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Preface

This monograph threads together a series of research studies carried out by the au-
thors over a period of some fifteen years or so. It is concerned with the development
and application of continuum-mechanical models that describe the macroscopic
response of materials capable of undergoing stress- or temperature-induced transi-
tions between two solid phases.

Roughly speaking, there are two types of physical settings that provide the mo-
tivation for this kind of modeling. One is that associated with slow mechanical or
thermal loading of alloys such as nickel–titanium or copper–aluminum–nickel that
exhibit the shape-memory effect. The second arises from high-speed impact exper-
iments in which metallic or ceramic targets are struck by moving projectiles; the
objective of such studies – often of interest in geophysics – is usually to determine
the response of the impacted material to very high pressures. Phase transitions are
an essential feature of the shape-memory effect, and they frequently occur in high-
speed impact experiments on solids. Those aspects of the theory presented here
that are purely phenomenological may well have broader relevance, in the sense
that they may be applicable to materials that transform between two “states,” for
example, the ordered and disordered states of a polymer.

Our development focuses on the evolution of the phase transitions modeled
here, which may be either dynamic or quasistatic. Such evolution is controlled by a
“kinetic relation,” which, in the framework of classical thermomechanics, represents
information supplementary to the usual balance principles and constitutive laws of
conventional theory. We elucidate the rather remarkable way in which the classical
theory “calls for” this kind of supplementary information when the material is
capable of changing phase, though such additional information is not called for –
indeed, cannot be imposed – in the case of a single-phase material.

The simplest context in which to illustrate the need for kinetic relations and the
role they play is that furnished by the purely mechanical theory of one-dimensional
nonlinear elasticity, with thermal effects suppressed. After the Introduction, which
comprises Part I of the monograph, we pursue the subject in this context in Part II.
Even this simplest version of the theory to be set out here has some utility, as we
show in Chapters 3 and 4. Part III presents the full three-dimensional theory, taking

xiii
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xiv PREFACE

both mechanical and thermal effects into account. We specialize this theory to one
space dimension in Part IV, where we are able to make some comparisons with
experiments. In Part V, we discuss some three-dimensional problems.

The material presented here is drawn primarily from our own research over the
period from the late 1980s forward. We came to this subject as practitioners of solid
mechanics interested in exploring the range of applicability of the finite deformation
theory of elasticity when various standard assumptions such as convexity of various
energies or ellipticity of the field equations of equilibrium were relinquished. When
broadened in this way, finite elasticity is a natural vehicle for the study of those
aspects of phase transitions in solids that can be discussed with thermal effects
neglected. Nonlinear thermoelasticity, similarly unencumbered by conventional
restrictions, provides the natural framework for the study of mechanical and thermal
effects together.

Our hope is that this book will be of interest to materials scientists, engineers
and geophysicists as well as to mechanicians and applied mathematicians. The per-
fectly prepared reader would be acquainted with continuum mechanics at the level
of Chadwick’s Continuum Mechanics, Wiley, New York, 1976; with thermodynam-
ics as treated, for example, in J. L. Ericksen’s Introduction to the Thermodynamics
of Solids, Chapman and Hall, New York, 1991; with material behavior as described
by T. H. Courtney in Mechanical Behavior of Materials, McGraw-Hill, New York,
1990; with partial differential equations at the level of J. D. Logan’s An Introduction
to Nonlinear Partial Differential Equations, Wiley-Interscience, New York, 1994;
and with the elements of Cartesian tensors as discussed, for example, in Linear
Vector Spaces and Cartesian Tensors, Oxford, New York, 1998, by J. K. Knowles.
However, expecting many potential readers to be less than perfectly prepared, we
have tried to make the presentation as self-contained as is practicable, citing appro-
priate sources for those results that are used but not derived.

Although the book deals almost entirely with our own work, we have neverthe-
less had the enormous benefit of interactions with many others, and it is a pleasure
to acknowledge them all with gratitude. We would be remiss not to mention the
particular influence that Tom Ahrens, Kaushik Bhattacharya, Mort Gurtin, Rick
James, Stelios Kyriakides, Jim Rice, the late Eli Sternberg, Lev Truskinovsky, and
our former doctoral students, especially Phoebus Rosakis and Stewart Silling, have
had on our learning of this subject.

Some of the fruitful interactions alluded to above took place in small, informal
summer gatherings held at MIT’s Talbot House in South Pomfret, Vermont. We are
indebted to MIT for the use of this wonderful place, which – alas – is no longer
owned by MIT.

Special thanks go to Debbie Blanchard, who drew the figures in the early part
of the book, and then taught us how to draw the rest.

We are grateful to Olaf Weckner for a careful and constructive critical reading
of the early chapters.

We acknowledge with thanks the past financial support of the U.S. National
Science Foundation, the U.S. Army Research Office, and especially the U.S. Office
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PREFACE xv

of Naval Research, with which we enjoyed a sustained relationship and which
supported much of the research on which this monograph is based. We would
particularly like to thank Roshdy Barsoum, Alan Kushner, and Yapa Rajapakse for
the help and encouragement that they, as program officers at ONR, consistently
provided to us.

During recent stimulating visits, both of us have benefited from the hospitality
and financial support of the University of Cambridge, its colleges, and its Isaac
Newton Institute for the Mathematical Sciences, for which we wish to express our
appreciation.

Rohan Abeyaratne and Jim Knowles
Cambridge, Massachusetts, and Pasadena, California
June 2005
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