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Evolution of magnetic and crystal structures in the multiferroic FeTe2O5Br
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Neutron diffraction and nuclear quadrupole resonance (NQR) measurements were employed to investigate

magnetic order in the nonferroelectric phase preceding the low-temperature multiferroic state in FeTe2O5Br.

Refinement of the neutron diffraction data and simulations of 79,81Br NQR spectra reveal that the incommensurate

magnetic ordering in the nonferroelectric state comprises amplitude-modulated magnetic moments, similar to

that seen in the multiferroic state. The two ordered states differ in the orientation of the magnetic moments and

phase shifts between modulation waves. Surprisingly, all symmetry restrictions for the electric polarization are

absent in both states. The different ferroelectric responses of the two states are thus argued to arise from the

differences in the phase shifts between certain modulation waves, which cancel out in the nonferrolectric state.
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I. INTRODUCTION

The discovery of magnetically induced electric
polarization1,2 revealed a new aspect and a great application
potential of geometrically frustrated spin systems.3–5

Frustration often leads to complex incommensurate (IC)
magnetic structures, which can break the inversion symmetry
and thus overcome a fundamental restriction for the
macroscopic electric polarization. Depending on the magnetic
order, the magnetoelectric (ME) effect is associated with two
types of exchange interaction. In collinear spin structures the
ME coupling is explained by changes of the isotropic exchange
interaction leading to the exchange striction,2,5,6 whereas in
spiral spin structures the antisymmetric part of the anisotropic
exchange interaction is held responsible.7–11 Despite the
generally accepted phenomenological description,3,5 the
microscopic picture of the ME mechanism is much more
complex and still lacks a unified explanation.

In this paper we focus on the mechanism of the ME coupling
in FeTe2O5Br,12,13 where electric polarization in the long-
range ordered elliptical IC amplitude-modulated (AMOD)
magnetic state was suggested to originate from phase shifts
between the exchange-coupled AMOD magnetic waves and
thus argued to differ from conventional ME mechanisms. The
system adopts a layered structure of [Fe4O16]20− tetramer
clusters connected via Te4+ ions.14 The magnetic lattice is
composed of alternating antiferromagnetic Fe3+ (S = 5/2)
spin chains coupled by frustrated interactions,15 which amount
to ∼1/3 of the dominant intrachain interaction J2 ∼ 19 K.
Two subsequent magnetic transitions were identified.16 The
first, from paramagnetic to the high-temperature IC magnetic
state (HT-IC) with a constant wave vector qIC1 = ( 1

2
0.466 0),

occurs at TN1 = 11 K and is rapidly followed at TN2 = 10.5 K
by the second one into the low-temperature IC multiferroic
state (LT-IC). The elliptical IC AMOD order in the LT-IC phase
is characterized by the long axis of the ellipsis along the (1, −1,
0.2) direction in the a∗bc orthonormal system (used throughout
the paper),13 and the magnetic wave vector that progressively

changes from qIC1 to qIC2 = ( 1
2

0.463 0), where it settles below

T ∼ 6 K.16 The accompanying electric polarization, ascribed
to the exchange striction of the interchain interactions, points
along the c axis.12 In contrast to the LT-IC state, the magnetic
ordering in the HT-IC phase is still unknown and thus hampers
the understanding of why the electric polarization is absent in
this phase and why it develops in the LT-IC phase.16

Using combined nuclear magnetic and quadrupolar res-
onance (NMR and NQR, respectively), spherical neutron
polarimetry (SNP), and neutron diffraction techniques, we
solved the magnetic structure in the HT-IC phase. Here the
magnetic moments are, like in the LT-IC phase, sinusoidally
modulated, but are now almost completely collinear with the
b axis. Furthermore, our NQR results indicate changes of
the electric-field gradient (EFG) at the Br sites below TN2

(in the multiferroic LT-IC phase), corroborating the minute
displacements of the Te4+ ions that manifest as a bulk electric
polarization.12 Comparison with the LT-IC magnetic structure
implies that in the HT-IC state the phase shifts between certain
magnetic AMOD waves are suppressed in accordance with
the proposed ME coupling mechanism.12,15 These phase shifts
are thus most likely responsible for the lack of the electric
polarization above TN2.

II. EXPERIMENTAL DETAILS

NMR and NQR measurements were performed on
high-quality single crystals12 with an average size of 15 × 8 ×

2 mm3 on a home-built spectrometer in the temperature range
between 4 K and 300 K in zero magnetic field and at 4.7 T
and 9.4 T.

Spherical neutron polarimetry was performed at 10.7 K on
the same crystals using a MuPAD device on the triple-axis
spectrometer (TASP) (λ = 3.2 Å) at the Swiss Neutron Spal-
lation Source, Paul Scherrer Institute, Switzerland. Intensities
of the magnetic reflections at temperatures between 9.2 K
and 11 K were collected at the same location using the
single-crystal diffractometer TriCS (λ = 2.32 Å).
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III. RESULTS

A. NQR and NMR experiments

Local-probe NQR and NMR experiments on 79Br and
81Br nuclei with the spin I = 3/2 were chosen because
(i) in addition to a standard dipolar magnetic moment through
which they detect the local magnetism, (ii) they also possess a
quadrupole moment, making them sensitive to EFG and thus
highly susceptible even to the tiniest structural deformations.
From the experimental point of view, however, this makes it
very difficult to find the resonant frequency, since EFG can vary
within several orders of magnitude, depending on the details
of the local Br environment. In addition, in FeTe2O5Br there
are two crystallographically inequivalent Br sites: Br1 that is
coupled to a single magnetic Fe3+ (S = 5/2) ion and Br2,
interacting with three magnetic Fe3+ ions [inset to Fig. 1(b)].

1. Characterization of local Br environment

We first performed density functional theory (DFT) calcu-
lations of the EFG tensors at the Br1 and Br2 sites (for details,
see Appendix B), in order to facilitate the search of the 79Br
and 81Br NQR and NMR signals. The obtained EFG tensors
(Table I) imply that the quadrupole splitting 79,81νQ =
6 79,81QeVzz

4I (2I−1)h
at the Br1 site is significantly larger than at the Br2

site. Here, 79,81Q denotes the quadrupole moment of the 79,81Br
isotopes, h is the Planck’s constant, e is the electron charge,
while Vij (i,j = x,y,z) are the components of the EFG tensor.
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FIG. 1. (Color online) (a) Angular dependences of the 81Br and

the 79Br NMR central lines (−1/2 ↔ 1/2) at 80 K and 9 T (symbols)

for the Br1 site and simulations based on DFT calculated EFG tensor

(lines). Inset: The corresponding NMR spectrum of both isotopes at

φaca = 120◦. (b) Temperature dependence of the NMR relaxation rate

1/T1 at the peak of the central 81Br2 line, i.e., at 58.9 MHz, in the

field of 4.7 T along a∗. Solid lines are guides for the eyes. Inset: local

coordinations of the Br1 and Br2 sites.

TABLE I. (Top) DFT calculated components of the electric-field

gradient (EFG) tensor Vij given for the Br1 and Br2 sites in the

a∗bc coordinate system in units of 1021 V/m2. (Bottom) The

corresponding quadrupole splitting 79,81νQ =
6 79,81QeVzz

4I (2I−1)h
and axial

asymmetry parameters η = (Vxx − Vyy)/Vzz.

Br1 Br2

−15.8353 −13.9572 −14.8939 2.96904 −0.47202 −2.45593

−13.9572 7.00619 34.5642 −0.47202 3.35194 10.6256

−14.8939 34.5642 8.82908 −2.45593 10.6256 −6.32098
79νQ = 184.88 MHz 79νQ = 50.49 MHz

ηQ = 0.09 ηQ = 0.5881νQ = 154.76 MHz 81νQ = 42.26 MHz

The EFG tensor for Br1 is almost axially symmetric with the
asymmetry parameter η = (Vxx − Vyy)/Vzz = 0.09, whereas
for the Br2 site η = 0.58. The 81Br NQR signals at 260 K (deep
in the paramagnetic phase) were experimentally found at 165.0
and 38.4 MHz for Br1 and Br2, respectively (Fig. 2), which is

within ∼10% of the values17 νQ(1 + η2/3)
1
2 predicted by DFT

calculations. The remarkable accuracy of the DFT results was
further tested by measuring angular dependencies of the 79,81Br
NMR signals for Br1 around all three crystallographic axes (a∗,
b, and c) in the field of 9 T at 80 K [Fig. 1(a)]. If Br1 EFG values
are increased by 8.2% with respect to the DFT calculations,
the angular dependence, calculated by exact diagonalization
of the nuclear spin Hamiltonian (for details see Appendix A),
nicely matches the experiment [lines in Fig. 1(a)]. We note that
small discrepancy between calculations and experimental data
probably originates from additional hyperfine fields and/or tiny
misalignment of the crystal.

Having determined the quadrupolar interactions, it is now
our task to clarify if 81Br NMR probes the magnetism as
well. We measured spin lattice relaxation 1/T1, which is a
highly sensitive parameter for the critical spin fluctuations
in the vicinity of the magnetic transitions. The temperature
dependence of 1/T1 for the 81Br2 central NMR transition
[Fig. 1(b)], at 58.9 MHz, clearly reflects two distinct λ-type
anomalies, signifying the two magnetic transitions. Compared
to the zero-field results the splitting between the two transitions
increases by ∼0.5 K, due to the magnetic field of 4.7 T applied
along the a∗ axis.16

2. Low-temperature NQR spectra

On cooling from 260 K both 81Br NQR lines (Br1 and
Br2) shift linearly to higher frequencies down to ∼30 K,
where they are no longer temperature dependent (Fig. 2). This
shift is a result of a slight (∼2%) increase of the EFG values
due to the crystal lattice contraction. As expected, below the
first magnetic transition, at TN1 = 11 K, the intensity of the
sharp paramagnetic resonance gradually transfers to a broad
U-shaped signal (Fig. 3), typical for a sinusoidal distribution
of local magnetic fields in the IC structures.18 Clearly, the two
signals coexist in a narrow temperature region around TN1, i.e.,
approximately between 11.0 K and 10.6 K, revealing the first-
order nature of this transition. To clarify the origin of the IC
modulation in the HT-IC phase, i.e., whether is it solely mag-
netic or also structural, we in parallel measured NQR signals
for the 79Br isotope, which has smaller gyromagnetic ratio γ
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FIG. 2. (Color online) Temperature dependence of the 81Br NQR

signal for the Br1 and the Br2 sites. (Insets) Corresponding spectra

measured at 80 K.

and larger quadrupolar moment Q than the 81Br isotope (79γ =

10.6663 MHz/T < 81γ = 11.4978 MHz/T and 79Q = 31.3 ×

10−30 m2 > 81Q = 26.2 × 10−30 m2). Overplotting the 79Br
and the 81Br signals in the HT-IC phase we find that for both
sites their widths scale with γ ’s [Figs. 4(a) and 4(b)] and not
with Q’s. This proves that the observed IC modulation is solely
magnetic. In addition, the center of gravity of the lines does
not shift at TN1 (Fig. 3), indicating that the EFG tensors are
unaltered, i.e., suggesting that magnetic transition at TN1 does
not induce any significant crystal structure distortions.

On further cooling, both signals dramatically change again
at TN2 = 10.5 K, i.e., at the transition from the HT-IC to the LT-
IC phase. Clearly, to achieve proper scaling of the 79Br and 81Br
LT-IC signals with γ ’s [Fig. 4(d)], νQ at the Br2 site has to be
reduced by ∼2% [inset to Fig. 4(d)]. This implies that EFG at
the Br2 site is sensitive to minute lattice distortions, accompa-
nying the electric polarization in the LT-IC phase.12 Modifica-
tion of νQ for the Br1 site is too small to be assessed from our
measurements [Fig. 4(c)]. In addition, as opposed to the HT-IC
phase where both Br1 and Br2 sites have simple U-shaped NQR
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FIG. 4. (Color online) The 81Br and 79Br NQR spectra for (a) the

Br1 and (b) the Br2 sites in the HT-IC phase and for (c) the Br1 and

(d) the Br2 sites in the LT-IC phase. In the inset a scaling with reduced

ν ′
Q = 0.98νQ is shown for Br2.

spectra, in the LT-IC phase their spectra suddenly become
completely different (Fig. 3). Further splitting of the Br2

spectra below TN2 implies the loss of certain symmetries in the
multiferroic state that might be still present in the HT-IC phase.

B. Neutron diffraction experiments

1. Magnetic structure in the HT-IC phase

To verify whether the different NQR spectra originate
from different magnetic-order symmetries in the HT-IC and
the LT-IC phases, we next decided for neutron diffraction
experiments, aiming to determine the magnetic order in
the HT phase. The combination of SNP and conventional
single-crystal neutron diffraction has proven very useful in the
past for determination of complex magnetic structures, e.g.,
IC arrangements or systems with superimposed nuclear and
magnetic contributions.19 Compared to conventional single-
crystal neutron diffraction, the SNP method has enhanced
sensitivity to the direction of the magnetic moments and
thus makes it possible to differentiate between complex
magnetic structures, e.g., between AMOD and helical spin
arrangements. The two experiments were conducted at 10.7 K,
with SNP performed for three different crystal orientations. In
addition to the hk0 orientation, where the scattering plane
was defined by the (1 0 0) and (0 1 0) reciprocal vectors,
the crystal was rotated to the scattering plane defined by the
(0 1 0) and (1 0 2) vectors and finally to the scattering plane with
(0 0 1) and either the (0.5 0.466 0) or the (0.5 0.534 0) vectors.
Altogether, we accumulated 24 polarization matrices and 62
integrated intensities.

Starting with the representation analysis, we find that
magnetic wave vector qIC1 = ( 1

2
0.466 0) breaks the inversion

symmetry already in the HT-IC phase. This leaves two
possible one-dimensional irreducible representations of the
little (magnetic) group, which couple magnetic moments at
the Fe sites related by a 21y twofold screw axis.12 Since the
presence of the 21y symmetry would explain the lack of the
electric polarization (in the ac plane) as well as the high
symmetry of the NQR spectra in the HT-IC phase, we start
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TABLE II. Components of vectors Ss
0m = (Ss

0x,S
s
0y,S

s
0x) for s =

Re, Im, defining the elliptical envelopes for two independent magnetic

atoms (Fe1 and Fe2) for the best magnetic structure model at 10.7 K,

and eight magnetic phases ψmn in units of 2π , i.e., one for each

of the magnetic Femn atoms in the unit cell (m = 1,2, n = 1–4).

The sites Fe12-Fe14 are obtained from Fe11 [0.1184(6), −0.001(1),

0.9734(7)] and Fe22-Fe24 from Fe21 [0.9377(6), 0.2953(1), 0.8562(6)]

by symmetry elements i, 21y , and 21y i, respectively. The orientation

of the moments is given in the a∗bc coordinate system, while |S0| ≈

1.2μB .

s = Re, Im FeRe
1 FeIm

1 FeRe
2 FeIm

2

Ss
0x/|S

s
0m| 0.98 0.10 0.71 0.23

Ss
0y/|S

s
0m| 0.14 −0.97 0.35 0.94

Ss
0z/|S

s
0m| 0.16 0.24 0.61 0.26

|Ss
0m|/|S0| 0.21 0.92 0.07 1.00

m ψm1 ψm2 ψm3 ψm4

1 0.00 0.02 0.32 0.39

2 0.89 0.86 0.01 0.01

the refinement of the corresponding magnetic order assuming
a single irreducible representation. In the most general case,
the magnetic moment at a particular Fe site is defined as

Smn(ri) = SRe
0mn cos(q · ri − ψmn) + SIm

0mn sin(q · ri − ψmn).

(1)

Here, the vector ri defines the origin of the ith unit cell,
m = 1,2 identifies the crystallographically inequivalent Fe
sites, and n = 1–4 denotes the four Fe positions within
the crystallographic unit cell (for details, see the caption
of Table II). The complex vector S0mn is determined by
its real and imaginary components, SRe

0mn and SIm
0mn, which

define the amplitude and the orientation of the magnetic
moments, i.e., the envelope of the magnetic cycloid/spiral,
while ψmn denotes its phase shift. The magnetic wave vector
q is in units of (2π/a, 2π/b, 2π/c) and ψmn in 2π . We
stress that within a single irreducible representation S0m(n+2) =

(±1,∓1,±1) · S0mn and ψm(n+2) = ψmn + q
y

IC1/2, where n =

1,2. To avoid overparametrization of the problem we assume
the same complex vector S0m1 = S0m2 ≡ S0m. Moreover, to
assure the best assessment of the experimental uncertainty,
the estimated standard deviations of the polarization matrices
and the overall refinement were treated in the same way as
in our study of the LT-IC phase.13 Surprisingly, neither of the
two irreducible representations can describe the HT-IC data

satisfactorily, as both refinements diverge, implying that all
symmetry operations are broken already in the HT-IC phase.

In the next step we, therefore, resort to the elliptical IC
structure model used to describe the LT-IC phase. Here, the
symmetry relations between S0m(n+2) and S0mn and between
ψm(n+2) and ψmn for n = 1,2 do not exist anymore, while we
extend the relation S0mn ≡ S0m to include n = 3,4. In addition,
as in the LT-IC case,13 we allow different domain populations
for each experiment. Indeed, this refinement leads to a stable
solution, which is almost completely sinusoidally modulated
with SIm

0m ≫ SRe
0m and the dominant components (SIm

0m) of the
magnetic moments aligned very close to the b axis (Fig. 5,
Table II). Goodness of the refinement reflects in the total cost
Ctot =

∑

j χ2
j /(Njobs − Npar) = 46.6, which is close to Ctot =

33.7 obtained in the refinement of the LT-IC structure13 and
better than Ctot = 57.3 for a simplified sinusoidal (collinear)
AMOD model of the HT-IC phase. It is significantly better than
Ctot = 169.3 for an alternative circular cycloidal model. In the
above expression for Ctot j is the number of the datasets and
Npar is the number of the fitting parameters. For each dataset

with Njobs observations χ2
j =

∑Njobs

i=1 (Xiobs − Xicalc)2/σ 2
Xiobs

,
where X denotes polarization matrix elements P or integrated
intensities I , and σXiobs

is the estimated standard deviation
of the observation. We point out that the refinement of the
LT-IC phase included larger Njobs, while Npar was the same,
which led to a somewhat lower Ctot. In short, the results of our
refinement surprisingly show that magnetic ordering removes
all symmetry restrictions for the electric polarization already
in the HT-IC phase.

2. Temperature dependence

In order to understand why there is no electric polarization
in the HT-IC phase, we next measured temperature dependence
of 20 magnetic reflections between 11.0 K and 9.2 K. This
allows us to follow the evolution of the magnetic structure
during the transition from the HT-IC to the LT-IC phase. Due
to the limited amount of data, rather small ordered magnetic
moments in the investigated temperature interval and since
the simpler collinear AMOD model already captures the most
essential properties of the more complicated elliptical model
our refinement considers the collinear sinusoidal AMOD mag-
netic structure model. In particular, we assume that magnetic
moments lie in the a∗b plane and are strictly AMOD with the
same S0 ≡ SIm

0 for all Fe sites. This way we focus on magnetic
phase shifts ψmn, which were pointed out as potential source
of the ME coupling in earlier studies.12 The results clearly
show that with increasing temperature the a∗ component (Mx)

FIG. 5. (Color online) Evolution of Fe11 and Fe21 magnetic moments in the a∗b projection along the b axis in the HT-IC [light (red) arrows]

and LT-IC [dark (blue) arrows] phases. The rectangle represents the unit cell. Note that the elliptical envelope for the HT-IC phase is almost

completely flattened, with moments pointing approximately along the b axis.
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is reduced and completely disappears at TN2, whereas the b

component (My) starts to decrease only in the vicinity of TN1

(Fig. 6). This indicates that the Fe3+ magnetic moments turn
from the (1 −1 0) direction in the LT-IC phase towards the (0 1
0) direction in the HT-IC phase. On the other hand, the changes
of ψmn are minute and appear to be insensitive to the LT-IC to
HT-IC transition. In fact, reducing the number of independent
ψmn only mildly affects the quality of the refinement, i.e.,
R factor increases from ∼6 to ∼9, and it does not affect
the derived rotation of the magnetic moments. This suggests
that our temperature-dependent-neutron diffraction data are
insufficient to reliably extract the temperature evolution of
the magnetic phases. Similarly, we were unable to refine the
temperature dependence of the tiny magnetic component along
c (Mz).

IV. DISCUSSION

A. Long-range magnetic ordering

At first sight, the results of the two complementary exper-
imental techniques are contradictory. The neutron diffraction
suggests that magnetic ordering breaks all crystal-symmetry
relations already in the HT-IC phase, whereas NQR implies
that the HT-IC phase is more symmetric than the LT-IC
phase. In order to clarify this issue and to extract as much
information about the long-range ordering in FeTe2O5Br as
possible, hyperfine coupling tensors have to be determined.
Since both Br sites (Br1 and Br2) lie at general positions and
since the hyperfine coupling interaction is symmetric in the
first order, we need to find for each hyperfine coupling tensor
all six components. For simplicity we start with Br1, which is
coupled to a single Fe ion and thus its hyperfine interaction
depends only on one hyperfine coupling tensor. Taking into
account the LT-IC magnetic structure13 and the obtained EFG
tensor (Figs. 1 and 2), we determine the Br1 hyperfine coupling
tensor by fitting the NQR Br1 spectrum measured at 4 K (for
details of the NQR spectrum calculations, see Appendix A).
We stress that the derivation of the hyperfine coupling tensor
from the angular dependences of the paramagnetic 79,81Br

NMR signal [Fig. 1(a)] has been avoided due to possible
crystal misalignments (�5◦), which can for so large EFGs
result in resonance shifts of several MHz. The obtained Br1

hyperfine coupling tensor (Table III) yields a good agreement
between the experimental and calculated spectra [bottom panel
in Fig. 7(a)]. Moreover, considering the HT-IC magnetic
structure (Table II) and the derived hyperfine coupling tensor
(Table III), the HT-IC 81Br1 NQR spectrum is reproduced with
a high accuracy [top panel in Fig. 7(a)] with no adjustable
parameters. This unambiguously validates the orientation and
amplitude modulation of the Fe3+ moments in the HT-IC
magnetic structure, as determined by neutron diffraction.
Quite importantly, if the small c (Mz) component of the
magnetic moments is neglected, the HT-IC spectrum cannot
be reproduced satisfactorily, whereas disregarding the Mx

component (along the a∗) or ellipticity has almost no effect
on the simulated spectrum.

Encouraged by a very good agreement between the neutron
scattering results and NQR data for the Br1 site, we focus now
on the more complicated Br2 NQR spectrum. Applying the
same procedure, i.e., fitting of the LT-IC NQR spectrum by
adjusting the hyperfine coupling tensor (the EFG is reduced
by 14% compared to DFT calculations) and considering the
coupling with three different Fe3+ sites, each with its own
hyperfine-coupling tensor, we manage to reproduce the main
features of the Br2 NQR spectrum as well [bottom panel in
Fig. 7(b)]. To ensure a proper scaling of the EFG tensor, spectra
for both isotopes were fitted simultaneously. Our fitting results
get even greater value when one considers that during such
a broad frequency sweep the measured NQR intensity may
significantly vary due to frequency-dependent sensitivity of the
spectrometer and the use of several experimental setups. In ad-
dition, we note that the discrepancy between the experimental
and the calculated spectrum can be also due to tiny modulation
of the νQ, which can result from the weak IC structural
modulation found in a SNP study of the LT-IC phase.13 This
further complication is beyond the scope of our simulations,
but may explain why the 79Br2 and 81Br2 NQR spectra scaled
by γ ’s do not match perfectly even when reduced νQ in the
LT-IC phase is considered [inset in Fig. 4(b)]. Nevertheless, the
derived hyperfine coupling tensors (Table III) can reproduce
the width and the main spectral singularities also for the HT-IC
phase [black lines in the top panel in Fig. 7(b)] when the EFG
is increased by 2% compared to the LT-IC phase, in accordance
with our previous observations [Figs. 4(b) and 4(d)].

TABLE III. Derived hyperfine coupling tensors for the Br1 and

Br2 sites in the a∗bc coordinate system in units of mT/μB .

Br1(Te2-O3-Fe1) Br2(Te4-O5-Fe1)

−34.4 −18.5 −16.3 128.7 −0.7 35.7

−18.5 53.0 −3.3 −0.7 −17.8 26.8

−16.3 −3.3 138.3 35.7 26.8 −226.0

Br2(Te2-O3-Fe1) Br2(Te4-O4-Fe2)

147.0 28.9 40.1 −116.7 5.5 −24.5

28.9 13.5 −5.3 5.5 −14.3 −13.0

40.1 −5.3 −258.3 −24.5 −13.0 23.9
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FIG. 7. (Color online) The 81Br NQR spectra for (a) Br1 and

(b) for both isotopes of Br2 in the HT-IC and the LT-IC phases.

Thick black lines are simulations considering magnetic structures

determined by neutron diffraction and derived hyperfine coupling

tensors (see text for details). For comparison we show simulations

of the HT-IC spectra based on the LT-IC structure with appropriately

reduced size of the magnetic moments [thick light (magenta) line].

For comparison, we plot also calculated spectra corre-
sponding to the LT-IC magnetic structure with appropriately
scaled magnetic moments to match the HT-IC values. For
these the discrepancy from the experimental data is much
more pronounced for both Br sites [light lines in Fig. 7].
The overall agreement between the neutron diffraction and
the NQR results thus offers a confirmation of the proposed
magnetic structures in the LT-IC and the HT-IC phases. It also
shows that the simplicity of the Br2 NQR spectra in the HT-IC
phase originates from a smaller size of the ordered magnetic
moments and a changed orientation of spins and not from the
higher symmetry of the magnetic structure. Finally, we note
that the similarity between ψmn and ψm(n+1) for n = 1,3, i.e.,
between the sites, related by the inversion symmetry, implies
that even though the inversion symmetry is broken already by
qIC1, the system effectively reduces this effect by matching the
relevant phases.

B. Magnetoelectric coupling

The most important experimental finding of our study is
that all crystal-symmetry relations are broken already by the
HT-IC magnetic order, which should thus, in principle, also
allow for the establishment of the electric polarization. This is
in line with the first-order nature of the transition, suggested
by the coexistence of the HT-IC and the paramagnetic phase in
a narrow temperature range around TN1 (Fig. 3). Surprisingly,
the electric polarization does not develop until the second
magnetic transition into the LT-IC phase. In addition, the lack
of the symmetry relations removes all limitations regarding
its orientation, leaving no clue why the actual polarization
points along the c axis. The observed response, therefore,
deviates from other multiferroics where the multiferroic phase
evolves in two subsequent [or one as in RbFe(MoO4)2]20

continuous magnetic transitions and thus makes it possible to
exploit the phenomenological description of the ME coupling

to its full extent.3,5 In particular, in contrast to our case,
continuous transitions preserve certain relations between the
magnetic ordering in the multiferroic phase and the symmetries
of the crystallographic space group, which enables predictions
of the direction of the emergent electric polarization.21

In FeTe2O5Br, the electric polarization could, in principle,
be associated with the reorientation of the magnetic moments
from the (1 −1 0) direction in the LT-IC phase towards the (0 1
0) direction in the HT-IC phase. However, such a scenario
would be most probably associated with the simultaneous
reorientation of the electric polarization, which contradicts our
previous results (Ref. 12) showing that the orientation of the
electric polarization is temperature independent in the entire
LT-IC phase. A second possibility is that electric polarization is
associated with the ellipticity in the LT-IC magnetic structure,
which is again not very likely, as our refinement shows finite
ellipticity also in the HT-IC phase.

To understand the absence of the electric polarization in the
HT-IC phase, we thus compare the LT-IC and HT-IC magnetic
structures in respect to the so-called magnetic-phase-shift ME
coupling mechanism, which predicts electric polarization P ∝

Mi · Mj sin(�ψk) (Ref. 12). Here Mi,j are the magnetic order
parameters corresponding to a pair of the exchange-coupled
AMOD magnetic waves, while �ψk denotes the phase shift
between the two. Generally, each of the six possible exchange
interaction Jk (k = 1–6) (Ref. 15) can be involved in the
ME coupling mechanism. We find, however, that on heating
from the LT-IC to the HT-IC state �ψk changes towards π

or to 0, i.e., leading to P → 0, only for k = 4. A similar,
but significantly weaker, trend is noticed for J5, which has
been also highlighted before as the most likely candidate
to drive the exchange striction.15 On the other hand, all
changes corresponding to other k’s are rather irregular. These
observations are further supported by the fact that the NQR
spectrum for Br2, which is coupled to the J4-bridging Te4

ion, shows a pronounced change of νQ and thus reveals tiny
structural transformations, most likely related to the onset of
the electric polarization.

The above argumentation, therefore, suggests that the most
coherent explanation of the magnetic ordering and its relation
to the ME coupling is provided by the “magnetic phase shift”
mechanism involving J4 and possibly J5 exchange pathways.

V. CONCLUSIONS

We have investigated the magnetic ordering in the HT-IC
phase of the FeTe2O5Br system by combining complemen-
tary neutron diffraction, nuclear quadrupolar, and magnetic
resonance techniques. We find that due to the first-order
transition from the paramagnetic phase all crystal symmetries
are broken already in the HT-IC phase, which makes it, from
the symmetry point of view, equivalent to the multiferroic
LT-IC phase. However, the ellipticity in the HT-IC phase
is significantly reduced and the magnetic moments with
sinusoidally modulated amplitudes align almost exactly along
the b axis. Furthermore, the phase shifts between the magnetic
AMOD waves, corresponding to the J4 exchange interaction,
converge towards �ψk → 0 or π , which according to the
magnetic-phase-shift ME coupling mechanism12 yields P ∝

Mi · Mj sin(�ψk) → 0 and could thus explain why the
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electric polarization vanishes in the HT-IC phase.12 In addition,
changes of the EFG at the Br2 site in the LT-IC phase
imply minute displacements of the Te4+ ions, which must
be associated with the emergent electric polarization.
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APPENDIX A: CALCULATIONS OF NMR

AND NQR SPECTRA

Usually the NMR and NQR absorption lines are calculated
for the two limiting cases. In case of NMR experiment, the
Zeeman term in the nuclear spin Hamiltonian is typically taken
as the dominant one, whereas electric quadrupole effects are
considered as a perturbation. On the other hand, for NQR,
so-called Zeeman perturbed electric quadrupole Hamiltonian
is assumed. In the case of FeTe2O5Br, however, the NQR
frequencies are comparable to the NMR ones and thus exclude
the possibility to use simple perturbative approaches. There-
fore, our approach to calculate the resonance frequencies and
their intensities is based on the exact diagonalization22 of the
complete Hamiltonian for magnetic resonance of quadrupolar
nuclei,23

H = HZ +HQ +Hhyp +Hdip. (A1)

Here HZ denotes the Zeeman term, HQ the quadrupole
interaction, and Hhyp and Hdip the influence of the hyperfine
and dipolar fields, respectively. The individual terms have the
following form:

HZ = −γh̄B0 · I, (A2)

HQ =
eQ

4I (2I − 1)

[

V0

(

3I 2
z − I 2

)

+ V+1(I−Iz + IzI
−)

+V−1(I+Iz + IzI
+) + V+2(I−)2 + V−2(I+)2

]

, (A3)

Hhyp = −γh̄〈S〉 · Â · I, (A4)

Hdip = −γh̄Bdip · I. (A5)

Here γ denotes the nuclear gyromagnetic ratio, I = (Ix,Iy,Iz)

is the nuclear spin, I± = Ix ± iIy,Â is the hyperfine coupling

tensor, V0 = Vzz, V±1 = Vzx ± iVzy , V±2 = 1
2
(Vxx − Vyy) ±

iVxy with Vij being the components of the EFG tensor, 〈S〉

is the time averaged electron magnetic moment, and Bdip

and B0 are the dipolar and the applied external magnetic
fields, respectively. In the long-range ordered magnetic states
〈S〉 and Bdip are exactly determined by the LT- and HT-IC
magnetic structures given in Ref. 13 and Table II, respectively,
whereas in the paramagnetic phase magnetic moments are
assumed to lie along B0 with amplitudes scaled by the
magnetic susceptibility.16 Exact diagonalization of the above
Hamiltonian allows calculation of the nuclear spin eigen-
states and thus makes it possible to extract corresponding
NMR/NQR transition frequencies for any kind of local

0

10

20

34 36 38 40 42 44
0.0

0.1

0.2

0.3

0.4

Br
21

Br
22

Br
23

Br
24

In
te

n
s
it
y

(a
rb

.
u

n
it
s
)

(b)

(a)

B
lo

c
(T

)

ν (MHz)

FIG. 8. (Color online) (a) The simulated spectra for individual
81Br2n sites for a single domain. (b) Corresponding distributions of

the amplitude of the local magnetic fields Bloc = −γ h(〈S〉 · A + Bdip)

for the four contributing transitions between different nuclear spin

states. We note that the intensity of the calculated spectra reflect the

density distribution of the local fields; i.e., the peaks in the spectra

coincide with the most common local fields.

(external or internal) magnetic field and for an arbitrary
EFG tensor. In addition, considering the orientation of the
excitation/pickup coil one can derive also the probabilities
of the individual magnetic transitions and can thus estimate
the intensities of the corresponding NMR/NQR absorption
lines. By rotation of the crystal system with respect to the
laboratory system, the NMR/NQR spectrum, which for Br
nucleus with I = 3/2 in most general case consists of six
absorption lines, can be calculated for any orientation of the
crystal.

The 79,81Br NQR spectra in the IC long-range ordered
magnetic phases were computed for each of the two mag-
netic domains (NMR/NQR experiments differentiate the two
domains related by 21y symmetry) by summing the four (n =

1–4) spectral contributions for one crystal unit cell and than by
summing the contributions of 100 consecutive cells along the
IC direction (b axis), as shown for a single domain in Fig. 8
for 81Br. The complete spectra (Fig. 7) were finally obtained
as a sum of two contributions corresponding to the two equally
populated domains. We note that for each crystallographically
unique Br site (Br1 or Br2) electronic dipolar fields were
calculated individually at each Br nucleus considered in the
above summation (2 × 4 × 100) by assuming a sphere large
enough (∼40 Å) to ensure convergence.

APPENDIX B: DFT CALCULATIONS OF EFG TENSORS

The components of the EFG tensor were calculated ab initio
within the framework of the DFT by applying the WIEN97
code,24 which adopts the full-potential linearized-augmented-
plane-waves (FLAPW) method.25 The experimental data for
the lattice parameters and the atomic positions served to
describe the input crystal structure at room temperature,14

whereas the muffin-tin radii were 2.1 a.u. for the Fe atoms,
1.98 a.u. for the Te atoms, 1.5 a.u. for the O atoms, and
2.68 a.u. for the Br atoms. The exchange-correlation effects
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were treated within the local-density approximation.26 The
integration over the Brillouin zone was discretized by summing

up 333 k vectors in terms of the Gaussian method27 with the

smearing parameter of 0.02 Ry. The plane-wave-expansion

cutoff energy was set to 16 Ry and the magnitude of the

largest wave vector in the Fourier expansion of the charge

density was 10 a.u.−1. The EFG-tensor components are

defined as the second derivatives of the Coulomb potential

at the particular nucleus. The Coulomb potential is obtained

from the total charge density by solving the Poisson’s

equation. The calculation of the EFG is therefore straight-

forward once the nonspherical components of the charge

density ρ(r) are available, as is the case in the FLAPW

method.
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