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Evolution of Nuclear Shells due to the Tensor Force
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The monopole effect of the tensor force is presented, exhibiting how spherical single-particle energies
are shifted as protons or neutrons occupy certain orbits. An analytic relation for such shifts is shown, and
their general features are explained intuitively. Single-particle levels are shown to change in a systematic
and robust way, by using the �� � meson exchange tensor potential, consistently with the chiral
perturbation idea. Several examples are compared with experiments.
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Shell structure characterizes finite quantum many-body
systems. Atomic electrons confined by the Coulomb po-
tential are subject to a well-known shell structure. For
nuclei, since Mayer and Jensen [1], the shell structure
has played a major role in clarifying nuclear structure.
Recently, much progress has been made in the structure
of exotic nuclei, which have rather extreme ratios of proton
number (Z) to neutron number (N). Naturally, what new
features can be found in their shell structure is of great and
general interest.

Along these lines, in this Letter, we present the variation
of the nuclear shell structure due to the tensor force. The
nucleon-nucleon (NN) interaction is originally due to me-
son exchange processes as predicted by Yukawa [2], and its
tensor-force part is one of the most distinct manifestations
of this meson exchange origin. As we shall show, the tensor
force does indeed change the shell structure in a unique and
robust way throughout the nuclear chart. The tensor force
has been discussed over many decades. Its contribution to
the spin-orbit splitting has been discussed, for instance, by
Arima and Terasawa in terms of the second-order pertur-
bation [3]. The importance of the tensor force for the
nuclear binding energy has been demonstrated, for in-
stance, by Pudliner et al. [4]. We shall show, in this
Letter, how single-particle levels are changed systemati-
cally by the tensor force in the first order. The tensor force
itself has certainly been included in various numerical
calculations as one of the channels of the realistic nuclear
force. Its first-order effect was discussed in individual
cases, e.g., for 15C and 16O in [5]. In other early attempts,
a possible tensor-force effect on the reduction of the spin-
orbit splitting was discussed in [6] with an example in the
Os-Pb region [7]. The purpose of this Letter is, however, to
present, for the first time, an analytic relation and a robust
general feature, as well as concrete examples in close
relation to experiments.

The change of the shell structure, or the shell evolution,
may have different origins. We focus upon the shell evo-
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lution due to the tensor force in this Letter. It is well known
that the one-pion exchange process is the major origin of
the tensor force, which is written as

VT � � ~�1 � ~�2��� ~s1 ~s2�
�2� � Y�2��f�r�; (1)

where ~�1;2� ~s1;2� denotes the isospin (spin) of nucleons 1
and 2, � ��K� means the coupling of two operators in the
brackets to an angular momentum (or rank) K, Y denotes
the spherical harmonics for the Euler angles of the relative
coordinate, and the symbol ��� means a scalar product.
Here, f�r� is a function of the relative distance, r.
Equation (1) is equivalent to the usual expression contain-
ing the S12 function. Because the spins ~s1 and ~s2 are dipole
operators and are coupled to rank 2, the total spin S of two
interacting nucleons must be S � 1. If both of the bra and
ket states of VT have L � 0, with L being the relative
orbital angular momentum, their matrix element vanishes
because of the Y�2� coupling. These properties are used
later.

The (spherical) bare single-particle energy of an orbit j
is given by its kinetic energy and the effects from the inert
core (closed shell) on the orbit j. As some nucleons are
added to another orbit j0, the single-particle energy of the
orbit j is changed. The nucleons on j0 can form various
many-body states, but we are interested in monopole ef-
fects independent of details of such many-body states. The
monopole component of an interaction, V, is [8]:

VTj;j0 �

P

J
�2J� 1�hjj0jVjjj0iJT

P

J
�2J� 1�

; (2)

where hjj0jVjjj0iJT stands for the (diagonal) matrix ele-
ment of a state where two nucleons are coupled to an
angular momentum J and an isospin T. In the summation
in Eq. (2), J takes values satisfying antisymmetrization.
We then construct a two-body interaction, called VM, con-
sisting of two-body matrix elements VTj;j0 in Eq. (2).
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Because the J dependence is averaged out in Eq. (2), the
monopole interaction, VM, represents the angular-free, i.e.,
monopole property of the original interaction, V, while it
still depends on the isospin. If neutrons occupy j0 and one
looks into the orbit j�� j0� as a proton orbit, the shift of the
single-particle energy of j is given by

��p�j� �
1
2fV

T�0
j;j0 � V

T�1
j;j0 gnn�j

0�; (3)

where nn�j0� is (the expectation value of) the number of
neutrons in the orbit j0. The same is true for ��n�j� as a
function of np�j

0�. The monopole effects from orbits
j0; j00; . . . are added as these orbits are filled. The single-
particle energy, including this monopole effect, is called
the effective single-particle energy (ESPE), and it depends
on the configurations. We shall discuss, in this Letter, how
the ESPE of an orbit j varies due to the tensor force as an
orbit j0 is filled.

If the orbit j0 is fully occupied by neutrons in Eq. (3),
only the monopole effect remains over the other multipoles
and Eq. (3) gives the shift of the bare single-particle energy
for this shell closure. If protons and neutrons are occupying
the same orbit, the change of ESPE becomes slightly more
complicated due to isospin symmetry [8].

We begin with cases like Fig. 1: with orbital angular
momenta being denoted by l or l0, protons are in either
j> � l� 1=2 or j< � l� 1=2, while neutrons are in ei-
ther j0> � l0 � 1=2 or j0< � l0 � 1=2. In examples to be
discussed, these orbits represent valence or hole states near
the Fermi surface, and their radial wave functions are given
by the harmonic oscillator potential for simplicity.

From now on, V is the tensor force. For the orbits j and
j0, the following identity can be derived,

�2j> � 1�VTj>;j0 � �2j< � 1�VTj<;j0 � 0; (4)

where T � 0 and 1, and j0 is either j0> or j0<. Note that this
identity is in the isospin formalism, and can be applied not
only to cases like Fig. 1(a) but also to cases between
neutrons or between protons. The identity in Eq. (4) can
be proved by angular momentum algebra by summing all
spin and orbital magnetic substates for the given l. It is
FIG. 1 (color). (a) Schematic picture of the monopole interac-
tion produced by the tensor force between a proton in j>;< �
l
 1=2 and a neutron in j0>;< � l0 
 1=2. (b) Exchange pro-
cesses contributing to the monopole interaction of the tensor
force.
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assumed that the radial wave function is the same for j>
and j< orbits, which is exactly fulfilled in the harmonic
oscillator and practically so in other models if the orbits are
well bound. This identity does not hold if the single-
particle state j> or j< is identical to j0 (as excluded in
Fig. 1), because the substate summation is affected by the
isospin symmetry. However, the actual monopole matrix
elements follow the relation in Eq. (4) semiquantitatively.
One can prove that VTj;j0 � 0 for j or j0 � s1=2. Equation (4)
suggests that if both j> and j< orbits are fully occupied,
their total tensor monopole effect vanishes.

Only exchange processes in Fig. 1(b) contribute to VM
for the tensor force, while its direct contribution vanishes.
The same property holds for a spin-spin central interaction
[9]. If only exchange terms remain, the spin-coordinate
part of the T � 0 and 1 matrix elements are just opposite.
Combining this with � ~�1 � ~�2� in Eq. (1), one obtains

VT�0
j;j0 � 3	 VT�1

j;j0 for j � j0: (5)

Thus, the proton-neutron tensor monopole interaction is
twice as strong as the T � 1 interaction.

The question is the way in which the tensor force drives
ESPE’s, and whether there is a general rule for this move-
ment. The answer is given in an intuitive way. In Fig. 2(a),
a nucleon on j< is colliding with another on j0>. Because of
the high relative momentum between them, the spatial
wave function of their relative motion is narrowly distrib-
uted in the direction of the collision which is basically the
direction of the orbital motion. The spins of two nucleons
are parallel in this case, giving rise to basically S � 1. The
ellipse in Fig. 2(a) represents such relative-motion wave
function being spread more along the total spin S � 1. This
is analogous to the case of the deuteron, and the tensor
force works attractively. The same mechanism holds for
two nucleons in j> and j0<. On the other hand, as in
Fig. 2(b), the tensor force produces a repulsive effect for
two nucleons in j> and j0> (or vice versa), because the
wave function of the relative motion is stretched in the
direction of the collision. Thus, we can obtain a robust
picture that j< and j0> (or vice versa) orbits attract each
other, whereas j> and j0> (or j< and j0<) repel each other. In
this picture, it is supposed that the tensor force being
FIG. 2 (color). Intuitive picture of the tensor force acting two
nucleons on orbits j and j0.
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discussed does not differ much from the one for the
deuteron.

The radial wave functions of the two orbits must be
similar in order to have a large overlap in the radial
direction. A narrow spacial distribution is favored in the
radial direction, in order to have a ‘‘deuteronlike’’ shape.
This is fulfilled if the two orbits are both near the Fermi
energy, because their radial wave functions have a rather
sharp peak at the surface. If the radial distributions of the
two orbits differ, not only does the overlap become smaller
but also the relative spacial wave function is stretched in
the radial direction, which is against the deuteronlike
shape, making the effect less pronounced. Note that for
the same radial condition, larger l and l0 enhance the tensor
monopole effect in general, as their relative momentum
becomes higher (see Fig. 2).

We assess the effect quantitatively by using a reasonable
tensor force. Figure 3 exhibits the triplet-even potential due
to the tensor force in potential models such as � exchange,
�� � exchange, M3Y [10], AV80 [4], and the G matrix
(GM) for normal nuclear density. The first two are fixed
from standard meson-nucleon coupling constants [11,12].
Although there are large differences in the short distance
part, these potentials do not differ much for r > 0:8 fm
except for � exchange. Since two nucleons interacting
through the tensor force are not in a relative L � 0 state
(as discussed earlier), the differences at short distance are
irrelevant in the following discussions. We use the �� �
exchange potential with a radial (inner) cutoff at 0.7 fm, for
simplicity. In fact, all these interactions but � exchange
produce quite similar results. Since the AV80 interaction
can reproduce the deuteron properties [4], the present
tensor force should be consistent with the structure of the
deuteron.

Figures 4(a)–4(d) show ESPE’s as a function of Z or N.
Note that the ESPE is plotted relative to a certain orbit in
cases (a) and (c). As more protons or neutrons are added,
the ESPE is changed by the tensor force and by other
FIG. 3 (color). Triplet-even potential due to the tensor force
for various interaction models.
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forces. The latter effect can be estimated by a Woods-
Saxon potential, and appears to be rather common among
the orbits in each group (a)–(d) within the given range of Z
or N. By looking at relative ESPE’s [as in (a) and (c)], one
can remove the common change and thus can see the tensor
effect more directly.

Figure 4(a) shows ESPE’s of the proton 1d5=2 and 2s1=2

states relative to 1d3=2 as a function ofN. As more neutrons
occupy the 1f7=2 orbit, these proton orbits are shifted. In
Fig. 4(a), the changes due to the tensor force are indicated
starting from experimental energies for 40Ca. Following
the rule discussed with Fig. 2, the monopole interaction
between proton d3=2 and neutron f7=2 is attractive, whereas
that between proton d5=2 and neutron f7=2 is repulsive.
Hence, as more neutrons occupy 1f7=2, the proton 1d3=2

goes down while 1d5=2 comes up. Since the energies are
shown relative to 1d3=2, as N increases, 2s1=2 approaches
1d3=2 and the splitting between 1d5=2 and 1d3=2 becomes
narrower. A compilation of experimental data is included
in Fig. 4(a) [13], showing the decreasing spacing between
1d3=2 and 2s1=2 in agreement with the calculation. The
situation is more open for 1d5=2, because of greater ambi-
guity due to deep hole states.
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FIG. 4 (color). Proton (neutron) ESPE as a function of N (Z).
Lines in (a)–(c) show the change of ESPE’s calculated from the
�� � tensor force. Points represent the corresponding experi-
mental data. (a) Proton ESPE’s in Ca isotopes relative to 1d3=2.
Points are from [13]. (b) Proton ESPE’s in Ni isotopes; calcu-
lations only. See [19] for related experimental data. (c) Neutron
ESPE’s in N � 51 isotones relative to 2d5=2; points are from
[21]. (d) Proton ESPE’s in Sb isotopes; points are from [18].
Lines include a common shift of ESPE as well as the tensor
effect (see the text).
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Figure 4(b) exhibits proton pf-shell orbits from 68Ni to
78Ni as neutrons occupy the 1g9=2 orbit. The ESPE’s for
68Ni predicted by the shell model with the GXPF1 inter-
action [14] are used as the starting point, and the changes
due to the tensor force are shown. Again as in Fig. 1(a),
proton 1f5=2 is pulled down while 1f7=2 is lifted up, as N
increases. The Z � 28 gap becomes rather small at 78Ni,
and the sequence of the orbits is quite different between
68Ni and 78Ni [15]. Other monopole effects are likely to be
rather common among the pf-shell orbits as discussed
above. Thus, the predictions shown in Fig. 1(b) may pro-
duce exciting features of exotic Ni isotopes. In fact, un-
usually low-lying 2� states are known [16].

From Z � 40 to 50, the 1g9=2 orbit is filled by protons.
Through the tensor force, these protons lower the neutron
1g7=2, while they push up the 1h11=2. In Fig. 4(c), such
changes of ESPE’s due to the tensor force are shown
starting from experimental values at Z � 40. The growing
spacing between neutron 1g7=2 and 1h11=2 is explained
well. This lowering of 1g7=2 is the phenomenon pointed
out by Federman and Pittel [17]. The lowering was attrib-
uted to a large overlap between proton 1g9=2 and neutron
1g7=2, but the same mechanism should lower neutron
1h11=2 which has a large radial overlap of 0.98 with 1g9=2

for the harmonic oscillator, contrary to experiment.
Figure 4(d) shows proton 1h11=2 and 1g7=2 ESPE’s as a

function of N [18]. In Fig. 4(d), their changes due to the
tensor force are indicated starting from experimental val-
ues for N � 64. Here, in order to shed a light on the in-
creasing spacing between 1h11=2 and 1g7=2 in the full en-
ergy scale of ESPE’s, a common monopole shift for both
1h11=2 and 1g7=2, �0:3 �N (MeV) is added to the tensor
effect so as to accommodate other monopole effects. This
common shift is more or less what is obtained from Woods-
Saxon potentials with reasonable parameters. As more neu-
trons occupy 1h11=2, the proton 1h11=2 and 1g7=2 move
apart due to the tensor force. The agreement with experi-
ment on this feature is remarkable. We note that this case
does not belong to the one in Eq. (3). In the present case, all
magnetic substates of the neutron 1h11=2 orbit are occu-
pied, to a good approximation, with equal probability due
to the strong pairing correlation. It can then be proved that
Eq. (3) is still valid. The neutron occupation of 1h11=2 is
assumed to increase uniformly from N � 64 to 82, and the
contributions from the other orbits are assumed to be
minor.

Since the tensor force is fixed from the underlying NN
interaction, the calculations in Fig. 4 are all parameter free.
There are many other observed cases [15,19] to which the
tensor shell evolution is relevant, for instance, the neutron
1d5=2-2s1=2 inversion between 15C and 17O.

In summary, the shell evolution due to the tensor force
was presented with the underlying mechanism. A relevant
identity was shown, and an intuitive explanation was given.
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The tensor force produces general and robust effects on the
shell and (sub-)magic structures from the p shell to the
superheavy regions. The significant role of the tensor force
as a direct consequence of � and �meson exchange can be
related to the chiral perturbation idea of Weinberg [20].
Indeed, the long-range part of theNN interaction manifests
itself quantitatively in the single-particle spectra in a
unique and systematic way. Since the tensor force plays
such significant roles, its multipole components should be
further investigated.

The strongly attractive proton-neutron j>-j< coupling
has been pointed out as the origin of the shell evolution
within one major shell in [9]. The tensor effect includes
this case [see Fig. 4(c)], but it can be due to the ����
central force, too [9]. Although the relation between these
two forces is an intriguing subject to be clarified, Fig. 4(c)
may be a hint that the tensor force is the major origin.
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