
Evolution of Genome Architecture in Archaea: Spontaneous
Generation of a New Chromosome in Haloferax volcanii

Darya Ausiannikava,†,1 Laura Mitchell,1 Hannah Marriott,1 Victoria Smith,1 Michelle Hawkins,‡,1

Kira S. Makarova,2 Eugene V. Koonin,2 Conrad A. Nieduszynski,3 and Thorsten Allers*,1
1School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
2National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD
3Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
†Present address: School of Biological Sciences, Institute of Cell Biology, University of Edinburgh, Kings Buildings, Edinburgh, United
Kingdom
‡Present address: Department of Biology, University of York, Wentworth Way, York, United Kingdom

*Corresponding author: E-mail: thorsten.allers@nottingham.ac.uk.

Associate editor: Mary O’Connell
Sequencing data sets generated and analyzed during this study are available in the NCBI Gene Expression Omnibus under accession
number GSE108201.

Abstract

The common ancestry of archaea and eukaryotes is evident in their genome architecture. All eukaryotic and several

archaeal genomes consist of multiple chromosomes, each replicated from multiple origins. Three scenarios have been

proposed for the evolution of this genome architecture: 1) mutational diversification of a multi-copy chromosome; 2)
capture of a new chromosome by horizontal transfer; 3) acquisition of new origins and splitting into two replication-

competent chromosomes. We report an example of the third scenario: the multi-origin chromosome of the archaeon

Haloferax volcanii has split into two elements via homologous recombination. The newly generated elements are bona
fide chromosomes, because each bears “chromosomal” replication origins, rRNA loci, and essential genes. The new

chromosomes were stable during routine growth but additional genetic manipulation, which involves selective bottle-

necks, provoked further rearrangements. To the best of our knowledge, rearrangement of a naturally evolved prokaryotic
genome to generate two new chromosomes has not been described previously.

Key words: chromosome, genome architecture, multipartite genome, homologous recombination, genome stability,

archaea, Haloferax volcanii.

Introduction

Bacterial genomes usually consist of a single circular chromo-

some with a unique origin of DNA replication oriC, which is

recognized by the initiator protein DnaA. Some bacteria,

mainly from the phylum Proteobacteria (e.g. Agrobacterium,

Brucella, Rhizobium, Vibrio), have large secondary replicons

termed chromids (Harrison et al. 2010; diCenzo and Finan

2017). Unlike plasmids, chromids are often comparable to the

main chromosome in size and carry core genes that are usu-
ally found on the main chromosome. However, in contrast to

the main chromosome, chromids have been shown to rely

exclusively on plasmid-type DNA replication initiation mech-

anisms (often in the form of a RepABC system), and not on

the DnaA/oriC system (Egan et al. 2005; Pinto et al. 2012).
Archaea are similar to bacteria in terms of the size and

overall organization of their genomes (Koonin and Wolf
2008). However, the core DNA replication proteins found

in archaea are more closely related to those of eukaryotes

than to their bacterial counterparts. Archaea commonly have

more than one origin on the main chromosome and rely on

Orc1/Cdc6 replication initiator proteins, which are

homologous to the eukaryotic origin recognition complex

subunit Orc1 (Makarova and Koonin 2013; Ausiannikava

and Allers 2017). Archaeal genomes often have large second-

ary replicons, which are referred to as mega-plasmids or mini-

chromosomes. Unlike bacterial chromids, archaeal mini-

chromosomes depend predominantly on Orc1 initiator pro-

teins for their replication, similar to the main chromosome

(Ng et al. 1998, 2000; Baliga et al. 2004; Wang et al. 2015).
Eukaryotic genomes consist ofmultiple chromosomes that

are almost always linear and are each replicated frommultiple

origins. New extrachromosomal elements arise relatively fre-

quently in eukaryotes (Gaubatz 1990; Moller et al. 2015;

Turner et al. 2017), but these elements are often transient

and low in abundance. Extrachromosomal circular DNAs are

common in yeast and may cover up to 23% of the genome

(Moller et al. 2015), and cancer cells often generate highly

amplified circular mini-chromosomes called double minute

chromosomes (Storlazzi et al. 2010).
How did multiple chromosomes with multiple origins

evolve? The ancestral state is unlikely to have been a single

chromosome with a single origin, but it is the simplest one to
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consider. (i) If present in multiple copies, a single chromo-
some could diversify by the accumulation of mutations. (ii)
More likely, a new element could be acquired by horizontal
transfer—over time, the secondary chromosome would gain
core genes from the main chromosome (diCenzo and Finan
2017). (iii) Alternatively, the new element could integrate into
themain one, producing amulti-origin chromosome that has
the potential to split into two replication-competent chro-
mosomes, thereby giving rise to the state encountered in
modern genomes (Egan et al. 2005; diCenzo and Finan
2017). In bacteria, the presence of plasmid-like replication
origins on secondary replicons and the uneven distribution
of core genes argues against scenario (i) and in favor of sce-
nario (ii) (Harrison et al. 2010). Phylogenetic analysis of the
multiple replication origins found on archaeal chromosomes
indicates that they were independently acquired through
horizontal gene transfer (HGT) and not by duplication of
pre-existing origins (Robinson and Bell 2007; Wu et al.
2012), again apparently ruling out scenario (i) and instead
supporting scenario (ii). Because features that are common
to all eukaryotic replication origins are elusive, little can be
deduced about the evolution of eukaryotic genome organi-
zation but scenario (iii) might be the most parsimonious.

Whatever the evolutionary scenario, genome architecture
is not random in prokaryotes (Rocha 2004, 2008; Press et al.
2016). One of the strongest constraints is the location of
replication origins and termination regions; a striking X-
shaped pattern of inversions, with endpoints symmetrically
located around the origin and terminus of replication, has
commonly been observed in bacteria and archaea (Eisen et al.
2000; Novichkov et al. 2009; Repar andWarnecke 2017). It has
been shown experimentally that altering the size ratio of the
two replication arms (replichores) by>10% is deleterious for
Escherichia coli (Esnault et al. 2007). A strong bias for codir-
ectionality of transcription and replication, which is thought
to reduce the collision of RNA and DNA polymerases, also
exists in prokaryotic genomes (Wang et al. 2007; Srivatsan
et al. 2010; Ivanova et al. 2015). The distribution of repetitive
and mobile elements shapes the genome as well, with both
homologous and site-specific recombination acting as a po-
tent driving force of chromosome architecture evolution in
bacteria and archaea (Brugger et al. 2004; Papke et al. 2004;
Whitaker et al. 2005; White et al. 2008; Bryant et al. 2012;
Cossu et al. 2017; Mao and Grogan 2017).

Haloferax volcanii, a halophilic archaeon, is a tractable
model to study prokaryotic genome plasticity and the evolu-
tion of new chromosomes (Mullakhanbhai and Larsen 1975;
Charlebois et al. 1991; Hartman et al. 2010). Its main chromo-
some has three origins, oriC1, oriC2, and oriC3 (Norais et al.
2007; Hawkins, Malla, et al. 2013). Three additional origins
exist on the three mini-chromosomes, pHV4, pHV3, and
pHV1 (Hartman et al. 2010). Haloferax volcanii is highly poly-
ploid, with the entire genome present in�20 copies (Breuert
et al. 2006). Consistent with the highly dynamic nature of
archaeal genomes (Redder and Garrett 2006; Bridger et al.
2012), two cases of genome rearrangements have been
detected in vivo for H. volcanii, namely fusion of the pHV4
mini-chromosome with the main chromosome, and

inversion of part of this fused chromosome by recombination

between two insertion sequence (IS) elements (Hawkins,

Malla, et al. 2013). The former rearrangement has increased

the number of replication origins on the main chromosome

to four. The involvement of HGT in archaeal genome evolu-

tion is evident from the presence ofmany additional copies of

replication genes. In the H. volcanii genome, there are 16 orc

genes encoding the Orc1 initiator protein but only six origins

(Hartman et al. 2010; Raymann et al. 2014).
Here we report an unusual genome rearrangement in H.

volcanii. In our investigation of DNA replication, we generated

strains with serial deletions of orc genes. It came to our at-

tention that one of these strains had undergone a genome

rearrangement. Unexpectedly, the main chromosome split

into two parts via homologous recombination between

two near-identical sod (superoxide dismutase) genes; there-

fore, it was not due to excision of the integrated pHV4. The

two resulting DNA molecules exhibit all the features of bona
fide chromosomes: they bear replication origins, rRNA loci,

and essential core genes.
To the best of our knowledge, the evolution of a new

chromosome without interspecies HGT has so far not been

observed in prokaryotes. Thus, we have witnessed in vivo a

realization of the scenario (iii) posited above: a multi-origin

chromosome splits into two replication-competent chromo-

somes. This finding contrasts with our previous report show-

ing fusion of the pHV4 mini-chromosome with the main

chromosome (Hawkins, Malla, et al. 2013) and demonstrates

that genome rearrangements do not inexorably lead to larger

chromosomes. Instead, they can give rise to the multi-origin/

multi-chromosome state encountered in modern genomes.

Results

Large-Scale Genome Rearrangement in the Strain
Deleted for Orc1/Cdc6 Initiator Gene orc5
In our study of Orc1-type initiator proteins and their role in

DNA replication in H. volcanii, we focused on the four orc
genes, orc1, orc5, orc2, and orc3, which are genetically linked

to the four chromosomal origins, oriC1, oriC2, oriC3, and ori-
pHV4, respectively (fig. 1A). The four origins create eight

replichores on the chromosome, with oriC1 being the most

active origin and ori-pHV4 the least (Hawkins, Malla, et al.

2013). We obtained replication profiles by marker frequency

analysis using whole genome sequencing (Muller et al. 2014).

We noted that upon deletion of orc5 gene, which is located

next to oriC2, the mutant strain H1689 had acquired large-

scale genome rearrangements. This was manifested as two

clear discontinuities in the replication profile (indicated by

arrows in fig. 1B; Skovgaard et al. 2011), when compared with

the wild type (WT).
To verify the genome rearrangement by an independent

method, we performed restriction digests with SfaAI and an-

alyzed the fragment sizes by pulsed field gel electrophoresis

(PFGE). We have previously used this method to detect ge-

nome rearrangements in H. volcanii (Hawkins, Malla, et al.

2013). We observed the disappearance of a band correspond-

ing to a 390 kb fragment, and the appearance of a novel
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579 kb fragment in the SfaAI digest ofDorc5DNA, confirming

a large-scale genome rearrangement (fig. 1C).

New Genome Architecture of Dorc5 Strain
The two interruptions in the replication profile of Dorc5mu-

tant (fig. 1B) correspond to the locations of the sod1
(HVO_A0475; 689201–689803 bp) and sod2 genes

(HVO_2913; 3385084–3385683 bp). The sod1 and sod2 super-
oxide dismutase genes are 603 bp and 600 bp, respectively,

and have 100% nucleotide sequence identity (apart from the
initial 8 bp); however, their flanking sequences are unique.

This provides an opportunity for intrachromosomal homol-

ogous recombination of the sod1 and sod2 genes, and two

outcomes are possible: splitting of the main chromosome

into two circular replicons (termed new chr 1 and new chr
2, fig. 2A), or chromosomal inversion of the region between
the two sod genes. Given that the two sod genes are in the
same orientation (direct repeats), only the former outcome is
possible, as the latter would require the sod genes to be ar-
ranged as inverted repeats.

To investigate the genome architecture of theDorc5 strain,
intact genomic DNA was analyzed by PFGE and a Southern
blot was probed with sod1 and sod2 sequences (fig. 2B). In the
wild isolate DS2 (Mullakhanbhai and Larsen 1975), the sod1
and sod2 genes are located on pHV4 and the main chromo-
some, respectively. In the WT laboratory strain H26, pHV4 is
fused with the main chromosome and therefore both sod
genes are on the same molecule (Hawkins, Malla, et al.
2013). In DNA prepared from the Dorc5 strain H1689, the
sod1 and sod2 probes hybridized with two molecules that
correspond in size to new chr 1 (2,696 kb) and new chr 2
(787 kb). Using PCR with primers to the unique sequences
flanking sod1 and sod2, we determined that these two genes
underwent recombination in the Dorc5 strain (fig. 2C). DNA
sequencing of the PCR products confirmed that the unique
flanking sequences of sod1 and sod2 had been exchanged in
the Dorc5 strain.

We constructed maps of the rearranged chromosomes
(new chr 1 and new chr 2) and analyzed the predicted
sod1/sod2 break points in the Dorc5mutant by restriction
digests and Southern blotting. As expected, a StyI digest
generated one band of 7.8 kb in the WT and a larger 13 kb
fragment (plus a faint WT-sized band) in the Dorc5 strain,
which hybridize with a probe adjacent to sod1 (fig. 3A).
Similarly, an EcoRV digest of DNA from the WT strain
generated a fragment of 8.9 kb, which hybridizes with a
probe adjacent to sod2 gene, whereas a smaller 5.5 kb
fragment (plus a faint WT-sized band) was seen in the
Dorc5 strain (fig. 3A). The presence of the faint fragment
of WT size in both digests of the Dorc5 mutant suggests
that the genome architecture of this strain is not mono-
morphic, and that the two states (with and without ge-
nome rearrangement), coexist in the population.

To confirm the splitting of the chromosome into two cir-
cular replicons, genomic DNA was digested with SfaAI, ana-
lyzed by PFGE and a Southern blot was probed with the oriC1
downstream region (fig. 3B). In the WT, this probe will hy-
bridize with a fragment of 390 kb that includes sod2. If the
main chromosome is split into two, the 390 kb fragment will
be fused with a 215 kb fragment that includes sod1, to gen-
erate a product of 579 kb. Such a rearrangement would ac-
count for the disappearance of the 390 kb band, and the
appearance of a novel 579 kb band, as seen in the SfaAI digest
in figure 1C. The SfaAI-digested Dorc5 DNA in figure 3B
showed the presence of such a 579 kb band that hybridizes
with the oriC1 probe. A faint 390 kb fragment corresponding
to the WT was also present in the Dorc5 sample, indicating
that the genome architecture of this strain is not monomor-
phic, confirming the observation made in figure 3A.

To further confirm fragmentation of the chromosome into
two replicons, genomic DNA was digested with AvrII and
SwaI, and the fragments were analyzed by PFGE (fig. 3C).

FIG. 1. Genome rearrangement of Dorc5 strain. (A) Location of rep-

lication origins and adjacent orc genes on Haloferax volcanii main

chromosome (þpHV4). Positions of the two rRNA loci are indicated

with black arrows. The integrated pHV4 mini-chromosome is indi-

cated by a thick line. The eight replichores representing the direction

of replication forks are shown by colored arrows, corresponding to

their respective origins. SfaAI sites are indicated by tick marks. (B)

Replication profiles of theDorc5mutant H1689 and a reference wild-

type (WT) laboratory strain H26. The number of reads is plotted

against the chromosomal location. The linearizedH. volcanii chromo-

some showing positions of oriC and orc genes is shown below (colored

as in A). Two discontinuities in the Dorc5 replication profile are in-

dicated by vertical arrows. (C) Restriction fragment length polymor-

phisms in WT andDorc5 strain as shown by digestion with SfaAI and

PFGE. The 390 kb SfaAI fragment (shown on the map in panel A) is

absent from the digest of Dorc5 DNA, and a novel 579 kb SfaAI frag-

ment is present; these bands are indicated by arrows.
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The two largest AvrII fragments of WT are 1,028 kb and
438 kb, and include the sod2 and sod1 genes, respectively.
When the main chromosome is split into two elements,
the largest fragments are 754 kb and 711 kb, and are found
on new chr 1 and new chr 2, respectively. The AvrII digest of
Dorc5 DNA generated two such fragments of 711 kb and
754 kb, alongside the disappearance of fragments of
1,028 kb and 438 kb. The largest SwaI fragments of WT are
1,718 kb, 1,428 kb, and 417 kb (the latter is found on pHV3,
which is not affected by the genome rearrangement).
Splitting the main chromosome into two would eliminate
the 1,428 kb SwaI fragment and generate a new fragment
of 640 kb on new chr 1; these fragments were observed in
the SwaI digest of Dorc5 DNA.

Taken together, the PCR and restriction digests indicate
that ectopic recombination between the two sod genes has
led to fragmentation of the main chromosome into two cir-
cular replicons. However, the genome architecture of the
Dorc5 strain is polymorphic; that is, a WT chromosome is
still present alongside the two new elements.

orc5 Deletion Does Not Increase Rate of Large-Scale

Genome Rearrangements

The genome rearrangement in the Dorc5 strain might have

been provoked by asymmetric and unbalanced replichores. In

the archaeon Sulfolobus islandicus, deletion of orc1-1 or orc1-3

genes abolishes replication initiation from the adjacent oriC1

or oriC2 origins, respectively (Samson et al. 2013). A functional

linkage of orc genes and origins is also found inH. volcanii: the

replication profile in figure 1B shows that deletion of orc5

abolishes replication initiation from oriC2, which is adjacent

to orc5. The replichores that derive from the remaining ori-

gins oriC1, oriC3 and ori-pHV4 are predicted to be highly

asymmetrical and unbalanced (fig. 1A vs. fig. 4A).

Furthermore, in an Dorc5 strain, transcription of the rRNA

locus that is located adjacent to oriC2 might no longer pro-

ceed in the same direction as DNA replication, provoking

head-on collisions of the transcription and replication ma-

chinery. Thus, the absence of orc5 might make the genome

unstable and prone to rearrangements. However, the Dorc5

FIG. 2. Novel genome architecture of Dorc5 strain. (A) Scheme for outcome of recombination between sod1 and sod2 genes to split the main

chromosome (þpHV4) and generate two new chromosomes (new chr 1 and new chr 2). (B) PFGE and Southern blot confirming two new

chromosomes in Dorc5 strain. Intact genomic DNA of wild isolate DS2, WT H26 and Dorc5 H1689 strains was probed with sod1 and sod2

sequences. (C) Recombination of sod1 and sod2 genes inDorc5 strain H1689 was confirmed by end-point PCR using primers to unique sequences

flanking sod1 and sod. The identity of the PCR products was validated by DNA sequencing.
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strain H1689 shows nomajor growth defects. The growth rate
was determined by competition assay to be 5.5% slower than
the WT strain (data not shown). This decrease in growth rate
is comparable to the 4% growth defect previously reported
for aDoriC2 strain, which does not have a genome rearrange-
ment (Hawkins, Malla, et al. 2013).

To test the effect of asymmetric (unbalanced) replichores,
we investigated the scale of genome rearrangements in strains
with different combinations of orc and origin deletions. A
total of 16 additional strains were analyzed by SfaAI digestion
and PFGE. In all 16 strains, the five largest bands generated by

SfaAI were identical in the size to those seen in the WT strain
(fig. 4B). Therefore, only the Dorc5 strain underwent a large-
scale genome rearrangement. This rearrangement could have
occurred by chance or due to the deletion of orc5, which
potentially might increase the rearrangement rate.

This hypothesis was tested statistically. As an initial control,
we estimated the rate of spontaneous genome rearrange-
ment during H. volcanii genome manipulation, by testing
100 independent mutants where the orc4 gene had been
deleted. This gene was chosen because it is not expected to
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FIG. 3. Genome architecture of the Dorc5 strain is polymorphic. (A)

Southern blot conforming location of breakpoints of genome rear-

rangement in Dorc5 strain. Genomic DNA of WT H26 and Dorc5

H1689 was digested with StyI or EcoRV and probed with sequences

adjacent to sod1 or sod2, respectively. A WT-sized band is present in

the Dorc5 lanes. (B) Southern blot of PFGE confirming relocation of

oriC1 to new chr 2 inDorc5 strain. SfaAI-digestedDNAofWTH26 and

Dorc5 H1689 strains was probed with sequences adjacent to oriC1.

Relevant SfaAI sites are indicated on themaps, the new chr 1 does not

hybridize with oriC1 (map not shown). A faint 390 kb WT-sized band

is present in the Dorc5 lane. (C) PFGE confirming new genome archi-

tecture of Dorc5 strain. Genomic DNA of WT H26 and Dorc5 H1689

was digested with AvrII or SwaI. Relevant AvrII and SwaI sites are

indicated on the outside and inside of chromosome maps, respec-

tively. The 417 bp SwaI fragment is found on pHV3 (not shown),

which is not affected by the genome rearrangement.

FIG. 4. Deletion of orc5 does not increase the rate of genome rear-

rangement. (A) Scheme showing new replichores in the absence of

orc5 (replichores and rRNA loci indicated as in fig. 1A). (B) SfaAI

restriction fragment length polymorphisms were not seen in unre-

lated strains with different combinations of orc and oriC deletion.

Strain genotypes are indicated below. (C) SfaAI-digested genomic

DNA of 25 independently derived Dorc4 mutants and 25 indepen-

dently derived Dorc5 mutants. Representative images, the Dorc4

clone and Dorc5 clone with a genome rearrangement are indicated

by an asterisk.
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play a role in DNA replication: it is not located next to a
replication origin or actively transcribed genes, and as judged
by synonymous codon usage (SCU), was acquired by HGT
(Hartman et al. 2010). Only 1 of the 100 Dorc4 clones tested
exhibited large-scale genome rearrangements as determined
by SfaAI digestion (fig. 4C). The same analysis was conducted
with 115 independently generated Dorc5 mutants, and only
one of the 115 clones tested exhibited a genome rearrange-
ment (fig. 4C). When combined with the Dorc5 strain H1689,
the estimated rate of large-scale genome rearrangements in
the absence of orc5 is 1.7% (2/116), which is not statistically
different from the 1% background rate obtained with Dorc4
deletion (P-value 0.65, chi-squared test). Thus, deletion of orc5
and any associated change in the size of the replichores does
not appear to lead to an increase in large scale genome
rearrangements.

Evolution of New Chromosomal Architecture in
Dorc5-Derivative Strains
In our study of Orc1-type initiator proteins, we generated
many strains that were derived from the Dorc5 mutant
H1689. As we show here, H1689 has a large-scale genome
rearrangement but its chromosomal architecture is polymor-
phic, whereby the two new elements co-exist with the pa-
rental chromosome. The genetic manipulation of H. volcanii
includes selective bottlenecks and extensive propagation
(Bitan-Banin et al. 2003; Allers et al. 2004), giving an oppor-
tunity for polymorphic genome states to be resolved, and
potentially for further large-scale rearrangements to occur.
Indeed, DNA digests with AvrII and SfaAI showed that strains
derived from the Dorc5 mutant H1689 exhibit notable ge-
nome dynamics. We observed fragments corresponding to
the WT chromosome, fragments similar to those observed in
the Dorc5 strain H1689, as well as fragments of new sizes
(fig. 5A). To determine whether these new genome fragments
had arisen by further recombination between the sod genes,
we carried out a Southern blot of this region (fig. 5B).

A total of four states were observed in the Dorc5 deriva-
tives. 1) In seven strains (lanes 4, 7, 10, 11, 12, 13, 14), addi-
tional genome rearrangements were detected by AvrII and
SfaAI restriction digests (fig. 5A), but these rearrangements
did not involve the sod gene region (fig. 5B). 2) Three strains
(fig. 5B, lanes 3, 5, 6) had preserved the polymorphic genome
architecture of the Dorc5 strain H1689 (lane 2). 3) In one
strain (lane 8), the genome architecture reverted to the orig-
inal WT state (lane 1). 4) In another strain (lane 9), the new
chromosomal elements that appeared in the Dorc5 strain
were now present in a monomorphic state. We obtained
the replication profile of this monomorphic strain H2202
(Dorc5 Dorc3, lane 9). Two clear discontinuities were ob-
served in the same location as those seen previously with
the (polymorphic) Dorc5 strain H1689 (compare fig. 5C vs.
fig. 1B).

The replication profile of the Dorc5 Dorc3 strain H2202
was remapped to sequences corresponding to new chr 1 and
new chr 2 (fig. 5D). There is a clear peak at oriC3 in the profile
of new chr 1, which is deleted for orc5 (adjacent to oriC2) but
retains orc2 (adjacent to oriC3). Similarly, there is a clear peak

at oriC1 in the profile of new chr 2, which is deleted for orc3

(adjacent to ori-pHV4) but retains orc1 (adjacent to oriC1).

Newly Generated Genome Elements Have Features of

Bona Fide Chromosomes
To date, six genome elements have been described in H.

volcanii (table 1). The original strain DS2 contains the main

chromosome, pHV4, pHV3, pHV2, and pHV1 (Charlebois

et al. 1991). The laboratory strain features a new element

that was generated by fusion of the main chromosome

with pHV4 (Hawkins, Malla, et al. 2013). Here, we describe

the generation of two new replicons, which result from the

fission of the fused main/pHV4 chromosome. This genome

rearrangement results from ectopic recombination between

the near-identical sod genes and not due to excision of the

integrated pHV4. Do the new replicons qualify as mega-

plasmids, chromids, or mini-chromosomes?
In prokaryotic genomes, chromosomal status is based on

the presence of essential and conserved genes, as well as size,

copy number, replication control, and evolutionary history

(Egan et al. 2005; Harrison et al. 2010). We analyzed the dis-

tribution of these features on the new genome elements. As a

measure of evolutionary history, we used SCU (Hartman et al.

2010). Local variations in SCU can result from mutation and

selection, but a pronounced bias is usually due to HGT from

another species as indicated by a large fraction of rare codons.

As a measure of gene conservation, we calculated the fraction

of genes on each new chromosome that have been mapped

back to the genome of the last archaeal common ancestor

(LACA; Wolf et al. 2012).
Table 1 indicates that splitting of the fused chromosome

generated two replicons that are broadly similar in terms of

SCU and the fraction of LACA genes. Both replicons retain an

rRNA locus as well as multiple DNA replication origins and

orc genes. The smaller element retains essential DNA replica-

tion genes coding for MCM (HVO_0220), both subunits of

polymerase D (HVO_0003, HVO_0065), the large subunit of

primase (HVO_0173), PCNA (HVO_0175), and two out of

the three subunits of the RFC clamp loader (HVO_0145,

HVO_0203); the larger element contains genes coding for

polymerase B (HVO_0858), GINS (HVO_2698), the small sub-

unit of primase (HVO_2697), and the histone gene

(HVO_0520). Thus, both new genome elements comply

with the definition of a chromosome (diCenzo and Finan

2017).

Discussion

The first DNA replication origin to be identified in archaea

was described in 2000 for Pyrococcus abyssi (Myllykallio et al.

2000). At the time, it was proposed that archaea and bacteria

share a “standard” prokaryotic genome architecture, compris-

ing a single circular chromosome with a unique origin of

replication (Vas and Leatherwood 2000). However, this view

was overly simplistic. It has since become clear that archaeal

genomes can consist of multiple chromosomes, each with

single or multiple origins (Ausiannikava and Allers 2017).

This is perhaps best exemplified by the genome architecture

Ausiannikava et al. . doi:10.1093/molbev/msy075 MBE
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of H. volcanii, which has one large chromosome with three
origins and three mini-chromosomes with one origin each
(table 1). About 10% of bacteria have more than one replicon
(diCenzo and Finan 2017), the best studied example being

Vibrio cholerae which has a large chromosome and a smaller
chromid, each with one origin (Jha et al. 2012). In both H.
volcanii and V. cholerae, genome rearrangements have been
documented where two replicons have fused to become one.

FIG. 5. New genome architectures of Dorc5 derivatives. (A) AvrII and SfaAI digests of genomic DNA from derivatives of Dorc5 strain H1689

identifying four different genome states. Strain genotypes and genome architecture state is indicated below, polymorphic andmonomorphic refer

to strains with H1689-type genome rearrangements. The monomorphic Dorc5 Dorc3 strain H2202 is indicated. (B) Southern blots showing that

additional genome rearrangements in derivatives ofDorc5 strain H1689 did not involve recombination of the sod gene region. Genomic DNAwas

digested with StyI or EcoRV and probed with sequences adjacent to sod1 or sod2, respectively (for key to restriction fragments, see fig. 3A). (C)

Replication profile ofDorc5Dorc3 strain H2202 (lane 9 in panelsA and B) where the genome is in amonomorphic state. Labeled as in figure 1B, the

two discontinuities in the replication profile are indicated by vertical arrows. (D) Replication profile of Dorc5 Dorc3 strain H2202 remapped to

sequences corresponding to new chr 1 and new chr 2.

Evolution of Genome Architecture in Archaea . doi:10.1093/molbev/msy075 MBE
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We have previously reported that during generation of the H.

volcanii laboratory strain, the pHV4 mini-chromosome fused

with the main chromosome by recombination (Hawkins,

Malla, et al. 2013). In V. cholerae, fusion of the chromosome

with the chromid can be induced deliberately or can occur

spontaneously. Such spontaneous fusions arise as suppressors

of mutations that affect DNA replication (Val et al. 2014), but

naturally occurring V. cholerae strains with a single chromo-

some have also been reported (Xie et al. 2017).
Here we describe a genome rearrangement in H. volcanii

that led to the generation of a new chromosome. The main

chromosome, which in the laboratory strain includes the in-

tegrated pHV4 mini-chromosome, has split into two parts.

The two resulting DNA molecules exhibit all the features of

bona fide chromosomes: they bear DNA replication origins,

rRNA loci, and essential core genes. The genome rearrange-

ment that gave rise to the new chromosomewas not a simple

reversal of the integration of pHV4, which had occurred by

recombination between two identical ISH18 ISs (Hawkins,

Malla, et al. 2013). Instead, the genome rearrangement

reported here occurred via homologous recombination be-

tween the near-identical sod1 and sod2 genes. In the wild

isolate DS2, these two genes are located on pHV4 and the

main chromosome, respectively, but in the laboratory strain

they are located on the same DNA molecule.
Phylogenetic analysis of bacterial genomes indicates that

additional chromosomal elements arise relatively rarely but

once a viable state is achieved, they remain stable over long

evolutionary intervals (Harrison et al. 2010; diCenzo and Finan

2017). It is unclear how the stability of the genome is main-

tained in the multipartite state. Genetic engineering experi-

ments in bacteria have shown that when parts of a

multipartite genome are fused, growth rates remain largely

unaffected (Guo et al. 2003; Val et al. 2012). This finding is

consistent with our observation on the absence of a major

growth defect in any of the strains described above. However,

multipartite genomes have the potential to be highly dy-

namic because homologous genes are often found on differ-

ent (or the same) chromosomal elements, providing ample

opportunity for recombination.
The constraints on genome architecture, such as the need

to coordinate DNA replication with transcription, might be a

reason for the observed stability of multipartite genomes. The

fission or fusion of genome elements can potentially cause

unbalanced replichores (which will be exacerbated by the

relocation of replication termination zones), conflicts be-

tween replication and transcription, and/or changes in gene

dosage. In archaea such asH. volcanii, the equidistant location

of replication origins on the chromosome could reflect the

evolutionary advantage in maintaining such a spatial arrange-

ment. Surprisingly, we observed no immediate effect on ge-

nome stability in H. volcanii when the replichores are

unbalanced. The genome stability was assessed in strains

with different combinations of orc deletions, and there was

no measurable change in the rate of genome rearrangement

following deletion of orc5. This finding contrasts with bacte-

rial systems, where replichore imbalance has been shown to

lead to genome instability and reduced fitness (Esnault et al.

2007; Dimude et al. 2016). For example, an E. coli strain where

the origin was moved to an ectopic site has been found to

harbor a large chromosomal inversion (Ivanova et al. 2015).
Several reasons might account for the lack of deleterious

effects of replichore imbalance in H. volcanii. 1) In contrast to

bacteria, which have discrete Ter replication termination sites,

archaea and eukaryotes have broad termination zones where

converging replication forks meet (Duggin et al. 2011). This is

most likely a consequence of having multiple origins per

chromosome, and allows for greater flexibility in replication

initiation. 2) Apart from the highly transcribed rRNA genes,

transcription in H. volcanii is not consistently co-orientated

with replication (Hartman et al. 2010). Such an arrangement

is both more important and easier to maintain in bacteria,

which have a single origin per chromosome. 3) The polyploid

nature of H. volcanii genome (where each chromosome is

present in 15–20 copies) could also account for the lack of

genome instability, because deleterious genome rearrange-

ments can be restored by gene conversion with a WT copy

of the affected chromosome. 4) Little is known about the

regulation of replication initiation in archaea. Haloferax volca-

nii might use some origins as a “backup” to compensate for

replichore imbalance, thereby avoiding any potential con-

flicts. Alternatively, differential origin usage within one cell,

where some chromosomes use one origin and others use a

different one, would ameliorate unbalanced replichores. Both

scenarios—compensatory and stochastic origin firing—have

been observed in eukaryotic replication (Hawkins, Retkute,

et al. 2013). 5) Recombination-dependent replication, which

is used in the absence of origins, leads to dispersed initiation

Table 1. Distribution of Features on Genome Elements in H. volcanii Wild Isolate DS2, Laboratory Strain H26, and Dorc5 Strain H1689.

Strain(s) Genome

Element

Size, bp Number of

Genes

SCU, Rare

Codons

GC Content LACA

Genes

rRNA Loci Replication

Origins

DS2 Chromosome 2,847,757 2,960 7.3% 66.6% 37.3% 2 oriC1, oriC2, oriC3

DS2 pHV4 635,786 636 15.5% 61.7% 28.3% 0 ori-pHV4

H26 Chromosome1 pHV4 3,482,975 3,596 8.7% 65.7% 35.5% 2 oriC1, oriC2, oriC3, ori-pHV4

H1689 New chr1 2,695,880 2,781 8.3% 66.1% 37.4% 1 oriC2, oriC3

H1689 New chr2 787,095 815 10.3% 64.6% 33% 1 oriC1, ori-pHV4

DS2, H26, H1689 pHV3 437,906 380 7.7% 65.5% 35.9% 0 ori-pHV3

DS2, H26, H1689 pHV1 85,092 88 26.3% 55.5% 18% 0 ori-pHV1

NOTE.—New genomic elements generated by fission of the fused chromosomeþ pHV4 are designated as New chr1 and New chr2. The fraction of rare codons was calculated

from SCU tables for each genome element (Hartman et al. 2010). The fraction of LACA genes was calculated with cut-off probability of 0.75 (Wolf et al. 2012).
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throughout the genome and may relieve the spatial con-

straints on replication origins. Thus, replichore imbalance

would have only minor effects on the viability of H. volcanii.
Nonetheless, it is notable that the Dorc5-derivative strains

exhibited considerable genome plasticity and the ability to

evolve to different chromosome architectures (fig. 5). The two

new chromosomes were stable during routine growth but

new rounds of genetic manipulation appeared to provoke

further rearrangements. Following transformation, a select-

able marker will initially be present on only one of the 20

chromosome copies. This selectable marker will then spread

throughout the genome by gene conversion, and may carry

with it genetically linked rearrangements. Therefore, the

selective bottleneck of genetic manipulation might allow a

new chromosome architecture to become monomorphic.
Eukaryotic cells contain multiple linear chromosomes that

are replicated from multiple origins. For this type of genome

architecture to arise, three steps are required (but not neces-

sarily in this order): multiplication of origins, multiplication of

chromosomes, and linearization of chromosomes. Given the

shared evolutionary history of eukaryotes and archaea, it is

not surprising that two of these three features are found in

archaeal genomes as well. Up to four replication origins can

be present on some archaeal chromosomes, and multiple

chromosomes that use an Orc-type replication initiation

mechanism co-exist in haloarchaeal species; however, no

Table 2. H. volcanii Strains.

Strain Genotype Derivation Use

DS2 (Mullakhanbhai

and Larsen 1975)

Wild isolate

H26 DpyrE2 (Allers et al. 2004) Standard laboratory strain

H53 DpyrE2 DtrpA (Allers et al. 2004) Laboratory strain, trpA deletion

Strains with large-scale genome rearrangements

H1689 DpyrE2 Dorc5 H26 pTA1375 Deletion of orc5, large-scale genome

rearrangement

H1822 DpyrE2 Dorc5 DtrpA H1689 pTA95 trpA deletion in Dorc5 strain

H2149 DpyrE2 Dorc5 Dorc9 H1689 pTA1433 orc9 deletion in Dorc5 strain

H2196 DpyrE2 Dorc5 Dorc1 H1689 pTA1610 orc1 deletion in Dorc5 strain

H2202 DpyrE2 Dorc5 Dorc3 H1689 pTA1373 orc3 deletion in Dorc5 strain

H2313 DpyrE2 Dorc5 DtrpA Dorc2:: trpAþ H1822 pTA1632 orc2 deletion in Dorc5 strain

H2458 DpyrE2 Dorc5 Dorc3 Dorc9 H2202 pTA1433 orc9 deletion in Dorc5 Dorc3 strain

H2459 DpyrE2 Dorc5 Dorc1 Dorc9 H2196 pTA1433 orc9 deletion in Dorc5 Dorc1 strain

H2562 DpyrE2 Dorc5 Dorc9 Dorc2 H2149 pTA1379 orc2 deletion in Dorc5 Dorc9 strain

H2733 DpyrE2 Dorc5 Dorc3 DtrpA H2202 pTA95 trpA deletion in Dorc5 Dorc3 strain

H2738 DpyrE2 Dorc5 Dorc3 Dorc9 DtrpA H2458 pTA95 trpA deletion in Dorc5 Dorc3 Dorc9 strain

H2786 DpyrE2 Dorc5 Dorc9 DtrpA H2149 pTA95 trpA deletion in Dorc5 Dorc9 strain

H3195 DpyrE2 Dorc5 p.tnaA-radAþ H1689 pTA1837 Tryptophan-inducible radA allele in Dorc5 strain

Strains with wild-type genome architecture

H1691 DpyrE2 Dorc2 H26 pTA1379 Deletion of orc2

H1829 DpyrE2 Dorc4:: trpAþ H53 pTA1452 Deletion of orc4

H2197 DpyrE2 Dorc1 Dorc2 H2199 pTA1610 orc2 deletion in Dorc1 strain

H2199 DpyrE2 Dorc1 H26 pTA1610 Deletion of orc1

H2203 DpyrE2 Dorc2 Dorc3 H1691 pTA1373 orc3 deletion in Dorc2 strain

H2304 DpyrE2 Dorc3 Dori-pHV4 H26 pTA1631 Deletion of ori-pHV4 and orc3

H2305 DpyrE2 Dorc1 Dorc2 Dorc5 H2197 pTA1375 orc5 deletion in Dorc1 Dorc2 strain

H2308 DpyrE2 Dorc2 Dorc3 Dorc5 H2203 pTA1375 orc5 deletion in Dorc2 Dorc3 strain

H2312 DpyrE2 Dorc2 Dorc5 H1691 pTA1375 orc5 deletion in Dorc2 strain

H2413 DpyrE2 Dorc1 Dorc2 Dorc5 Dorc3 H2305 pTA1373 orc3 deletion in Dorc1 Dorc2 Dorc5 strain

H2490 DpyrE2 Dorc3 Dori-pHV4 Dorc2 oriC3 H2304 pTA1692 oriC3 and orc2 deletion in Dori-pHV4 Dorc3 strain

H2492 DpyrE2 Dorc2 DoriC3 H26 pTA1692 Deletion of oriC3 and orc2

H2494 DpyrE2 Dorc1 DoriC1 H26 pTA1691 Deletion of oriC1 and orc1

H2497 DpyrE2 Dorc3 Dori-pHV4 Dorc1 DoriC1 H2304 pTA1691 oriC1 and orc1 deletion in Dori-pHV4 Dorc3 strain

H2560 DpyrE2 Dorc2 DoriC3 Dorc1 DoriC1 H2492 pTA1691 oriC1 and orc1 deletion in DoriC3 Dorc2 strain

H2561 DpyrE2 Dorc2 DoriC3 Dorc3 Dori-pHV4 Dorc1 DoriC1 H2490 pTA1691 oriC1 and orc1 deletion in DoriC3 Dorc2

Dori-pHV4 Dorc3 strain

H2578 DpyrE2 Dorc1 DoriC1 Dorc5 DoriC2 H2494 pTA1712 oriC2 and orc5 deletion in DoriC1 Dorc1 strain

H2579 DpyrE2 Dorc5 DoriC2 H26 pTA1712 Deletion of oriC2 and orc5

H2581 DpyrE2 Dorc2 DoriC3 Dorc3 Dori-pHV4 Dorc5 DoriC2 H2490 pTA1712 oriC2 and orc5 deletion in DoriC3 Dorc2

Dori-pHV4 Dorc3 strain

H2656 DpyrE2 Dorc1 DoriC1 Dorc2 DoriC3 Dorc3

Dori-pHV4 Dorc5 DoriC2

H2561 pTA1712 oriC2 and orc5 deletion in DoriC1 Dorc1

DoriC3 Dorc2 Dori-pHV4 Dorc3 strain

H2658 DpyrE2 Dorc1 DoriC1 Dorc2 DoriC3 Dorc5 DoriC2 H2560 pTA1712 oriC2 and orc5 deletion in DoriC1 Dorc1

DoriC3 Dorc2 strain

H2729 DpyrE2 Dorc3 Dori-pHV4 Dorc5 DoriC2 H2579 pTA1631 ori-pHV4 and orc3 deletion in DoriC2 Dorc5 strain

H2870 DpyrE2 Dorc3 H26 pTA1373 Deletion of orc3

H3380 DpyrE2 DtrpA Dorc5:: trpAþ H53 pTA1633 Deletion of orc5
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archaeon with linear chromosomes has been found to date.
Here, we show that an increase in the number of circular
chromosomes is easily achievable through natural evolution.
To the best of our knowledge, rearrangement of a naturally
evolved prokaryotic genome that generates two new chro-
mosomes, eachwith pre-existingmultiple origins that depend
on the same type of replication initiation, has not been de-
scribed previously. Interestingly, theH. volcanii genomemight
already contain an imprint of a similar event, where the

ancestral chromosome fragmented leading to the generation
of a new chromosome. Indeed, the pHV3 mini-chromosome
has one Orc-dependent replication origin, a native SCU and
GC content similar to the main chromosome, and a high
proportion of LACA genes (table 1); thus, the generation of
pHV3 is compatible with the recombinational route de-
scribed here.

Newly generated chromosomal elements must find effec-
tive solutions for segregation and replication, and the ability

Table 3. Plasmids.

Plasmid Relevant Properties Derivation

pTA95 Integrative plasmid for trpA gene deletion (Allers et al. 2004)

pTA131 Integrative plasmid based on pBluescript II, with pyrE2þ marker (Allers et al. 2004)

pTA298 pUC19 with trpAþ marker flanked by BamHI sites (Lestini et al. 2010)

pTA333 pUC19 with SacI-NspI chromosomal fragment containing orc4 gene This study

pTA415 pBluescript II SK1 with MluI chromosomal fragment containing hel308 helicase gene This study

pTA416 pBluescript II with SacI chromosomal fragment containing orc5 and oriC2 (Norais et al. 2007)

pTA419 pTA131 with NheI-EcoRI fragment of pTA416 containing orc5 and oriC2 This study

pTA1100 pBluescript II with AciI chromosomal fragment containing orc2 and oriC3 (Hawkins, Malla, et al. 2013)

pTA1329 pTA131 with Dori-pHV4 construct (Hawkins, Malla, et al. 2013)

pTA1343 pTA131 with p.tnaA-radAþ:: hdrBþ construct flanked by upstream and downstream radA

regions

(Hawkins, Malla, et al. 2013)

pTA1370 pBluescript II SK1 with HindIII-KpnI chromosomal fragment containing orc1 gene and

oriC1 origin

This study

pTA1371 pBluescript II SK1 with BstBI chromosomal fragment containing orc3 gene This study

pTA1373 pTA131 with Dorc3 construct, comprising ClaI-BamHI fragment of upstream flanking

region of orc3 and BamHI-XbaI fragment of downstream flanking region of orc3, PCR

amplified from pTA1371

This study

pTA1375 pTA131 with Dorc5 construct, comprising KpnI-BamHI fragment of downstream flanking

region of orc5 and BamHI-XbaI fragment of upstream flanking region of orc5, PCR

amplified from pTA416

This study

pTA1379 pTA131 with Dorc2 construct, comprising KpnI-BamHI upstream flanking region of orc2

and BamHI-XbaI fragment of downstream flanking region of orc2, PCR amplified from

pTA1100

This study

pTA1431 pTA131 with inactivation of unique BamHI site in MCS by filling-in with Klenow This study

pTA1432 pBluescript II SK1 with NotI chromosomal fragment containing orc9 gene This study

pTA1433 pTA1431 with Dorc9 construct, comprising XbaI-BstXI upstream flanking region of orc9

and XbaI-BstXI fragment of downstream flanking region of orc9, PCR amplified from

pTA1432

This study

pTA1610 pTA131 with Dorc1 construct, comprising KpnI-BamHI upstream flanking region of orc1

and BamHI-XhoI fragment of downstream flanking region of orc1, PCR amplified from

pTA1370

This study

pTA1631 Dorc3 Dori-pHV4 construct, where orc3 upstream region of pTA1373 was replaced by

KpnI-BamHI fragment of ori-pHV4 upstream region from pTA1329

This study

pTA1632 pTA1379 with insertion of BamHI trpAþ fragment from pTA298 This study

pTA1633 pTA1375 with insertion of BamHI trpAþ fragment from pTA298 This study

pTA1691 pTA131withDorc1DoriC1 construct, comprising StuI-BamHI upstream flanking region of

oriC1 and BamHI-XbaI fragment of downstream flanking region of orc1, PCR amplified

from pTA1370

This study

pTA1692 pTA131 with Dorc2 DoriC3 construct, comprising AatII-BamHI upstream flanking region

of oriC3 and BamHI-KpnI fragment of downstream flanking region of orc2, PCR am-

plified from pTA1100

This study

pTA1712 pTA131 with Dorc5 DoriC2 construct, comprising XbaI-BamHI upstream flanking region

of oriC2 and BamHI-XbaI fragment of downstream flanking region of orc5, PCR am-

plified from pTA416

This study

pTA1837 pTA131 with p.tnaA-radAþ construct. XbaI-BamHI fragment of hdrBþ marker was re-

moved from pTA1343, and 890 bp EcoRV-PvuII fragment of radA upstream flanking

region (PCR amplified fromH26 genomic DNA) was used to replace 315 bp EcoRV-PvuII

fragment of radA upstream flanking region in pTA1343

This study

pID19T-HVO_2042 pTA131 with Dorc4:: trpAþ construct, comprising XhoI-HindIII fragment of upstream

flanking region of orc4 and BamHI-XbaI fragment of downstream flanking region of

orc4, PCR amplified from H26 genomic DNA, joined using HindIII-BamHI trpAþ

fragment

Jerry Eichler
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to spread throughout a population would be beneficial.

Haloarchaea have developed potential solutions to these

challenges. The proclivity of H. volcanii to use

recombination-dependent replication in the absence of ori-

gins weakens the requirement for newly generated chromo-

somal elements to maintain balanced replichores, or even

origins (Hawkins, Malla, et al. 2013). Haloferax volcanii does

not strictly depend on orderly segregation of its chromo-

somes, because its genome is highly polyploid and new chro-

mosomal elements can rely on random partitioning into

daughter cells; furthermore, archaea lack the centromeres

found on eukaryotic chromosomes. Haloarchaea have a re-

markable capacity for rapid genome evolution by HGT. The

exchange of up to 530 kb of DNA between differentHaloferax

species has been detected after cell fusion (Naor et al. 2012),

thus providing the opportunity for a newly generated chro-

mosome (and eventually, a new species) to arise. And because

archaeal origins are nearly always linked to an orc gene encod-

ing their cognate initiator protein, a “foreign” chromosome

will be efficiently replicated in its new host cell. The remark-

able plasticity of haloarchaeal genomes thus presents a test

bed for probing the evolution of genome organization and

replication initiation.

Materials and Methods

Strains and Plasmids
Haloferax volcanii strains (table 2) were grown at 45 �C on

complete (Hv-YPC) or casamino acids (Hv-Ca) agar, or in Hv-

YPC broth, as described previously (Allers et al. 2004).

Isolation of genomic and plasmid DNA, and transformation

Table 4. Oligonucleotides.

Primer Sequence (50–30) Relevant Properties Use

MHorc3F1 CGTTCAtCGATTTGACGAGGTCATCCACG orc3 deletion, upstream pTA1373

MHorc3R1 GTCCCGGaTCCCGATAGATCTCGGTGTCC orc3 deletion, upstream pTA1373

MHorc3F2 ACGACTggATCcAGCAGTAGGTAGGTCG orc3 deletion, downstream pTA1373

MHorc3R2 CCTCCGtCtAGAACACGACGTGCGCGACC orc3 deletion, downstream pTA1373

MHorc2F1 CAGCGgTAcCGACCCGTCGCAGAGGTACG orc2 deletion, upstream pTA1379

MHorc2R1 CGCAGGatCCGAGGCCGCCTGACCCCACG orc2 deletion, upstream pTA1379

MHorc2F2 GCTCGgAtCCGGCGCATTAGCGTCGGTCC orc2 deletion, downstream pTA1379, pTA1692

MHorc2R2 CCGAGGTctAGACATTTCGAGGGGCGG orc2 deletion, downstream pTA1379, pTA1692

MHorc5F1 GTGCTAGGTacCTGAACACCCATAAGTG orc5/oriC2orc5 deletions, downstream pTA1375, pTA1712

MHorc5R1 GCTCGAGGATCCGGACGTGGTGAGGGACG orc5/oriC2orc5 deletions, downstream pTA1375, pTA1712

MHorc5F2 GTGAAGAGGaTCcTCGCTGGCGTTAGGC orc5 deletion, upstream pTA1375

MHorc5R2 GGGGAAtcTAGAGAACCGGAAAACCCGG orc5 deletion, upstream pTA1375

delorc9USR TCTTCGGGaTCCTCCCTCATCGAG orc9 deletion, upstream pTA1433

delorc9DSF CGGTCGgAtCCGCGCCATCTCGCTCG orc9 deletion, downstream pTA1433

pBSR3 ACCCCAGGCTTTACACTTTATGC orc9 deletion, downstream pTA1433

pBSF2 TTAAGTTGGGTAACGCCAGGG orc9 deletion, upstream, and oriC1orc1

deletion, downstream

pTA1433, pTA1691

MHorc1F1 ACGAGCgGTaCCGGACGATGCGCGCCGGC orc1 deletion, downstream pTA1610

dorc1DF AGAACGggaTCCCGAAGTCCGACGC orc1/oriC1orc1 deletion, downstream pTA1610, pTA1691

MHorc1F2 GTTCCCGGaTCCCCTCGTGCGCCGCCTCG orc1 deletion, upstream pTA1610

MHorc1R2 CCACAGTCTaGaCCTCGCCGCAGTAGCCG orc1 deletion, upstream pTA1610

oriC1-BamHL GTACTCCGGATCCATGCTCGGTATCCG oriC1orc1 deletion, upstream pTA1691

pBSR2 CGCGCAATTAACCCTCACTAAAG oriC1orc1 and oriC3orc2 deletions,

upstream

pTA1691, pTA1692

oriC3-BamHL GGTGTCGGAtCcCGGCTTTCGCGTTCCG oriC3orc2 deletion, upstream pTA1692

OriC2-BamL CCGGTCTCGGATCCAACTTAGCTCTCACTCG oriC2orc5 deletion, upstream pTA1712

OriC2-XbaR CGACCCTCTAGAGCGAGGCGAGGTCGCCCC oriC2orc5 deletion, upstream pTA1712

50HVO_2042_XhoI_F cccctcgagTCTTTGCAGTCTATTTCCTTC orc4 deletion, upstream pID19T-HVO_2042

50HVO_2042_HindIII_R gggaagcttACGTGTTGCAGACCTGTATAC orc4 deletion, upstream pID19T-HVO_2042

30HVO_2042_BamHI_F cccggatccCCCACAGAACAGATGAAGTG orc4 deletion, downstream pID19T-HVO_2042

30HVO_2042_XbaI_R gggtctagaCGTGCTTCCGAGTCAGAAAC orc4 deletion, downstream pID19T-HVO_2042

radAUSNdeR TTCTGCCATAtgCAGTCGTTCCGCCTATACCC p.tnaA: radAþ construct, upstream pTA1837

radAextraUS AGACCAGCTGAGTTCCGATGGGGCTGTTC p.tnaA: radAþ construct, upstream pTA1837

sod1F AGTACAGGCCGAACTCGACGACGCC sod1 Southern blot probe, diagnostic

PCR and sequencing of sod1

Figure 2B, C

sod1R TCTCACGGTAACCTGTGGTCGCGCG sod1 Southern blot probe, diagnostic

PCR and sequencing of sod1

Figure 2B, C

sod2F GAAATCGCCGACGCCGTCTCGACG sod2 Southern blot probe, diagnostic

PCR and sequencing of sod2

Figure 2B, C

sod2R GAGCAGTTTCGGACCTTCGTCGGCG sod2 Southern blot probe, diagnostic

PCR and sequencing of sod2

Figure 2B, C

sod1 US-left ACAGGCTCCGAACGTATCAT sod1U Southern blot probe Figures 3A, 5B

sod1 US-right CAGTCGGTGAGTCCCTGTAA sod1U Southern blot probe Figures 3A, 5B

sod2 DS-left GATGACCTCCGCGACCTC sod2D Southern blot probe Figures 3A, 5B

sod2 DS-right GGGTCGCTGAACAGGTCC sod2D Southern blot probe Figures 3A, 5B
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of H. volcanii, were carried out as described previously (Allers

et al. 2004). Standard molecular techniques were used

(Sambrook and Russell 2001). Deletion mutants were con-

structed and confirmed by colony hybridization and/or

Southern blotting as described previously (Allers et al.

2004). Plasmids for gene deletion are shown in table 3 and

were generated by PCR using oligonucleotides shown in ta-

ble 4. Probes for Southern blots are shown in table 5. Growth

competition assays were carried out as described previously

(Hawkins, Malla, et al. 2013).

Screening for Genome Rearrangements in Dorc5 and
Dorc4-Deleted Backgrounds
Twelve independent “pop-in” strains were generated using

Dorc5 andDorc4 plasmids pTA1375 and pID19T-HVO_2042,

respectively, and ten deletion (“pop-out”) strains were de-

rived from each “pop-in.” Gene deletions were confirmed

by colony hybridization with the relevant orc5 or orc4 probes.

The deletion strains were assessed for SfaAI restriction frag-

ment length polymorphisms by PFGE.

Marker Frequency Analysis by Deep Sequencing
For exponential-phase samples, strains were grown overnight

in Hv-YPC broth, diluted 500-fold in fresh media and incu-

bated at 45 �C with vigorous aeration until an A650 of 0.4,

then diluted 500-fold in fresh media and grown until an A650

of 0.2. For a stationary-phase sample, aWT culture was grown

at 45 �C for 3 days until saturation (no further increase in

A650). Genomic DNA was isolated from 50ml cultures fol-

lowed by phenol: chloroform extraction as described previ-

ously (Hawkins, Malla, et al. 2013). Marker frequency analysis

was performed by Deep Seq (University of Nottingham) using

Illumina HiSeq 2000 sequencing to measure sequence copy

number. Enrichment of uniquely mapping sequence tags was

calculated (in 1-kb windows) for exponentially growing sam-

ples relative to a stationary phase WT sample, to correct for

differences in read depth across the genome (Skovgaard et al.

2011; Muller et al. 2014). Sequence reads were mapped to the

H. volcanii genome and replication profiles were calculated as

described previously (Hawkins, Malla, et al. 2013).

Pulsed Field Gel Electrophoresis
For PFGE, genomic DNA was prepared in agarose plugs and

digested as described previously (Hawkins, Malla, et al. 2013).

For analysis of intact genomic DNA, agarose plugs were

subjected to 100Gy of c radiation using a 137Cs source

(Gammacell 1000), to linearize circular chromosomes

(Beverley 1989). PFGE was performed using a CHEF Mapper

apparatus (Bio-Rad). Intact and SfaAI-digested DNA frag-

ments were separated on a 1.2% agarose gel in 0.5� TBE at

14 �C, with a gradient voltage of 6V/cm, linear ramping, an

included angle of 120�, initial and final switch times of 0.64 s

and 1min 13.22 s, respectively, and a run time of 40 h (intact

DNA) or 20 h 46min (SfaAI-digested DNA). AvrII-digested

and SwaI-digested genomic DNA were separated on 1% aga-

rose gel in 0.5� TBE at 14 �C, with a gradient voltage of 6V/

cm, linear ramping, an included angle of 120�, initial and final

switch times of 1min and 2min, respectively, and a run time

of 24 h. The gel was stained with ethidium bromide.
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