#### **EVOLUTION OF PHASE TRANSITIONS**

This work began with the authors' exploration of the applicability of the finite deformation theory of elasticity when various standard assumptions such as convexity of the energy or ellipticity of the field equations of equilibrium are relinquished. The finite deformation theory of elasticity turns out to be a natural vehicle for the study of phase transitions in solids where thermal effects can be neglected. This is a valuable work for those interested in the development and application of continuum-mechanical models that describe the macroscopic response of materials capable of undergoing stress- or temperature-induced transitions, which may be either dynamic or quasi-static, controlled by a kinetic relation that in the framework of classical thermomechanics represents information that is supplementary to the usual balance principles and constitutive laws of conventional theory. The book should be of interest to mechanicians, material scientists, geophysicists, and applied mathematicians.

Rohan Abeyaratne is the Quentin Berg Professor of Mechanics and Head of the Department of Mechanical Engineering at MIT. He received his bachelor's degree from the University of Ceylon and his doctorate from the California Institute of Technology. Among his honors are the E.O.E. Pereira Gold Medal (1975), Den Hartog Distinguished Educator (1995), MacVicar Fellowship (2000), Fellow, American Academy of Mechanics (1996) and Fellow, American Society of Mechanical Engineers (1998). His primary research interest is in nonlinear phenomena in mechanics.

James K. Knowles is the William R. Kenan Professor of Applied Mechanics, Emeritus, at the California Institute of Technology. He received his S.B. and Ph.D. degrees from MIT, and he holds an honorary Sc.D. degree from the National University of Ireland. He is a Fellow of the American Academy of Mechanics (AAM), the American Association for the Advancement of Science and the American Society of Mechanical Engineers (ASME). He is a past president of AAM, and he is a recipient of MIT's Goodwin Medal for teaching, the Eringen Medal of the Society of Engineering Science and the Koiter Medal of the ASME. His primary research interests are in nonlinear phenomena in continuum mechanics, and in analytical issues in fracture mechanics and the theory of elasticity.

# EVOLUTION OF PHASE TRANSITIONS

## A Continuum Theory

## **ROHAN ABEYARATNE**

Massachusetts Institute of Technology

## JAMES K. KNOWLES

California Institute of Technology



> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press 40 West 20th Street, New York, NY 10011-4211, USA

www.cambridge.org Information on this title: www.cambridge.org/9780521661478

© Cambridge University Press 2006

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2006

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Abeyaratne, Rohan.
Evolution of phase transitions : a continuum theory / Rohan Abeyaratne, James K. Knowles. p. cm.
Includes bibliographical references and index.
ISBN-13: 978-0-521-66147-8
ISBN-10: 0-521-66147-1
Phase transformations (Statistical physics). 2. Continuum mechanics.
Kinetic theory of matter. I. Knowles, James K. (James Kenyon), 1931– II. Title
QC175.16.P5A24 2006
530.4'74—dc22 2005033285

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

To the C7: Gina, Kenny, Kevin, Kristen, Liam, Linus, & Nina;

and the J4: Jackie, John, Jeff, & Jamey.

# Contents

| Pr | eface | e page                                              | xiii |
|----|-------|-----------------------------------------------------|------|
| ]  | Part  | I Introduction                                      |      |
| 1  | Intr  | oduction                                            | 3    |
|    | 1.1   | What this monograph is about                        | 3    |
|    | 1.2   | Some experiments                                    | 7    |
|    | 1.3   | Continuum mechanics                                 | 9    |
|    | 1.4   | Quasilinear systems                                 | 10   |
|    | 1.5   | Outline of monograph                                | 11   |
| P  | art I | I Purely Mechanical Theory                          |      |
| 2  | Two   | -Well Potentials, Governing Equations               |      |
|    |       | Energetics                                          | . 19 |
|    | 2.1   | Introduction                                        | 19   |
|    | 2.2   | Two-phase nonlinearly elastic materials             | 20   |
|    | 2.3   | Field equations and jump conditions                 | 25   |
|    | 2.4   | Energetics of motion, driving force and dissipation |      |
|    |       | inequality                                          | 27   |
| 3  | Equ   | ilibrium Phase Mixtures and Quasistatic             |      |
|    | Pro   | cesses                                              | . 32 |
|    | 3.1   | Introduction                                        | 32   |
|    | 3.2   | Equilibrium states                                  | 33   |
|    | 3.3   | Variational theory of equilibrium mixtures          |      |
|    |       | of phases                                           | 37   |
|    | 3.4   | Quasistatic processes                               | 42   |
|    | 3.5   | Nucleation and kinetics                             | 44   |
|    | 3.6   | Constant elongation rate processes                  | 47   |
|    | 3.7   | Hysteresis                                          | 53   |

### CAMBRIDGE

viii

| Cambridge University Press                                      |
|-----------------------------------------------------------------|
| 0521661471 - Evolution of Phase Transitions: A Continuum Theory |
| Rohan Abeyaratne and James K. Knowles                           |
| Frontmatter                                                     |
| Moreinformation                                                 |

| CONTENTS | ; |
|----------|---|
|----------|---|

| 4  | Impact-Induced Transitions in Two-Phase                                 |      |
|----|-------------------------------------------------------------------------|------|
|    | Elastic Materials                                                       | . 59 |
|    | 4.1 Introduction                                                        | 59   |
|    | 4.2 The impact problem for trilinear two-phase                          |      |
|    | materials                                                               | 61   |
|    | 4.2.1 The constitutive law                                              | 61   |
|    | 4.2.2 The impact problem                                                | 64   |
|    | 4.3 Scale-invariant solutions of the impact problem                     | 66   |
|    | 4.3.1 Solutions without a phase transition                              | 66   |
|    | 4.3.2 Solutions with a phase transition: The two-wave case              | 67   |
|    | 4.3.3 Solutions with a phase transition: The one-wave case              | 68   |
|    | 4.3.4 The totality of solutions                                         | 69   |
|    | 4.4 Nucleation and kinetics                                             | 71   |
|    | 4.5 Comparison with experiment                                          | 74   |
|    | 4.6 Other types of kinetic relations                                    | 77   |
|    | 4.7 Related work                                                        | 77   |
| Pa | rt III Thermomechanical Theory                                          |      |
|    | Multiple-Well Free Energy Potentials                                    | 85   |
| 5  | 5.1 Introduction                                                        | 85   |
|    | 5.2 Helmholtz free energy potential                                     | 86   |
|    | 5.3 Potential energy function and the effect of stress                  | 88   |
|    | 5.4 Example 1: The van der Waals Fluid                                  | 90   |
|    | 5.5 Example 2: Two-phase martensitic material                           | 20   |
|    | with cubic and tetragonal phases                                        | 95   |
| 6  | The Continuum Theory of Driving Force                                   | 105  |
| 0  | 6.1 Introduction                                                        | 105  |
|    | <ul><li>6.2 Balance laws, field equations and jump conditions</li></ul> | 105  |
|    | 6.2.1 Balances of momentum and energy in                                | 100  |
|    | integral form                                                           | 106  |
|    | 6.2.2 Localization of the balance laws                                  | 106  |
|    | 6.3 The second law of thermodynamics and                                | 100  |
|    | the driving force                                                       | 108  |
|    | 6.3.1 Entropy production rate                                           | 108  |
|    | 6.3.2 Driving force and the second law                                  | 110  |
|    | 6.3.3 Driving force in the case of mechanical                           |      |
|    | equilibrium                                                             | 111  |
| 7  | Thermoelastic Materials                                                 | 113  |
| /  | 7.1 Introduction                                                        | 113  |
|    | 7.2 The thermoelastic constitutive law                                  | 113  |
|    | 7.2.1 Relations among stress, deformation gradient,                     | 113  |
|    | temperature and specific entropy                                        | 113  |
|    | competature and specific entropy                                        | 113  |

#### CONTENTS

|    | 7.2.2 The heat conduction law                              | 116   |
|----|------------------------------------------------------------|-------|
|    | 7.2.3 The partial differential equations of nonlinear      |       |
|    | thermoelasticity                                           | 116   |
|    | 7.2.4 Thermomechanical equilibrium                         | 117   |
|    | 7.3 Stability of a thermoelastic material                  | 118   |
|    | 7.4 A one-dimensional special case: uniaxial strain        | 120   |
| 8  | Kinetics and Nucleation                                    | . 124 |
|    | 8.1 Introduction                                           | 124   |
|    | 8.2 Nonequilibrium processes, thermodynamic fluxes         |       |
|    | and forces, kinetic relation                               | 124   |
|    | 8.3 Phenomenological examples of kinetic                   |       |
|    | relations                                                  | 127   |
|    | 8.4 Micromechanically based examples                       |       |
|    | of kinetic relations                                       | 128   |
|    | 8.4.1 Viscosity-strain gradient model                      | 130   |
|    | 8.4.2 Thermal activation model                             | 131   |
|    | 8.4.3 Propagation through a row of                         |       |
|    | imperfections                                              | 133   |
|    | 8.4.4 Kinetics from atomistic considerations               | 134   |
|    | 8.4.5 Frenkel-Kontorowa model                              | 136   |
|    | 8.5 Nucleation                                             | 139   |
| Pa | rt IV One-Dimensional Thermoelastic Theory<br>and Problems |       |

| 9  | 9 Models for Two-Phase Thermoelastic Materials      |     |  |
|----|-----------------------------------------------------|-----|--|
|    | in One Dimension                                    | 149 |  |
|    | 9.1 Preliminaries                                   | 149 |  |
|    | 9.2 Materials of Mie-Grüneisen type                 | 151 |  |
|    | 9.3 Two-phase Mie-Grüneisen materials               | 153 |  |
|    | 9.3.1 The trilinear material                        | 153 |  |
|    | 9.3.2 Stability of phases of the trilinear material | 156 |  |
|    | 9.3.3 Other two-phase materials of Mie-Grüneisen    |     |  |
|    | type                                                | 159 |  |
| 10 | Quasistatic Hysteresis in Two-Phase Thermoelastic   |     |  |
|    | Tensile Bars                                        | 163 |  |
|    | 10.1 Preliminaries                                  | 163 |  |
|    | 10.2 Thermomechanical equilibrium states            |     |  |
|    | for a two-phase material                            | 164 |  |
|    | 10.3 Quasistatic processes                          | 166 |  |
|    | 10.4 Trilinear thermoelastic material               | 167 |  |
|    | 10.5 Stress cycles at constant temperature          | 169 |  |
|    | 10.6 Temperature cycles at constant stress          | 173 |  |
|    |                                                     |     |  |

ix

### CAMBRIDGE

| Cambridge University Press                                      |
|-----------------------------------------------------------------|
| 0521661471 - Evolution of Phase Transitions: A Continuum Theory |
| Rohan Abeyaratne and James K. Knowles                           |
| Frontmatter                                                     |
| Moreinformation                                                 |

| x                                                                                              |     | CONTENTS |
|------------------------------------------------------------------------------------------------|-----|----------|
| 10.7 The shape-memory cycle                                                                    | 175 |          |
| 10.8 The experiments of Shaw and Kyriakides                                                    | 176 |          |
| 10.9 Slow thermomechanical processes                                                           | 178 |          |
| 11 Dynamics of Phase Transitions in Uniaxially Strained                                        |     |          |
| Thermoelastic Solids                                                                           | 181 |          |
| 11.1 Introduction                                                                              | 181 |          |
| 11.2 Uniaxial strain in adiabatic thermoelasticity 11.2.1 Field equations, jump conditions and | 182 |          |
| driving force<br>11.2.2 The trilinear Mie-Grüneisen thermoelastic                              | 182 |          |
| material                                                                                       | 183 |          |
| 11.3 The impact problem                                                                        | 185 |          |
| 11.3.1 Formulation: Scale-invariant solutions                                                  | 185 |          |
| 11.3.2 Solutions with no phase transition                                                      | 186 |          |
| 11.3.3 Solutions with a phase transition                                                       | 188 |          |
| Part V Higher Dimensional Problems                                                             |     |          |
| 12 Statics: Geometric Compatibility                                                            | 197 |          |
| 12.1 Preliminaries                                                                             | 197 |          |
| 12.2 Examples                                                                                  | 200 |          |
| 13 Dynamics: Impact-Induced Transition in a CuAlNi                                             |     |          |
| Single Crystal                                                                                 | 209 |          |
| 13.1 Introduction                                                                              | 209 |          |
| 13.2 Preliminaries                                                                             | 210 |          |
| 13.3 Impact without phase transformation                                                       | 212 |          |
| 13.4 Impact with phase transformation                                                          | 214 |          |
| 13.5 Application to austenite- $\beta'_1$ martensite                                           |     |          |
| transformation in CuAlNi                                                                       | 217 |          |
| 13.5.1 Experimental data                                                                       | 217 |          |
| 13.5.2 Phase boundary speed                                                                    | 218 |          |
| 13.5.3 Driving force                                                                           | 218 |          |
| 13.5.4 Kinetic law                                                                             | 219 |          |
| 14 Quasistatics: Kinetics of Martensitic Twinning                                              | 221 |          |
| 14.1 Introduction                                                                              | 221 |          |
| 14.2 The material and loading device                                                           | 222 |          |
| 14.3 Observations                                                                              | 223 |          |
| 14.4 The model                                                                                 | 225 |          |
| 14.5 The energy of the system                                                                  | 226 |          |
| 14.5.1 Elastic energy of the specimen                                                          | 226 |          |
| 14.5.2 Loading device energy                                                                   | 227 |          |
| 14.5.3 Summary                                                                                 | 228 |          |

#### CONTENTS

14.6 The effect of the transition layers: Further<br/>observations22914.7 The effect of the transition layers: Further modeling23014.8 Kinetics231Author Index235Subject Index238

## Preface

This monograph threads together a series of research studies carried out by the authors over a period of some fifteen years or so. It is concerned with the development and application of continuum-mechanical models that describe the macroscopic response of materials capable of undergoing stress- or temperature-induced transitions between two solid phases.

Roughly speaking, there are two types of physical settings that provide the motivation for this kind of modeling. One is that associated with slow mechanical or thermal loading of alloys such as nickel–titanium or copper–aluminum–nickel that exhibit the shape-memory effect. The second arises from high-speed impact experiments in which metallic or ceramic targets are struck by moving projectiles; the objective of such studies – often of interest in geophysics – is usually to determine the response of the impacted material to very high pressures. Phase transitions are an essential feature of the shape-memory effect, and they frequently occur in highspeed impact experiments on solids. Those aspects of the theory presented here that are purely phenomenological may well have broader relevance, in the sense that they may be applicable to materials that transform between two "states," for example, the ordered and disordered states of a polymer.

Our development focuses on the evolution of the phase transitions modeled here, which may be either dynamic or quasistatic. Such evolution is controlled by a "kinetic relation," which, in the framework of classical thermomechanics, represents information supplementary to the usual balance principles and constitutive laws of conventional theory. We elucidate the rather remarkable way in which the classical theory "calls for" this kind of supplementary information when the material is capable of changing phase, though such additional information is *not* called for – indeed, cannot be imposed – in the case of a single-phase material.

The simplest context in which to illustrate the need for kinetic relations and the role they play is that furnished by the purely mechanical theory of one-dimensional nonlinear elasticity, with thermal effects suppressed. After the Introduction, which comprises Part I of the monograph, we pursue the subject in this context in Part II. Even this simplest version of the theory to be set out here has some utility, as we show in Chapters 3 and 4. Part III presents the full three-dimensional theory, taking

xiii

xiv

PREFACE

both mechanical and thermal effects into account. We specialize this theory to one space dimension in Part IV, where we are able to make some comparisons with experiments. In Part V, we discuss some three-dimensional problems.

The material presented here is drawn primarily from our own research over the period from the late 1980s forward. We came to this subject as practitioners of solid mechanics interested in exploring the range of applicability of the finite deformation theory of elasticity when various standard assumptions such as convexity of various energies or ellipticity of the field equations of equilibrium were relinquished. When broadened in this way, finite elasticity is a natural vehicle for the study of those aspects of phase transitions in solids that can be discussed with thermal effects neglected. Nonlinear *thermoelasticity*, similarly unencumbered by conventional restrictions, provides the natural framework for the study of mechanical and thermal effects together.

Our hope is that this book will be of interest to materials scientists, engineers and geophysicists as well as to mechanicians and applied mathematicians. The perfectly prepared reader would be acquainted with continuum mechanics at the level of Chadwick's *Continuum Mechanics*, Wiley, New York, 1976; with thermodynamics as treated, for example, in J. L. Ericksen's *Introduction to the Thermodynamics of Solids*, Chapman and Hall, New York, 1991; with material behavior as described by T. H. Courtney in *Mechanical Behavior of Materials*, McGraw-Hill, New York, 1990; with partial differential equations at the level of J. D. Logan's *An Introduction to Nonlinear Partial Differential Equations*, Wiley-Interscience, New York, 1994; and with the elements of Cartesian tensors as discussed, for example, in *Linear Vector Spaces and Cartesian Tensors*, Oxford, New York, 1998, by J. K. Knowles. However, expecting many potential readers to be less than perfectly prepared, we have tried to make the presentation as self-contained as is practicable, citing appropriate sources for those results that are used but not derived.

Although the book deals almost entirely with our own work, we have nevertheless had the enormous benefit of interactions with many others, and it is a pleasure to acknowledge them *all* with gratitude. We would be remiss not to mention the particular influence that Tom Ahrens, Kaushik Bhattacharya, Mort Gurtin, Rick James, Stelios Kyriakides, Jim Rice, the late Eli Sternberg, Lev Truskinovsky, and our former doctoral students, especially Phoebus Rosakis and Stewart Silling, have had on our learning of this subject.

Some of the fruitful interactions alluded to above took place in small, informal summer gatherings held at MIT's Talbot House in South Pomfret, Vermont. We are indebted to MIT for the use of this wonderful place, which - alas - is no longer owned by MIT.

Special thanks go to Debbie Blanchard, who drew the figures in the early part of the book, and then taught us how to draw the rest.

We are grateful to Olaf Weckner for a careful and constructive critical reading of the early chapters.

We acknowledge with thanks the past financial support of the U.S. National Science Foundation, the U.S. Army Research Office, and especially the U.S. Office

#### PREFACE

xv

of Naval Research, with which we enjoyed a sustained relationship and which supported much of the research on which this monograph is based. We would particularly like to thank Roshdy Barsoum, Alan Kushner, and Yapa Rajapakse for the help and encouragement that they, as program officers at ONR, consistently provided to us.

During recent stimulating visits, both of us have benefited from the hospitality and financial support of the University of Cambridge, its colleges, and its Isaac Newton Institute for the Mathematical Sciences, for which we wish to express our appreciation.

> Rohan Abeyaratne and Jim Knowles Cambridge, Massachusetts, and Pasadena, California June 2005