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1 Introduction

Entropies play an essential role in many fields such as physics, information
theory, analysis of complex systems, electronics and engineering [1, 2, 3].
Among various entropies introduced in the specialized literature, we mention
the Tsallis entropy [4, 6, 5], Kaniadakis entropy [7, 8, 9], cumulative entropies
[10], relative entropies [11, 12, 13], and weighted entropies [14, 15, 16]. Some
well-known entropies are Shannon and Rényi entropies, the latter being a
generalization of the former with both entropies having many applications,
for example, the measurement of the electroencephalographic effects of des-
flurane and measures of heart rate [17, 18]. Some applications of divergence
measures involve Markov chains. Recently, α- divergence and β-divergence



44 V. Preda and I. Băncescu An. U.V.T.

for Markov chains have been generalized, weighted generalizations of these
divergence measures being also considered [19, 20]. In 2018, Barbu et al. [21]
have introduced and discussed generalized Cressie and Read power divergence
class of measures for Markov chains. In 1966, a generalization with two pa-
rameters of the Rényi entropy was introduced, taking the name of Varma
entropy. Rényi entropy has only one paramater, while Varma entropy has
two paramaters, thus making it more flexible for different applications.

Let (Xt)t≥0 be a non-stationary stochastic process defined over a probability
space, where Xt, t ≥ 0 is a continuous random variable. Suppose that Ω is
the state space of the process and that p(t, x) is the probability for which
the process is in state x at moment t. Also, we assume that p(t, x) satisfies
some continuity and/or differentiability hypothesis required with respect to
t for any x ∈ Ω and t ≥ 0.

The Varma entropy of a random variable Xt, t ≥ 0 is defined by the following
equation [22]

V (Xt, α, β) =
1

β − α
log

∫
Ω

pα+β−1(t, x)dx, β ≥ 1, α 6= β, β − 1 < α < β

(1.1)
For β = 1 and α → 1 Varma entropy reduces to Shannon entropy, while
for β = 1 we obtain the Rényi entropy. Recently, Varma entropy has been
used to derive a generalized entropy of order statistics [23] and a generalized
discrimination measure of order (α, β) [24].

Important principles related to the concept of entropy are the maximum and
minimum entropy principles. Originated in statistical physics where they
were applied in equilibrium problems for understanding the dynamics of sys-
tems, nowadays their applications have expanded to other areas of science
and technology [25]. In econometrics, the maximum entropy principle states
that given some constrains about the mean and Gini index, we can obtain
probability densities that are least biased based on the prior information re-
ceived, distributions which are derived by maximizing the entropy under the
constrains given. This principle has been applied to obtain new Lorenz curve
by maximizing the Tsallis entropy under equality and inequality constrains
[26]. Considering the maximization of the Shannon entropy under mean and
standard deviation constrains, the Gaussian distribution is obtained.

Recently, in 2016, Shalymov and Fradkov [27], applied the maximum entropy
principle to analysis the dynamics of non-stationary processes that follow this
principle. More, in 2016, the same problem was studied considering Tsallis
statistics [28]. In [27], the authors proposed an evolution law of a system
given by
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ṗ = −γ(I −Ψ)pβ−1, (1.2)

where ṗ = dp
dt

, I is an identity operator, Ψ is a linear operator invariant to p,
γ > 0 is a constant gain and β > 0, β 6= 1. Equation (1.4) has as solutions
distributions that obey the maximum Rényi principle of parameter β.

In this paper, we study the evolution of non-stationary processes in the con-
text of Varma, weighted Varma, weighted Rényi and Rényi-Tsallis of order
α entropies maximization principles (the continuous case).

The proposed evolution law of a system in case of Varma entropy maximiza-
tion is given by

ṗ = −γ(I −Ψ)pα+β−1, (1.3)

while for weighted Rényi entropy the proposed evolution law of a system is
given by

ṗ = −γ(I −Ψ)wpβ−1, (1.4)

where w is the weighted function and depends only on x. Here ṗ is the
derivative function of p relative to t, continuous and integrable relative to
x. Also, we suppose that hypotheses of derivability relative to t and integra-
bility relative to x are satisfied throughout the paper and furthermore the
expressions are finite.

The paper is organized as follows. Sections 2 and 3 describe the evolution of
non-stationary systems that obey the maximum Varma and weighted Rényi
entropy principles, respectively. Systems having a second constraint, namely
total energy constraint are studied as well. Section 4 describes the evolution
of non-stationary systems that obey the weighted Varma entropy principle.
Section 5 describes the evolution of non-stationary systems that obey the
Rényi-Tsallis entropy of order α principle while section 6 concludes the paper.

2 Varma entropy and non-stationary systems

Variational principles have long been applied in the study of dynamics of
systems. Some variational principles are Gauss principle of least constraint,
principle of minimum energy dissipation and Pontryagin maximum princi-
ple. The speed-gradient variational principle (SG) was first introduced in
nonlinear control theory [29] having many applications. In 2008, Fradkov,
formulated the SG principle for non-stationary processes [30] as follows.
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Consider a physical system described by systems of differential equations of
the form

ẋ = f(x, u, t) (2.1)

where x = (x1, x2, ..., xn)T represents the systems states, u = (u1, u2, ..., um)T

are the free (input) variables, and ẋ = dx
dt

, t ≥ 0. In order to model system
dynamics, we search for the law of change of u(t) subject to some criterion
of behavior of the system given by the tendency to achieve a goal functional
W (x, t) set apriori (or more precisely the behavior is given by the decreasing
of the goal functional).

Solution of the problem is obtained by deriving the speed of the goal func-
tional W (x, t), evaluate the gradient of the speed ∇uẆ with respect to input
vector u (speed-gradient vector), and formulate the law of dynamics as

u = −γ∇uẆ (x, u, t), where γ > 0 is a scalar. (2.2)

An example of speed-gradient laws of dynamics is the motion of a particle in
the potential field [30].

2.1 Speed-gradient and maximum Varma entropy principles

Based on the SG principle we derive the laws of motion for a non-stationary
process which obeys the maximum Varma entropy principle. Similar to [27]
we consider a system having a continuous distribution of possible states over
a compact carrier, Ω. The density function of the system, denoted by p(t, x),
satisfies the following condition∫

Ω

p(t, x)dx = 1, ∀t ≥ 0 (2.3)

and it is continuous over Ω except for a set having zero measure. From
equation (2.3), we get the following restriction for the law of motion u∫

Ω

u(t, x)dx = 0 (2.4)

where u(t, x) = ṗ(t, x) = dp
dt

.

Applying the SG principle for non-stationary processes as described above,

we calculate the speed of the goal functional
˙̃
V = dṼ

dt
as

˙̃
V (Xt, α, β) = −

(α + β − 1

β − α

)∫
Ω
ṗ(t, x)pα+β−2(t, x)dx∫

Ω
pα+β−1(t, x)dx

(2.5)
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where Ṽ = −V .

The gradient of
˙̃
V by u is equal to

∇u
˙̃
V (Xt, α, β) = −α + β − 1

β − α
pα+β−2(t, x)∫

Ω
pα+β−1(t, x)dx

. (2.6)

According to the SG principle, we obtain the following evolution law

u(t, x) = γ
α + β − 1

β − α
pα+β−2(t, x)∫

Ω
pα+β−1(t, x)dx

+ λ′. (2.7)

where λ′ = λ′(t) is the Lagrange multiplier which obeys the following condi-
tion ∫

Ω

(
γ
α + β − 1

β − α
pα+β−2(t, x)∫

Ω
pα+β−1(t, x)dx

+ λ′
)
dx = 0 (2.8)

From this we obtain the Lagrange multiplier as

λ′ = −
( (α + β − 1)γ

(β − α)mes(Ω)

)∫
Ω
pα+β−2(t, x)dx∫

Ω
pα+β−1(t, x)dx

(2.9)

where mes(Ω) =
∫

Ω
1dx.

The system dynamics equation has the following form:

ṗ(t, x) = γ
α + β − 1

β − α
pα+β−2(t, x)∫

Ω
pα+β−1(t, x)dx

− (α + β − 1)γ

(β − α)mes(Ω)

∫
Ω
pα+β−2(t, x)dx∫

Ω
pα+β−1(t, x)dx

(2.10)
The general form of the evolution of the system is

ṗ = − γ

Ct
(Ψ− I)pα+β−2 (2.11)

where Ψ =
∫

Ω
(·)dx/mes(Ω) is a linear operator which is invariant to p, I is

an identity operator and Ct =
(β−α)

∫
Ω p

α+β−1(t,x)dx

α+β−1
.

The stability of the obtained equilibrium equation (2.10) is derived consid-

ering the following Lyapunov function M(p) = Ṽ (Xt, α, β)− Ṽmin ≥ 0 where

Ṽmin is the minimum of Ṽ (Xt, α, β) corresponding to equation (2.5). We have
the following

Ṁ(p) =
˙̃
V (Xt, α, β) = −α + β − 1

β − α

∫
Ω
u(t, x)pα+β−2(t, x)dx∫

Ω
pα+β−1(t, x)dx

. (2.12)

We substitute the expression for u from (2.10) and obtain
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Ṁ(p) =
γ(α + β − 1)2

mes(Ω)(β − α)2
( ∫

Ω
pα+β−1(t, x)dx

)2

[( ∫
Ω

pα+β−2(t, x)dx
)2

−mes(Ω)

∫
Ω

(pα+β−2(t, x))2dx
]

(2.13)

Applying the Cauchy Bunyakovsky Schwarz (CBS) inequality

|
∫

Ω

f(x)g(x)dx|2 ≤
(∫

Ω

|f(x)|2dx
)(∫

Ω

|g(x)|2dx
)

(2.14)

for f = pα+β−2 and g = 1, we obtain Ṁ(p) ≤ 0 (γ > 0). We have that
Ṁ(p) = 0 is true when pα+β−2(t, x) = σt=constant for all t ≥ 0 which is
possible only if we take p(t, x) = C = const. Applying equation (2.3), we

get Ct =
(β − α)σt
α + β − 1

and prove that σt does not depend on t, meaning Ct also

does not depend on t. From the same equation (2.3), we derive constant C
to be C = (mes(Ω))−1. Therefore, there is only one unique density function
p∗ = (mes(Ω))−1 for the equilibrium state of the system which evolves by
evolution law given by (2.10).

Asymptotic convergence

Asymptotic convergence of all solutions to p∗ can be proved by applying
Barbalat’s lemma [37].

Lemma 2.1 (Barbalat’s lemma). If differentiable function f(t) has a finite
limit for t→∞ and its derivative ḟ(t) is uniformly continuous then ḟ(t)→ 0
for t→ 0.

Theorem 2.1. If p(t, x) is a density function defined by equation (2.10),
then for any x we have lim

t→∞
p(t, x) = p∗(x).

Proof. Similar to [27], the theorem can be proven by calculating M̈(p) and
applying Barbalat’s lemma.
We have

M̈(p) =
α + β − 1

β − α

∫
Ω

(
u̇(t, x)pα+β−2(t, x) + (α + β − 2)u2(t, x)pα+β−3(t, x)

)
dx∫

Ω
pα+β−1(t, x)dx

− (α + β − 1)2

β − α

∫
Ω

u(t, x)pα+β−2(t, x)dx

∫
Ω
pα+β−2(t, x)u(t, x)dx( ∫

Ω
pα+β−1(t, x)dx

)2 .
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It can be shown that function |M̈(p)| is bounded over compact carrier Ω,
hence Ṁ(p) is uniformly continuous. Applying Barbalat’s lemma, we have
Ṁ(p)→ 0 for t→ 0. Rewriting Ṁ(p) as

Ṁ(p) = − γ(α + β − 1)2

mes(Ω)(β − α)2

||pα+β−2||2

(pα+β−1, 1)2
(1− cos2(γ(t))) (2.15)

where γ(t) = cos((1, pα+β−2)), (1, f) =
∫

Ω
f(x)dx and ||f ||2 =

∫
Ω
f 2(x)dx.

From constraint (2.3) we obtain γ(t)→ 0, meaning p̄α+β−2(t, x)→ 1̄, where
p̄α+β−2(t, x) and 1̄ are normalized values for pα+β−2(t, x) and 1, respectively.
Hence, we have p(t, x) → p∗ for t → ∞, and for all p(t, x) that follow the
evolution law (2.10).

2.2 Total energy constraint

Consider a system having a total energy conservation constraint given by [27]∫
Ω

p(t, x)h(x)dx = E, (2.16)

where E is the common energy of a system and h is the density of energy,
h ∈ L2(Ω), h is not a constant function. The dynamics equation of this
system is defined as [27]

u = −γ∇uV̇ + λ1h+ λ2. (2.17)

The constraints (2.3) and (2.16) are equivalent to

∫
Ω

u(t, x)dx = 0 and

∫
Ω

u(t, x)h(x)dx = 0, ∀t ≥ 0, respectively

(2.18)
Based on the above constraints, the Lagrange multipliers λ1 and λ2 are

λ1 =
γ(α + β − 1)

(β − α)(
∫

Ω
pα+β−1(t, x)dx)

×
mes(Ω)

∫
Ω
pα+β−2(t, x)h(x)dx−

( ∫
Ω
pα+β−2(t, x)dx

)( ∫
Ω
h(x)dx

)
mes(Ω)

∫
Ω
h2(x)dx−

( ∫
Ω
h(x)dx

)2

(2.19)
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λ2 =
γ(α + β − 1)

(β − α)(
∫

Ω
pα+β−1(t, x)dx)

×

( ∫
Ω
pα+β−2(t, x)dx

)( ∫
Ω
h2(x)dx

)
−
( ∫

Ω
pα+β−2(t, x)h(x)dx

)( ∫
Ω
h(x)dx

)
mes(Ω)

∫
Ω
h2(x)dx−

( ∫
Ω
h(x)dx

)2

(2.20)

Since h is not a constant function, the quantitymes(Ω)
∫

Ω
h2(x)dx−

( ∫
Ω
h(x)dx

)2

is different from zero.

Equilibrium stability

Using the same Lyapunov function M used in the previous section, for Ṽ
and Lagrange multipliers λ′1 = −λ1 and λ′2 = −λ2, we obtain the following
expression

Ṁ(p) =
γ(α + β − 1)2

mes(Ω)(β − α)2(
∫

Ω
pα+β−1(t, x)dx

×
[
mes(Ω)

∫
Ω
pα+β−2(t, x)h(x)dx−

∫
Ω
h(x)dx

∫
Ω
pα+β−2(t, x)dx

]2
mes(Ω)

∫
Ω
h2(x)dx−

( ∫
Ω
h(x)dx

)2

− γ(α + β − 1)2

mes(Ω)(β − α)2
( ∫

Ω
pα+β−1(t, x)dx

)2

×

[
mes(Ω)

∫
Ω

(
pα+β−2(t, x)

)2
dx−

(∫
Ω

pα+β−2(t, x)dx
)2
]
. (2.21)

Applying inequality

< f, g >2≤< f, f >< g, g > (2.22)

from [27] where functional <,>: L2(Ω)×L2(Ω)→ R, f, g ∈ L2(Ω) is defined
as

< f, g >= mes(Ω)

∫
Ω

fgdx−
∫

Ω

fdx

∫
Ω

gdx.

for f = pα+β−2 and g = h, we get
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(
mes(Ω)

∫
Ω

h(x)pα+β−2(t, x)dx−
∫

Ω

h(x)dx

∫
Ω

pα+β−2(t, x)dx

)2

≤

(
mes(Ω)

∫
Ω

(pα+β−2(t, x))2dx−
(∫

Ω

pα+β−2(t, x)dx
)2
)

×

(
mes(Ω)

∫
Ω

h2(x)dx−
(∫

Ω

h(x)dx
)2
)

Hence, we obtain Ṁ(p) ≤ 0. Ṁ(p) = 0 holds if and only if

∃σt, ρt ∈ R such that pα+β−2 = σth+ ρt, ∀t ≥ 0, (2.23)

The density equilibrium is given by

pα+β−2(t, x) =
Ctλ

′
1h(x)

γ
+
Ctλ

′
2

γ
(2.24)

where Ct = (β − α)
∫

Ω
pα+β−1(t, x)dx/(α + β − 2), α + β > 2. If α + β = 3,

applying equations (2.3), (2.16) and (2.23), we have that σt = σ = λ′1(Ct/γ)
and ρt = ρ = λ′2(Ct/γ) are independent of t. In this case, we have an unique
distribution for the equilibrium state p∗(x).

Asymptotic convergence

Asymptotic convergence is proven in this case in a similar manner as in the
previous section by applying Barbalat’s lemma.

Theorem 2.2. If p(t, x) is a density function defined by u = −γ∇u
˙̃
Hw +

λ′1h+ λ′2, then for any x we have lim
t→∞

p(t, x) = p∗(x).

3 Weighted Rényi entropy and non-stationary systems

Rényi entropy is a generalization of Shannon entropy being a monotonic func-
tion of the information and a scale dependent function in the continuous case
[31, 32]. Rényi entropy is used in classical string-net models, classification
of daily electrical load patterns, signal segmentation and classification and
identification of frog sound [33, 34, 35, 36].
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The Rényi entropy of a random variable Xt, t ≥ 0 is defined as

H(Xt, β) =
1

1− β
log

∫
Ω

pβ(t, x)dx, β > 0, β 6= 1. (3.1)

Weighted entropies were introduced in 1968 by Belis and Guiasu [14] and
in 1971 by Guiasu [15]. The main concept around weighted entropy is that
it is designed to take the importance of data/states under consideration.
Therefore, weights are given to every state of a system according to their
importance.

The weighted Rényi entropy of a random variable Xt, t ≥ 0 is defined as

Hw(Xt, β) =
1

1− β
log

∫
Ω

w(x)pβ(t, x)dx, β > 0, β 6= 1. (3.2)

where w is a positive weighted function, w ∈ L2(Ω). An example of a
weighted function is w(x) = ex. For w(x) = 1 for all x, we obtain the
Rényi entropy.

3.1 Speed-gradient and maximum weighted Rényi entropy prin-
ciples

Applying the SG principle for non-stationary processes, we calculate the

speed of the goal functional
˙̃
Hw = dH̃w

dt
as

˙̃
Hw(Xt, β) = − 1

1− β

∫
Ω

(
βpβ−1(t, x)w(x)u(t, x)

)
dx∫

Ω
w(x)pβ(t, x)dx

(3.3)

where H̃w = −Hw.

The gradient of
˙̃
Hw by u is equal to

∇u
˙̃
Hw(Xt, β) = − β

1− β
pβ−1(t, w)w(x)∫
Ω
w(x)pβ(t, x)dx

(3.4)

According to the SG principle, we obtain the following evolution law

u =
βγ

1− β
w(x)pβ−1(t, x)∫

Ω
w(x)pβ(t, x)dx

+ λ′ (3.5)

where λ′ is the Lagrange multiplier which obeys the following condition∫
Ω

( βγ

1− β
w(x)pβ−1(t, x)∫

Ω
w(x)pβ(t, x)dx

+ λ′
)
dx = 0 (3.6)
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From this we obtain the Lagrange multiplier as

λ′ = − βγ

(1− β)mes(Ω)

∫
Ω
w(x)pβ−1(t, x)dx∫

Ω
w(x)pβ(t, x)dx

(3.7)

The system dynamics equation has the following form:

ṗ(t, x) =
βγ

1− β
w(x)pβ−1(t, x)∫

Ω
w(x)pβ(t, x)dx

− βγ

(1− β)mes(Ω)

∫
Ω
w(x)pβ−1(t, x)dx∫

Ω
w(x)pβ(t, x)dx

(3.8)
The general form of the evolution of the system is

ṗ = − γ

Ct
(Ψ− I)wpβ−1 (3.9)

where Ψ =
∫

Ω
(·)dx/mes(Ω) is a linear operator which is invariant to p, I is

an identity operator and Ct = (1− β)
∫

Ω
w(x)pβ(t, x)/β.

The stability of the obtained equilibrium equation (3.8) is derived considering

the following Lyapunov function M(p) = H̃w(Xt, α, β) − H̃w
min ≥ 0 where

H̃w
min is the minimum of H̃w(Xt, α, β) corresponding to equation (2.3). We

have the following

Ṁ(p) =
˙̃
Hw(X, β) = − 1

1− β

∫
Ω

(
βpβ−1(t, x)w(x)u(t, x)

)
dx∫

Ω
w(x)pβ(t, x)dx

(3.10)

We substitute the expression for u from (3.8) and obtain

Ṁ(p) =
γβ2

mes(Ω)(1− β)2(
∫

Ω
w(x)pβ(t, x)dx)2

{(∫
Ω

w(x)pβ−1(t, x)dx
)2

−mes(Ω)

∫
Ω

(
w(x)pβ−1(t, x)

)2

dx

}

Applying the CBS inequality for f = wpβ−1 and g = 1, since γ > 0 we
obtain Ṁ(p) ≤ 0. Ṁ(p) = 0 holds only if wpβ−1 = σt =constant meaning

when p(t, x) =
(

C
w(x)

)1/(β−1)

. Applying equation (2.3), we prove that σt does

not depend on t. Therefore, there is only one unique density function corre-
sponding to the maximum entropy distribution of (2.3) for the equilibrium
state of the system which has as evolution law given by equation (3.8).
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Asymptotic convergence

Asymptotic convergence in this case can be obtained similar to the previ-
ous case applying Barbalat’s lemma and by considering that the weighted
function w is bounded.

Theorem 3.1. If p(t, x) is a density function defined by equation (3.8), then
for any x we get lim

t→∞
p(t, x) = p∗(x).

3.2 Total energy constraint

Consider a system having a total energy conservation constraint given by [27]∫
Ω

p(t, x)h(x)dx = E, (3.11)

where E is the common energy of a system and h is the density of energy,
h ∈ L2(Ω), h is not a constant function. The dynamics equation of this
system is defined as [27]

u = −γ∇uḢ
w + λ1h+ λ2. (3.12)

Considering constraints (2.3) and (3.11), the Lagrange multipliers λ1 and λ2

are

λ1 =
βγ

(1− β)(
∫

Ω
pβ(t, x)w(x)dx)

×
mes(Ω)

∫
Ω
pβ−1(t, x)w(x)h(x)dx−

( ∫
Ω
pβ−1(t, x)w(x)dx

)( ∫
Ω
h(x)dx

)
mes(Ω)

∫
Ω
h2(x)dx−

( ∫
Ω
h(x)dx

)2

(3.13)

λ2 =
βγ

(1− β)(
∫

Ω
pβ(t, x)w(x)dx)

1

mes(Ω)
∫

Ω
h2(x)dx−

( ∫
Ω
h(x)dx

)2

×

{(∫
Ω

pβ−1(t, x)w(x)dx
)(∫

Ω

h2(x)dx
)
−
(∫

Ω

pβ−1(t, x)w(x)h(x)dx
)

×
(∫

Ω

h(x)dx
)}

(3.14)
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Equilibrium stability

Using the same Lyapunov function M used in the previous section, where
H̃w

min is the minimum of H̃w corresponding to (2.3) and (3.11), for H̃w

and Lagrange multipliers λ′1 = −λ1 and λ′2 = −λ2, we obtain the following
expression

Ṁ(p) =
γβ2

mes(Ω)(1− β)2(
∫

Ω
pβ(t, x)w(x)dx)2

×
[
mes(Ω)

∫
Ω
pβ−1(t, x)w(x)h(x)dx−

∫
Ω
h(x)dx

∫
Ω
pβ−1(t, x)w(x)dx

]2
mes(Ω)

∫
Ω
h2(x)dx−

( ∫
Ω
h(x)dx

)2

− γβ2

mes(Ω)(1− β)2
( ∫

Ω
pβ(t, x)w(x)dx

)2

[
mes(Ω)

∫
Ω

(
pβ−1(t, x)w(x)

)2
dx

−
(∫

Ω

pβ−1(t, x)w(x)dx
)2
]

(3.15)

Applying inequality (2.22) for f = pβ−1w and g = h, we get

(
mes(Ω)

∫
Ω

h(x)w(x)pβ−1(t, x)dx−
∫

Ω

h(x)dx

∫
Ω

pβ−1(t, x)w(x)dx

)2

≤

(
mes(Ω)

∫
Ω

(pβ−1(t, x)w(x))2dx−
(∫

Ω

pβ−1(t, x)w(x)dx
)2
)

×

(
mes(Ω)

∫
Ω

h2(x)dx−
(∫

Ω

h(x)dx
)2
)

Hence, we obtain Ṁ(p) ≤ 0. Ṁ(p) = 0 holds if and only if

∃ σt, ρt ∈ R such that wpβ−1 = σth+ ρt.

Thus,

pβ−1(t, x) = σt
h(x)

w(x)
+

ρt
w(x)

, ∀x ∈ Ω (3.16)

The general form of the equilibrium density is given by

w(x)pβ−1(t, x) =
Ctλ

′
1h(x)

γ
+
Ctλ

′
2

γ
, (3.17)



56 V. Preda and I. Băncescu An. U.V.T.

where Ct = (β − 1)
∫

Ω
pβ(t, x)w(x)dx/β. If β = 2, applying equations (2.3),

(3.11) and (3.16), we have that Ct does not depend on t, and therefore
σt and ρt do not depend on t. Hence, we get σt = σ = λ′1(Ct/γ) and
ρt = ρ = λ2(Ct/γ), having an unique density function p∗(x) for an equilib-
rium state distribution corresponding to the maximum entropy distribution
of equations (2.3) and (3.11) of a non-stationary system which obeys evolu-
tion equation (3.12).

Asymptotic convergence

Asymptotic convergence in this case can be obtained similar to the previ-
ous case applying Barbalat’s lemma and by considering that the weighted
function w is bounded.

Theorem 3.2. For all density functions defined by equation u = −γ∇u
˙̃
Hw+

λ′1h+ λ′2, it is true that p(t, x)→ p∗(x) for t→∞ and for any x ∈ Ω.

4 Weighted Varma entropy and non-stationary sys-
tems

In this section, we introduce the weighted Varma entropy of a random vari-
able Xt defined as

V w(Xt, α, β) =
1

β − α
log

∫
Ω

w(x)pα+β−1(t, x)dx, (4.1)

where β ≥ 1, α 6= β, β − 1 < α < β, and w is a positive weighted function.

4.1 Speed-gradient and maximum weighted Varma entropy prin-
ciples

Applying the SG principle for non-stationary processes, we calculate the

speed of the goal functional
˙̃
V w = dṼ w

dt
as

˙̃
V w(Xt, α, β) = − 1

β − α

∫
Ω

(
(α + β − 1)pα+β−2(t, x)w(x)u(t, x)

)
dx∫

Ω
w(x)pα+β−1(t, x)dx

(4.2)

where Ṽ w = −V w.
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The gradient of
˙̃
V w by u is equal to

∇u
˙̃
V w(Xt, α, β) = −α + β − 1

β − α
pα+β−2(t, x)w(x)∫

Ω
w(x)pα+β−1(t, x)dx

. (4.3)

According to the SG principle, we obtain the following evolution law

u =
(α + β − 1)γ

β − α
pα+β−2(t, x)w(x)∫

Ω
w(x)pα+β−1(t, x)dx

+ λ′, (4.4)

where λ′ is the Lagrange multiplier which obeys the following condition∫
Ω

((α + β + 1)γ

β − α
pα+β−2(t, x)w(x)∫

Ω
w(x)pα+β−1(t, x)dx

+ λ′
)
dx = 0 (4.5)

From this we obtain the Lagrange multiplier as

λ′ = − (α + β − 1)γ

(β − α)mes(Ω)

∫
Ω
w(x)pα+β−2(t, x)dx∫

Ω
w(x)pα+β−1(t, x)dx

(4.6)

The system dynamics equation has the following form:

ṗ(t, x) =
(α + β − 1)γ

β − α
pα+β−2(t, x)w(x)∫

Ω
w(x)pα+β−1(t, x)dx

− (α + β − 1)γ

(β − α)mes(Ω)

∫
Ω
w(x)pα+β−2(t, x)dx∫

Ω
w(x)pα+β−1(t, x)dx

(4.7)

The general form of the evolution of the system is

ṗ = − γ

Ct
(Ψ− I)wpα+β−2 (4.8)

where Ψ =
∫

Ω
(·)dx/mes(Ω) is a linear operator which is invariant to p, I is

an identity operator and Ct = (β − α)
∫

Ω
w(x)pα+β−1(t, x)/(α + β − 1).

The stability of the obtained equilibrium equation (4.7) is derived considering

the following Lyapunov function M(p) = Ṽ w(Xt, α, β) − Ṽ w
min ≥ 0 where

Ṽ w
min is the minimum of Ṽ w(Xt, α, β) corresponding to (2.3).

We have the following

Ṁ(p) =
˙̃
V w(Xt, α, β) = − 1

β − α

∫
Ω

(
(α + β − 1)pα+β−2(t, x)w(x)u(t, x)

)
dx∫

Ω
w(x)pα+β−1(t, x)dx
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We substitute the expression for u from (4.7) and obtain

Ṁ(p) =
γ(α + β − 1)2

mes(Ω)(β − α)2(
∫

Ω
w(x)pα+β−1(t, x)dx)2

×

{(∫
Ω

w(x)pα+β−1(t, x)dx
)2

−mes(Ω)

∫
Ω

(
w(x)pα+β−1(t, x)

)2
dx

}

Applying the CBS inequality for f = wpα+β−1 and g = 1, we obtain Ṁ(p) ≤ 0
(γ > 0). Ṁ(p) = 0 holds only if wpα+β−2 = σt = constant, meaning when
p(t, x) = C = p∗(x). Applying equation (2.3), we prove that σt, and therefore

Ct, does not depend on t. From constraint (2.3), we get C =
(

σ
w(x)

)1/(α+β−2)

.

Therefore, there is only one unique density function p∗(x) =
(

σ
w(x)

)1/(α+β−2)

corresponding to the maximum entropy distribution of (2.3) for the equilib-
rium state of the system which has as evolution law given by equation (4.7).

Asymptotic convergence

Asymptotic convergence in this case can be obtained similar to the previ-
ous case applying Barbalat’s lemma and by considering that the weighted
function w is bounded.

Theorem 4.1. If p(t, x) is a density function defined by equation (4.7), then
for any x we get lim

t→∞
p(t, x) = p∗(x).

4.2 Total energy constraint

Consider a system having a total energy conservation constraint given by [27]∫
Ω

p(t, x)h(x)dx = E, (4.9)

where E is the common energy of a system and h is the density of energy,
h ∈ L2(Ω), h is not a constant function.
The dynamics equation of this system is defined as [27]

u = −γ∇u
˙V w + λ1h+ λ2. (4.10)

Considering constraints (2.3) and (4.9), the Lagrange multipliers λ1 and λ2

are
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λ1 =
(α + β − 1)γ

(β − α)(
∫

Ω
pα+β−1(t, x)w(x)dx)

×
mes(Ω)

∫
Ω
pα+β−2(t, x)w(x)h(x)dx−

( ∫
Ω
pα+β−2(t, x)w(x)dx

)( ∫
Ω
h(x)dx

)
mes(Ω)

∫
Ω
h2(x)dx−

( ∫
Ω
h(x)dx

)2

(4.11)

λ2 =
(α + β − 1)γ

(β − α)(
∫

Ω
pα+β−1(t, x)w(x)dx)

1

mes(Ω)
∫

Ω
h2(x)dx−

( ∫
Ω
h(x)dx

)2

×

{(∫
Ω

pα+β−2(t, x)w(x)dx
)(∫

Ω

h2(x)dx
)

−
(∫

Ω

pα+β−2(t, x)w(x)h(x)
)(∫

Ω

h(x)dx
)}

(4.12)

Equilibrium stability

Using the same Lyapunov function M(p) used in the previous section, where

Ṽ w
min is the minimum of Ṽ w satisfying equation (2.3) and (4.9), for Ṽ w

and Lagrange multipliers λ′1 = −λ1 and λ′2 = −λ2, we obtain the following
expression

Ṁ(p) =
γ(α + β − 1)2

mes(Ω)(β − α)2(
∫

Ω
pα+β−1(t, x)w(x)dx)2

×
[
mes(Ω)

∫
Ω
pα+β−2(t, x)w(x)h(x)dx−

∫
Ω
h(x)dx

∫
Ω
pα+β−2(t, x)w(x)dx

]2
mes(Ω)

∫
Ω
h2(x)dx−

( ∫
Ω
h(x)dx

)2

− γ(α + β − 1)2

mes(Ω)(β − α)2
( ∫

Ω
pα+β−1(t, x)w(x)dx

)2[
mes(Ω)

∫
Ω

(
pα+β−2(t, x)w(x)

)2
dx−

(∫
Ω

pα+β−2(t, x)w(x)dx
)2
]

(4.13)

Applying inequality (2.22) for f = pα+β−2w and g = h, we get
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(
mes(Ω)

∫
Ω

h(x)w(x)pα+β−2(t, x)dx−
∫

Ω

h(x)dx

∫
Ω

pα+β−2(t, x)w(x)dx

)2

≤

(
mes(Ω)

∫
Ω

(pα+β−2(t, x)w(x))2dx−
(∫

Ω

pα+β−2(t, x)w(x)dx
)2
)

×

(
mes(Ω)

∫
Ω

h2(x)dx−
(∫

Ω

h(x)dx
)2
)

Hence, we obtain Ṁ(p) ≤ 0. Ṁ(p) = 0 holds if and only if

∃ σt, ρt ∈ R such that wpα+β−2 = σth+ ρt. (4.14)

The general form of the equilibrium density is given by

w(x)pα+β−2(t, x) =
Ctλ

′
1h(x)

γ
+
Ctλ

′
2

γ
, (4.15)

where Ct = (β − α)
∫

Ω
pα+β−1(t, x)w(x)dx/(α + β − 1).

For α + β = 3, applying equations (2.3), (4.9) and (4.14), we have σt = σ =
λ′1(Ct/γ) and ρt = ρ = λ2(Ct/γ), having an unique density function p∗(x)
corresponding to the maximum entropy distribution that satisfies equations
(2.3) and (4.9) for an equilibrium state of a non-stationary system having
evolution equation given by (4.10).

Asymptotic convergence

Asymptotic convergence in this case can be obtained similar to the previ-
ous case applying Barbalat’s lemma and by considering that the weighted
function w is bounded.

Theorem 4.2. If p(t, x) is a density function given by equation

u = −γ∇u
˙̃
V w + λ′1h+ λ′2,

then for all x we have lim
t→∞

p(t, x) = p∗(x).
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5 Rényi-Tsallis entropy of order α and non-stationary
systems

Tsallis entropy of a continuous random variable Xt, t ≥ 0 is defined as

Sα(Xt) =
1

α− 1

(∫
Ω

pα(t, x)dx− 1
)
, α > 0, α 6= 1. (5.1)

Tsallis entropy has many applications, for example, in image thresholding,
information theory and stellar polytropes studies [38, 6, 39].

Rényi-Tsallis entropy of order α in the discrete case was introduced in 2017
by Wondie and Kumar [40]; this entropy is defined as

Hα(p) =
1

α−1 − α

[
log
( n∑
k=1

pαk

)
+

n∑
k=1

pαk − 1

]
, α > 0, α 6= 1. (5.2)

For α → 1, we get the Shannon entropy. Rényi-Tsallis entropy of order α
has most of the properties of Shannon entropy.

Rényi-Tsallis entropy of order α is symmetric, nonnegative, concave for 0 <
α < 1 and continuous. In this section, we introduce the Rényi-Tsallis entropy
of order α in the continuous case which preserves the same properties as in
the discrete case.

Rényi-Tsallis entropy of order α of a random continuous variable Xt, t ≥ 0
is defined as

Hα(Xt) =
1

α−1 − α

[
log
(∫

Ω

pα(t, x)dx
)

+

∫
Ω

pα(t, x)dx− 1
]
, α > 0, α 6= 1

(5.3)
For α→ 1, we obtain the Shannon entropy.

5.1 Speed-gradient and maximum Rényi-Tsallis entropy of order
α principles

Applying the SG principle for non-stationary processes (Xt)t≥0, we determine

the speed of the goal functional
˙̃
Hα = dH̃α

dt
as

˙̃
Hα(Xt) = − α

α−1 − α

(∫
Ω

u(t, x)pα−1(t, x)dx

)[
1 +

∫
Ω
pα(t, x)dx∫

Ω
pα(t, x)dx

]
(5.4)
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where H̃α = −Hα.

The gradient of
˙̃
Hα by u is equal to

∇u
˙̃
Hα(Xt) = − α

α−1 − α
pα−1(t, x)

(
1 +

∫
Ω
pα(t, x)dx∫

Ω
pα(t, x)dx

)
(5.5)

According to the SG principle, we obtain the following evolution law

u =
γα

α−1 − α
pα−1(t, x)

(
1 +

∫
Ω
pα(t, x)dx∫

Ω
pα(t, x)dx

)
+ λ′ (5.6)

where λ′ is the Lagrange multiplier which obeys the following condition

∫
Ω

(
γα

α−1 − α
pα−1(t, x)

(
1 +

∫
Ω
pα(t, x)dx∫

Ω
pα(t, x)dx

)
+ λ′

)
dx = 0 (5.7)

From this we obtain the Lagrange multiplier as

λ′ = − γα

(α−1 − α)mes(Ω)

(
1 +

∫
Ω
pα(t, x)dx∫

Ω
pα(t, x)dx

)∫
Ω

pα−1(t, x)dx (5.8)

The system dynamics equation has the following form

ṗ(t, x) =
γα

α−1 − α

(
1 +

∫
Ω
pα(t, x)dx∫

Ω
pα(t, x)dx

)[
pα−1(t, x)−

∫
Ω
pα−1(t, x)dx

mes(Ω)

]
(5.9)

The general form of the evolution of the system is

ṗ = − γ

Ct
(Ψ− I)pα−1 (5.10)

where Ψ =
∫

Ω
()̇dx/mes(Ω) is a linear operator which is invariant to p, I is

an identity operator and Ct =
(α−1 − α)

∫
Ω
pα(t, x)dx

α
(

1 +
∫

Ω
pα(t, x)dx

) .

The stability of the obtained equilibrium (5.9) is derived considering the fol-

lowing Lyapunov functionM(p) = H̃α(Xt)−H̃α
min(Xt) ≥ 0 where H̃α

min(Xt)

is the minimum of H̃α(Xt). We have the following



Vol. LVI (2018) Evolution of non-stationary processes 63

Ṁ(p) =
γα2

(α−1 − α)2mes(Ω)

(
1 +

∫
Ω
pα(t, x)dx∫

Ω
pα(t, x)dx

)2

×

[(∫
Ω

pα−1(t, x)dx

)2

−mes(Ω)

∫
Ω

(
pα−1(t, x)dx

)2
dx

]
(5.11)

Applying the CBS inequality (2.14) for f = pα−1 and g = 1, we obtain
Ṁ(p) ≤ 0 is true when pα−1(t, x) = σt which is possible only if we take
p(t, x) = C =constant. Applying equation (2.3), we prove that σt does not
depend on t and we derive C to be C = (mes(Ω))−1. Therefore, there is only
one unique density function p∗ = (mes(Ω))−1 corresponding to the maximum
entropy distribution that satisfies equation (2.3) for the equilibrium state of
the system which evolves by evolution law given by (5.9).

Asymptotic convergence

Applying Barbalat’s lemma the asymptotic convergence of all solutions to p∗

can be proven.

Theorem 5.1. If p(t, x) is a density function defined by equation (5.9), then
for any x we get lim

t→∞
p(t, x) = p∗(x).

5.2 Total energy constraint

Consider a system having a total energy constraint given by [27]∫
Ω

p(t, x)h(x)dx = E, (5.12)

where E is the common energy of a system and h is the density of energy,
h ∈ L2(Ω), h is not a constant function.

The dynamics equation of this system is defined as [27]

u = −γ∇uḢα + λ1h+ λ2. (5.13)

We have

u = − γα

α−1 − α
pα−1(t, x)

(
1 +

∫
Ω
pα(t, x)dx∫

Ω
pα(t, x)dx

)
+ λ1h(x) + λ2

Based on constraints (2.3) and (5.12), the Lagrange multipliers λ1 and λ2 are
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λ1 =
γα

α−1 − α

(
1 +

∫
Ω
pα(t, x)dx∫

Ω
pα(t, x)

)

×
mes(Ω)

∫
Ω
h(x)pα−1(t, x)dx−

∫
Ω
h(x)dx

∫
Ω
pα−1(t, x)dx

mes(Ω)
∫

Ω
h2(x)dx−

( ∫
Ω
h(x)dx

)2 (5.14)

λ2 =
γα

α−1 − α

(
1 +

∫
Ω
pα(t, x)dx∫

Ω
pα(t, x)

)

×
∫

Ω
h2(x)dx

∫
Ω
pα−1(t, x)dx−

∫
Ω
h(x)pα−1(t, x)dx

∫
Ω
h(x)dx

mes(Ω)
∫

Ω
h2(x)dx−

( ∫
Ω
h(x)dx

)2 (5.15)

Equilibrium stability

Using the same Lyapunov function M used in the previous section for H̃α

we obtain the corresponding Lagrange multipliers λ′1 = −λ1, λ′2 = −λ2 and
the following expression

Ṁ(p) =
γα2

(α−1 − α)2

(
1 +

∫
Ω
pα(t, x)dx∫

Ω
pα(t, x)dx

)2
1

mes(Ω)
∫

Ω
h2(x)dx−

( ∫
Ω
h(x)dx

)2

×

[
−mes(Ω)

∫
Ω

(
pα−1(t, x)

)2

dx

∫
Ω

h2(x)dx+

∫
Ω

(
pα−1(t, x)

)2

dx
(∫

Ω

h(x)dx
)2

+mes(Ω)
(∫

Ω

h(x)pα−1(t, x)dx
)2

− 2

∫
Ω

h(x)pα−1(t, x)dx

×
∫

Ω

h(x)dx

∫
Ω

pα−1(t, x)dx+

(∫
Ω

pα−1(t, x)dx

)2 ∫
Ω

h2(x)dx

]
(5.16)

Applying inequality (2.22) for f = pα−1 and g = h, we get
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(
mes(Ω)

∫
Ω

h(x)pα−1(t, x)dx−
∫

Ω

h(x)dx

∫
Ω

pα−1(t, x)dx

)2

≤

(
mes(Ω)

∫
Ω

(pα−1(t, x))2dx−
(∫

Ω

pα−1(t, x)dx
)2
)

×

(
mes(Ω)

∫
Ω

h2(x)dx−
(∫

Ω

h(x)dx
)2
)

Therefore, we obtain Ṁ(p) ≤ 0. Ṁ = 0 holds if and only if

∃ σt, ρt ∈ R such that pα−1 = σth+ ρt. (5.17)

The density equilibrium is given by

pα−1(t, x) =
Ctλ

′
1h(x)

γ
+
Ctλ

′
2

γ
(5.18)

where Ct =
(α− α−1)

∫
Ω
pα(t, x)dx

α
(

1 +
∫

Ω
pα(t, x)dx

) .

For α = 2, applying equations (2.3), (5.12) and 5.17, we have that σt and ρt do
not depend on t. Hence, we have σt = σ = λ′1(Ct/γ) and ρt = ρ = λ′2(Ct/γ).
In this case, we have an unique distribution for the equilibrium state p∗(x).

Asymptotic convergence

Similar as in the previous sections, the asymptotic convergence is obtained.

Theorem 5.2. If p(t, x) is a density function defined by equation

u = −γ∇u
˙̃
Hα + λ′1h+ λ′2,

then for any x we get lim
t→∞

p(t, x) = p∗(x).

6 Conclusion

Evolution of a physical system over time has long been studied over the
decades being an important topic in the specialized literature. It is desired
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for systems to tend to only one state while this state should be of equilibrium
and the system should converge to it.

This paper studied the dynamics of non-stationary processes in the context
of maximum Varma entropy principle, maximum weighted Rényi principle,
maximum weighted Varma entropy and maximum Rényi-Tsallis entropy of
order α principles and derived the corresponding unique density function
for the equilibrium state of the system. We have obtained equations (2.10),
(3.8), (4.7) and (5.9) which describe the dynamics of non-stationary systems;
systems that as time passes tend to the maximum entropy state.

We introduced the weighted Varma entropy and Rényi-Tsallis entropy of
order α in the continuous case. Varma entropy is a generalization of Rényi
entropy having two parameters. We believe, because of the two parameters,
Varma entropy is more flexible than Rényi entropy. Weighted entropies are
designed to give different importance to data, being more complex. Rényi-
Tsallis entropy of order α in the continuous case has the same properties as
in the discrete case being more complex and flexible for applications.
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non entropy, Rényi entropy, and information, Statistics and Inf. Series
(2004).

[32] A. Stuart, J. K. Ord, Kendall’s Advanced Theory of Statistics: Dis-
tribution theory; Vol. 2, Classical inference and relationship; Vol. 3,
Design and analysis, and time-series, Charles Griffin, 1987.
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tical moments and Rényi entropy, in: 2013 International Conference on
Electronics, Computer and Computation (ICECCO), IEEE, 2013, 359-
362.

[36] J. Dayou, N. C. Han, H. C. Mun, A. H. Ahmad, S. V. Mu-
niandy, M. N. Dalimin, Classification and identification of frog sound
based on entropy approach, in: 2011 International Conference on Life
Science and Technology 3 (2011), 184-187.

[37] A. M. Lyapunov, Stability of motion, New York, NY: Academic Press,
1966.

[38] M. P. De Albuquerque, I. A. Esquef, A. G. Mello, Image thresh-
olding using Tsallis entropy, Pattern Recognition Letters 25 (9) (2004),
1059-1065.

[39] A. R. Plastino, A. Plastino, Stellar polytropes and Tsallis’ entropy,
Physics Letters A 174 (5-6) (1993), 384-386.

[40] L. Wondie, S. Kumar, A joint representation of Rényis and Tsalli’s
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