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First the model of a dust-like universe in the anti-Newtonian approximation is derived, 
which describes the transition from an inhomogeneous universe to the Friedmann universe. 
Secondly in the post-anti-Newtonian approximation the perturbations to the anti-Newtonian 
model are treated for the radiation-dominated and dust-like cases, and it is shown that, if 
the linear dimension of irregularities is comparable with the radius of spatial curvature within 
them, the perturbations grow so that non-linearity plays ~ dominant role. Lastly a one
dimensional model for the anisotropic collapse to be followed after the above stage is derived 
and the energy release due to the shock-wave dissipation of the kinetic energy in this collapse 
is estimated. 

§ 1. Introduction 

Our observable universe in the present state_ seems to be homogeneous and 
isotropic, if we smooth-out local irregularities. The measurements for isotropy 
of cosmic microwave radiation show that the universe has been isotropic after the 
decoupling epoch, which corresponds to the redshift z = 10 or 1500 according to 
whether or not the universe is filled with fully ionized intergalactic gas·.l) How
ever, we have no direct observational evidence that the universe was homogeneous 
and isotropic at any epoch earlier than the decoupling epoch. 

From the theoretical point of view it seems fairly reasonable that for the 
early universe we assume a general inhomogeneous model rather than a homogene
ous and isotropic model which is remarkably different from general models. 
Accordingly it seems significant to develop a theory for the evolution of fully 
inhomogeneous (or chaotic) models and their reduction to a homogeneous and 
isotropic model. 

In a previous paper2' which will be referred to as [1], we have derived a 
general inhomogeneous model in the radiation-dominated case. There we have used 
the anti-Newtonian approximation, in which only the lowest-order terms with re
spect to ct/ L are taken into account, where c, t, L are the light velocity, the 
cosmic time and the linear dimension of irregularities, respectively. On the basis 
of this model we have analyzed the element formation in a chaotic universe.8' 

Moreover we have recently discussed in another paper4' how to construct such a 
theory. 

In this paper we shall first in § 2 apply the above approximation to the dust-
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Evolution of Irregularities in a Chaotic Early Universe 731 

like case. The reason why this case also is taken up here is that we have no 
direct evidence that the universe earlier than the decoupling epoch was filled with. 
radiation more than o~dinary matter, and is that the very early universe may have 
been cold and the cosmic radiation may have been derived later, as Rees5> has indicated 
its possibility. Similarly to the radiation-dominated case, the derived model in the 
dust-like case describes the transition from anisotropic expansion to the isotropic 
Friedmann expansion. 

In § 3 we shall treat the post-anti-Newtonian approximation by considering 
the next terms in the expansion with respect to ct/L. This approximation will 
be applied to both cases of the radiation-dominated one and the dust-like one. In 
this approximation the effect brought about by the full inhomogeneity of the spatial 
curvature will be considered and it will be shown that the density perturbations 
aroused within the irregularities grow to the epoch ct/ L= 1, when the expansion with 
respect to ct/ L is inapplicable. ~At this epoch the perturbations will essentially 
be nonlinear if the radius r of the curvature is comparable with L. Since the 
evolution of these density perturbations is anisotropic in general, the evolution in 
the case r/L"-'1 after the epoch ctjL=1 can ideally be described as a one-dimen
sional collapse, and will be followed by their shock-wave dissipation. On the other 
hand, if r>L, the above perturbations will remain to be small at the epoch ct/L=1, 
and thereafter in the radiation-dominated case they will propagate as sound waves 
while in the dust-like case they will continue to grow to the epoch ct/r=l. 

In § 4 we shall treat a one-dimensional relativistic collapse of dust-like matter 
and estimate the thermal energy which will be released by the shock-wave dis
sipation. This treatment is analogous to Zeldovich's Newtonian one6> at the later 
stage. It will be· shown that this heating process can be expected as the origin 
of cosmic microwave radiation. In § 5 some concluding remarks will be~ given. 

§ 2. Dust-like model in an anti-Newtonian approximation 

In the dust-like case the Einstein equation in the synchronous coordinate con
ditionn is written as 

1.a 1 fJ a ( o 1) -!Ca + -!Ca /Cp = e UoU +- , 
2 4 2 

(2·1) 

(2·2) 

1 ( ,- fl)• p fJ - ( fJ 1 .<1> p) ../ '1/ -g!Ca + a -e UaU +-ua , 2 -g 2 
(2·3) 

where the notations are. the same as in [I]. In this section P / and UaUa are 
neglected, because they are assumed to be small compared with (ct) - 2, c2, respec
tively. Accordingly Eqs. (2 ·1) ""'(2 · 3) are reduced to 
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732 · K. To'f!lita 

1 '( ,- II)• _ ~ II J- g '1/ - g !Ca - eu a • 

From Eq. (2·6) and tc/= (lnJgl)", the functional form of tc,/ is 

tc/= (X/X)~/+AaPX-812, X=( -g) 113, 

(2·4) 

(2·5) 

(2·6) 

found to be 

(2·7) 

where A/ is traceless functions of spatial variables with gatJAp"=gptJAa"· Sub
stituting Eq. (2 · 7) into Eqs. (2 · 5) and (2 · 6), we obtain 

X= [(t-T + v9~/8)2 -9Us]•;s, (2·8) 

s=..!x-sf2 3 , (2·9) 

(2·10) 

where ~=A/ A//12 and T indicates the time dilatation. Moreover, if we define 
r by 

r=l:.C2HY12 ln[(t-T)/(t+T+2v9~/8)], 
3 

we obtain from the definition of tca11 

so that by the use of replacement of (3 ·11) in [I] all metric components can 
be derived in the same way as in [I]. If we write the eigenvectors and eigen
values as eaa• ra (a=1, 2, 3) which correspond to Daa and ra of Eq. (3·13) m 
[I], the line element can be expressed a~ 

ds2 = c2dt2 - r abe a ae/dxadx11 , 

(2·11) 

and Pa = (1/3) (1 + r a! ../.2~) satisfies the relations :EaPa = 'E.aPa2 :=::: 1. In the neighbour
hood of t-T = 0, this metric approaches the Kasner metric, because Xe' a< oc ( t/
TYPa, and, at the epoch (t-T)/[[)>1, the-metric approaches the Friedmann 
isotropic one. 
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Evolution of Irregularities in a Chaotic Early Universe 733 

§ 3, Post-anti-Newtonian approximation 
' 

.Now let us take into consideration the terms of spatial curvature P / which 
were neglected as being small in the previous treatments. - Here for the metric 
ga{i> tc/ and paP w-e shall use th~ir triad components rab. !Cab and Pab· As the triads 
we choose eaa, eaa (eaaeba=r;ba) which were derived in the anti-Nowtonian appro
ximation. Then rab is not diagonal in general, and the Einstein equation is written 
as 

/ (V-g1Cab)"+2Pab= (e-p)(Jab, 
"-g . . 

(3·1) 

(3·2) 

(3·3) 

where p denotes the pressure and u"ua/u0u0 is neglected compared with 'unity. 
· By contracting Eq. (3 · 3), we have 

/ ( ../ -g JC/)" +2P." =3 (e -p) 
"-g 

and by substituting this into Eq. (3 · 3), we obtain 

Integrating this equation, we get 

. b 1 ·~ b 2 , st ,-(P b 1 p ·~ 'b)d !Ca =3/Cc Ua - .j -g V -g · a -3 c Ua t, 

where tc." = (ln r)• and r=det(rab). If we express by &!Cab, &r the perturbations of 
tcab. r due to Pab, we have 

(3·4) 

where X is the unperturbed part of ( -g) 118• From Eqs. (3·1) and (3·3), more
over, we get 

(}(c •+JC a(}JC b+ 1+3P/e [&ic •+~((}lnX)"JC •+2P •]=0 
• b a 3.(1-p/e) • 2 c •.. ' 

and , substituting Eqs. (3 · 4) and (2 · 6) into this equation, we obtain 

(& ln rY· +~ (3 + pje)(X/X) (& ln rY = _ _!_ (1 + 3p/e)P." 
8 . 2 -

+ ~ (1-:.fJ/e)X-3Aba fX312Pabdt=Q(t,xa). 
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734 K. Tomita 

Integrating this equation, we get 

(3 ·5) 

where 11=- (3/8) (3+P/c) and P/c is assumed to be constant. From the definition 
of ICab, moreover, we have 

J> b_~J·· +J·~· UICa - u I rca I urea 

and, if we notice that rab, rab have only diagonal components (a/, a22, as2)' (at-2, a2 - 2 , 

a8 - 2), respectively, we can integrate the above equation as 

iJrab=ab2 fdt(ab/aaYiJtcab, (3·6) 

where the summation with respect to suffices ~a, b is not taken. By the use of 
Eqs. (3 · 4) and (3 · 5), iJrab can be derived explicitly. 

For the perturbation of c we get from Eqs. (2·6), (3·1), (3·4) and (3·5) 

iJe = - (iJtc.")" + ICabiJtcba 

= ! (X/ X) (iJ In r)" +!Po"+ ! X- 8Aab s X 812Pb adt, 

and for the perturbation of ua we get from Eq. (3 · 2) 

(Jua=- ((Jba(Js/s+ra•(Jrcb)ub 

1 ( +P)-1 ac [(] b a (J b fJ (J b ( II + a d fl) J -2 c r ICb,aec - ICc,/leb - ICc eb;/1 ea ea;/leb , 

where iJs, iJr.b, iJtc.b have already been derived in Eqs. (3 · 4) '"'-" (3 · 7). 

(3·7) 

(3·8) 

So far we have not used any explicit expression for Pab yet. In the present 
approximation, Pab can be calculated in the diagonal metric rab and their expres
sions have already been derived in Appendix D of Ref. 8), where we have only to 
replace X(er'', er•r, eT•<) by (a2, b2, c2)' and e"'a' e"'b' ea" by la, ma, na. 

In the above expressions for the perturbations we find that the ratio of the 
terms explicitly containing Aab to the terms not containing is of the ord~t of 
AabtX-812 which decreases with time. _ Therefore the role_ of Aab (i.e., rotational 
and gravitational wave modes) for inhomogenisation is weakened with time, just 
as in the unperturbed anti-Newtonian model. However, another inhomogenisation 
is aroused through the terms not containing Aab, as follows. 

In order to simplify the analysis, let us consider such a stage that in the 
unperturbed state the expansion can be regarded as isotropic, i.e., t')>T so that 
rb.-::::.XiJ.b, a1=a2=aa=X 112• In the following X is written as t2", where v=1/2 
and 2/3 for radiation-dominated and dust-like cases, respectively. Then the order 
of magnitude of Pab is "-'1/(Xr.2). Here r. is the minimum coordinate length for 
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Evolution of Irregularities in a Chaotic Early Universe 735 

which the directions of the triads ea a change remarkably, and r=X 112rc IS the 

radius of curvature in each inhomogeneous region. This radius may be of the 

same order as the linear scale L of irregularities, but here we shall distinguish 

r and L, because L is determined by the inhomogeneity of values of both ab and 

ea a and so L~r or L<r in general. If we pick up in Eqs. (3 · 4) ~ (3 · 8) the 

terms which grow most rapidly and become finally dominant, we have 

X -liJr'!b~iJ ln r~t2 ct-v> /rc2~ (ct/r) 2 , 

i'Jr::jr::~ (ct/r) 2 , 

i'Jva/c=X 112i'Jua/c~(ct/r) 3 , (3·9) 

where we have used the anti-Newtonian. relations r::~X - 2 and x-312, ub=eabgaPup~ 

X - 1up~ (X- 1' 2 and x-1) Ap;a for radiation-dominated and dust-like cases. 

Here we shall examine the applicability of this result. In the above we have 

used Pab which is calculated in the unperturbed metric, but, as the perturbations 

grow, their influence on Pab increases so as not to be negligible. The perturbation 

of Pab can be estimated as 

and so Pab and iJPab are comparable at the epoch ct/L=1. At the epoch ct/L>1, 
therefore, the result in Eq. (3 · 9) is not valid. However, if the perturbations are 

small, their behavior can be clarified by the use of the gravitational instability 

theory in the Friedmann universe,8> which takes iJPab into account. Accordingly 

we can have the following conclusion. If r~L, the perturbed quantities reach 

~1 at the epoch ct/L=1 and the nonlinear effect becomes essential. At this 

stage the fluidal motion is in general anisotropic and so the anisotropic collapse 

or compression will arise thereafter. If r>L, the perturbations grow to the epoch 

ct/ L = 1, when they remain small. In the radiation-dominated case they propagate 

as sound waves thereafter. In the dust-like case they continue to grow to the epoch 

i'Jr::jr;;rv1 and thereafter collapse. 

§ 4. One-dimensional relativistic collapse 

General anisotropic collapse will be too complicated to be analyzed. In order 

to get some fundamental characters of the anisotropic collapse analytically, we 

shall impose here several conditions for simplification, similar to Zeldovich's New

tonian treatment.6> First we shall assume that the fluidal motion is inhomogeneous 

only in one direction (x) and homogeneous in the other two directions (y, z), 
and further assume that it is irrotational and axially symmetric around the x axis. 

Then the line-element can be expressed as 

(4·1) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/54/3/730/1915359 by guest on 16 August 2022



736 K. Tomita 

and the Einstein· equation is given hy 

-T/= -BIB+! (BIBY+! (B'IBYIA, (4·2) 

-T/= -T38 =2_[B" I(AB) -AIA-BIBJ-l_[(B'IBYIA 2 4 

+(A'IA2)(B'IB)- (A/AY--CBIBY+ (AB)I(AB)], (4·3) 

- T 0° =B" I(AB) - 2_ [ (B'/BYI A+ 2A' B' I (A2B) + 2ABI (AB) 4 . . 
· + (BIBYJ , (4 ·4) _ 

-AT01 =-B'IB+2_(B'IB) (BIB+AIA), (4·5). 
2 . 

where a ~rime denotes the derivative with respect to ::i:. 
Next we shall assume that the fluid is dust-like and invisdd. Then we can 

always choose the coordinates to be comoving, and in the comoving coordinates 
the energy-momentum tensor is expressed as T 0°= -e (the other components van
ish). 

From Eq. (4 · 5) we get 

A= (B') 21 {a(x)B} 

and substituting this into Eq. (4·2) -:ne have 

4BIB- (BIBY-aiB=O. 
The integration over this equation leads to 

B= [ (u2 -9al16) lf3(x)] -2 , 

(4·6) 

(4·7) 

! a{3-1 (x)[t- r (x)] =ul( u2 - : 6 a)+ ~ a-112 1n[ (u- ! a1f2) /{ u+ ! a1f2) J. 
(4·8) 

where a ( x) , {3 ( x) are integration constants in time. If we differentiate B in Eq. 
' ( 4 · 7) with respect to x, we get 

B' I.JB = 2{3 ({3' I {3- a' I a) I (u2 -~a) + ~u[(3a' I~-- 2{3' I {3) (t + r) + 2r;]. · .· 16 3 
(4·9) 

Therefore A and B are given by Eqs. (4·6)"'--'(4·9) as functions of t and x. 
Moreover, we obtain from Eq. (4·4) 

(4·10) 

The role of the time dilatation r is ·to make the expansion _for small t anisotropic, 
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Evolution of Irregularities in a Chaotic Early Universe 737 

and the case aju2 (oc(t-r)213)~1 corresponds to the anti-Newtonian stage. In 
the case r=O, (A/B) 112 = (2/3)/3'/(/3y'a) and Aoct413 in the limit aju2 ----?0, that 
is to say, the e,xpansion is isotropic. Here we shall impose y'a = (2/3) /3' //3 so as 
to have A/B=1 in this limit. 

If we expand the above formulae with respect to r;=a(4t/{3) 213 in the case 
r=O, we have 

2/ -1[1 9 2 ( 9 ) 2 
2 - J u a= 'fJ + 20 'fJ + 35i 16 . 'fJ + · · · ' 

where A.=2(1-/3"/3//3l2). These expansions are convergent at least for r;:=:;5, and 
they can be approximated by each first term for r;:=:;l. From Eq. ( 4 ·11) we see 
that with time A increases at, first, stops the increase at the epoch A'f/'"'-'1 and 

'decreases thereafter, while B increases monotonically. Even if r~O, we can use 

these formulae for t~lrl and so we shall assume r=O in the following. 
Moreover the spatial curvature P 11 in the x direction is found to be 

P/= A - 1[ -B" /B + _!_ (B' jB) (A'/ A+ B' /B)] =_'i__J..r;t-2 (1 + 0 (r;)) (4 ·12) 
2 - 64 

for r;~1 and so J..r; is related to ct divided by the radius of curvature. 
Now, in order to make the situation clearer, we shall take up an example 

specified by 

1 
/3=1+- cos x/l 

2 
(4 ·13) 

so that P/ may change the sign during each period of 2rcl. Then J..=2(1+2 
cosx/l)/sin2xjl and tl}e singular points (A=O) are given by J..r;=S0/27 or 

40 ( 1 ) 8/ 3-(4t)213=-- l+~cosxjl /(1+2cosx/l). 
- 3 2 

(4·14) 

,Realistically this singularity should be replaced by the high density region where 

the pressure gradient is not n~gligible. From Eq. ( 4 ·14) we find that the fluid 
irr the point of cos x 0jl=OA or x 0 jl='=;o0.369rc reaches a singularity for the first 
time, and that the fluid around thi~ point approaches this point. Here we shall 
consider the velocity V 0 at the moment when the surrounding fluid collides with 
the fluid in the point x 0• For that purpose we shall define the proper distance 

from the point x 0 to any point: 

(4 ·15) 
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738 K. Tomita 

If we approximate A 112 by the first terms in A of Eq. (4·11), i.e., A 112 = ({3/a) · 
7J(1-27/160·A7J), we obtain 

X= (4t)213J _J3____(4t)413J. 
1 40 2' 

(4 ·16) 

where 

'X( 1 ) 1(3 l1= Jx, 1+"2 cosx/l_ dx, 

Except for the point of x/l=2nj3, the value of 7J for A=O are <1, so that 
this approximation is accurate enough. The time derivation of Eq. ( 4 ·16) leads 
to 

(4·17) 

The velocity V 0 is, therefore, given by 

(4 ·18) 

where the upper or lower sign corresponds to x> or <x0• The fluid which can 
collide with the fluid at the point Xo is in the region O<x<xo and Xo<x< (277:/3) f. 
If nl> x> (2n/3) l, the fluid continues to expand and does not approach the point 
x 0• Therefore the maximum colliding velocities V 01 and V 02 in the ;region x> 
and <xo are brought from the points x =0 and (2n/3) l, and their numerical yalues 
are 0.97 and - 0.62, respectively. Because these -velocities are relativistic, the 
energy released by the shock dissipation after their collisions is comparable with 
the rest mass energy, so that the energy density of radiation may be comparable 
with that of ordinary matter. Since Jeans' wavelength becomes /'Jet in this situa
tion, the small perturbations which remain after the shock dissipation will be 
bounced by the pressure gradient and propagate as sound waves. In order to 
clarify this situation qualitatively, the collapse in the realistic fluid with pressure 
and viscosity must be treated. 

§ 5. Concluding remarks 

In a fully inhomogeneous model an irregularity includes irregularities with 
smaller dimension within it, each of them includes irregularities smaller than them 
and so on. Smaller irregularities dissipate or become sound waves at earlier 
epochs. The upper limit of their linear dimension of irregularities is empirically 
estimated to be the size of a typical cluster of galaxies.4> 

In previous papers,'>.a> we have not considered the influence of the inhomogenei-
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Evolution of Irregularities in a Chaotic Early Universe 739 

ty of the spatial curvature on the density. If r/L'"'-'1 in most irregularities, the 

evolution of the- early universe includes the successive dissipative process which 

brings about the release of vast energy comparable with the rest mass energy, 

so that the thermal and chemical history at the early stage depends on the evolution 

of irregularities. 
At the above stage with frequent shock-wave dissipation, the conservation 

of circulation does not hold, and the angular moment11m for rotational motion 

change with time. 
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