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We have analyzed the evolution of a quantitative trait in populations that are spatially extended along an environmental gradient,

with gene flow between nearby locations. In the absence of competition, there is stabilizing selection toward a locally best-adapted

trait that changes gradually along the gradient. According to traditional ideas, gradual spatial variation in environmental conditions

is expected to lead to gradual variation in the evolved trait. A contrasting possibility is that the trait distribution instead breaks up

into discrete clusters. Doebeli and Dieckmann (2003) argued that competition acting locally in trait space and geographical space

can promote such clustering. We have investigated this possibility using deterministic population dynamics for asexual populations,

analyzing our model numerically and through an analytical approximation. We examined how the evolution of clusters is affected

by the shape of competition kernels, by the presence of Allee effects, and by the strength of gene flow along the gradient. For

certain parameter ranges clustering was a robust outcome, and for other ranges there was no clustering. Our analysis shows that

the shape of competition kernels is important for clustering: the sign structure of the Fourier transform of a competition kernel

determines whether the kernel promotes clustering. Also, we found that Allee effects promote clustering, whereas gene flow can

have a counteracting influence. In line with earlier findings, we could demonstrate that phenotypic clustering was favored by

gradients of intermediate slope.
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The evolution of a quantitative trait along an environmental gra-
dient is a topic of interest to population genetics and evolution-
ary ecology (Slatkin 1978; Kirkpatrick and Barton 1997; Barton
1999; Case and Taper 2000), and is connected to the classi-

cal study of gene frequency clines (Haldane 1948; Fisher 1950;
Bazykin 1969; Endler 1977). When there is stabilizing selection
on a quantitative trait toward a spatially varying optimum, to-
gether with gene flow between nearby locations, the traditional
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expectation has been that gradual variation in the optimum ought
to be mirrored by a gradual and, owing to gene flow, equally
smooth or even smoother variation in the average value of the
trait.

A contrasting perspective was put forward by Doebeli and
Dieckmann (2003), who argued that frequency-dependent com-
petition in trait space and local competition in geographical space,
acting together with stabilizing selection along an environmental
gradient, can create discrete clusters in the distribution of a trait,
despite the counteracting effects of gene flow. Doebeli and Dieck-
mann (2003) claimed that this cluster formation could occur even
when frequency-dependent competition would not give rise to
disruptive selection in a spatially unstructured, well-mixed popu-
lation. They emphasized the possible significance of such a pro-
cess for parapatric speciation, extending earlier work (Dieckmann
and Doebeli 1999) that dealt with the possible significance of
evolutionary branching (Metz et al. 1992, 1996; Geritz et al.
1998) for sympatric speciation. Our aim here is to shed further
light on the evolution of phenotypic clusters along environmen-
tal gradients by investigating the causes of phenotypic pattern
formation.

The conclusions of Doebeli and Dieckmann (2003) were
challenged by Polechová and Barton (2005), who approximated
the original individual-based stochastic model by a deterministic
reaction–diffusion model. Using Gaussian competition kernels in
their approximate model, Polechová and Barton (2005) argued
that a gradual environmental cline will lead to gradual variation
in a quantitative trait. They suggested that the clustering observed
in the analysis of asexual evolution by Doebeli and Dieckmann
(2003) was caused by the boundary conditions of the model. In
line with earlier findings (e.g., Sasaki 1997), our analysis here
confirms that Gaussian competition kernels in themselves are not
sufficient to cause clustering, but our overall conclusions are quite
different from those reached by Polechová and Barton (2005). In
particular, we identify parameter regions of our model in which
clustering is a robust outcome, and we show that this outcome
does not depend on particular boundary conditions. To investi-
gate cluster formation without an impact of boundary effects,
we study a hypothetical, infinitely extended environmental gra-
dient and analyze the conditions for periodic clustering along this
gradient.

Using an asexual, deterministic model, we investigate the
importance of two different factors for the formation of phenotypic
clusters, namely the shape of competition kernels and the strength
of Allee effects. There has been a long and influential tradition
in ecological modeling to focus on special types of competition
kernels, mainly Gaussian and biexponential competition functions
(e.g., Roughgarden 1972, 1979; MacArthur 1972; May 1973),
which was motivated more by mathematical convenience than by

biological realism. A basic aim of our analysis is to provide general
insights into the consequences of going beyond this simplifying
assumption.

An important aspect of our treatment is that we identify a gen-
eral property characterizing the shape of competition kernels that
promote pattern formation. The crucial property is the sign struc-
ture of the Fourier transform of the kernel, in agreement with the
analysis of a situation without spatial variation by Pigolotti et al.
(2007). If the Fourier transform is nonnegative, as is the case for a
Gaussian, the kernel does not by itself cause clustering in models
of the type studied here. In contrast, if the transform changes sign
to negative values, the kernel shape can induce pattern formation.
We provide an intuitive interpretation of this condition, in terms
of how the intensity of competition depends on distance in trait
space or geographical space.

We also included Allee effects in our analysis. These are
among the most-studied phenomena in population biology and
are well known for their potential to create spatial variation in
abundance (Gyllenberg et al. 1999; Keitt et al. 2001) and to pro-
mote species coexistence (Hopf and Hopf 1985). Allee effects
are often considered as consequences of the discreteness of in-
dividuals, such as when suitable mates or conspecific cooper-
ators become locally rare. It is therefore natural to investigate
the influence of Allee effects on phenotypic pattern formation
along an environmental gradient. In our analysis, we focus on so-
called weak Allee effects, through which a population’s per capita
growth rate is reduced, but still remains positive at low population
density.

With these ingredients, we present results from a numeri-
cal analysis of the model and from an analytical approximation
in the form of a reaction–diffusion equation. Our analytical ap-
proximation is accurate in the low-mobility limit. The importance
of the approximation lies in providing a qualitative understand-
ing of the causes of phenotypic pattern formation, which show
interesting similarities to the processes giving rise to Turing pat-
terns (Turing 1952). To illustrate the interplay of environmental
gradients of different slopes with competition acting locally in
trait space or geographical space, we present results for parameter
ranges in which stabilizing selection on the trait is stronger than
the diversifying influence of competition in trait space. In a spa-
tially uniform and well-mixed situation, such conditions would
give rise to a unimodal distribution of trait values (Geritz et al.
1998; Dieckmann and Doebeli 1999), which means that the phe-
notypic clustering observed in our analysis is gradient induced.
We discuss our results in relation to previous work, including
the results of Doebeli and Dieckmann (2003), and summarize
how the conditions for clustering along environmental gradients
obtained in our analysis may help understand patterns in real
populations.
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Methods
MODEL DESCRIPTION

The analysis of Doebeli and Dieckmann (2003) rested on the
numerical investigation of an individual-based stochastic model.
Here we instead use the idealization of a (locally) large popu-
lation and treat population dynamics deterministically, in terms
of continuously varying local densities. The same assumption
is used in traditional reaction–diffusion models. In contrast to
these, however, we start out by describing movements in geo-
graphical space and mutations in trait space through explicit ker-
nels, thereby avoiding the limitations of diffusion approximat-
ions.

We consider an asexual population with a one-dimensional
quantitative trait u. The population lives along an environmental
gradient, with the one-dimensional coordinate x indicating spatial
position. We use n(u,x,t) to denote the local density of individuals
with trait u and location x at time t (below, we usually refrain from
making the argument t explicit). The density n has the determin-
istic dynamics

∂

∂t
n(u, x) = [1 − nc(u, x)/K (u, x) − d(n̄(x))] n(u, x)

+ !"[n"(u, x) − n(u, x)]

+ !m[nm(u, x) − n(u, x)]. (1)

This equation describes the change over time of the local density,
under the influence of births, deaths, trait mutation, and move-
ment in space. A brief description of the terms appearing on the
right-hand side of equation (1) is as follows (see also Doebeli and
Dieckmann 2004). The time scale is chosen so as to imply a per
capita birth rate equal to 1. The birth rate is offset by the per capita
death rate resulting from competition, expressed as the ratio of an
effective competitive density nc(u, x) and a local carrying capac-
ity K(u, x) measured on the density scale, and the death rate from
an Allee effect d(n̄(x)), which becomes small as the total local
density,

n̄(x) =
∫

n(u′, x)du′,

increases. The two last terms on the right-hand side of equation (1)
represent trait mutation and spatial movement with per capita rates
!" and !m , and n"(u, x) and nm(u, x) are the densities immediately
after mutation and movement, respectively.

The carrying capacity K (u, x) = #(u − gx) is assumed to be
unimodal with a maximum at a trait value u = gx that changes
linearly with a slope g along the environmental gradient. We refer
to the line u = gx as the environmental cline. Choosing the scale
of population density so that the maximum of K equals 1, we use
a Gaussian carrying capacity,

K (u, x) = #(u − gx) = exp[− 1
2 (u − gx)2/$2

K ],

and set $2
K = 1 as a choice of scale for u. The intensity of compe-

tition depends on the effective density experienced by phenotype
u at location x,

nc(u, x) =
∫∫

a0(u′ − u)a1(x ′ − x)n(u′, x ′)du′dx′,

which is obtained as a weighted average, with the phenotypic com-
petition kernel a0 and the spatial competition kernel a1 weighting
the competitive impact of other individuals. These kernels have
symmetric shapes, integrals normalized to 1, and variances $2

0

and $2
1 , respectively. As a choice of scale for x we set $1 = 1.

The phenotypic and spatial competition kernels describe how the
strength of competition varies with phenotypic and spatial dis-
tance, and they play important roles in our analysis. Because the
shapes of the competition kernels can influence pattern formation,
we make use of a family of kernels formed as convolutions of a
Gaussian with a box-shaped kernel (a uniform distribution on a
finite, symmetric interval), allotting different proportions of the
total variance to these components. This results in more or less
box-like kernels, as illustrated in Figure 1.The Allee effect d(n̄(x))
is assumed to have the form

d(n̄) = d0 exp(−n̄/n0),

with parameters 0 < d0 < 1 and n0 > 0. This corresponds to
a so-called weak Allee effect (Wang and Kot 2001; Taylor and
Hastings 2005), which entails a reduced but positive population
growth rate of 1 − d(n̄(x)) even at low local densities n̄. The rates
of increase in local density from mutation and movement are

!"n"(u, x) = !"

∫
b"(u′ − u)n(u′, x)du′,

!mnm(u, x) = !m
∫

bm(x ′ − x)n(u, x ′)dx′,

where, respectively, !" and !m are per capita rates of trait mutation
and spatial movement and b" and bm are mutation and movement
kernels. These kernels are Gaussian with zero means and variances
$2

" and $2
m , respectively. The last two terms on the right-hand side

of equation (1) then represent balances between the increase and
decrease in density from mutation and movement events.

NUMERICAL ANALYSIS

To investigate the evolution of phenotypic clusters we integrated
equation (1) numerically, looking for solutions with “cline peri-
odicity,” that is, that satisfy the condition n(u + gp, x + p) =
n(u,x) for all x, where p is the period in geographical space, with
the corresponding period gp in trait space (Fig. 2A below shows
a cline-periodic solution). The condition of cline periodicity ap-
plies to a cline u = gx with a given slope g. A solution is called
“cline-like” if it has the form n(u, x) = %(u − gx) for some func-
tion %, and such a solution will be cline periodic for any period p.
For a cline-like solution, the shape is given by %(u) and remains
constant across geographical space when viewed relative to the
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Figure 1. Examples of competition kernels. (A) Three competition
kernels, each with variance 1. The 70% and 90% box-like kernels
are obtained as convolutions of a uniform distribution on a finite,
symmetric interval, with variance 0.7 or 0.9, and a Gaussian with
corresponding variance 0.3 or 0.1. (B) Fourier transforms of the
three kernels. The Fourier transform of a Gaussian is a Gaussian,
and thus remains positive for all frequencies, whereas the Fourier
transform of a box-like kernel has tails that oscillate in sign. The
amplitude of these oscillations increases as the kernel’s shape be-
comes more box-like. The negative values of a Fourier transform
can induce pattern formation, and the spatial frequencies at which
the Fourier transform is negative determine the spatial scale of
patterning. Fourier transforms of wider competition kernels are
narrower, as the width of the Fourier transform is inversely pro-
portional to the width of the kernel.

environmental cline (Fig. 2B below shows a cline-like solution).
Our approach is to first determine a cline-like equilibrium solu-
tion for a given set of parameter values and then to investigate the
stability of this solution by introducing small cline-periodic per-
turbations with different spatial periods p. This is essentially the
method used by Turing (1952) to study pattern formation. Using
a search algorithm (golden section search; Press et al. 1992), we
identified the spatial period having the highest rate of exponential
growth & in the deviation from the cline-like equilibrium.

Intuitively, our approach corresponds to studying an (hypo-
thetical) infinitely extended environmental gradient (given by the
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Figure 2. Stable equilibrium solutions. The contour plots show
densities n(u,x) of solutions to equation (1) for an environmen-
tal cline with slope g = 2, indicated by the dashed lines. (A) When
the competition kernels in trait space and geographical space both
have the 90% box-like shape shown in Figure 1, there is clustered
stable equilibrium, shown in the figure, whereas the cline-like
equilibrium solution to equation (1) is unstable. The instability of
the cline-like solution is most pronounced for the illustrated spa-
tial period of p = 2.10 in geographical space, with a corresponding
period of gp = 4.20 in trait space (two whole periods are shown
in the plot, whereas the model’s domain in x and u is infinitely
extended). The contour lines indicate density levels, varying from
0.001 to 100 with even logarithmic spacing; the maximum density
is 247.6. The plot shows the density at t = 5000, when a stable
equilibrium has been reached. The solution to equation (1) is rela-
tively close to this equilibrium already at time t = 200. (B) When
the competition kernels instead have Gaussian shapes, the cline-
like equilibrium solution to equation (1) is stable. The contour lines
indicate density levels at time t = 200, varying from 0.0001 to 1
with even logarithmic spacing; the maximum density is 8.50. For
both plots, the initial density at time t = 0 was given by a very
slight, oscillating perturbation (! = 0.001) of the cline-like equi-
librium solution. Other parameter values: "K = 1, "0 = 2, "1 = 1,
d0 = 0, #$ = 0.01, "$ = 0.05, #m = 1, and "m = 0.05.

cline u = gx with x ranging from minus infinity to infinity and a
corresponding infinite range of trait values u), by investigating the
stability of solutions to equation (1) for which the density n(u,x) is
constant along the cline. Such a cline-like equilibrium is unstable if
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density perturbations with certain spatial periods tend to increase
in magnitude over time. If spatially periodic fluctuations grow, one
may expect that the solution eventually approaches some stable
cline-periodic equilibrium with a clustering of the density n(u,x).
In these cases we are interested in the properties of the clustered
equilibrium. Further details on the numerical procedures are given
in the Appendix.

APPROXIMATE ANALYTICAL TREATMENT

For small mutational increments and movement steps (small $2
"

and $2
m), equation (1) can be approximated by a reaction–diffusion

equation with small diffusion coefficients (see Appendix). When
stabilizing selection is stronger than the diversifying influence of
competition in trait space (i.e., when $2

K < $2
0 ), we expect an equi-

librium solution for which the trait distribution is concentrated
along the cline u = gx. Furthermore, if the fitness landscape is
approximately quadratic for small deviations from the cline, we
expect the density to have a Gaussian shape, leading to an expres-
sion of the form

n(u, x) ≈ (N0 + N1$2)
1√

2'$2
exp[− 1

2 (u − gx)2/$2], (2)

where $2 approaches zero when $2
" and $2

m approach zero. The
intuition behind this expression is that in the limit of no mutation
and no mobility, a cline of Dirac delta peaks, N0((u − gx), will be
an equilibrium solution. Small mutations and, for g > 0, mobility
between nearby positions in space have the effect of broadening
the delta peaks, turning them into narrow Gaussians with variance
$2. At the same time, total population density changes linearly
in $2, from N0 to N0 + N1$2, under the combined influence of
greater mortality from stabilizing selection and less mortality from
competition for a distribution that is more spread out along the
trait axis. Note also that the density in equation (2) is cline-like.
Expressions giving the equilibrium values of the parameters N0,
N1, and $2 are derived in the Appendix.

To determine the stability of the cline-like equilibrium given
by equation (2), we can study solutions of the form

n(u, x) ≈ [N0 + N1$2 + w(x, t)]
1√

2'$2
exp[− 1

2 (u − gx)2/$2].
(3)

If w(x,t) is a periodic function of x with period p, the density
in equation (3) will be cline-periodic. The stability of the cor-
responding cline-like equilibrium in equation (2) means that no
small perturbation w(x,t) of period p will grow, for any choice of
p, which in turn depends on how competition, the Allee effect,
and mobility affect the deviation from a cline-like equilibrium.
For densities concentrated along the cline u = gx, competitive
effects along the cline can be described by a competition kernel

)(x) = 1
C

a0(gx)a1(x),

where the normalization constant C appears in the denominator
to give ) an integral equal to 1. We can derive an approximate
reaction–diffusion equation for w(x), in which the kernel )(x)
appears (see Appendix), and this equation can be used to inves-
tigate if perturbations having period p will grow or decay. The
stability analysis is most conveniently performed using Fourier
analysis. A period p corresponds to a spatial frequency * = 1/p
and the aim of the analysis is to determine if a Fourier component
of w with spatial frequency * will grow or decay. The approach
of examining Fourier components to investigate pattern formation
was originally used by Turing (1952) and has subsequently been
widely applied to that end (Okubo et al. 2001), also in the context
of populations competing for resources (e.g., Roughgarden 1972;
Bolker and Pacala 1997; Sasaki 1997). For the analysis we need
the Fourier transform of the kernel )(x), which is given by

)̃(*) =
∫

)(x) exp(−i2'*x)dx,

where * is a spatial frequency and i is the imaginary unit. It is
shown in the Appendix that a Fourier component of w with spatial
frequency * will grow at the rate

&(*) = −N0C)̃(*) − N0d ′(N0) − m(2'*)2, (4)

where d′ is the derivative of the Allee effect function and m =
!m$2

m/2 is a diffusion coefficient describing mobility in geograph-
ical space.

If there are spatial frequencies for which the growth rate & in
equation (4) is positive, the cline-like equilibrium will be unstable
with respect to perturbations containing such spatial frequencies.
The following three points summarize properties of equation (4).
First, the last term of equation (4), describing the effect of mo-
bility, becomes increasingly negative as the spatial frequency *

increases, which promotes stability more and more strongly. Sec-
ond, in the absence of an Allee effect (d0 = 0), the growth rate & is
negative at * = 0, because )̃(0) = 1 holds ()̃(0) =

∫
)(x)dx = 1,

owing to kernel normalization), and also negative at high spatial
frequencies, because )̃(*) approaches zero for large *. However,
if )̃(*) changes sign, so that it becomes negative for some inter-
mediate frequency *, &(*) can become positive. Third, when there
is an Allee effect, for whichd ′(N0) < 0, & can become positive for
intermediate frequencies even when )̃(*) ≥ 0 holds for all *.

Results
To illustrate the influence of spatial processes on clustering along
a gradient, we restrict ourselves to cases for which only a uni-
modal phenotypic distribution would appear in the absence of
spatial effects: this applies when the competition kernel in trait
space is wider than the carrying capacity density. For these sit-
uations our numerical analysis of equation (1) always found a
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cline-like equilibrium solution of the form n(u, x) = %(u − gx).
By investigating the stability of this equilibrium, we have found
two general destabilizing mechanisms. The first derives from com-
petition kernels with shapes implying that their Fourier transform
changes sign and the second from Allee effects. Both of these can
lead to &(*) > 0 for some spatial frequencies * in equation (4).

KERNEL SHAPE

The influence of the shape of competition kernels is illustrated
in Figures 1 and 2. As shown in Figure 1, box-like kernels have
Fourier transforms with oscillating tails that include negative val-
ues. This property underlies the clustering in Figure 2A. Box-like
kernels a0 and a1 cause competitive effects to stay relatively con-
stant at small distances and then, beyond a characteristic distance,
diminish rather rapidly. The resultant spacing between clusters
depends on this characteristic distance, which is also related to
the lowest spatial frequency (corresponding to the longest spa-
tial scale) for which the Fourier transform of a kernel becomes
negative. When the competition kernels instead have nonnegative
Fourier transforms (and other factors causing clustering are ab-
sent), the stable equilibrium solution to equation (1) is a cline-like
density, as illustrated in Figure 2B.

An intuitive explanation for the effect that box-like competi-
tion kernels promote clustering can be based on two observations.
First, clusters with sufficiently large intercluster phenotypic and
spatial distances will impose only weak competitive effects on
each other. Second, when clusters are as close as possible without
interfering much, an individual at a position intermediate between
the clusters experiences the cumulative competitive effects origi-
nating from both adjacent clusters. Clustering is thus maintained
because suitably spaced clusters largely escape competition from
neighboring clusters, whereas “invaders” into positions interme-
diate between clusters suffer strong competitive effects from both
neighboring clusters.

Because competition depends on distances in trait space and
in geographical space, the phenotypic competition kernel a0 and
the spatial competition kernel a1 can both influence clustering. The
slope of the cline determines how traits and locations covary along
the cline. Figure 3 shows aspects of the resulting pattern formation
for different slopes g, using the same kernels as in Figure 2A. The
overall effect is that clusters develop most rapidly for a slope at
which the competitive effects described by the kernels a0 and a1

diminish in parallel along the cline, which happens for g = 2 in
Figure 3A (for which $0 = 2 and $1 = 1). The spacing between
clusters is determined by the kernel, either a0 or a1, for which
competitive effects drop off first along the cline. Along a cline
with slope g, a given phenotypic increment is equal to g times
the corresponding spatial increment. We should therefore expect
the spatial intercluster distance p to be roughly proportional to the
smallest of $1 and $0/g, that is,

p ∝ min($1, $0/g), (5)

where $0 and $1 are the widths of, respectively, the phenotypic and
the spatial competition kernel and g is the slope of the cline. This
prediction is corroborated by our numerical results: equation (5)
with a factor of proportionality of about 2 gives an approximation
to the intercluster distances in Figure 3B, and is in agreement with
Figure 5 below.

It is also interesting to note that for very shallow clines (i.e.,
for values of g smaller than about 0.15 in Fig. 3), the phenotypic
distributions of individual spatial clusters overlap considerably,
so that the troughs between peaks become shallow: the trait dis-
tribution then displays only mild undulation, rather than strong
clustering. This is illustrated by the mid-gap to peak ratio of the
phenotypic density in Figure 3C. In the limit of g approaching
zero, this undulation vanishes, and the mid-gap to peak ratio ap-
proaches 1 (left side of Fig. 3C). For steep slopes, clusters instead
occur close together in geographical space, with the intercluster
distance in trait space set by the shape of the kernel a0 (right side of
Fig. 3B). The perturbation growth rate becomes smaller for very
steep slopes (right side of Fig. 3A) and clusters develop more
slowly. This is the reason for the greater mid-gap to peak ratios
for very steep slopes in Figure 3C. These curves are computed at
time t = 200 after the introduction of the perturbation, and the
dashed parts of the curves in Figure 3C indicate that an asymp-
totic equilibrium has not been reached by this time. By integrating
equation (1) up to much greater values of t, we have found that
phenotypic clusters eventually develop also for very steep slopes
(not shown).

A steep slope of the environmental gradient leads to high
mortality for locally adapted individuals that are displaced from
positions near the cline. As a consequence, the maximum popula-
tion density becomes low for steep slopes, which in turn reduces
the importance of competition as a mortality-determining factor.
This is likely to be the main reason for the smaller perturbation
growth rate for steeper slopes in Figure 3A, illustrating the im-
portance of competition for phenotypic pattern formation.

The basic reproduction ratio R0, defined as per capita birth
rate divided by per capita death rate, can be used to illustrate how
selection varies across trait values and spatial positions, and it can
be helpful to view R0, as function of u and x, as a fitness landscape.
For a clustered population, this fitness landscape could either be
rather flat, with little variation in the per capita death rate, or there
could be a substantial increase in the death rate for trait values
and spatial positions intermediate between the clusters, resulting
in a lower R0. In general, competition kernels that strongly pro-
mote clustering also give rise to a hilly fitness landscape for a
clustered population. As shown in Figure 3C, the value of the ba-
sic reproduction ratio R0 midway between clusters is about 55%
of the value at the cluster centers for the situation with strongest
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Figure 3. Effects of cline slope. Aspects of pattern formation,
resulting from competition kernels having the 90% box-like shape
illustrated in Figure 1, are presented as functions of the slope g of
the environmental cline. Allee effects are absent. Numerical solu-
tions are solutions to equation (1) and analytical approximations
refer to the diffusion approximation given in equation (4). (A) The
maximal exponential growth rate % of perturbations of a cline-like
equilibrium. For the numerical solution (solid curve), this rate was
found by applying slight perturbations with different periods to a
cline-like equilibrium density n(u, x) and using a search algorithm
to locate the largest % (see text for further details). For the
analytical approximation (dotted curve), equation (4) was used.
(B) The intercluster distance given by the spatial period p at which
the exponential growth rate % is maximal, for the numerical
solution (solid curve) and for the analytical approximation (partly

clustering (g = 2). This means that there will be persistent selec-
tion acting to maintain the clusters.

Results from the analytical approximation are also shown
in Figure 3A, B. For shallow slopes, the approximation is rather
accurate in determining the rate of perturbation growth, but for
larger values of g, the approximated rate starts to deviate from the
more accurate estimate obtained from the numerical solution. The
reason is that mobility has a larger influence for steeper slopes; in
an analysis using smaller values of $m , we found that the analyti-
cal approximation is accurate also for steeper slopes (not shown).
When there is a deviation, the analytical approximation under-
estimates the potential for pattern formation (Fig. 3A), and can
even fail qualitatively, by predicting stable cline-like solutions for
steeper clines. Figure 4 illustrates the predictions obtained from
the approximate analytical stability analysis of cline-like equilib-
ria for a wider range of parameters.

The analytical approximation is useful in suggesting which
qualitative factors are responsible for pattern formation. Examin-
ing equation (4), and assuming that there is no Allee effect (d0 =
0), negative values of the transformed kernel )̃(*) are necessary
for destabilizing the cline-like equilibrium. These negative values
must be large enough and occur for spatial frequencies that are
small enough not to be compensated by the counteracting influ-
ence of mobility, expressed by m(2'*)2. For small spatial fre-
quencies, the Fourier-transformed competition kernel will always
be positive, because )̃(0) =

∫
)(x)dx = 1 holds owing to kernel

normalization. For equation (1), this suggest that the shape of the
effective competition kernel ) along the environmental cline, that
is, the shape of the product a0(gx)a1(x), is important for the sta-
bility of a cline-like equilibrium. Our numerical investigations,

overlapping dotted curve, drawn for values of g for which the ap-
proximation indicates clustering). (C) Two different properties of
clustered solutions to equation (1) at time t = 200 after slightly per-
turbing the cline-like equilibrium with a period that corresponds
to the maximal %. The dashed parts of the curves indicate that
an asymptotic equilibrium has not been reached by this time. The
curve labeled “R0” shows the value of R0 for a trait value and
spatial position midway between the cluster peaks relative to the
value of R0 at the cluster peaks, where R0 is the basic reproduc-
tion ratio, defined as per capita birth rate divided by per capita
death rate. A smaller mid-gap to peak ratio of R0 corresponds to a
more hilly fitness landscape for the clustered solution. The curve
labeled “Phenotypic density” illustrates the degree of clustering
in trait space: it shows the ratio between minimum and maximum
density in trait space, while averaging over geographical space.
A smaller mid-gap to peak ratio of the phenotypic density corre-
sponds to a more hilly phenotypic distribution. Parameter values:
"K = 1, "0 = 2, "1 = 1, d0 = 0, #$ = 0.01, "$ = 0.05,#m = 1, and
"m = 0.05.
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Figure 4. Analytical approximation. Based on equation (4), the
maximal exponential growth rate % of perturbations of the cline-
like equilibrium is shown as a function of the slope g of the envi-
ronmental cline and of the width "0 of the phenotypic competition
kernel. The shape of the competition kernels is 90% box-like in (A)
and 70% box-like in (B) (see Fig. 1 for illustrations of these ker-
nels). Allee effects are absent. Shaded areas indicate parameter
combinations for which % > 0, which implies that the cline-like
equilibrium is unstable. Parameter values: m = 0.00125, "K = 1,
"1 = 1, and d0 = 0.

beyond those reported in Figures 2 and 3, support this suggestion.
In particular, we could numerically confirm the stability of cline-
like equilibria for different competition kernels that make )̃(*)
positive for all *. These include (1) biexponential kernels, which
have positive Fourier transforms (the transform of exp(−|x|) is
1/[1 + (2'*)2]), (2) kernels formed as the convolution of two
kernels each of which has a positive Fourier transform, thus im-
plying a positive Fourier transform of the convolution, as well as
(3) kernels formed as the convolution of any symmetric kernel
with itself, which results in nonnegative Fourier transforms. Even
if one can find many examples of kernels with positive Fourier
transforms (these are sometimes called positive definite kernels,
in analogy with positive definite matrices), one should note that
such kernels may be regarded as nongeneric. For an arbitrary sym-
metric, unimodal competition kernel, one ought to expect that its

Fourier transform becomes negative at certain frequencies, which,
as we have seen above, can lead to clustering.

As a further illustration of the role played by the effec-
tive competition kernel along the cline (i.e., )(x) ∝ a0(gx)a1(x)),
Figure 5 shows two cases of clustering. In the first case (Fig. 5A),
the phenotypic competition kernel has a width such that, according
to equation (5), it should determine intercluster distance ($0 = 2,
$1 = 1, g = 4). The phenotypic kernel is box-like, whereas the
spatial kernel is a Gaussian, so the phenotypic kernel both sets the
scale of clustering and is the cause of clustering in Figure 5A. In
Figure 5B, the phenotypic kernel is much wider ($0 = 20) and has
Gaussian shape, but the spatial kernel is box-like, which implies
that the spatial kernel both sets the scale of clustering and is the
cause of clustering ($1 = 1, g = 4). In either of these cases, the
effective competition kernel ) along the cline is box-like, and it
is helpful to regard the effect of the kernel ) as a general form of
frequency-dependent competition acting along the environmental
cline. Figures 5A and 5B were obtained by starting the integration
of equation (1) from a slightly perturbed cline-like equilibrium,
which further demonstrates that the phenotypic and spatial compe-
tition kernels, acting in conjunction with the environmental cline,
play very similar roles in phenotypic pattern formation.

ALLEE EFFECTS

Allee effects can cause pattern formation even when competi-
tion kernels are positive definite (e.g., when they have Gaussian
shape). As can be seen in Figure 6A, the perturbation growth rate
is greatest for clines of intermediate slope, and this phenomenon
is more pronounced than the corresponding effect in Figure 3A.

There are several reasons why pattern formation is most pro-
moted by environmental gradients of intermediate slope. In the
analytical approximation in equation (4), the term −N0d ′(N0)
represents the Allee effect. With our assumptions for the Allee
effect, this term exhibits a maximum for an intermediate value
of N0. Because the value of N0 increases with the slope g (be-
cause the normalizing factor C decreases with g), the Allee-effect
term is largest for intermediate slopes. This phenomenon acts in
combination with the Fourier transform )̃(*) of the competition
kernel and with the effects of mobility to determine at which spa-
tial frequency the maximum of & occurs. When the competition
kernel )(x) is broad, which will be the case for shallow slopes
g, its Fourier transform )̃(*) is narrow, and therefore quickly ap-
proaches zero as * increases. By contrast, a steep slope g causes
)(x) to be narrow, which implies a broad Fourier transform )̃(*),
which stays positive and large for a wider range of spatial frequen-
cies. The net effect is that the perturbation growth rate is great-
est for intermediate slopes (Fig. 6A). This effect is also seen in
Figure 7, which, like Figure 4, illustrates the predictions obtained
from the approximate stability analysis of cline-like equilibria for
a wider range of parameters. That the growth rate & is maximal
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Figure 5. Stable equilibrium solutions. The contour plots show
clustered densities n(u,x) of solutions to equation (1) for different
combinations of width and shape of the phenotypic and spatial
competition kernels. In both depicted cases, the cline slope is g =
4. (A) The phenotypic competition kernel a0 has width "0 = 2 and
a 90% box-like shape, and the spatial competition kernel a1 has
width "1 = 1 and Gaussian shape. The intercluster distance, p =
1.12, is the spatial period for which there is maximal growth of
perturbations of the cline-like equilibrium (the figure shows four
periods of the pattern). According to equation (5), this period is
set by the phenotypic competition kernel. The contour lines indi-
cate density levels varying from 0.001 to 100 with even logarithmic
spacing; the maximum density is 239.6. (B) The phenotypic com-
petition kernel a0 has width "0 = 20 and Gaussian shape, and the
spatial competition kernel a1 has width "1 = 1 and a 90% box-like
shape. The intercluster distance, p = 2.365, is the spatial period for
which there is maximal growth of perturbations of the cline-like
equilibrium (the figure shows two periods of the pattern). Accord-
ing to equation (5), this period is set by the spatial competition
kernel. The contour lines indicate density levels varying from 0.001
to 1000 with even logarithmic spacing and the maximum density
is 1530. Both panels show the clustered pattern at time t = 1000,
when the density is close to a stable equilibrium. The initial density
at time t = 0 was given by an oscillating perturbation (! = 0.001) of
a cline-like equilibrium solution. Other parameter values: "K = 1,
d0 = 0, #$ = 0.01, "$ = 0.05, #m = 1, and "m = 0.05.
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Figure 6. Effects of cline slope. Aspects of pattern formation re-
sulting from an Allee effect with d0 = 0.8 and n0 = 10, for Gaussian
competition kernels, presented as functions of the slope g of the
environmental cline. Panels (A)–(C) show the same quantities as
the corresponding panels in Figure 3. Parameter values: "K = 1,
"0 = 2, "1 = 1, #$ = 0.01, "$ = 0.05, #m = 1, and "m = 0.05.

at intermediate slopes is particularly evident in Figure 7A, where
the Allee effect is more pronounced.

Just as for competition kernels that are not positive definite
(Fig. 3A), the growth rate of perturbations can be positive for very
shallow slopes (left side of Fig. 6A), resulting in geographical clus-
ters with considerable phenotypic overlap (left side of Fig. 6C).
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Figure 7. Analytical approximation. The maximal exponential
growth rate % of perturbations of the cline-like equilibrium is pre-
sented in the same way as in Figure 4. There is an Allee effect with
d0 = 0.8 and n0 = 10 in (A) and with d0 = 0.2 and n0 = 10 in (B).
The competition kernels are Gaussians.

For very steep slopes g, the perturbation growth rate approaches
zero (right side of Fig. 6A), implying that clusters develop very
slowly. The explanation is that the influence of mobility is stronger
for steeper slopes, reducing maximum population density and thus
also reducing the relative importance of an Allee effect.

The decrease in intercluster distances for larger values of the
slope, as shown in Figure 6B, is similar to that seen in Figure 3B.
The explanation is also similar: the spacing between the fastest
growing clusters is determined by the competition kernel, either
a0 or a1, for which competitive effects drop off first along the
cline. This is expressed by equation (5), which applies both to
Figure 3B and to Figure 6B, demonstrating that competition plays
an important role in cluster formation also when an Allee effect
is responsible for destabilizing the cline-like equilibrium.

Just as for clustering caused by kernel shapes, the Allee effect
can produce fitness landscapes for clustered populations that are
rather hilly (Fig. 6C). Note that, if the distribution in geographical
space is sharply clustered, the excess per capita rate of mortality
caused by the Allee effect midway between the clusters, compared
to the peaks, can be at most d0. Finally, our analysis shows that

weak Allee effects can cause phenotypic pattern formation. Strong
Allee effects, which correspond to d0 >1 in our model, would have
an even stronger destabilizing effect on a cline-like equilibrium,
but we have not investigated their influence further.

EFFECTS OF MOBILITY

In our model, movement-based gene flow and mutation are the
main factors countering pattern formation. Mobility will smooth
out density variation over small distances and, because individu-
als become displaced from positions near the cline, mobility can
also increase overall mortality, in effect making competition less
important as a mortality-determining factor.

Although our analytical approximation in equation (4) pre-
dicts a maximum mobility for which a cline-like equilibrium can
be destabilized (this maximum corresponds to a $m of up to around
0.1 to 0.2 for the parameter ranges in Figures 4 and 7), the approx-
imation underestimates the potential for clustering of solutions to
equation (1). This is demonstrated in Figure 8, which shows exam-
ples of clustering with higher mobility. Even though the strength
of selection maintaining the clustered state is weaker than it would
be for less mobility, it is still noticeable: for Figures 8A and 8B,
respectively, the basic reproduction ratio R0 midway between the
clusters is 60% and 73% of its value at the peaks.

From our numerical analysis of equation (1), we have found
that greater mobility slows down the rate of phenotypic pattern for-
mation. This phenomenon is analogous to the smaller perturbation
growth rate for steep slopes g in Figures 3A and 6A. Sufficiently
high mobility can also prevent pattern formation. For instance,
using parameter values as in Figure 8B, we could numerically
establish that the cline-like equilibrium was stable when mobility
was increased to $m = 0.4.

We have also found that the stabilizing influence of mobility
becomes stronger if mobility is combined with a high rate of muta-
tion. The reason is that when these processes act together, density
differences along the cline u = gx are equalized more easily. For
instance, a consequence of mobility in Figure 8 is a broadening of
the density distribution in the spatial direction, but movement of
individuals does not by itself smooth out density variation along
the cline. Similarly, mutation does not by itself smooth out density
variation along the cline; a combination of movement and muta-
tion is needed for this. Mobility combined with a very high rate of
mutation thus has the potential to prevent pattern formation along
an environmental gradient, although the required rate of mutation
might not be realistic.

Discussion
Our analysis confirms the basic contention of Doebeli and
Dieckmann (2003) that gradual spatial variation in environmen-
tal conditions, affecting selection on a quantitative trait, can lead
to essentially discrete variation in the evolved trait. Our results
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Figure 8. Stable equilibrium solutions. The contour plots show
clustered densities n(u,x) of solutions to equation (1) for cases
with higher mobility. (A) Competition kernels have a 90% box-like
shape. The increased movement distance "m = 0.5, in conjunction
with the mobility rate #m = 1, leads to less-pronounced clustering
compared with Figure 2A. The contour lines indicate density levels
varying from 0.001 to 10 with even logarithmic spacing; the max-
imum density is 59.1. (B) Competition kernels are Gaussian, but
there is an Allee effect with d0 = 0.8 and n0 = 10, and the mobil-
ity parameters are #m = 1 and "m = 0.2. The contour lines indicate
density levels varying from 0.001 to 10 with even logarithmic spac-
ing; the maximum density is 25.4. Both panels show two whole
periods of the clustered pattern at time t = 1000, when the den-
sity is close to a stable equilibrium. The initial density at time t =
0 was given by an oscillating perturbation (! = 0.1) of the cline-
like equilibrium solution. Other parameter values: g = 2, "K = 1,
"0 = 2, "1 = 1, #$ = 0.01, and "$ = 0.05.

are also in accordance with their suggestion that gradients of in-
termediate slope are most prone to cause clustering of the trait
distribution, because we find that these gradients lead to faster
growth of perturbations of a cline-like equilibrium solution. It is
important to note that, because of the interplay of local competi-
tion and local adaptation, cluster formation along environmental
gradients can occur even when frequency-dependent competition
would not give rise to clustering in spatially unstructured, well-
mixed populations. Our analysis shows that under these condi-
tions, phenotypic pattern formation is possible for environmental

gradients with slopes ranging from rather shallow to quite steep.
The main novel contribution of our work is a richer under-

standing of how the shape of competition kernels influences pat-
tern formation. Competition kernels have been used extensively
in ecology and evolution as a means of representing variation in
the strength of competition with phenotypic or spatial distance,
with application to questions such as species packing, charac-
ter displacement, phenotypic and spatial clustering, and specia-
tion (e.g., MacArthur 1972; Roughgarden 1972, 1979; May 1973;
Slatkin 1979, 1980; Bulmer 1980; Sasaki 1997; Kirkpatrick and
Barton 1997; Dieckmann and Doebeli 1999; Case and Taper 2000;
Doebeli and Dieckmann 2003). In spite of the very wide use of
competition kernels in modeling, our work and the analysis by
Pigolotti et al. (2007) are the first to provide a general analysis
of the effects of kernel shape, using the Fourier transform of a
kernel. The insights gained from these analyses are likely to have
an impact on other problem areas where competition kernels are
used in modeling.

It might at first seem surprising that continuous and gradual
variation in environmental conditions could produce a discrete
evolutionary response. Yet, there are many other examples of con-
tinuity giving rise to discreteness, for instance evolutionarily sta-
ble strategies in fluctuating environments (Sasaki and Ellner 1995)
or life-history responses to size-selective mortality (Taborsky et al.
2003), so this is not an exceptional phenomenon. In fact, extend-
ing earlier work by Sasaki and Ellner (1995) and Sasaki (1997),
Gyllenberg and Meszéna (2005) proved that coexistence of a con-
tinuum of strategies under competition is a nongeneric outcome.
Instead, in the absence of mutation and movement, the typical
evolutionary outcome under frequency-dependent competition is
a discrete trait distribution. This is an important insight, but more
can be said about the matter. Even if selection generically acts
to produce discreteness in trait distributions, its strength could
vary from case to case. The strength of selection is of particular
importance when counteracting forces tend to smooth out a distri-
bution. This may occur through mutation and, as in our model here,
through movement-based gene flow between nearby locations.

Deterministic models with Gaussian competition kernels are
well known to allow continuous equilibrium distributions (Rough-
garden 1979). These models can be regarded as degenerate and
structurally unstable (Gyllenberg and Meszéna 2005), at least
when one ignores the smoothing influences of mutation and gene
flow. In analyzing our deterministic model we found a much wider
class of kernels, namely those with positive Fourier transforms,
that lead to continuous equilibrium distributions also in the limit
of no mutation and no gene flow. When such a kernel is slightly
perturbed, so as to lose its property of positive definiteness, one
should expect selection toward clustering to appear, indicating a
possible structural instability of the continuous equilibrium dis-
tribution, but the strength of this selection may be rather weak
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(a similar argument was made for optimal strategies in fluctuating
environments; Haccou and Iwasa 1998). From the insight gained
in our analysis here, perturbing a kernel that has a positive Fourier
transform should typically result in a transform that changes sign.
Such sign changes are likely to occur at high phenotypic or spatial
frequencies, where the transform of the unperturbed kernel is close
to zero; accordingly, the perturbed kernel will select for a discrete
distribution consisting of closely spaced morphs. This implies,
in turn, that counteracting forces like mutation and movement are
particularly efficient at smoothing out such distributions, thus giv-
ing a certain structural robustness to the unperturbed equilibrium.

Although the strength of selection toward clustering can
sometimes be weak, as was argued by Polechová and Barton
(2005), our analysis showed that in other cases it can be quite sub-
stantial, with a correspondingly hilly fitness landscape for popula-
tions close to a clustered equilibrium. We have demonstrated that
competition kernels with box-like shapes, as well as Allee effects,
can render clustering rather resistant to counteracting forces. Such
cases are also characterized by clustering evolving more rapidly
from a nonclustered initial state.

Doebeli and Dieckmann (2003) used Gaussian competition
kernels, which means that competition in trait space and geo-
graphical space acted together with one or several other processes
in contributing to the clustering observed in their analysis. For
instance, effects inherent to finite populations of discrete indi-
viduals will have contributed to the observed clustering. It has
been known for some time that individual-based models of pop-
ulations in continuous space show local clumping of individuals,
beyond what is expected from a Poisson distribution, because
of reproductive pair correlations (Felsenstein 1975; Bolker and
Pacala 1997; Young et al. 2001; Law et al. 2003). Similar pro-
cesses will also operate in the trait space of a continuous char-
acter changing through local mutation. With competition along
an environmental gradient influencing the phenotypic and spatial
scales of fluctuations, the outcome can be a clustering of phe-
notypes. The phenomenon is a consequence of the discreteness
of individuals, which, of course, corresponds to the real situation
in nature. Unfortunately, approximate deterministic formulations
like reaction–diffusion models do not account for this. It can be
shown (U. Dieckmann, unpubl. data) that accounting for finite
population size in reaction–diffusion models results in corrections
that are similar to an Allee effect, even for asexual populations.
For sexual populations, a traditionally acknowledged Allee effect
results from the decrease of fecundity when suitable mates are
locally rare. This effect was accounted for in the analysis of sex-
ual populations by Doebeli and Dieckmann (2003), and will thus
have contributed to clustering in those cases.

To demonstrate the effects of spatial structure as clearly as
possible, our analysis here has focused on cases in which stabiliz-

ing selection is stronger than the disruptive effect of competition in
trait space. Situations in which, instead, the disruptive effects are
stronger than stabilizing effects are also of interest. In our model,
these situations arise whenever the carrying capacity density is
wider than the competition kernel ($K > $0). Under these cir-
cumstances, phenotypic clusters can be expected to coexist locally.
Some of the factors we have dealt with, like the shape of competi-
tion kernels, are likely to be of importance also for such local clus-
ter formation (but our approximate analytical treatment does not
extend to these situations). For sexual populations, local coexis-
tence raises interesting questions about the degree of reproductive
isolation between clusters. Because of gene flow between spatially
segregated, but adjacent clusters, such questions are also relevant
for the ecological situations we have dealt with here ($K < $0),
although they may be less urgent. Although assortative mating is
often viewed as a mechanism to reduce gene flow between clus-
ters, the role of frequency-dependent competition in local cluster
formation has recently been questioned (Polechová and Barton
2005). We have shown elsewhere that frequency-dependent com-
petition and assortative mating can promote cluster formation in
a well-mixed sexual population, even for the case of Gaussian
competition kernels (Doebeli et al. 2007). Assortative mating can
therefore be expected also to promote cluster formation along an
environmental gradient, as in the individual-based sexual models
of Doebeli and Dieckmann (2003).

Our analysis involved a search for cline-periodic solutions.
These solutions presume an infinitely extended spatial domain
and the main motivation for studying them is that they help disen-
tangle nonboundary effects from possible boundary effects. Re-
sults obtained in this way are relevant for spatial domains that
are large compared to the spatial period of phenotypic cluster-
ing, in particular for the part of the domain that is far away from
the boundary. Because phenomena in nature necessarily occur in
finite geographical domains, it is important also to consider the
influence of boundaries. Effects of boundaries on phenotypic clus-
tering are real biological phenomena, worthy of study, and not to
be dismissed as artifacts. It is helpful to distinguish two types of
boundary effects. First, if the carrying capacity decreases toward
the limits of a spatial region but there is no barrier to dispersal
across the boundary, one may expect low population density near
the boundary and a phenotypic cluster some distance away from
the boundary. Second, if instead the boundary is a barrier to dis-
persal, there may be a phenotypic cluster located at or very near
the boundary. Although a boundary of the latter type was included
in the analysis by Doebeli and Dieckmann (2003), our results here
have demonstrated that boundary effects by no means are required
for phenotypic pattern formation.

We found a striking similarity in the effects of phenotypic
and spatial competition kernels. As seen, for instance, in Figure 5,
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either kernel can give rise to clustering. An intuitive explana-
tion for this similarity in effects is that local adaptation in a pop-
ulation distributed along an environmental gradient produces a
correlation between phenotype and spatial position (Doebeli and
Dieckmann 2003). This means that variation in the strength of
competition with spatial distance in effect becomes variation in the
strength of competition with phenotypic distance. Interpreted in a
broad sense, both the effects of the phenotypic competition kernel
and the spatial competition kernel, acting along an environmental
gradient, are instances of frequency-dependent competition.

A general conclusion from our analysis is that local
frequency-dependent competition, interpreted in a broad sense,
plays a crucial role in phenotypic pattern formation, even when
additional processes, like Allee effects, are required for clustering
to occur. The influence of competition is evident in the depen-
dence of intercluster distances on the combined characteristics of
the cline and the phenotypic and spatial competition kernels. The
dependence is described by equation (5) and applies to all our
analyses of clustering here. This kind of relationship will be a
general feature of phenotypic pattern formation induced by com-
petition along environmental gradients, and could therefore help
understand patterns in real populations. If phenotypic clustering is
driven by competition, intercluster distances will reflect the scale
of competitive influence along a cline, in the sense that compet-
itive effects between clusters have diminished at the intercluster
distance, but would increase for considerably smaller distances,
thus preventing the growth of intermediate clusters.

For environmental gradients with shallow slopes, we found
that spatial clusters may evolve, but, because of phenotypic over-
lap, this would not entail phenotypic pattern formation. We also
found that steep slopes could give rise to phenotypic clusters, but
the process is quite slow, leaving intermediate slopes as the most
favorable setting for phenotypic pattern formation. In presenting
our results, we used the width of the spatial competition kernel
as spatial unit (by setting $1 = 1) and the width of the carrying
capacity as phenotypic unit (by setting $K = 1); it is thus relative
to these units that we ought to interpret a gradient’s slope as being
shallow, intermediate, or steep. For instance, a shallow slope is
one for which the locally best-adapted phenotype changes little
over the distance measured by the width of the spatial competition
kernel, and an intermediate slope corresponds to a spatial range
of competitive effects over which there is a noticeable, but not
very large, change in the locally best-adapted phenotype. When
assessing the spatial range of competition in real populations, it is
worth noting that there are several processes that can increase this
range, for instance, greater mobility in foraging than in reproduc-
tive dispersal, as well as mobility in a prey resource that individu-
als compete for. So-called apparent competition (Holt 1977; Holt
and Lawton 1994), resulting from local populations sharing mo-
bile predators or parasites (Morris et al. 2005), is another general

mechanism that can extend the range of competitive influences.
Because we made several assumptions in our analysis (for

instance, that local population sizes are large and that stabilizing
selection is stronger than the disruptive effect of competition in
trait space), it is important to note that there are further causes of
phenotypic clustering beyond those of competition kernel shape
and Allee effects that we have studied here. Overall, the range
of ecological situations promoting phenotypic clustering along
environmental gradients is likely to be broad.
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APPENDIX
Here we give a brief description of the numerical procedures used
to analyze equation (1), followed by derivations relating to the
approximate analytical treatment in equations (2)–(4).

NUMERICAL ANALYSIS

In applying our approach, we need to find cline-like equilibrium
solutions %(u − gx) also in situations for which the cline-like equi-
librium is unstable for certain periods p. This can be achieved by
looking for equilibrium solutions that have sufficiently short pe-
riod p. When imposing cline periodicity with a sufficiently small
period p, our numerical approach always found a cline-like equi-
librium solution. This solution is of course a cline-periodic equi-
librium for any period p. Having identified a cline-like equilib-
rium %(u − gx), we investigated its stability for a given period p
by integrating equation (1), starting at t = 0 with the perturbed,
cline-periodic equilibrium density

n(u, x, 0) = [1 − ε cos(2'x/p)]%(u − gx),

typically using a small amplitude ε = 0.001 of perturbation. For
small deviations from the equilibrium, equation (1) is approxi-
mately linear in the deviation + (u, x, t) = n(u, x, t) − %(u − gx)
and can thus be analyzed as an eigenvalue problem, provided there
are solutions of the form + (u, x, t) = , (u, x) exp (&t). We did not
directly use this approach, but instead assumed that the deviation
approached such a form. The parameter & then takes the role of the
dominant eigenvalue and can be estimated as the maximal growth
rate of the deviation using numerical solutions of equation (1).
A positive & implies instability of the cline-like equilibrium and
for these cases we studied the formation of clusters by integrating
equation (1) over a longer time interval (we report results on the
characteristics of clustering at time t = 200 after the introduction
of the small perturbation).

We used the rectangle (midpoint) rule to compute the integrals
needed for the right-hand side of equation (1) and Euler’s method
with a suitably small time step "t to integrate forward in time.
To conveniently impose cline periodicity with spatial period p for
a given slope g of the cline, we selected grid spacings "u and
"x in trait space and geographical space such that the periods gp
and p in these spaces were multiples of the corresponding grid
spacing. We verified the numerical accuracy of our solutions by
checking that essentially the same solution was obtained when
recomputing with halved spacings. We also made sure that the
range of integration in trait space was wide enough to accurately
capture the effects of mobility. Movements in geographical space
produce deviations from the cline u = gx, so that the range of
integration in trait space needs to be wider for steeper slopes g.
As an example, for the solutions depicted in Figure 2 we used
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"u = 0.02, "x = 0.01, "t = 0.05, and a range of integration in
trait space from gx − 8 to gx + 8.

For a given slope g, we first computed a cline-like solution
%(u − gx) by imposing a short period p0 and integrating equa-
tion (1) numerically over a sufficient time interval to approach an
equilibrium (we used a time interval of duration 400). With small
enough p0, our method always found such a cline-like equilib-
rium. To be able to extend this solution to a longer period p, the
period p0 was chosen as a multiple of the grid spacing "x .

To estimate, for a given period p, the rate of steady expo-
nential growth of a perturbation of the cline-like equilibrium, we
used the density n(u, x) and its time derivative ∂n(u, x)/∂t along
the cline u = gx. Each of these defines a one-dimensional peri-
odic function, and we computed the (complex) Fourier component
of each of these functions at the spatial frequency 1/p. We then
estimated & as the best-fitting real coefficient of proportionality
between the two Fourier components. To minimize the contri-
bution to the estimated growth rate & of other eigenmodes with
&′ < &, we performed this computation at a time t that was as long
as possible after the introduction of the perturbation at t = 0, but
before a growing perturbation became big enough to involve non-
linear effects or a decaying perturbation became too small to be
resolved numerically. When this approach produced a positive &,
we continued the integration of equation (1) up to a time t = 200
after the introduction of the perturbation. This always produced a
clustered solution, thus validating our approach to estimating the
stability of the cline-like equilibrium.

For a given set of parameters, including the slope g, we re-
peated the above procedure for different periods p, systematically
searching (using golden section search) for the period having the
highest perturbation growth rate &. The entire numerical procedure
was implemented as a C++ program.

APPROXIMATE ANALYTICAL TREATMENT

When searching for cline-like solutions of the form %(u − gx),
which are functions of the deviation z = u − gx of the trait u from
the local maximum of the carrying capacity at gx, it is convenient to
introduce this deviation as a variable in equation (1). Considering
the limit of small $2

" and $2
m (see, e.g. , Doebeli and Dieckmann

2004), and introducing the diffusion coefficients

" = 1
2

!"$2
",m = 1

2
!m$2

m,

equation (1) is transformed into a reaction–diffusion equation

∂

∂t
n(z, x) = [1 − nc(z, x)/#(z) − d(n̄(x))] n(z, x)

+
[

(" + mg2)
∂2

∂z2
− 2mg

∂2

∂z∂x
+ m

∂2

∂x2

]
n(z, x).

(A1)

For a cline-like density %(z) one finds, by integrating over the spa-
tial coordinate, an effective competition kernel for the deviation z
given by

)0(z) =
∫

a0(z + gx)a1(x)dx,

and a corresponding effective density

% c(z) =
∫

)0(z′ − z)%(z′)dz′.

Equation (A1) for a cline-like equilibrium density %(z) then be-
comes

∂

∂t
%(z) = 0 = [1 − % c(z)/#(z) − d(%̄)]%(z) + (" + mg2)

∂2

∂z2
%(z).
(A2)

In the limit of small " and m we expect solutions for which the
equilibrium density is concentrated around z = 0, so it is of inter-
est to expand the effective competition kernel for small z,

)0(z) ≈ C
(
1 − 1

2 z2/s2
0

)
,

where

C = )0(0) =
∫

a0(gx)a1(x)dx

is a normalization constant. We can introduce the ansatz from
equation (2) into equation (A2) and identify terms. The lowest-
order coefficient N0 in equation (2) must satisfy

N0C + d(N0) = 1.

This is because N0C is the per capita death rate from competition
and d(N0) is the per capita death rate from the Allee effect, for a
density of the form N0((u − gx). At equilibrium these rates must
balance the per capita birth rate of 1. Our assumptions for the
Allee effect imply that there is a unique solution for N0, which
will be positive. For $2 we obtain to lowest nonvanishing order

$2 =

√
2(" + mg2)s2

0 $2
K

N0C(s2
0 − $2

K )
.

For this expression to be meaningful, we must assume $2
K < s2

0 ,
which is a requirement for stabilizing selection to be stronger
than the locally diversifying effect of competition. Note also that
$2 goes to zero as " and m go to zero, but that this approach
is relatively slow, in particular for large g. Finally, there is an
expression

N1 = N0C
C + d ′(N0)

(
1
s2

0

− 1
2$2

K

)

for the parameter N1 in equation (2).
To study the dynamics of perturbations of a cline-like equilib-

rium, we can introduce the ansatz from equation (3) into equation
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(A1), making the assumption of a small w(x) and introducing the
expressions for N0, N1, and $2 from the preceding paragraph.
Using the competition kernel

)(x) = 1
C

a0(gx)a1(x),

we obtain an approximate reaction–diffusion equation for w(x),

∂

∂t
w(x) = −N0C

∫
)(x ′ − x)w(x ′)gx′ − N0d ′(N0)w(x)

+m
∂2

∂x2
w(x), (A3)

where d′ is the derivative of the Allee effect function. This equation
describes how competition, the Allee effect, and mobility affect the
deviation from a cline-like equilibrium. A relationship including
only terms representing the lowest nonvanishing order in m is
obtained by removing the last term in equation (A3), because this
term is proportional to m. From our numerical analysis, we have
found that inclusion of the last term improves the approximation
for values of m that are small enough to make the term small.
Conversely, if the spatial variation in w is rapid enough to make

the term dominate the right-hand side of equation (A3), we have
found that the approximation is no longer accurate.

Because equation (A3) is linear in w and involves a convo-
lution of w with the kernel ), it is helpful to Fourier transform it.
Defining the Fourier transform of a function f (x) as

f̃ (*) =
∫

f (x) exp(−i2'*x)gx,

where * is a spatial frequency and i is the imaginary unit, we
obtain the Fourier transform of equation (A3) as

∂

∂t
w̃(*) = −N0C)̃(*)w̃(*) − N0d ′(N0)w̃(*) − m(2'*)2w̃(*).

(A4)

If w(x) is periodic with period p, the transform w̃(*) will be a
sum of delta peaks located at spatial frequencies that are multi-
ples of 1/p. Making the ansatz w̃(*′, t) = ((*′ − *) exp[&(*)t],
we see that a Fourier component of w with spatial frequency *

will grow at the rate &(*) given by equation (4) in the main text.
When the transform )̃(*) of the competition kernel )(x) had to be
determined numerically, we used the FFTW software package.
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