphology traits described much smaller fractions of the total 

divergence in genetic variance. Leaves are responsible for the water-energy balance of 

plants, which is likely to require specialized traits or combinations of traits within each 

environment (59). Previous research has found a relatively small number of loci control 

leaf morphology in Arabidopsis and Populus (68, 69). If selection on a small number of 

alleles controlling leaf shape is strong, then alleles will move rapidly towards higher 

frequency, reducing the genetic variance within each ecotype for leaf traits underlying 

adaptive divergence.  

Conclusions  

If genetic correlations between traits bias evolution then it is difficult to see how rapid 

adaptive divergence leads to adaptive radiation. Our results suggest that alleles present in 

standing genetic variation (possibly rare) may become beneficial when new environments 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 2, 2017. ; https://doi.org/10.1101/097642doi: bioRxiv preprint 

https://doi.org/10.1101/097642


 

27 

are colonized, increasing their frequency in the population and aligning the distribution of 

genetic variation with the direction of natural selection. Adaptation from standing genetic 

variation can be rapid (70), suggesting that natural selection shaping the distribution of 

genetic variation can provide the mechanism for understanding how adaptive radiation 

proceeds. Ascension of adaptive peaks on the adaptive landscape can then occur when 

different alleles are favoured in different environments, aligning the direction of greatest 

genetic variation with the direction of selection in each environment. The presence of 

repeated adaptation to similar environments further suggests that natural selection has 

favoured the same alleles in similar environments (46), driving the adaptive radiation of 

ecotypes into multiple contrasting environments. 

Methods 

Growth protocol and phenotype measurement 

To grow seeds in the glasshouse we induced seed germination by scarifying each seed 

with a razor blade, placing them on moist filter paper in glass petri dishes and leaving 

them in the dark for 2 days. Seedlings were then transferred to a controlled-temperature 

room at 25°C on a 50:50 day:night light cycle. After one week, seedlings were taken to 

the glasshouse and planted into 137mm round pots in glasshouse experiment one and 

85mm square pots in glasshouse experiment two. Pots contained soil (70% pine bark: 

30% coco peat) with 5kg/m
3 
osmocote slow-release fertiliser and 830g/m

3
 Suscon Maxi 

soil insecticide. We performed controlled crosses between plants by rubbing two mature 

flower heads together over successive days, allowing each flower to receive and donate 

pollen. Seeds were collected once mature and stored at 4°C until required for subsequent 

experiments.  
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Ten morphological measurements were taken using identical methods in both glasshouse 

experiments. Architectural measurements were recorded to the nearest mm with a ruler 

and included plant vegetative height, plant width at the widest point, plant width at the 

narrowest point and main stem length. Secondary branches were counted and main stem 

diameter was measured with callipers one inch from ground level. We divided the main 

stem length by an average of the two width measurements to get an architectural 

measurement that encompassed plant growth habit; low values signified a prostrate plant 

and high values indicated a tall, erect plant. One young but fully expanded leaf was taken 

from each plant and scanned using a flatbed scanner. Morphometric data of all scanned 

leaves was extracted using the program Lamina (71). Traits produced by Lamina 

included leaf area, perimeter, circularity, indent (serrations and lobes) width, indent depth 

and indent number. Perimeter squared divided by area squared was calculated as a 

measure of leaf complexity. Indent number was divided by perimeter to calculate indent 

density along the margin of the leaf. 

Phenotypic traits for both experiments were normally distributed and because traits were 

measured on different scales we standardized traits within each ecotype to a mean of zero 

and a standard deviation of one. Scaling prevented traits dominating the eigenstructure of 

our analyses due to differences in measurement units (72, 73).  

Divergence in multivariate mean among ecotypes 

To investigate divergence in mean phenotype we conducted a MANOVA using the 

nested linear model,  

 yijk = µ + Ei + P(E)j(i) + ek(ij) ,  (3) 
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where µ was the intercept and the sources of variation in the experiment were represented 

by ecotype (Ei), populations nested within ecotype (P(E)j(i)) and the residual error (ek(ij)). 

The ten phenotypic traits were fitted as a multivariate response variable (yijk). From the 

MANOVA we calculated the D matrix by extracting the sums of squares and cross-

product matrices for ecotype (SSCPH) and population (SSCPE) and calculated the mean 

squares matrices by standardising by their associated degrees of freedom (MSH = SSCPH 

/ 3; MSE = SSCPE / 12). We then calculated D using 

 D = (MSH – MSE)/nf ,  (4) 

where nf represented the number of individuals sampled from each ecotype in a balanced 

design. Given slight differences in numbers between ecotypes we calculated nf using 

equation 9 in Martin et al. (2008). We used this method for calculating D to isolate the 

divergence between ecotypes from differences between populations and use the resultant 

(co)variance matrix to compare with differences in genetic variance (74). Eigenanalysis 

of D gave the linear combination of traits that explained divergence in mean phenotype 

between ecotypes with the associated eigenvalue representing the amount of divergence. 

Three degrees of freedom at the ecotype and population levels gave a maximum of three 

non-zero eigenvectors. Calculating the scores of D for each population using the first two 

vectors of divergence visualised separation between populations in the major axes of 

phenotypic divergence. To compare D to a null distribution we created a null expectation 

for D by randomising individual phenotypes between ecotypes 1,000 times and re-

calculating D for each randomisation. Divergence in genetic variance could then be 

compared to both the observed and randomised D matrices. 
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Estimation of multivariate genetic variance components 

We set out to estimate genetic variance for each population, but due to modest replication 

of phenotyped offspring we pooled the data for the populations for each ecotype and 

estimated genetic variance for each ecotype separately. To estimate the genetic variance 

components for each ecotype separately we used the R package ‘MCMCglmm’ (75) to fit 

a sire model,  

 yijkl = µ + Pi + Sj(i) + Mk(ij) + Sj(i) × Mk(ij) + el(ijk) ,  (5) 

where replicate population (Pi), and the intercept (µ) were fitted as fixed effects. 

Including replicate population as a fixed effect removed the variance due to difference in 

means between populations (i.e., population divergence), within an ecotype. Sire (Sj(i)), 

dam (Mk(ij)), and the sire × dam interaction (Sj(i) × Mk(ij)) were fitted as random effects 

and el(ijk) was the residual variance. Phenotype measurements for each ecotype (yijkl) were 

standardized to a mean of zero and standard deviation of one before being entered as a 

multivariate response. Each model was run for 2,100,000 Marcov chain Monte Carlo 

(MCMC) sampling iterations, which included a burn-in of 100,000 MCMC iterations and 

a thinning interval of 2,000 MCMC iterations. We used a Cauchy prior distribution (76) 

and to examine the sensitivity of the prior we adjusted the parameters to excessively large 

and small values, making sure the model output remained stable. All models converged 

with autocorrelation below 0.05 between MCMC sampling iterations and the effective 

sample size exceeded 85% of the total number of samples for all parameters estimated. 

We then calculated the additive genetic variance matrix, G (Gobs) as four times the sire 

variance (Sj(i)).  
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Bayesian estimation of genetic variance components has the benefit of being able to carry 

uncertainty throughout the analysis by applying the same transformation to each MCMC 

sampling iteration (75, 77). However, variance component estimates are constrained to be 

greater than zero (positive-definite) and therefore, testing for significant estimates of 

genetic variance requires comparing Gobs to a suitable null expectation. We used random 

G matrices (Gran) as the null expectation, which we created by randomising phenotype 

with respect to parentage (within ecotypes) and re-running model 5. We conducted 1,000 

randomisations within each ecotype and ran a separate model for each randomised 

dataset. Due to the significant computer running time required we kept the thinning 

interval and burn-in period identical, but reduced the total number of iterations such that 

we sampled the smallest number of iterations that would give us a reliable estimate of the 

posterior mean. The minimum total number of iterations was calculated from our 

observed models of G by estimating the mean for a variance component from an 

increasing number of iterations until the accuracy of our estimate of the mean reached an 

asymptote. We checked convergence for the randomised G models with all models 

showing no autocorrelation between MCMC samples and effective sample sizes greater 

than 85% of the number of iterations saved. Taking the posterior mean G for each 

random model gave us 1,000 randomized G matrices. We then compared the variance 

explained by Gobs to Gran for several analyses outlined below. 

Characterising G 

To characterise G, we estimated the univariate heritability for each trait. Traits were 

standardised to a variance of one within each ecotype separately and therefore, the 

diagonal elements of our observed G represented heritabilities. To identify whether our 
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estimated heritabilities were higher than expected by sampling error, we compared the 

heritabilities taken from our posterior mean observed G with those taken from our 

randomized G matrices. Taking the diagonal elements for each of our 1,000 randomised 

G matrices gave 1,000 random estimates of the univariate heritabilities. If the heritability 

estimates from our observed G were higher than the 95% Highest Posterior Density 

(HPD) interval for the randomized heritability distribution, we took this as evidence that 

our observed heritabilities were higher than expected by sampling error.  

To explore the distribution of genetic variance we used eigenanalyses on the posterior 

mean of our observed G. The distribution of genetic variance among eigenvectors 

describes the shape of multivariate genetic variance, where fewer eigenvectors with 

relatively high genetic variance denote a more elliptical G. The linear combination of 

traits with the most genetic variance then describes the direction of greatest multivariate 

genetic variance. To quantify whether eigenvectors explained more variance than 

expected by sampling error, we compared eigenanalyses conducted on Gobs with Gran. We 

conducted an eigenanalysis on each of the 1,000 random G matrices and saved the 

eigenvalues, which gave the distribution of the null expectation for each eigenvector of 

G. If the eigenvalues from our observed G were higher the upper 95% confidence 

interval for the distribution of the randomised eigenvalues, then our observed 

eigenvectors explained more variance than expected due to sampling error. 

Divergence in multivariate genetic variance among ecotypes 

To investigate divergence in genetic (co)variance matrices between ecotypes we used the 

covariance tensor approach, which quantifies differences between multiple matrices and 

uses eigenanalysis to identify how traits contribute to these differences. The tensor 
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analysis is a three-step process; first we constructed the S matrix, which contained the 

variances and covariances between all matrix elements (summarised in 77, 78). Second, 

eigenanalysis of S gave the eigentensors, which are matrices that explained the most 

difference in variance between ecotype matrices, with their associated eigenvalue 

quantifying the amount of variance in the difference attributed to each eigentensor. Third, 

a second eigenanalysis, conducted on the eigentensors, gives the eigenvectors that 

describe the distribution of the variation within each eigentensor, corresponding to the 

linear combination of traits that explain the difference between the original matrices (77, 

78). 

To determine the eigentensors associated with significant differences in genetic variation, 

we compared the difference in genetic variance explained by tensor analyses on our 

observed and randomised G matrices (77). For the random tensor analysis we conducted 

a covariance tensor on each randomised model of G and saved the S matrix, giving 1,000 

random estimates of S. We then projected the eigenvectors of S from the tensor analysis 

of Gobs, through the random S matrices, quantifying the amount of difference in variance 

in the randomised G matrices explained by each of the observed eigenvectors. We then 

compared the distribution of random eigenvalues of S to the observed eigenvalues of S. 

Where the observed eigenvalues of S exceeded the 95% HPD intervals of the random 

distribution was interpreted as an eigentensor that accounted for significant differences in 

variation between ecotype matrices.  

To investigate the contribution of each ecotype to differences in variance described by 

the eigentensors we used two methods. First, we calculated the frobenius product 

between the original ecotype G matrices and the eigentensor, which gave the coordinates 
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of each ecotype in the space of the significant eigentensors. Where ecotypes show 

differences in the coordinates reveals which ecotypes contribute to the differences in the 

eigentensor. Second, matrix projection of the leading eigenvectors of the eigentensors, 

through the original matrices, examines how much of the difference in variance explained 

by the leading eigenvectors is attributable to each ecotype. 

Aligning divergence in phenotype mean with divergence in genetic variance  

To investigate whether divergence in variance was associated with divergence in mean 

multivariate phenotype we compared the eigentensor of G with D. To do so, we projected 

the eigenvectors of eigentensors through D using 

 V
i
 = b

T

i
  D b

i 
(6) 

where b
i
 is the ith normalised eigenvector of the first eigentensor and D is the divergence 

matrix. V
i
 is then the amount of divergence in mean phenotype associated with each 

eigenvector of the eigentensor. We used equation 6 on the 1,000 MCMC iterations of our 

observed G, and the 1,000 randomisations of D to carry through the uncertainty for both 

D and the eigentensor of G. First, we took the first eigentensor from tensor analyses 

conducted on each MCMC iteration of G, giving 1,000 estimates of the eigentensor. We 

then projected the eigenvectors of these eigentensors through the 1,000 randomisations of 

D. If V
i
 explained more divergence than expected by chance, the observed projection 

would fall outside the 95% confidence intervals of the null distribution.  
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