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Abstract (196 words) 7	

Domains are the structural, functional and evolutionary units of proteins. They combine 8	

to form multidomain proteins. The evolutionary history of this molecular combinatorics 9	

has been studied with phylogenomic methods. Here, we construct networks of domain 10	

organization and explore their evolution. These networks revealed two ancient waves of 11	

structural novelty arising from ancient ‘p-loop’ and ‘winged helix’ domains and a massive 12	

‘big bang’ of domain organization. The evolutionary recruitment of domains was highly 13	

modular, hierarchical and ongoing. Domain rearrangements elicited non-random and 14	

scale-free network structure. Comparative analyses of preferential attachment, 15	

randomness and modularity of networks showed yin-and-yang complementary transition 16	

patterns along the evolutionary timeline. Remarkably, evolving networks highlighted a 17	

central evolutionary role of cofactor-supporting structures of non-ribosomal peptide 18	

synthesis (NRPS) pathways, likely crucial to the early development of the genetic code. 19	

Some highly modular domains featured dual response regulation in two-component 20	

signal transduction systems with DNA-binding activity linked to transcriptional 21	

regulation of responses to environmental change. Interestingly, hub domains across the 22	

evolving networks shared the historical role of DNA binding and editing, an ancient 23	

protein function in molecular evolution. Our investigation unfolds historical source-sink 24	

patterns of evolutionary recruitment that further our understanding of protein 25	

architectures and functions. 26	

 27	

Index terms: Domains, multidomains, evolution, time events, age, network, connectivity, 28	

modularity, randomness, scale-free, scale-rich. 29	

Introduction 30	

The biological functions of genes manifest through the proteins or functional RNA 31	

molecules they encode. In evolution, novel functions appear when genes produce new 32	

genes by duplication, mutation, recombination, fusion and fission, or when genes are 33	

generated de novo. Research has attempted to quantitatively describe the origins of these 34	

processes of molecular diversification and how they increase molecular complexity over 35	

the course of evolution, for instance through pathways of protein domain organization1,2. 36	

Other examples include uncovering the natural history of biocatalysis by tracing chemical 37	

mechanisms in enzymatic reactions3, evolutionary analysis of optimization and increase 38	

of protein folding speed derived from a flexibility-correlated factor known as contact 39	
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order (the average relative distance of amino acid contacts in the tertiary structure of 40	

proteins)4, and the study of biphasic-rewiring and modularity of metabolomic networks 41	

of Escherichia coli minutes after subjection to stress5. In particular, the history of an 42	

‘elementary functionome’ was traced with a bipartite network of elementary functional 43	

loop sequences and structural domains of proteins6. The study revealed two initial waves 44	

of functional innovation involving founder ‘p-loop’ and ‘winged helix’ domain structures 45	

and the emergence of hierarchical modularity and power law behavior in network 46	

evolution.  47	

Protein domains are structural and functional units of evolution that make up proteins7, 48	

sometimes in unusually complex arrangements8. They fold into compact 3-dimensional 49	

(3D) atomic structures that arrange alpha-helical and beta-sheet structure elements into 50	

tightly packed conformations of the polypeptide chain. The Structural Classification of 51	

Proteins (SCOP)9 and its extended version SCOPe10 are popular taxonomy gold standards 52	

of domain structure. SCOP definitions can be used to scan genome sequences for motifs 53	

of domains and study how they combine in proteins7. In SCOP, the structure of domains 54	

exhibiting similar 3D arrangements of secondary structures and thus identical topologies 55	

have been classified as folds (F)9. Within folds, protein domains whose structure and 56	

functional features indicate a common evolutionary origin are further grouped into fold 57	

superfamilies (FSF). These FSFs sometimes hold multiple evolutionarily related families 58	

(Supplementary Fig. S1A). As of June 3, 2020, 276,231 annotated SCOPe domains 59	

populate the 164,840 protein structures of the Research Collaboratory for Structural 60	

Bioinformatics Protein Data Bank (RCSB-PDB). 61	

Domain structures appear repeatedly in the protein molecules, singly or in combination 62	

with other domains8. More than two-thirds of protein sequences are longer than an 63	

average domain length, a vast majority of which are multidomain proteins11. A study of 64	

protein structures in 745 genomes showed that the lengths of orthologous protein 65	

families in Eukarya were almost double the lengths found in Bacteria and Archaea12. This 66	

variance among lengths results from shorter prokaryotic nondomain sequences that link 67	

domains to each other in proteins and have evolved reductively in prokaryotes but not in 68	

eukaryotes. The arrangement of domains along the sequence of multimeric proteins is 69	

referred to as ‘domain organization.’ Both the structure and organization of domains, 70	

which have been collectively termed protein domain ‘architecture’, are considered far 71	

more evolutionarily conserved than protein sequence8,13,14. In addition, some domain 72	

combinations make up functional units that recur in different protein contexts15. They 73	

have been termed supradomains (Supplementary Fig. S1B). Thus, domains and domain 74	

combinations behave as modules, parts that interact with each other more than with 75	

other parts or modules of the system. 76	

The evolution of protein domain architecture can be studied with phylogenomic 77	

methods16,17. One approach takes advantage of the reconstruction of phylogenomic trees 78	

from the occurrence and abundance of architectures in proteomes at F and FSF levels 79	

based on the sequence and structure of millions of protein sequences encoded in 80	

hundreds of genomes18,19. The trees have leaves representing single domain and 81	
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multidomain proteins. They allow to build evolutionary timelines of molecular accretion 82	

using a phylogenomic framework that describes the evolutionary history of a growing 83	

molecular interactome8. Remarkably, studies showed that architectural diversification 84	

evolved through gradual accumulation of domains (singly occurring domains), domain 85	

pairs (two different domains), multidomains (numerous domains, with occasional 86	

repetition) and domain repeats (domains of one type that are repeated)8. The 87	

diversification began with a few single-domain architectures earlier in the timeline, 88	

followed by an increasing rate of accretion that culminated in a massive “big bang” of 89	

domain combinations. The accumulation of architectures continued to date but with a 90	

decreasing rate6,8. 91	

Here, we continue to explore the evolving interactome of protein domain organization. 92	

We use the phylogenomic tree of architectures8 to generate a timeline that captures the 93	

historical development of domain and multidomain interactions with a graph theoretical 94	

approach7 of evolving network structure. The timeline was calibrated with a molecular 95	

clock of protein structures, which assigns relative ages of domains to billions of years (Gy) 96	

of geological time20. Five distinct composition- and topology-based ‘operative’ criteria of 97	

connectivity defined nodes and links of the evolving networks. This strategy identified 98	

connectivity distributions in a series of 169 growing networks, hubs of evolutionary 99	

recruitment acting as donors and acceptors, and structural adaptations of evolving 100	

networks to modular, random and scale-free properties. In particular, we discover a 101	

pattern of connectivity driven by fusions and fissions, respectively, with densely linked 102	

older and younger architectures from the evolutionary timeline sandwiching a period of 103	

sparse connectivity. This supports a biphasic or hourglass pattern previously observed in 104	

protein evolution21 and follows a model of module emergence22. We thus reveal 105	

remarkable patterns of emergence of hierarchy, modularity and structural cooption in 106	

evolving networks. 107	

Results and discussion 108	

Construction of evolving networks 109	

We build evolving networks of domain organization to explore how single-domain and 110	

multidomain proteins share domain make-up and how recruitment processes shape 111	

protein evolution. An ‘entity set’ of domains, supradomains, and multidomains were first 112	

extracted from the genomic census of fold structure and domain organization. This set of 113	

component parts of proteins, mostly recurrent, defined the nodes of the networks, which 114	

were labeled with concise classification strings (ccs) describing SCOP domain constituents 115	

(Fig. 1A). We define supradomains as sub-combinations of domains that appear in the 116	

census and are often used as evolutionary building blocks of multidomains. The 117	

definition is more inclusive than that of ref15.  118	

The growing interactions among contemporary architectures were captured with five 119	

different operative criteria for network generation defined by composition, pairwise 120	

occurrence, adjacency, and splicing of domain parts in a protein molecule, where: (i) 121	
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composition describes makeup (component parts) of the molecular whole; (ii) pairwise 122	

occurrence describes appearance of parts in sets of two; (iii) adjacency refers to their 123	

geometrical or spatial arrangement (topology); and (iv) splicing refers to the 124	

rearrangement of parts by operations of joining and excision that decompose structures 125	

(Fig. 1B). The Composition Network (CX) linked domain and supradomain to 126	

multidomain nodes (in a partially bimodal fashion) when proteins shared compositional 127	

makeup. The Pairwise Network (PX) connected domain to supradomain nodes when 128	

components occurred in pairs in a protein. The Pairwise Adjacency Network (PAX) 129	

connected domain to supradomain nodes when components occurred in pairs that were 130	

adjacent. The Spliced Pairwise Network (SPX) linked domain nodes to each other when 131	

their pairs were present in domain-spliced proteins. Lastly, the Spliced Pairwise 132	

Adjacency Network (SPAX) linked domain nodes to each other when their adjacent pairs 133	

were present in the domain-spliced proteins (Fig. 2).  134	

We then mapped the evolutionary ages of architectures onto the nodes of networks built 135	

using these five operative criteria (Supplementary Fig. S2). We did so for each of the 169 136	

time-events of the timeline. Network construction has been illustrated with connectivity 137	

details of the most ancient domains (Supplementary Fig. S3) and further described in 138	

Section 1 of Supplementary Text. Networks showcased time directionality, connectivity 139	

distributions, and network layouts: 140	

(i) Time Directionality: Mapping ages onto networks helped follow their evolutionary 141	

growth, as nodes and links accumulated over time since the origin of proteins to the 142	

present. The timeline of networks imposed a time directionality on network links, making 143	

them arcs (directed edges with arrows pointing from older to younger nodes) of directed 144	

graphs (Fig. 1C). The ages of arcs were borrowed from the youngest of the component 145	

nodes involved in a link (Supplementary Fig. S3B). 146	

(ii) Degree Distributions: The number of links connected to a node define that node’s 147	

‘degree’. The degree distribution is a ‘composability’ attribute of a network and the entity 148	

set represented by its nodes, a design principle describing the inter-relationship of 149	

components of a system. In network evolution, the appearance of a new node may trigger 150	

establishment of one or more arcs from existing (older) nodes. Furthermore, outdegree 151	

describes the number of outward links and indegree the number of inward links from a 152	

node. As the timeline progresses, older nodes gain higher outdegrees as compared to the 153	

higher indegrees of recent nodes (Fig. 1C), polarizing the network with arcs depicting 154	

‘arrows of time’ (Supplementary Figs. S2 and S3). The chronological appearance of 155	

architectures (domains, supradomains and multidomains) as network connectivity 156	

expands along the timeline causes degree to accumulate in the evolving networks (Fig. 2). 157	

Multiple interactions of nodes along the timeline diversified connectivity, a feature 158	

captured and quantified by weighted degree. Interestingly, box-and-whisker’s plots of 159	

weighted outdegree and indegree demonstrate bimodal degree distributions typical of 160	

biological systems5,22 (Supplementary Fig. S4). The yin-yang patterns of contractions and 161	

expansions of architectural innovation are evident from the distributions of modern 162	

outdegrees and indegrees (Supplementary Fig. S5). In particular, the cumulative 163	
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outdegree and indegree scattergrams demonstrate an hourglass (or bimodal) pattern of 164	

linkage development unfolding in evolution (Supplementary Fig. S6).  165	

(iii) Time Event-based ‘Radial’ and ‘Waterfall’ Layouts: The growth of a network evolving 166	

at discrete temporal intervals can be modeled with Discrete Event Simulation (DES) 167	

tools23–25. Borrowing the DES rationale, we modeled the evolution of directed networks of 168	

domain organization with time flowing from one event to another as discrete 169	

evolutionary ‘time steps’, typical of a step function. The progression of events was 170	

visualized with two types of layouts, a vertical representation we coined ‘waterfall’ layout 171	

that had nodes arranged top-down by age and a concentric ‘radial’ representation of 172	

growing networks that unfolded time-events of protein evolution from center to 173	

periphery (Fig. 1C). Network clusters comprising of hubs and their cohesive neighbors 174	

were segregated to improve differentiation along the horizontal axis. The waterfall and 175	

radial layouts made evolutionary recruitment evident as time events progressed 176	

downward or outward, respectively (Figs. 2 and 3). 177	

Early history of modern domain organization 178	

The accumulation of links connecting domain, supradomain and multidomain proteins 179	

in evolving CX, PX, PAX, SPX and SPAX networks played back the complicated history 180	

of domain recruitments that drive the evolution of domain organization. Figure 2 shows 181	

networks in radial layout at representative time-events defining boundaries of the three 182	

epochs of the evolving protein world (‘architectural diversification’, ‘superkingdom 183	

specification’ and ‘organismal diversification’, sensu8,19). Networks grew in time and 184	

became increasingly complicated tangles, massively expanding after a “big bang” of 185	

domain combinations during the organismal diversification epoch. Movies described the 186	

evolutionary growth of these networks (Supplementary Video 1).  187	

To illustrate the versatility of the waterfall visualization strategy, we dissected the early 188	

origin of proteins with the SPX network. Two major waves of structural innovation 189	

arising from ancient ‘p-loop’ and ‘winged helix’ domains were observed in the waterfall 190	

diagrams of a highly connected (reduced) subnetwork visualization of the SPX network 191	

(Fig. 3), matching similar recruitment waves observed in the study of evolutionary 192	

networks of elementary functionomes6 and metabolites26. Waves originated in primordial 193	

α/β/α-layered sandwich, β-barrel and helical bundle structures identified in an earlier 194	

structural phylogenomic study as part of the most ancient 54 protein domain families27. 195	

However, most of the connectivity of these major pathways was established during the 196	

organismal diversification epoch less than 1.5 Gy ago (nd ≥ 0.6) and hence was fully 197	

developed relatively recently in evolution. The ‘p-loop’ and ‘winged helix’ waves 198	

embedded the major gateways of enzymatic recruitment we previously reported for 199	

metabolism26.  The first gateway was mediated by the c.37 P-loop hydrolase fold and 200	

originated in the energy interconversion pathways of the purine metabolism subnetwork. 201	

The second pathway was mediated by the a.4 winged helix fold and originated in the 202	

biosynthesis of cofactors and the metabolic subnetwork of porphyrin and 203	

chlorophyll16,26,28. The congruent realization of these evolutionary patterns with data 204	
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sources of different types is remarkable (Supplementary Video 2). It strongly supports the 205	

historical statements we propose. Further information can be found in Section 2 of 206	

Supplementary Text. 207	

Network analysis of cooption mechanisms of recruitment 208	

The networks of domains (SPX and SPAX) elicited 161 unique time-events along the 209	

evolutionary timeline, out of a total 169 events expected for networks of domains, 210	

supradomains and domain combinations (CX, PX and PAX) (Supplementary Tables 1-5). 211	

The node and connectivity distributions among the time-event bins of the evolving 212	

networks highlight the widespread, growing and recurrent combinatorial recruitment 213	

process that incorporates domains and their combinations into protein scaffolds and 214	

drives structural evolution (Fig. 2). Indeed, the largest hubs representing the most 215	

popular domains in the highly connected SPX subnetwork appeared not only early in 216	

evolution but also in the modern protein world (Fig. 3). Similar to the evolution of 217	

elementary functions6, domain innovation also developed early during the first ~1.8 Gy of 218	

protein history (Fig. 3). The combinatorial recruitment process however spanned the 219	

entire timeline (Supplementary Fig. S2). In terms of origins, the first donor and acceptor 220	

composition event occurred in protein evolution with the appearance of a link in the CX 221	

network connecting domain c.2.1 to domain combination c.2.1|a.100.1, ~3.54 Gya (nd = 222	

0.069). The first donor and acceptor pair occurred in the pairwise PX and SPX networks 223	

~3.12 Gya (nd = 0.179), ~0.42 Gy later (Δnd = 0.11). The pairing event involved domains 224	

c.37.1 and d.14.1. The first adjacent donor and acceptor pair of the adjacency-based PAX 225	

and SPAX networks appeared ~2.90 Gya (nd = 0.237), ~0.22 Gy later (Δnd = 0.06). The 226	

adjacently paired nodes were domains c.37.1 and c.23.16. These observations highlight a 227	

remarkable tendency of domain organization to gradually but recurrently constrain 228	

pairwise occurrences in multidomain proteins. The evolutionary history of donors and 229	

acceptors of domain organization is hence associated with a highly optimized process of 230	

cooption. To explore this combinatorics, first we dissected the network connectivity with 231	

bar plots that describe the chronological accumulation of links along the evolutionary 232	

timeline (Supplementary Fig. S7). This made general patterns quantitative and source-233	

sink relationships explicit. Second, we analyzed the per unit donor/acceptor ratio in the 234	

evolving networks to highlight pairwise cooption and composability, respectively 235	

(Supplementary Fig. S8). Specifically, domain acceptors (represented by network 236	

indegree) of SPX increased in number to a global average of 8.63 (±0.15) sinks per 237	

domain in evolution. Domain donors (represented by network outdegree) of SPX reached 238	

a higher global average of 9.7 (±0.56) sources per domain, indicating significant 239	

reutilization of relatively ancient domains. In contrast, the average number of donors and 240	

acceptors in the evolving CX network plateaued at 3.41±0.34 sources and 3.43±0.05 sinks 241	

per domain/multidomain, respectively. This showed uniform source/sink evolutionary 242	

rates as proteins acquired higher composability with time. Third, an inferential analysis of 243	

cooption-based source-sink relationships maturing at modern times revealed an 244	

independence of patterns from the selected network generation criteria (Supplementary 245	

Fig. S9). Primarily, the composition events yielding source domains and supradomains 246	

were dominant, with the number of events almost doubling in the CX network from the 247	
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origin to the organismal diversification epoch ~1.5 Gya (nd = 0.6). However, the pairwise 248	

cooption events of the SPX domain network, e.g., doubled in number and reached 249	

relatively comparable levels in evolution only after delays of ~0.6 Gy (Δnd = 0.15) and 250	

~2.1 Gya (nd = 0.75), respectively. Moreover, the number of cooption events yielding sink 251	

domains in SPX almost tripled by the beginning of the organismal diversification epoch. 252	

In contrast, the number of CX sinks reached that level only halfway along that 253	

evolutionary epoch. These divergent patterns indicate a frustrated dynamics of network 254	

growth. The early adoption of composability of domains and supradomains in 255	

multidomains seems to have preceded the pairwise cooption of domains in protein 256	

history, leading to the numerous recruitment pathways of the modern protein world. A 257	

discussion on the source-sink relationships impacted by domain fusion and fission 258	

processes can be found in Section 3 of Supplementary Text. 259	

Hubs in network evolution 260	

Network hubs are at the heart of network connectivity and could chaperone network 261	

evolution29. We ranked modern domains and domain combinations of age nd = 1 as hubs 262	

based on the 99.9th percentile of indegree and outdegree. Hubs were annotated with 263	

domain organization attributes, including SCOP domain descriptions, age, 264	

fusional/fissional information, and GO terms. We also associated hubs with age ranks 265	

reflecting their order of evolutionary appearance in the timeline.  266	

The most notable donor hubs for all networks types were the carrier protein domains 267	

e.23.1, a.28.1 and c.69.1, which are involved in Non-Ribosomal Peptide Synthesis (NRPS), 268	

whether directly or indirectly through other pathways (Table 1). These domains 269	

diversified later in evolution yielding cofactor-binding molecular switches and barrel 270	

structures27. Ancient NRPS pathways of domain accretion have been associated with a 271	

model that not only described stabilization and decoration of membranes by primordial 272	

alpha-helical bundles and beta-sheets, but also explained primordial protein synthesis 273	

and genetic code specificity chaperoned by ancient forms of aminoacyl-tRNA synthetase 274	

(aaRS) catalytic domains and NRPS modules.  NRPS even preceded the emergence of the 275	

ribosome, acting as scaffold for nucleic acids and the modern translation function. In 276	

particular, the PX and PAX networks highlight the central evolutionary role of these 277	

novel emerging cofactor structures in the NRPS pathways. Thus, our findings made 278	

explicit that our connectivity criteria of generating networks of domain organization were 279	

at the cornerstone of the early development of genetic code and supported the 280	

evolutionary model of early biochemistry based on phylogenomic information and 281	

network structure. 282	

Domains c.30.1, b.1.1, d.142.1 and g.3.11 (0.723 < nd < 0.977) were the most prominent 283	

acceptor hubs (Table 2). These structures are integral parts of two-component signal 284	

transduction systems that are common in microbes. The highly modular domains feature 285	

dual response regulator proteins involved in the two-component signal transduction 286	

system comprising of an N-terminal response regulator receiver domain and a variable C-287	

terminal effector domain with DNA-binding activity. These proteins are transcriptional 288	
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regulators in bacteria and some protozoa, detecting and responding to environmental 289	

changes, e.g. nitrogen fixation. These evolving interactions of microbes with the 290	

environment mediated by two-component systems have apparently influenced the 291	

evolutionary process of cooption. Three acceptor hubs that were significant in PX with 292	

indegree > 250 (following behind the 99.9th percentile in other networks) were Nucleotide 293	

cyclase (d.58.29), Spermadhesin, CUB domain (b.23.1), and Fibronectin type III (b.1.2) 294	

(nd = 0.723-0.809). See Section 4 of Supplementary Text for additional donor/acceptor 295	

hub information, and Section 5 for cooption events occurring during the ‘big bang’ of 296	

domain organization. 297	

Emergence of preferential attachment in network evolution 298	

Genomic-centric processes such as duplication, recombination, fusion and fission shape 299	

patterns of molecular complexity2. Many of these patterns can be explained with large 300	

‘scale-free’ networks that grow by following the preferential attachment principle30. These 301	

self-organizing and highly inhomogeneous networks attach links to highly connected 302	

hub-like nodes in a ‘rich-get-richer’ fashion, lacking a characteristic scale, irrespective of 303	

the properties of individual nodes or systems31. This pattern of network expansion, which 304	

is remarkably popular in biology32, is sharply distinct from that of the Erdős–Rényi 305	

random network model33,34. In a scale-free network, the probability P(k) of nodes 306	

connecting with neighboring k nodes (i.e. the ratio of nodes with k links) decays as a 307	

power law, P(k) ~ k–γ, with γ defined as the exponent of power law decay. The frequency 308	

distributions of node-connectivity in biomolecular networks have γ typically ranging 2.1–309	

2.435. Thus, scale-free properties drive degree distributions entailing heavy tails, where 310	

very few nodes have high degree values.  311	

Our statistical analyses of the featured indegree distributions along the timeline of 312	

growing networks uncovered interesting patterns of power law dynamics (Fig. 4). The 313	

scale-free patterns were established early on in protein evolution, primarily evident in the 314	

CX composition network. These patterns were remarkably divergent from evolving 315	

networks connected at random (RVN p-value > 0.05). While power law behavior 316	

generally declined as the networks evolved (KS p-value < 0.05, α < 2.5), it somewhat 317	

sustained after the ‘big bang’ but only in CX and not in the pairwise networks (KS fit and 318	

γ closer to 0 and -2 in CX, respectively). A log linear regression model of CX produced 319	

the highest absolute value for γ of 3.81 among the five networks, which was achieved early 320	

along the evolutionary timeline (nd ~ 0.25). This value of γ was much higher than values 321	

reported for metabolic networks (γ~2.2)32. Remarkably, the γ was maintained at ~3 before 322	

and after the ‘big bang’, while remaining at ~2 until modern times with a minimum value 323	

of 1.7. The other four networks generated primarily with pairwise criterion apparently 324	

deviated from the power-law behavior, especially after the ‘big bang’. For instance, the γ 325	

of PX and PAX peaked at 2.4 (nd ~ 0.35) and 3.2 (nd ~ 0.38), respectively, slightly later 326	

than CX. We also noted a transition in γ from 2.1 in PX and 2.7 in PAX prior to the ‘big 327	

bang’ to 1.6 in both after the big bang, plateauing at ~1 until the present. In the SPX and 328	

SPAX networks, γ reached a peak even later in time than PX and PAX with values of 2.8 329	

(nd ~ 0.54) and 3.4 (nd ~ 0.66), respectively. These values transitioned from 2.4 in SPX 330	
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and 2.8 in SPAX from before the big bang to 1.6 and 1.7 after the big bang, respectively, 331	

plateauing at ~1 in both the networks. As expected, the average γ based on less 332	

representative outdegree of each of the five networks remained low (1 ± 0.05).  333	

We noticed that the patterns of γ curves over the connectivity of the networks were 334	

biphasic, with two minima at nd ~0.37 and ~0.67. Moreover, the scale-free tendency of 335	

adjacency networks seemed comparatively higher than that of networks lacking the 336	

adjacency restriction. For instance, the average values of γ for the PAX and SPAX 337	

networks (1.87 ± 0.06 and 2.13 ± 0.07, respectively) were relatively higher than those for 338	

the corresponding parent PX and SPX networks (1.61 ± 0.05 and 1.89 ± 0.06, 339	

respectively). This suggests that the proximity of residuals in the amino acid sequence 340	

plays a major role in rendering the power-law behavior of evolving networks of domain 341	

organization. Overall, the average γ of CX (2.56 ± 0.06) remained the highest along the 342	

evolutionary timeline, indicating that composition strongly elicits the preferential 343	

attachment property. A complementary transition from random to non-random behavior 344	

(RVN p-value: 1 → 0) in ancient networks (nd ~ 0.3) implies deviation from randomness 345	

as biological networks evolve. Remarkably, this transition event coincides with the origin 346	

of a processive ribosome.	 Such biphasic patterns are common in biology and have 347	

explained the emergence of biological modules22 in metabolic networks of Escherichia 348	

coli5, networks of elementary functionomes6, and molecular ancestry networks of 349	

enzymes36. Section 6 of Supplementary Text further discusses scale-freeness and 350	

randomness of networks. 351	

 352	

Emergence of hierarchical modularity 353	

 354	

Modular networks embed sets of communities (closely-knit modules) that establish links 355	

preferentially within themselves and do so sparsely with the rest37. Network modularity 356	

usually offsets the power-law behavior of biological networks by distributing node 357	

degrees within communities38–40. However, both scale-free properties and modular 358	

structure may co-exist in a network when modules coalesce hierarchically32. A primary 359	

index of modularity is the average clustering coefficient (C), defined as a node-averaged 360	

ratio of triangles (graph cycles of length 3) to triads (the connected graph triples) of the 361	

network, not taking into account the weights or direction of the node-links32,41,42 (Fig. 5). 362	

The adjacency PAX and SPAX networks both showed the lowest C (averaged over nd) 363	

with a value of 0.09 ± 0.009. The composition CX network had a relatively higher C of 0.2 364	

± 0.009. However, the non-adjacency pairwise PX and SPX networks had the highest C 365	

values of 0.5 ± 0.02 and 0.32 ± 0.014, respectively. These values were still lower than those 366	

reported for metabolic networks (C  = ~0.6)32,40,43. Hence, the networks supposedly 367	

evolved more random smaller modules connected by various inter-modular links, rather 368	

than stronger larger modules with few interconnections. Also, the evolution of modular 369	

structure appeared better consolidated by pairwise (PX and SPX) and to a lesser degree 370	

composability (CX) constraint rather than adjacency (PAX and SPAX) restriction. 371	

Comparing patterns of modularity of evolving networks to those of randomness (given by 372	

RVNp-value) indicated complementary transitions between the two behaviors over the 373	

evolutionary timeline (Figs. 4 and 5). 374	
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 375	

In order to dissect the modular behavior of evolving networks, we studied the regression 376	

patterns of C against network size N and evolutionary age nd. For typical scale-free 377	

models, C declines sharply with increasing N (C ~ N-coefficient), while the coefficients are as 378	

high as 0.7544. Instead, highly modular networks are typically independent of N32. In our 379	

networks, C regressed by N with very low coefficients (CX, 0.000036; PX, 0.00007; PAX, 380	

0.000035; SPX, 0.00016; SPAX, 0.00016). In contrast, the regression of C with age (C ~ nd-381	
coefficient) produced significantly higher coefficients (CX, 0.39; PX, 0.85; PAX, 0.39; SPX, 382	

0.35; SPAX, 0.41) (Fig. 5). The reference power-law (Barabási) networks that were used as 383	

control showed a C of zero, as expected45. Our data strongly suggests the existence of a 384	

highly modular structure that is independent of network growth but is strongly 385	

constrained by history, especially when considering the pairwise interactions of the PX 386	

network. The rise of the modularity index with emerging power-law degree distribution 387	

during certain periods of network evolution indicated a parallel formation of complex 388	

hierarchical module clusters with scale-free properties, not distinct from those present in 389	

metabolic networks32. Our networks of domain organization show a slight lag between an 390	

onset of scale-free organization (measured with KS fit and γ indegree statistics) and a 391	

delayed emergence of modular behavior (measured with C), occurring during early 392	

protein evolution. This was followed by intermittent periods of hierarchical modularity 393	

spanning across the middle of the evolutionary timeline. Remarkably, the evolving 394	

networks showed a prominent biphasic pattern of hierarchical modularity involving two 395	

peaks of modularity (higher statistic C) coinciding with increased power-law behavior 396	

(valleys of KS fit and -γ curves), at nd ~ 0.37 and nd ~ 0.67, respectively (Figs. 4 and 5). 397	

The modularity heatmaps and dendrograms of select phases of network evolution 398	

confirm these biphasic patterns (Fig. 6), which were markedly distinct from the long-399	

tailed clustering patterns of preferential attachment (Supplementary Fig. S10).  As 400	

identified earlier6, the timing of this switch coincides with the early development of 401	

genetic code specificity in the emerging ribosomal aaRS catalytic domains, which was 402	

facilitated by the OB-fold structure46. These counteracting and delicately balanced trends 403	

of modularity and preferential attachment suggest that the emergence of scale-free 404	

behavior of the partial bipartite CX network must have impacted the hierarchical 405	

modular structure of the modern pairwise networks of domain organization (PX, PAX, 406	

SPX, SPAX) (Supplementary Video 3). A detailed account of our testing and verification 407	

of this conjecture is explained in Section 7 of Supplementary Text. 408	

 409	

Conclusions 410	

We traced evolutionary ages inferred from a phylogenomic analysis of protein 411	

architectures onto networks of domain organization. Evolving networks revealed two 412	

prominent waves of structural novelty involving ancient domain innovations and founder 413	

‘p-loop’ and ‘winged helix’ domain structures. We found that the evolutionary 414	

recruitment of domains and multidomains in proteins was ongoing and highly modular. 415	

Remarkably, the networks highlighted the role of cofactor-supporting structures of NRPS 416	

pathways, which were backbone to the early evolution of the genetic code. The evolving 417	

domain rearrangements featured multitier evolutionary episodes of scale-free network 418	
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structure, hierarchy and modular behavior. Remarkably, our analyses support biphasic 419	

patterns of diversification and module emergence that we have observed earlier6,22. In an 420	

initial phase, at the cusp of architectural diversification, the modular components of 421	

emerging domain organization associated through weak linkages of recruitment. The 422	

second phase was massive and prolonged, with a multitude of modules appearing after 423	

the ‘big bang’ of the protein world, supporting the onset of organismal diversification. 424	

Such biphasic patterns are prevalent in biology and impact size, dipeptide makeup, and 425	

loop-mediated flexibility of proteins, possibly due to their intrinsic disorder4,46. Hence, the 426	

existence of biphasic patterns in evolving networks might be integral to biological history.  427	

Methods 428	

Experimental design 429	

Phylogenomic analysis of the entity set of protein domain architectures 430	

We explore the evolution of networks describing how structural domains combine and 431	

split to form single domain and multidomain proteins, i.e. the domain organization of 432	

proteins. The definition of protein domain structures followed the FSF level of SCOP 433	

version 1.759 (Fig. 1). Domain interactions were studied along an evolutionary timeline of 434	

structural and architectural innovation directly derived from a phylogenomic tree of 435	

architectures reconstructed from a Hidden Markov-Model (HMM)-based census of 436	

structural domain organization encoded in 1,730 FSF structures present in 749 genomes 437	

of 52 archaeal, 478 bacterial and 219 eukaryal organisms (dataset A749)8 (Supplementary 438	

Fig. S1). The phylogeny represents a reconstruction of the “natural history” of proteins 439	

that is supported by a model of protein structural growth47 and is carefully indexed with 440	

various evolutionary epochs of the protein world8. 441	

Calculation of the ages of domain organization 442	

The ages of domains and domain combinations were calculated as node distance (nd) 443	

values, which were derived directly from the rooted phylogenomic tree of protein domain 444	

organization8. nd values describe relative ages (in a relative 0-1 scale) of first appearances 445	

of 6,162 domains and domain combinations (multidomains) defined at SCOP FSF level 446	

(the extant ‘entity set’ sampled by our study; Fig. 2) Collectively, ages defined an 447	

evolutionary timeline embodying architectural transformations and molecular transitions 448	

mediated by fusion and fission processes in the form of 169 unique ‘time events’ (age 449	

groups or time slivers) (Supplementary Fig. S2). A Python script was used to count the 450	

number of nodes from the root (base) of the tree to each leaf node and present the 451	

distance matrix of nodes in a relative zero-to-one scale6. The script utilized the high 452	

imbalance of phylogenomic trees as a fundamental feature to derive the relative ages of 453	

domain organization8. The tree imbalance resulted from the accumulation of structures 454	

and their combinations in proteins and proteomes and not from node density, thus 455	

representing a true evolutionary process20. 456	
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The timeline was calibrated with a molecular clock of FSF structures (t = –3.831nd + 457	

3.628) used to calculate geological age in Gy through calibration points of FSF domains 458	

associated with microfossil, fossil and biogeochemical evidence, biomarkers, and first-459	

appearance of clade-specific domains20. The RSCB – PDB count was determined by 460	

following the hyperlink associated to the number of entries or structures (which is 461	

updated weekly) and selecting “Customizable Table” from the ’Reports’ menu above the 462	

results section. Subsequently, SCOP, CATH, and PFAM ID options were selected as 463	

domain information under the ’Domain Details’ section and domain counts data were 464	

exported as a comma separated value (.csv) file report. Supplementary Tables 1-5 provide 465	

an exhaustive summary of various connectivity categories of evolving networks based on 466	

this ‘entity set’ of domain organization.  The extraction pipeline of SPX/SPAX domain 467	

units from the original data set can be found in Supplementary Table 6. 468	

Indexing domain attributes 469	

Domain ages and assignment of fusional/fissional properties followed ref. 8. SCOP concise 470	

classification strings (ccs) of domain descriptions9 were downloaded from 471	

http://scop.mrc-lmb.cam.ac.uk/scop/parse/index.html for SCOP version 1.75 as the file 472	

dir_des_scop_txt_1_75.txt. Available descriptions for 2,223 single domains were obtained 473	

from SCOP unique identifiers (sunID). The Gene Ontology (GO) specifications were 474	

recorded from the Superfamily Database (SUPFAM) available at 475	

http://supfam.cs.bris.ac.uk/SUPERFAMILY/GO.html. High-coverage domain-centric 476	

GO annotations that were supported only by all UniProts (including multidomain 477	

UniProts) were downloaded as the file Domain2GO_supported_only_by_all.txt. High-478	

quality truly domain-centric GO annotations that were supported by both single domain 479	

UniProts and all UniProts (including multidomain UniProts) were downloaded as the file 480	

Domain2GO_supported_by_both.txt. We reported only the GO annotations ‘by all’ to 481	

capture higher coverage. Also, the GO terms were reported only for the 2,223 single 482	

domains with descriptions available. Specialized GO annotations from two levels of 483	

hierarchy downstream were taken from files Domain2GO-Hie-Dist1.csv and 484	

Domain2GO-Hie-Dist2.csv. Structural domains functional ontology (SDFO) that 485	

mapped information from a theoretic analysis of Domain2GO annotation profiles were 486	

reported from the file SDFO.txt. 487	

Network construction, visualization and analysis 488	

Mathematical definitions for construction of networks can be found in Supplementary 489	

Materials and Methods. The social network analysis tool Pajek48 and the statistical test 490	

bench R’s igraph package49 were used to visualize and analyze the networks, respectively. 491	

The collective impact of events was made explicit by Pajek’s Visualization of Similarity 492	

(VOS) clustering method50,51. VOS helped reveal communities and design layouts of 493	

networks with nodes separated into network modules, where high modularity indices 494	

ranged from 94-95%. Number of clusters varied over networks (CX, 691; PX, 3,886; PAX, 495	

4,126; SPX, 607; SPAX, 620). Network clusters were visually compacted to hubs and their 496	

cohesive neighbors with the energy-optimizing Kamada-Kawai ‘separate components’ 497	
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algorithm52. Pajek allowed to proportionally reduce the size of highly connected nodes by 498	

some scaling factor for optimally uncluttered visualization. Waterfall and radial network 499	

layouts were designed with node-size scaled down by factors of 0.1 and 0.25, respectively. 500	

R packages equipped with specialized code constructs to draw graphs and derive statistics 501	

were used to analyze network properties53,54. We also used Pre-Hypertext Processing 502	

language (PHP) to write custom scripts that generated radial visualizations of the 503	

networks and helped conduct housekeeping data management55. The PHP scripts were 504	

executed in the command line. Results of these scripts were input into Pajek’s and R’s 505	

analytical procedures. We used the open-source software ImageMagick 506	

(www.imagemagick.org) for batch conversion, captioning, and appending of network 507	

images (to represent legends and scales). A detailed description of partition and data files, 508	

list of network data analysis functions, charting and graphing procedures, methods to 509	

generate power law statistics, modularity indices and randomness checks, and the method 510	

pipeline used to achieve waterfall diagrams can be found in Supplementary Materials and 511	

Methods.  512	

Statistical analysis 513	

Scale-free network behavior  514	

Linear regression models of P(k) given k (i.e. the probability of having k-neighbors) were 515	

used to derive the γ coefficient of the power law distribution and the determination 516	

coefficient, R2. The value of γ represents an absolute slope of the log linear model of P(k) 517	

vs. k. The slope is usually ≤ 0. γ >> 1 indicates strong tendency towards preferential 518	

attachment. R2 indicates the percentage of data that fits the linear model. High values of 519	

both γ and R2 suggest strong scale-free behavior. Additional power law statistics were 520	

calculated as: (i) the exponent of the fitted power law distribution, α, with an assumption 521	

that P(X=x) is proportional to x–α; (ii) KS fit statistic to compare the input degree 522	

distribution with that of fitted power-law; and (iii) the KS p-value of a statistical test, with 523	

the null hypothesis that data is being drawn from a power law distribution56,57. α >> 1, 0 < 524	

KS fit scores << 1, and KS p-values ≥ 0.05 suggest that degree data was derived from a 525	

fitted power law distribution. Maximum log likelihood of the fitted scale-free parameters 526	

was also determined. Control networks were included for reference that were generated 527	

with ‘Barabási’ methods30 of the igraph package from R49. These controls simulated basic 528	

and extended age-dependent power law graph models given varying sizes of the evolving 529	

networks. 530	

Network modularity 531	

We investigated modularity using six indices: (i) The VOS Quality index (VQ) was 532	

determined using the Pajek VOS algorithm by considering the number or weights of the 533	

links (arcs) between the nodes as similarities. Clusters or communities that were deemed 534	

‘similar’ were iteratively drawn closer to each other until a final layout was achieved with 535	

least crossings and closest clusters. The quality index VQ was thus calculated for this final 536	

layout as ∑i=1�c, j=i+1�c (eij – ai
2), where c is the number of communities; eij is the fraction of 537	
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edges with one node v in the community i (ci) and the other node w in the community j 538	

(cj), defined as ∑vw (Avw/2m) where v ϵ ci, w ϵ cj, m is the sum of weights in the graph and 539	

Avw is the weighted value or 0, indicating presence or absence of edge between nodes v 540	

and w in the adjacency matrix A of the network; and ai is the fraction of weighted k 541	

neighbors attached to the nodes in community i, i.e ki/2m50,51. (ii) The Clustering Ratio 542	

(C-ratio) is the ratio of the number of network clusters to the count of the connected 543	

nodes in the network. (iii) The average Clustering Coefficient (C) is defined as the ratio of 544	

the triangles impingent on a node to the connected triples, determined as a global average 545	

over all nodes in a simplified (undirected/unweighted) network32,41,42. C is not meaningful 546	

for strictly bipartite or scale-free graphs45. We also report coefficients of linear regression 547	

of C over the age and size of the networks of domain organization. (iv) The Fast Greedy 548	

Community (FGC) agglomerative hierarchical algorithm detects community structure for 549	

networks with m edges, n nodes, and a depth d of the dendrogram describing the 550	

community structure, given an optimized linear running time of O(m×d×logn) ~ 551	

O(n×log2n)58. An equivalent modularity index was also calculated using the Walk Trap 552	

Community (WTC) detection algorithm59 (results not reported). The WTC computation 553	

resembles FGC except that WTC generates communities using random walks. The 554	

Newman-Girvan algorithm index (NG) was computed with two different input partitions, 555	

the first (v) defined by age (NGage) and the second (vi) defined by VOS clustering (NGvos). 556	

NG calculates the modularity of a network given a predefined division or partition to 557	

measure the influence of the partition in separating the different node types. This 558	

indicates either assortative (positive) or disassortative (negative) mixing across modules37. 559	

The NG algorithm computes an index as 1/(2m)∑ij(Aij-1/(2m)kikj×∆(ci,cj)), where m is the 560	

sum total of weights in the graph and Aij are weighted entries in the adjacency matrix of 561	

the network; ki | kj and ci | cj are the weighted degrees and the components (numeric 562	

partitions) of the nodes i and j, respectively; finally, ∆(x,y) equals 1 if x=y and 0 563	

otherwise37. We also computed the NG index for two additional input memberships 564	

generated by FGC and WTC (results not reported). The VQ, C-ratio, C and FGC indices 565	

each range from 0 to 1, while the NG indices range from -1 to 1. In all cases, higher values 566	

represent strong modularity of the network at an event of evolutionary history. Heatmaps 567	

of modularity were constructed using log10-scaled modularity matrices, with each map 568	

element given as (Aij-kikj/(2m))Mnd, where Aij, ki, kj and m were the same as defined for 569	

NG37, while Mnd was the network’s modularity index at event nd. Cladistic representations 570	

of modularity were visualized with dendrograms whose metrics were calculated from 571	

squared Euclidean distance matrices, which indicate dissimilarities between cluster 572	

means60. The dissimilarity or distance matrices were clustered hierarchically using the 573	

Ward's minimum variance method that seeks compact and spherical clusters61. 574	

Quantifying randomness in networks 575	

The Bartels rank test of randomness, which primarily offers a rank version of von 576	

Neumann's Ratio Test for Randomness62, was used to measure random network behavior. 577	

The resultant test statistic RVN is defined as ∑i=1àn-1 (Ri – Ri+1)2 / ∑i=1àn (Ri – (n+1)/2)2, 578	

where Ri = rank (Xi) with i=1…n, (RVN−2)/σ is the asymptotically standard normal,	579	

and σ2=[4(n−2)(5n2−2n−9)]/[5n(n+1)(n−1)2]. The null hypothesis of this method was 580	
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randomness, which was tested against the alternate hypothesis of non-randomness, given 581	

a trend of RVN values. A p-value is computed from a two-sided beta distribution 582	

approximation test. Random graph controls were created by following the Erdős–Rényi 583	

graph model33,63. 584	
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	745	

Figure 1. Networks of protein domain organization. (A) The genomic census of structural domains and their 746	

combinations defines SCOP concise classification string (ccs) descriptors of domains, supradomains and multidomains 747	

that are building blocks of networks. We illustrate the census with a sample from the entire entity set, comprising of 3 748	

domains (1, 2 and 3), 2 supradomains (1|2 and 3|2) and 2 multidomains (1|2|3 and 4|3|2) that are common in 749	

dehydratase enzymes and elongation factors. ccs identifiers of structural domain constituents defined at fold 750	

superfamily (FSF) level are listed below the atomic models visualized in ribbon format with Chimera. (B) Five operative 751	

criteria for network generation capture the interactions among protein architecture nodes as networks grow in 752	

evolution. CX is a partial bipartite network (projection-decomposable) that connects domain nodes to supradomain 753	

and multidomain nodes (which can connect to each other; hatched links) when present in multidomain proteins. PX 754	

connects domain and supradomain nodes when multidomain proteins are ‘decomposed’ into pairs of architectures, 755	

regardless of topological constraints. PAX borrows the PX criterion but respects topological constraints. SPX connects 756	

domain nodes spliced from architectures when domain pairs are present in proteins. SPAX connects domain nodes 757	

when adjacent domain pairs are present in proteins. (C) Chronological development of evolving networks. In ‘waterfall 758	

evolution’ layout, time progresses from left to right as ‘discrete events’ of network evolution progressively unfold the 759	

appearance of nodes and links (time-directed arrows known as arcs) from top to bottom, colored according to their age. 760	

Arc multiplicities describe link cardinality. Source-sink recruitments of architectures are visualized by horizontal and 761	

vertical elongations of node symbols, which describe their outdegree and indegree, respectively. As networks grow, the 762	

symbols of older nodes widen by outdegree accumulation, while those of younger nodes grow tall by indegree 763	

accumulation. In ‘radial evolution’ layout, the time-variant network grows by accumulating nodes in concentric rings 764	

(orbitals), each reflecting a time event. We illustrate radial evolution with 6 snapshots of a network growing to a size of 765	

55 nodes as it unfolds from time t1 to t10. Nodes (n) in orbitals (r) grow at r+1 rate and only one node per orbital 766	

connects to single nodes in each of the other orbitals. Thus, outward links (o) of an orbital are o=t–r–1, where t is the 767	

current time. Inward links (i) of an orbital are i=t–o–1=r. Finally, total links of a network at any time are t(t–1)/2. The 768	

width and height of symbols represent the outdegree and indegree of nodes, respectively. Symbol sizes are shifted by 10 769	

for a better visualization of nodes. 770	
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	771	

Figure 2. Evolving networks in radial evolution layout. Snapshots of network growth describe the evolution of 6,162 772	

domain, supradomain and multidomain architectures or 1,643 domains spliced from them. They represent 24 out of 773	

169 time events of the evolutionary timeline, which are indexed with evolutionary age (nd, ranging from 0.0 to 1.0), age 774	

bin (one of 10), and one of the 3 epochs of protein evolution (Wang et al., 2007). Age bins were custom RGB color-775	

coded to highlight the flow of time, from top to bottom. The evolving CX, PX, PAX, SPX and SPAX networks reveal the 776	

gradual evolutionary accumulation of nodes and links. The sizes of the horizontal and vertical axes of the node symbols 777	

depict outward and inward weighted connectivity, respectively, with all weighted degree vectors shifted by 10 for 778	

visualization and inclusion of 0-degree nodes. The curved arcs describe recurring interactions between architectures 779	

that are accumulating along the successive events of the timeline. Arcs symbolize the flow of time from ancient to 780	

recent architectures and are color-coded according to the age of the more recent of the component nodes involved; arcs 781	

between contemporary nodes are excluded. Since, in pairwise networks the age of the most recent parent node could be 782	

assigned to the arc, the connectivity-defining pairing events are absent in the first (red) and the first and second (red, 783	

orange) bins of the PX and SPX and the PAX and SPAX networks, respectively. The angles of multiple arcs emerging 784	

from nodes are incremented by 2 to avoid overlap. Node RGB colors represent age. Grey-scale color of node borders 785	

depict fusional/fissional properties (Supplementary Fig. S3). Node shapes describe GO categories: circle, molecular 786	

function; squares, biological process; rhomboid, cellular component; triangle, unassigned. 787	
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	788	

	789	

Figure 3. An extant SPX network in waterfall layout describing the evolution of spliced domains with the largest 790	

(100th percentile) network connectivity. The SPX network of 1,643 spliced domains was reduced with the restrictive 791	

criterion of excluding nodes with combined outdegrees and indegrees ≥ 99% of those of the rest of the nodes. The set of 792	

arcs (arched arrows symbolizing flow of time) was also reduced to pairing events between domains in the 100th 793	

percentile connectivity and excluded those between contemporary nodes. Nodes are arranged top-down and colored 794	

according to age (nd) on a relative 0-to-1 scale that describes evolutionary time events. Ages are also time-calibrated 795	

with a molecular clock of FSF domains, which uses fossils and microfossils, geochemical, biochemical, and biomarker 796	

data20. FSF origin is given in billion years ago (Gya). Nodes were labeled with SCOP ccs domain descriptors. To 797	

showcase source-and-sink relationships, node symbol sizes were scaled proportional to the weighted outdegree and 798	

indegree along the horizontal and vertical axes, respectively. Weighted degrees were scaled as ×2+2 to include 0-degree 799	

nodes for better visualization. The modular spread of nodes was based on VOS clustering (see methods). Arcs are color-800	

coded according to the age of the more recent of the component nodes involved; no arcs were present in the ancient-801	

most age bin (red) of the timeline. Angles of multiple arcs emerging from nodes are incremented by 2 to avoid overlap. 802	

See caption of Figure 2 for indexing of node colors and shapes.  803	
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	804	

 805	

Figure 4. Statistical descriptors of power law and random behavior. Six indicators of preferential attachment were 806	

studied along the evolutionary timeline to explore processes of network growth, with network age (nd) indicated on a 807	

relative 0-to-1 scale. Outdegree and indegree connections were cumulative and weighted in evolving networks. Barabási 808	

(red) and Barabási-Age (orange) networks were included as control sets. The Barabási model specifies the probability of 809	

preference of an old node as Pi ~ ki
α while the Barabási-Age model grants heavier power law properties to older nodes 810	

(exhibiting smaller nd) with Pi ~ (ki
α)(li

β), where ki is the indegree of node i of the current event, α is the preferential 811	

attachment exponent (α = 1 for linear preferential attachment), li is the age of node i, i.e. the number of events elapsed 812	

since the node was added, with maximum number measured by the ‘aging.bin’ parameter, and β is the aging exponent 813	

(β = 1 for linear increases in probability of preference of an older node with high li). Power law indices include: (i) the 814	

KS fit statistic that compares the input degree data distribution with the fitted power law distribution (smaller scores 815	

denote better fit); (ii) the KS p-value, which rejects the null hypothesis that degree data was drawn from the fitted 816	

power-law distribution when less than α=0.05; (iii) the exponent of the fitted power-law distribution (α); (iv) the slope 817	

of power-law linear regression model (γ); (v) the log-likelihood of the fitted parameters; and (vi) the coefficient of 818	

determination (R2) that measures the percentage of degree data that fits the linear model. The randomness of the 819	

evolving networks was quantified by the p-value of an approximated beta distribution from the rank version of von 820	

Neumann's Ratio Test for Randomness62 (RVNp-value). The alternate hypothesis was non-randomness. Comparative 821	

graphs of strictly random Erdős–Rényi control networks of corresponding sizes at the given time-events were also 822	

plotted. Lower KS fit, higher KS p-value, higher α, lower γ and near-zero likelihood, given lower RVNp-value, support 823	

power law behavior.  824	
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	825	

Figure 5. Network modularity. Six indicators of modularity were studied along the evolutionary timeline to explore 826	

the evolution of network structure, with network age (nd) indicated on a relative 0-to-1 scale. Modularity indices 827	

include the VOS Quality (VQ) index, the Clustering ratio (C-ratio), the average Clustering Coefficient (C), the Fast 828	

Greedy Community (FGC) index, and the Newman-Girvan index defined by age (NGage) or VOS clustering (NGVOS). 829	

Modularity calculations required cumulative, undirected, and weighted connectivity input. The Barabási (red) and 830	

Barabási-Age (orange) models (see caption of Figure 4) were included as control sets. The regressions of C with age 831	

(nd) are shown as linear models (red lines) for each network together with supporting determination coefficients (R2). 832	
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	833	

Figure 6. Evolution of modularity and hierarchical organization of networks over select events of the evolutionary 834	

timeline. NGage pairwise modularity values39, scaled by log10 of network-wide absolute modularity values, were used as 835	

input for the calculation of Euclidean distance matrices54, which were visualized as heatmaps. Heatmap tiles represent 836	

modular strength between any two architectures relative to the respective strength of their linkages to other 837	

architectures of the network. The embedded dendrograms that define the order of rows and columns of the heatmaps 838	

were generated by hierarchical clustering of the distance matrices with the Ward’s minimum variance method55. The 839	

height of dendrograms represents dissimilarity between clusters while the clades show grouping rearrangements of 840	

architectures. The top-left insets depict frequency histograms of the heatmap modularity values scaled from -1 to 1 (i.e. 841	

disassortative to assortative).	 The four panels describe growth of each evolving network (left-to-right). Network age 842	

corresponds to the middle approximate boundaries of the three evolutionary epochs of the protein world 843	

(Supplementary Fig. S2), i.e., end of ‘architectural diversification’ (nd = 0.393), end of ‘superkingdom specification’ (nd 844	

= 0.613), onset of the ‘big bang’ of domain organization at the start of ‘organismal diversification’ (nd = 0.676); and the 845	

present (nd = 1). Nodes were age-sorted ascendingly within clusters and labelled using standard SCOP nomenclature17. 846	

In the case of SPX and SPAX, nodes correspond to 1,643 domains mapped to the entity set of 6,162 architectures. The 847	

color-coding of bands and labels identifies the age of architectures (Supplementary Fig. S2). The relatively 'flatter' 848	

heatmap and 'skewed' dendrogram patterns of CX (typically at nd = 0.667 and nd =1.000) are an artifact of unweighted 849	

distance matrices of CX, which contrast with the weighted ones of pairwise criterion-based networks. The most 850	

prominent clades correspond to the modules of the most ancient domain structures harboring the two major waves of 851	

architectural innovation. We also generated heatmaps of power-law control networks of corresponding sizes at the 852	

given time-events (Supplementary Fig. S10). When compared to the pairwise networks, the combined heatmap and 853	

dendrogram patterns of CX suggest a hidden switch from scale-freeness to modular behavior, eventually giving rise to 854	

hierarchical modularity with visible emergence of modules within modules.	  855	
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Table 1: Domains and domain combinations scoring >= 99.9th percentiles of 249.916, [64] and {23}, based on 856	

combined outdegrees of the five networks at time points 1.0, [0.676] and {0.671}, respectively. The square and curly 857	

brackets denote values from the events after and before the big bang, respectively. 858	

Age 
Rank 

Label Node Age Network(s) Out 
Degree 

Fusional / 
Fissional 

Description GO Name 

388 c.23.1 0.4046243 PX, PAX, 
SPX 

1013, 
390, 330 

fissional/f
usional 

CheY-like regulation of multicellular 
organismal development 

1 c.37.1 0.0000000 PX, SPX, 
PAX, SPAX, 
CX 
 
[CX, PX, 
SPX, PAX, 
SPAX] 
 
{CX, PX, 
SPX, PAX, 
SPAX} 

607, 380, 
376, 314, 
271 
 
[109, 97, 
74, 64, 
64] 
 
{34, 32, 
26, 23, 
23} 

fusional P-loop containing 
nucleoside 
triphosphate 
hydrolases 

positive regulation of 
reproductive process 

2446 a.30.2 0.6820809 PX 578 fissional/f
usional 

Homodimeric 
domain of signal 
transducing 
histidine = 

alkene binding 

48 e.23.1 0.1445087 PX 
 
[PX] 

452 
 
[75] 

fusional Acetyl-CoA 
synthetase-like 

regulation of primary 
metabolic process 

2 c.2.1 0.0057803 PX 
 
[PX, CX, 
SPX] 

427 
 
[117, 80, 
66] 

fusional NAD(P)-binding 
Rossmann-fold 
domains 

pyridine-containing 
compound metabolic 
process 

1518 d.110.3|a.
30.2 

0.6763006 PX 423 fissional/f
usional 

#N/A #N/A 

283 a.28.1 0.3526012 PX 416 fusional ACP-like cell periphery 

2543 d.110.3& 0.6820809 PX 369 fissional/f
usional 

#N/A #N/A 

858 d.110.2|d.
110.3 

0.6763006 PX 357 fissional/f
usional 

#N/A #N/A 

187 c.30.1|d.1
42.1 

0.3179191 PX 352 fissional/f
usional 

#N/A #N/A 

8 c.69.1 0.0346821 PX 327 fusional alpha/beta-
Hydrolases 

regulation of multicellular 
organismal development 

4777 d.110.3 0.7225434 PX 325 fissional/f
usional 

PYP-like sensor 
domain (PAS 
domain) 

regulation of cellular 
macromolecule 
biosynthetic process 

17 c.23.16 0.0809249 PX 315 fusional Class I glutamine 
amidotransferase-
like 

positive regulation of 
oxidative phosphorylation 
uncoupler activity 

4465 d.122.1|c.
23.1 

0.7109827 PX 291 fusional/fi
ssional/fu
sional 

#N/A #N/A 

1599 d.110.3|d.
110.2 

0.6763006 PX 262 fissional/f
usional 

#N/A #N/A 

443 c.1.33 0.5028902 PX 253 fusional EAL domain-like cyclic-guanylate-specific 
phosphodiesterase 
activity 

	859	

	 	860	
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Table 2: Domains and domain combinations scoring >= 99.9th percentile of 247.977, [21] and {5}, based on 861	

combined indegrees of the five networks at time points 1.0, [0.676] and {0.671}, respectively. The square and curly 862	

brackets denote values from the events after and before the big bang, respectively. 863	

Age 
Rank 

Label Node Age Network(s) In Degree Fusional / 
Fissional 

Description GO Name 

6044 d.110.2 0.8728324 PX, PAX, 
SPX 

766, 295, 
267 

fissional GAF domain-like purine-containing 
compound catabolic 
process 

4777 d.110.3 0.7225434 PX 735 fissional/f
usional 

PYP-like sensor 
domain (PAS 
domain) 

regulation of cellular 
macromolecule 
biosynthetic process 

5529 d.122.1 0.7745665 PX 701 fissional/f
usional 

ATPase domain of 
HSP90 
chaperone/DNA 
topoisomerase = 

nucleic acid metabolic 
process 

5038 a.30.2|d.1
22.1 

0.7341040 PX 550 fusional/fi
ssional/fu
sional 

#N/A #N/A 

5101 c.43.1 0.7398844 PX 445 fissional/f
usional 

CoA-dependent 
acyltransferases 

monocarboxylic acid 
catabolic process 

5664 d.110.3|a.
30.2|d.12
2.1 

0.7919075 PX 439 fusional/fi
ssional 

#N/A #N/A 

6150 c.43.1& 0.9768786 PX 432 fusional/fi
ssional 

#N/A #N/A 

5304 c.30.1 0.7572255 PX 375 fissional/f
usional 

PreATP-grasp 
domain 

pyrimidine-containing 
compound biosynthetic 
process 

6148 b.1.1 0.9768786 PX 370 fissional Immunoglobulin regulation of mesoderm 
development 

4848 e.23.1|a.2
8.1 

0.7225434 PX 367 fusional/fi
ssional 

#N/A #N/A 

5095 d.142.1 0.7398844 PX 359 fissional/f
usional 

Glutathione 
synthetase ATP-
binding domain-
like 

pyrimidine-containing 
compound biosynthetic 
process 

5731 g.3.11 0.8034682 PX 317 fissional/f
usional 

EGF/Laminin positive regulation of 
receptor activity 

4118 c.43.1&|e.
23.1|a.28.
1 

0.6994219 PX 287 fusional/fi
ssional/fu
sional 

#N/A #N/A 

4758 d.58.29 0.7225434 PX 272 fissional/f
usional 

Nucleotide cyclase regulation of primary 
metabolic process 

5521 d.110.3|d.
58.29 

0.7745665 PX 266 fusional/fi
ssional 

#N/A #N/A 

4855 c.43.1&|e.
23.1|a.28.
1|c.43.1& 

0.7225434 PX 265 fusional/fi
ssional 

#N/A #N/A 

4763 a.30.2|d.1
22.1|c.23.
1 

0.7225434 PX 263 fusional/fi
ssional/fu
sional 

#N/A #N/A 

5768 b.23.1 0.8092486 PX 261 fissional/f
usional 

Spermadhesin, 
CUB domain 

regulation of anatomical 
structure size 

5759 b.1.2 0.8092486 PX 259 fissional/f
usional 

Fibronectin type III regulation of CD4-
positive, alpha-beta T cell 
activation 

2886 c.43.1|e.2
3.1|a.28.1 

0.6878613 PX 258 fusional/fi
ssional/fu
sional 

#N/A #N/A 

[1620] c.43.1&|e.
23.1 

0.6763006 PX 28 fusional/fi
ssional/fu
sional 

#N/A #N/A 

[1223] d.142.1|c.
24.1 

0.6763006 PX 25 fusional/fi
ssional/fu
sional 

#N/A #N/A 

[1311] a.28.1|c.4
3.1& 

0.6763006 PX 25 fusional/fi
ssional/fu
sional 

#N/A #N/A 

[1032] e.23.1|a.2
8.1|c.43.1
&|e.23.1 

0.6763006 PX 23 fusional/fi
ssional/fu
sional 

#N/A #N/A 

[283] a.28.1 0.3526012 PX, SPX, 
PAX, SPAX 

22, 22, 
21, 21 

fusional ACP-like cell periphery 

[1556] d.142.1|a.
92.1|c.30.

0.6763006 PX 22 fusional/fi
ssional/fu

#N/A #N/A 
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1|d.142.1|
c.24.1 

sional 

[1085] e.23.1|a.2
8.1|c.43.1
&|e.23.1|a
.28.1 

0.6763006 PX 21 fusional/fi
ssional/fu
sional 

#N/A #N/A 

{672} a.4.1 0.6647399 PX, CX 8, 7 fissional/f
usional 

Homeodomain-like regulation of epithelial cell 
differentiation involved in 
kidney development 

{324} c.73.1 0.3641618 PX 6 fissional/f
usional 

Carbamate kinase-
like 

heterocycle metabolic 
process 

{460} c.73.1|d.5
8.18&|c.2.
1|d.81.1 

0.5202312 CX 5 fusional/fi
ssional 

#N/A #N/A 

{734} b.113.1|a.
156.1|g.3
9.1|c.37.1 

0.6705202 CX 5 fusional/fi
ssional 

#N/A #N/A 

{13} c.2.1|a.10
0.1 

0.0693642 PX 5 fusional/fi
ssional/fu
sional 

#N/A #N/A 

{58} d.14.1 0.1791908 PX, SPX 5, 5 fusional Ribosomal protein 
S5 domain 2-like 

nucleic acid 
phosphodiester bond 
hydrolysis 

{270} g.39.1 0.3468208 PX 5 fissional/f
usional 

Glucocorticoid 
receptor-like 
(DNA-binding 
domain) 

fibroblast growth factor 
receptor signaling 
pathway involved in 
ureteric bud formation 

{388} c.23.1 0.4046243 PX 5 fissional/f
usional 

CheY-like regulation of multicellular 
organismal development 

	864	



Figures

Figure 1

Networks of protein domain organization. (A) The genomic census of structural domains and their
combinations de�nes SCOP concise classi�cation string (ccs) descriptors of domains, supradomains
and multidomains that are building blocks of networks. We illustrate the census with a sample from the
entire entity set, comprising of 3 domains (1, 2 and 3), 2 supradomains (1|2 and 3|2) and 2 multidomains
(1|2|3 and 4|3|2) that are common in dehydratase enzymes and elongation factors. ccs identi�ers of
structural domain constituents de�ned at fold superfamily (FSF) level are listed below the atomic models
visualized in ribbon format with Chimera. (B) Five operative criteria for network generation capture the
interactions among protein architecture nodes as networks grow in evolution. CX is a partial bipartite



network (projection-decomposable) that connects domain nodes to supradomain and multidomain nodes
(which can connect to each other; hatched links) when present in multidomain proteins. PX connects
domain and supradomain nodes when multidomain proteins are ‘decomposed’ into pairs of architectures,
regardless of topological constraints. PAX borrows the PX criterion but respects topological constraints.
SPX connects domain nodes spliced from architectures when domain pairs are present in proteins. SPAX
connects domain nodes when adjacent domain pairs are present in proteins. (C) Chronological
development of evolving networks. In ‘waterfall evolution’ layout, time progresses from left to right as
‘discrete events’ of network evolution progressively unfold the appearance of nodes and links (time-
directed arrows known as arcs) from top to bottom, colored according to their age. Arc multiplicities
describe link cardinality. Source-sink recruitments of architectures are visualized by horizontal and
vertical elongations of node symbols, which describe their outdegree and indegree, respectively. As
networks grow, the symbols of older nodes widen by outdegree accumulation, while those of younger
nodes grow tall by indegree accumulation. In ‘radial evolution’ layout, the time-variant network grows by
accumulating nodes in concentric rings (orbitals), each re�ecting a time event. We illustrate radial
evolution with 6 snapshots of a network growing to a size of 55 nodes as it unfolds from time t1 to t10.
Nodes (n) in orbitals (r) grow at r+1 rate and only one node per orbital connects to single nodes in each of
the other orbitals. Thus, outward links (o) of an orbital are o=t–r–1, where t is the current time. Inward
links (i) of an orbital are i=t–o–1=r. Finally, total links of a network at any time are t(t–1)/2. The width
and height of symbols represent the outdegree and indegree of nodes, respectively. Symbol sizes are
shifted by 10 for a better visualization of nodes.



Figure 2

Evolving networks in radial evolution layout. Snapshots of network growth describe the evolution of 6,162
domain, supradomain and multidomain architectures or 1,643 domains spliced from them. They
represent 24 out of 169 time events of the evolutionary timeline, which are indexed with evolutionary age
(nd, ranging from 0.0 to 1.0), age bin (one of 10), and one of the 3 epochs of protein evolution (Wang et
al., 2007). Age bins were custom RGB color coded to highlight the �ow of time, from top to bottom. The
evolving CX, PX, PAX, SPX and SPAX networks reveal the gradual evolutionary accumulation of nodes



and links. The sizes of the horizontal and vertical axes of the node symbols depict outward and inward
weighted connectivity, respectively, with all weighted degree vectors shifted by 10 for visualization and
inclusion of 0-degree nodes. The curved arcs describe recurring interactions between architectures that
are accumulating along the successive events of the timeline. Arcs symbolize the �ow of time from
ancient to recent architectures and are color-coded according to the age of the more recent of the
component nodes involved; arcs between contemporary nodes are excluded. Since, in pairwise networks
the age of the most recent parent node could be assigned to the arc, the connectivity-de�ning pairing
events are absent in the �rst (red) and the �rst and second (red, orange) bins of the PX and SPX and the
PAX and SPAX networks, respectively. The angles of multiple arcs emerging from nodes are incremented
by 2 to avoid overlap. Node RGB colors represent age. Grey-scale color of node borders depict
fusional/�ssional properties (Supplementary Fig. S3). Node shapes describe GO categories: circle,
molecular function; squares, biological process; rhomboid, cellular component; triangle, unassigned.



Figure 3

An extant SPX network in waterfall layout describing the evolution of spliced domains with the largest
(100th percentile) network connectivity. The SPX network of 1,643 spliced domains was reduced with the
restrictive criterion of excluding nodes with combined outdegrees and indegrees ≥ 99% of those of the
rest of the nodes. The set of arcs (arched arrows symbolizing �ow of time) was also reduced to pairing
events between domains in the 100th percentile connectivity and excluded those between contemporary



nodes. Nodes are arranged top-down and colored according to age (nd) on a relative 0-to-1 scale that
describes evolutionary time events. Ages are also time-calibrated with a molecular clock of FSF domains,
which uses fossils and microfossils, geochemical, biochemical, and biomarker data20. FSF origin is
given in billion years ago (Gya). Nodes were labeled with SCOP ccs domain descriptors. To showcase
source-and-sink relationships, node symbol sizes were scaled proportional to the weighted outdegree and
indegree along the horizontal and vertical axes, respectively. Weighted degrees were scaled as ×2+2 to
include 0-degree nodes for better visualization. The modular spread of nodes was based on VOS
clustering (see methods). Arcs are color coded according to the age of the more recent of the component
nodes involved; no arcs were present in the ancient most age bin (red) of the timeline. Angles of multiple
arcs emerging from nodes are incremented by 2 to avoid overlap. See caption of Figure 2 for indexing of
node colors and shapes.

Figure 4



Statistical descriptors of power law and random behavior. Six indicators of preferential attachment were
studied along the evolutionary timeline to explore processes of network growth, with network age (nd)
indicated on a relative 0-to-1 scale. Outdegree and indegree connections were cumulative and weighted in
evolving networks. Barabási (red) and Barabási-Age (orange) networks were included as control sets. The
Barabási model speci�es the probability of preference of an old node as Pi ~ kiα while the Barabási-Age
model grants heavier power law properties to older nodes (exhibiting smaller nd) with Pi ~ (kiα)(liβ),
where ki is the indegree of node i of the current event, α is the preferential attachment exponent (α = 1 for
linear preferential attachment), li is the age of node i, i.e. the number of events elapsed since the node
was added, with maximum number measured by the ‘aging.bin’ parameter, and β is the aging exponent (β
= 1 for linear increases in probability of preference of an older node with high li). Power law indices
include: (i) the KS �t statistic that compares the input degree data distribution with the �tted power law
distribution (smaller scores denote better �t); (ii) the KS p-value, which rejects the null hypothesis that
degree data was drawn from the �tted power-law distribution when less than α=0.05; (iii) the exponent of
the �tted power-law distribution (α); (iv) the slope of power-law linear regression model (γ); (v) the log-
likelihood of the �tted parameters; and (vi) the coe�cient of determination (R2) that measures the
percentage of degree data that �ts the linear model. The randomness of the evolving networks was
quanti�ed by the p-value of an approximated beta distribution from the rank version of von Neumann's
Ratio Test for Randomness62 (RVNp-value). The alternate hypothesis was non-randomness.
Comparative graphs of strictly random Erdős–Rényi control networks of corresponding sizes at the given
time-events were also plotted. Lower KS �t, higher KS p-value, higher α, lower γ and near-zero likelihood,
given lower RVNp-value, support power law behavior.



Figure 5

Network modularity. Six indicators of modularity were studied along the evolutionary timeline to explore
the evolution of network structure, with network age (nd) indicated on a relative 0-to-1 scale. Modularity
indices include the VOS Quality (VQ) index, the Clustering ratio (C-ratio), the average Clustering Coe�cient
(C), the Fast Greedy Community (FGC) index, and the Newman-Girvan index de�ned by age (NGage) or
VOS clustering (NGVOS). Modularity calculations required cumulative, undirected, and weighted
connectivity input. The Barabási (red) and Barabási-Age (orange) models (see caption of Figure 4) were
included as control sets. The regressions of C with age (nd) are shown as linear models (red lines) for
each network together with supporting determination coe�cients (R2).



Figure 6

Evolution of modularity and hierarchical organization of networks over select events of the evolutionary
timeline. NGage pairwise modularity values39, scaled by log10 of network-wide absolute modularity
values, were used as input for the calculation of Euclidean distance matrices54, which were visualized as
heatmaps. Heatmap tiles represent modular strength between any two architectures relative to the
respective strength of their linkages to other architectures of the network. The embedded dendrograms
that de�ne the order of rows and columns of the heatmaps were generated by hierarchical clustering of
the distance matrices with the Ward’s minimum variance method55. The height of dendrograms
represents dissimilarity between clusters while the clades show grouping rearrangements of



architectures. The top-left insets depict frequency histograms of the heatmap modularity values scaled
from -1 to 1 (i.e. disassortative to assortative). The four panels describe growth of each evolving network
(left-to-right). Network age corresponds to the middle approximate boundaries of the three evolutionary
epochs of the protein world (Supplementary Fig. S2), i.e., end of ‘architectural diversi�cation’ (nd = 0.393),
end of ‘superkingdom speci�cation’ (nd = 0.613), onset of the ‘big bang’ of domain organization at the
start of ‘organismal diversi�cation’ (nd = 0.676); and the present (nd = 1). Nodes were age-sorted
ascendingly within clusters and labelled using standard SCOP nomenclature17. In the case of SPX and
SPAX, nodes correspond to 1,643 domains mapped to the entity set of 6,162 architectures. The color-
coding of bands and labels identi�es the age of architectures (Supplementary Fig. S2). The relatively
'�atter' heatmap and 'skewed' dendrogram patterns of CX (typically at nd = 0.667 and nd =1.000) are an
artifact of unweighted distance matrices of CX, which contrast with the weighted ones of pairwise
criterion-based networks. The most prominent clades correspond to the modules of the most ancient
domain structures harboring the two major waves of architectural innovation. We also generated
heatmaps of power-law control networks of corresponding sizes at the given time-events (Supplementary
Fig. S10). When compared to the pairwise networks, the combined heatmap and dendrogram patterns of
CX suggest a hidden switch from scale-freeness to modular behavior, eventually giving rise to hierarchical
modularity with visible emergence of modules within modules.
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