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Abstract— Graphics processor units are fast, inexpensive
parallel computing devices. Recently there has been great
interest in harnessing this power for various types of scientific
computation, including genetic programming. In previous work,
we have shown that using the graphics processor provides dra-
matic speed improvements over a standard CPU in the context
of fitness evaluation. In this work, we use Cartesian Genetic
Programming to generate shader programs that implement
image filter operations. Using the GPU, we can rapidly apply
these programs to each pixel in an image and evaluate the
performance of a given filter. We show that we can successfully
evolve noise removal filters that produce better image quality
than a standard median filter.

I. INTRODUCTION

In recent months the first use of graphics processing units
(GPUs) for genetic programming have appeared. Modern
GPUs are extremely cost effective at performing parallel
mathematical operations [1], and it is possible to exploit this
for work with genetic programming.

Langdon’s work [2] shows the possibility of using a single
GPU to evaluate a population of many different individuals
simultaneously. Work by Harding and Banzhaf[3], [4] and
by Chitty[5] has shown that a single, low-end GPU is able
to speed up the evaluation of a GP tree by 20 to 30 times.

These early results indicate that there is great utility in
developing evolutionary algorithms that are able to exploit
the parallelism of the GPU.

Until recently it was cumbersome to use this resource
for general purpose computing. However, several new ap-
plication programming interfaces (APIs) now exist that ease
the programming challenge and allow for rapid development
with minimal knowledge of the underlying hardware. These
APIs have allowed many algorithms to be ported to GPU
hardware. For a general survey on algorithms implemented
on GPUs the reader is referred to [6]. For example, discrete
wavelet transformations [7], the solution of dense linear
systems [8], physics simulations for games, fluid simulators
[9], have been shown to run faster on GPUs.

In this paper we demonstrate another application, that
of evolving image filters. Using the GPU we are able to
rapidly apply an evolved program to each pixel in an image,
thereby increasing the evaluation speed on an individual. We
demonstrate these image filters on standard noise removal
problems, and we expect that the idea is also applicable
to other image processing tasks such as segmentation and
enhancement.
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II. PROGRAMMING GPUS

Graphics processors are specialized stream processors used
to render graphics. Typically, the GPU is able to perform
graphics manipulations much faster than a general purpose
CPU, as the graphics processor is specifically designed to
handle certain primitive operations. Internally, the GPU con-
tains a number of small processors that are used to perform
calculations on 3D vertex information and on textures. These
processors operate in parallel with each other, and work on
different parts of the problem. First the vertex processors
calculate the 3D view, then the shader processors paint
this model before it is displayed. Programming the GPU is
typically done through a virtual machine interface such as
OpenGL or DirectX which provide a common interface to
the diverse GPUs available thus making development easy.
However, DirectX and OpenGL are optimized for graphics
processing, hence other APIs are required to use the GPU as
a general purpose device.
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Fig. 1. Arrays, representing the test cases, are converted to textures. These

textures are then manipulated (in parallel) by small programs inside each
of the pixel shaders. The result is another texture, which can be converted
back to a normal array for CPU based processing.

For general purpose computing, we here wish to make
use of the parallelism provided by the shader processors,
see Figure 1. Each processor can perform multiple floating
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point operations per clock cycle, meaning that performance
is determined by the clock speed and the number of pixel
shaders and the width of the pixel shaders. Pixel shaders are
programmed to perform a given set of instructions on each
pixel in a texture. Depending on the GPU, the number of
instructions may be limited. In order to use more than this
number of operations, a program needs to be broken down
into suitably sized units, this may reduce performance. Newer
GPUs support unlimited instructions, but some older cards
support as few as 64 instructions. GPUs typically use floating
point arithmetic, the precision of which is often controllable
as less precise representations are faster to compute with.
Again, the maximum precision is manufacturer specific, but
recent cards provide up to 128-bit precision.

We use Cf and the Microsoft Accelerator package[10]. As
with other GPU programming interfaces, such as RapidMind
and Brook, Accelerator is based on arrays implemented as
textures. The API allows one to perform parallel operations
on the arrays, largely in matrix type operations. Conversion
to textures, and transfer to the GPU is handled transparently
by the API, allowing the developer to concentrate on the
implementation of the algorithm. The available function
set for operating on parallel arrays is similar to the other
APIs. It includes element-wise arithmetic operations, square
root, multiply-add, and trigonometric operations. There are
also conditional operations and functions for comparing two
arrays. The API also provides reduction operators, such as
the sum, product, minimum or maximum value in the array.
Further functions perform transformations, such as shift and
rotate on the elements of the array.

III. EVOLUTION OF IMAGE FILTERS

We show the use of the GPU as a platform for the evolution
of image filters for noise reduction. An image filter is defined
as a convolution kernel (or program) that takes a set of inputs
(pixels in an image) and maps them to a new pixel value.
This program is applied to each pixel in an image to produce
another image. Such filters are common in image processing.
For example, a common filter to reduce noise in an image is
a median filter, where the new state of a pixel is the median
value of it and it’s neighbourhood. Examples of the behaviour
of this filter are shown later in the results section as a basis
for comparison with the evolved filters.

The evolution of noise-reducing image filters has been
previously tackled[11], [12], including on parallel hardware
architectures. For example, Vasicek and Sekanina used an
FPGA based approach[13]. Here, Cartesian Genetic Pro-
gramming (CGP, see section IV) was used to evolve the
configuration for logic blocks inside the FPGA. This limited
the functions to digital operations such as OR, AND, XOR
and shifting. The entire algorithm was implemented on the
FPGA and its associated PowerPC processor. They conclude
that the FPGA evaluates individuals 22 times faster than a
PC with a Celeron 2.4GHz CPU. Similary, Kumar et al.
also evolved FPGA configurations [14] for noise removal,
although in this case the exact performance in terms of speed
up compared to a traditional CPU is unclear.
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The FPGA based approaches are limited to binary opera-
tions, using a GPU we are able to work using floating point
numbers - which makes direct comparison difficult. FPGA
based approaches also suffer from the need for specialist
hardware and software skills.

IV. CARTESIAN GENETIC PROGRAMMING

Cartesian Genetic Programming was originally developed
by Miller and Thomson [15] for the purpose of evolving
digital circuits and represents a program as a directed graph.
One of the benefits of this type of representation is the
implicit re-use of nodes in the directed graph. Originally
CGP used a program topology defined by a rectangular grid
of nodes with a user defined number of rows and columns.
However, later work on CGP always chose the number of
rows to be one, thus giving a one-dimensional topology, as
used in this paper. In CGP, the genotype is a fixed-length
representation and consists of a list of integers which encode
the function and connections of each node in the directed
graph.

CGP uses a genotype-phenotype mapping that does not
require all of the nodes to be connected to each other,
resulting in a bounded variable length phenotype. This allows
areas of the genotype to be inactive and have no influence
on the phenotype, leading to a neutral effect on genotype
fitness called neutrality. This unique type of neutrality has
been investigated in detail [15], [16], [17] and found to
be extremely beneficial to the evolutionary process on the
problems studied.

Each node in the directed graph represents a particular
function and is encoded by a number of genes. The first
gene encodes the function the node is representing, and the
remaining genes encode the location where the node takes its
inputs from, plus one parameter that is used as a constant.
Hence each node is specified by 4 genes. The genes that
specify the connections do so in a relative form, where the
gene specifies how many nodes back to connect. If this
address is negative, a node connects to an input. Modulo
arithmetic is used to handle conditions where the index goes
beyond the number of inputs.

The graph is executed by recursion, starting from the
output nodes down through the functions, to the input nodes.
In this way, nodes that are unconnected are not processed
and do not effect the behavior of the graph at that stage.
For efficiency, nodes are only evaluated once with the result
cached, even if they are connected to multiple times.

To clarify, figure 2 shows an example CGP program. The
genotype for such a graph would be:

ADD 2 6 4.35
MIN 1723
MULT 3 8 3.2
ADD 1 2 -54
MAX 2 13 1.23

A. GPU Implementation

Running the filters on the GPU will allow us to apply the
kernel to every pixel (logically, but not physically) simultane-
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In this example, the evolved program has 9 inputs - that correspond to a section of an image. The output of the program determines the new colour

of the centre pixel. Note that one node has no connections to it’s output. This means the node is redundant, and will not be used during the computation.

ously. The parallel nature of the GPU will allow for multiple
kernels to be calculated at the same time. This number will
be dependent on the number of shader processors available.
Using the Microsoft Accelerator architecture, it will appear
to be completely parallel. Although internally, the task will
be broken down into chunks suitable for the GPU.

The image filter is made of an evolved program that takes a
pixel and it’s neighbourhood (a total of 9 pixels) and compute
the new value of that centre pixel. On a traditional processor,
you would iterate over each pixel in turn and execute the
evolved program each time. Using the parallelism of the
GPU, many pixels (in effect all of them) can be operated on
simultaneously. Hence, the evolved program is only evaluated
once. Although the evolved program actually evaluates the
entire image at once, we can break down the problem and
consider what is required for each pixel. For each pixel,
we need a program that takes it and it’s neighbourhood,
and calculates a new pixel value. For this, the evolved
program requires as many inputs as there are pixels in the
neighbourhood and a single output. In the evolved program,
each function has two inputs and one output. These inputs
are floating point numbers that correspond to the grey level
values of the pixels. Figure 2 illustrates a program that takes
a 9 pixel sub image, and computes a new pixel value.

Mapping the image filtering problem to the parallel archi-
tecture of the GPU is relatively straightforward.

It is important to appreciate that the GPU typically takes 2
arrays and produces a 3rd by performing a parallel operation
on them. The operation is element-wise, in the same way
as matrix operations. To clarify, consider 2 arrays: a =
[1,2,3]b = [4,5,6]. If we perform addition, we get ¢ =
(5,6, 9]. With the SIMD architecture of the GPU, it is difficult
to do an operation such as add the first element of one array
to the second of other. To do such an operation, the second
array would need to be shifted to move the element in the
second position to the first.

For the image filtering, we need to take a sub image from
the main image, and use these pixels as inputs for a program
(our convolution kernel) - keeping in mind the matrix like
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operations of the GPU.

To do this we take an image (e.g. the top left array in figure
3) and shift the array one pixel in all 8 possible directions.
This produces a total of 9 arrays (labeled (a) to (i) in figure
3).

Taking the same indexed element from each array will
return the neighbourhood of a pixel. In figure 3, the neigh-
bourhood is shaded grey and a dotted line indicates how
these elements are aligned. The GPU runs many copies of
the evolved program in parallel, and essentially each program
can only can act on one array index. By shifting the arrays
in this way, we have lined up the data so that although each
program can only see a given array position, by looking at
the set of arrays (or more specifically a single index in each
of the arrays in the set) it can have access to the a given
pixel and it’s neighbourhood.

These arrays become the inputs to our evolved program, so
each program has access to a pixel and it’s neighbourhood.

For example, if we add array e to array i the new value of
the centre pixel will be 6 - as the centre pixel in e has value
5 and the centre pixel in i has value 1.

It is important to note that the evolutionary algorithm itself
remains on the CPU, and only the fitness function is run on
the GPU.

V. EXPERIMENTS
A. Noise Removal

We chose two different types of noise to demonstrate both
the ability of CGP as a genetic programming algorithm, but
also to demonstrate the GPU platform. We use both salt and
pepper and random valued noise.

Salt and pepper noise is the addition of random black or
white pixels to the image. In these experiment we change a
pixel to either black or white with a probability of 0.05.

For the random valued noise, we set the value of a pixel
to a random grey value with a probability of 0.05.

As the GPU greatly increases the speed of evaluation (see
section VI-B), we are able to test a number of images in
parallel. We use a number of input images of 256x256 pixels,
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and tile them to form a larger image of either 512x512 or
1024x1024 pixels. In effect, this allows us to test 4 or 16
test cases at the same time. We compare the difference in
behaviour of evolvability and quality of solution depending
on the number of different test cases.

For the fitness function, we take a noisy image and then
apply the evolved filter. The fitness score is the average error
on each pixel. Where the error is the absolute difference
between a pixel in the original image and the pixel. Hence,
a lower fitness score is better. For large images, it is easy
for a measure, such as the sum squared error, to exceed the
largest value that can be stored in a float. We use a scaling
of 0 to 255 to represent the pixel grey values.

As there are multiple images in the data, we have to be
careful of the edges where one image touches another. For
the fitness function here, we ignore an area 4 pixels wide
around the edge of each image. We do this by generating
a mask, which we apply to the image before computing the
fitness. The mask consists of a white image, with black pixels
representing pixels to ignore.

In summary the fitness function operates in the following
manner:

1) Run evolved program on image to compute the output
image, O.

2) Find the difference between O and the target image 7.
ie. |JO =T

3) Apply the mask, M, so that edge pixels will be ignored
O =min(0,T)

4) Divide O by the number of pixels in the image

5) Sum the pixels in O to find the average error, and
return as the fitness.

Each experiment was repeated 25 times.
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Converting the input image to a set of shifted images allows the element wise operations of the GPU access a pixel and it’s neighbourhood. The
evolved program treats each of these images as inputs. For example, should the evolved program want to sum the centre pixel and it’s top-left neighbour,
it would add (e) to (i).

B. Genetic Algorithm and Parameters

The algorithm used here is a simple evolutionary algo-
rithm. We have a population of size 50. The mutation rate is
set to be 5%, i.e. each gene in the genotype will be mutated
with probablity 0.05. We do not use crossover.

Selection is done using a tournament selection of size 5.
The 5 best individuals are promoted to the next generation
without modification. The CGP graph is intialised to contain
50 nodes (it is important to note that not all nodes will be
used in the generated program).

Evolution was allowed to run for 50,000 evaluations.

Table I shows the available functions.

VI. RESULTS

We were able to successfully evolve noise filters for both
types of noise. The third column in Figure 4 shows quality of
the filter when removing random grey values. Similarly, the
third column in Figure 5 demonstrates the successful removal
of salt and pepper noise from an image. Both these examples
were typical of the evolved filters.

A. Evolution Results

Table II shows the achieved fitness results at the end of
evolution. The use of more test images gave a slightly better
average fitness (and hence better image quality) than when
using only 4 images in the fitness evaluation. Surprisingly,
this difference is not statistically significant. This indicates
that, at least for this problem, there is no significant advan-
tage in presenting more test cases. We were unable to try
larger number of test images due to memory limitations on
the test hardware.

The images in figures 4 and 5 show the performance
of the best evolved individuals. By comparing the output
image (third column) to the original image (first column),
we can see that the noise is removed and that the image
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Function

| Description

ADD Add the two inputs
SUB Subtract the second input from the first
MULT Multiply the two inputs
DIV Divide the first input by the second
ADD CONST Adds a constant (the node’s parameter) to the first input
MULT CONST | Multiplies the first input by a constant (the node’s parameter)
SUB CONST Subtracts a constant (the node’s parameter) to the first input
DIV CONST Divides the first input by a constant (the node’s parameter)
SQRT Returns the square root of the first input
POW Raises the first input to the power of the second input
COS Returns the cosine of the first input
SIN Returns the sin of the first input
NOP No operation - returns the first input
CONST Returns a constant (the node’s parameter)
ABS Returns the absolute value of the first input
MIN Returns the smaller of the two inputs
MAX Returns the larger of the two inputs
CEILING Rounds up the first input
FLOOR Rounds down the first input
FRACTION Returns the fractional part of dividing the first input by the second
LOG2 Log (base 2) of the first input
RECIPRICAL | Returns 1/ firstinput
RSQRT Returns 1/+/firstinput
TABLE I

CGP FUNCTION SET

quality is retained. The fourth column shows the application
of the median filter (using the Paint.net software). It shows
significant degradation in image quality compared to the
evolved image.

The grey value of each pixel in the input image (second
column in 4) for the noise removal problem has an average
error of 3.77 compared to the original image. The average
error on the median filtered image is 3.54. Our best evolved
solution has an average of 0.53, which is significantly better.
The image retains its sharpness, and features are preserved
- compare the top-left hand section of the cat image for a
marked difference.

We can extract the evolved program to see how it works.
For the noise filter, we get the following expression:

OUTPUT = MAX(MIN(Py, MAX(Ps,Ps,P; X
1.202, P1)), MIN(FLOOR(MAX (Ps, Fg)), —Ps) X
—0.280)

Where Py refers to a pixel from the sub-image. P5 would
be the centre pixel, P, the top left and Ps the bottom right.
It is hard to see how the function operates. However, we
can make some observations. First the program is relatively
short, and uses only a small number of functions from the
available function set. Secondly, we can see that not all
the pixels are used. In total this program used 17 nodes
out of the 50 nodes available in the genotype. However,
as the values from many nodes were reused, the expression
can be simplified. This also has implications for API that

converts the evolved program into a shader program to run on
the GPU. Previous experience suggests that short programs
do not benefit from execution on the GPU because of the
overhead of compilation and transfer of data[3].

We can perform the same analysis for the salt and pepper
noise removal problem. Here, the noisey image has an
average error of 6.30. Apply the median filter reduces this
error to 3.62. However, from the fourth column in figure 5
shows that the median filter removes the noise at the expense
of softening the image and reducing the overall visual quality.
In comparison, the evolved filter removes the noise and keeps
a good amount of detail. Again, this is most evident in the
top-left hand corner of the cat image.

The evolved function used 14 nodes, with the output of
several nodes reused. The entire function is:

OUTPUT = MAX(MIN (P,
ADD(RSQRT(MIN(MAX(Ps, Py, Ps), Pg)),
SUB(MAX(MAX(Ps,Py),IN5),SUB(P, +
67.9,1%)))),

MIN(MIN(MAX (Ps, P1, Ps), Ps),
ADD(RECP(P,), Py +67.9)))

Again, the function is complicated and it is difficult
to see how it functions. Similar to the previous example,
this expression uses only a small number of the available
functions.

Table III shows the number of evaluations required to
reach the best fitness. We see that in terms of average
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Fig. 4. Results of evolution for the noise problem. Each tile shows a crop (128x128 pixels) of the input images. The first column of images shows the
original image. The second column shows the image with added noise. The third column shows the result of noise removal using an evolved filter. The

final column shows the effect of apply a median filter to the noisey image.

[ Noise Type [ No. of test images | Average Fitness | Best Fitness |
Random 4 1.30 0.55
Random 16 1.06 0.53
Salt and Pepper | 4 0.76 0.39
Salt and Pepper | 16 1.04 0.30

TABLE I
BEST FITNESS ACHIEVED FOR EACH IMAGE TYPE AND SIZE. FITNESS IS
THE AVERAGE ERROR PER PIXEL OF THE OUTPUT IMAGE, COMPARED TO
THE TARGET IMAGE.

[ Noise Type [ No. of test images | Avg. evals. | Min evals. |
Random 4 42539 14712
Random 16 43296 252
Salt and Pepper | 4 42852 8732
Salt and Pepper | 16 39795 19403

TABLE III
NUMBER OF EVALUATIONS REQUIRED TO REACH THE BEST FITNESS.
THE HIGH NUMBER OF EVALUATIONS RELATIVE TO THE TOTAL
ALLOWED EVALUATIONS SUGGESTS THAT EVOLUTION WAS STILL
ONGOING, AND THAT THE OPTIMUM SOLUTION HAD YET TO BE
REACHED.
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number of evaluations, that the number of test cases did
not have an impact. However when considering the noise
problem, for the larger number of test cases we found that 1
solution converged to a rather disappointing 2.66 after only
252 evaluations. This result is an outlier, and removing this
we find that the minimum number of evaluations is is 20,996.
Which is very similar to the smaller number of test cases.
The high number of evaluations relative to the total al-
lowed evaluations suggests that the filters had not yet finished
evolving. However, the results are still of good quality.

B. Performance Results

We are able to find the number of floating point operations
per second (FLOPS) by collecting some statistics from the
execution of the evolved program. We assume that each API
call on Microsoft Accelerator generates one shader operation
- but this may not be the case, and may explain why the
calculated results are not as expected. The average FLOPS on
our test machine (nVidia GeForce 7300, Intel 6400, Windows
XP) to be 300 MFLOPS when processing a 512 by 512
pixel image, and 620 MFLOPS for a 1024 by 1024 pixel
image. This is a lot less than we expect even from such a
low end card. This suggests that the MS Accelerator API is
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Fig. 5. Results of evolution for the salt and pepper noise removal problem,. Each tile shows a crop (128x128 pixels) of the input images. The first column
of images shows the original image. The second column shows the image with added noise. The third column shows the result of noise removal using an
evolved filter. The final column shows the effect of apply a median filter to the noisey image.

not particularly efficient, or that our method of calculating
the FLOPS is not calculating the true speed but rather a "MS
Accelerator Operations Per Second’.

The performance gain when moving up to the larger
image size also demonstrates there is a large overhead from
compilation to the shader program. However, there is no
clear way to time this process. Unfortunately Microsoft has
removed the CPU implementation from their API, so we
were not able to benchmark directly against the CPU. They
do provide a CPU-bound reference driver as part of the
DirectX SDK, which achieved an average of 1.82 MLOPS
for the larger image. However, it is unlikely that this is a
true indication of the speed of the CPU.

For future work we will most likely move to another API.

VII. CONCLUSIONS

This paper has demonstrated two things. The first is
that is possible to evolve image filters (based on floating
point arithmetic) using Cartesian Genetic Programming. We
believe this is the first demonstration of CGP on this problem.
The results, as evidenced by the sample images, show that
the technique works well.

Secondly, we demonstrate that it is possible to implement
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such systems on programmable graphics hardware. Again,
we understand this is the first example of evolved image
filtering on a GPU. GPU based image filtering is in relatively
common usage, and we have shown that it is possible to
rapidly evolve filters that can perform better than a more
traditional filter (i.e. median). In future we would like to
investigate the ability to evolve for speed in addition to
quality. We are confident we can produce both faster and
higher quality filters than conventional design.

The GPU appears to be an efficient platform for imple-
menting such evolvable systems. However, we are concerned
that the MS Accelerator API is not as efficient as it could
be. We will therefore likely move to other platforms, such
as RapidMind, in the future.
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