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Introduction

�e bearing capacity of a single pile shows the maximum load a pile can withstand under 

different modes of loading (compression, tension, lateral, etc.). �e axial bearing capac-

ity of a pile, q, is normally derived from frictional shaft capacity developed along the 

pile surface, qs, and toe capacity derived from soil resistance under the toe of the pile, 

qt. �e contribution of each of these bearing capacity components depends on the type 

of the soil as well as pile characteristics. �e shaft resistance of piles is dependent on 

the interaction of the pile shaft and adjacent soils as well as the method of installation 

(i.e., driving, cast-in-place, and screw piling). Pile driving is normally performed using 

an impact or vibratory hammer depending on the nature of the soil and design regula-

tions. Different types of pile foundations including precast concrete pile, timbers, steel 

and composite piles can be installed using driving techniques. However, this technique 

might generate different levels of soil displacement depending on the geometry of the 

pile during pile driving. �is soil displacement may be advantageous in cohesionless 

soils, as it could densify the surrounding soil and increase the shaft capacity of the pile. 

In cohesive soils, on the other hand, the pile driving may cause soil disturbance and alter 

the soil structure around the pile, and induce excess pore water pressure which, in turn, 
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can reduce the pile capacity. According to De Mello [1], the process of change in soil 

structure can be divided into four stages. �e first stage is the remoulding of the struc-

ture of the soil around the pile, which occurs during pile driving. �e second stage is 

the variations in the state of stress of the soil and the pile, which is referred to as the 

formation of excess pore water pressure. �is excess pore water pressure will reduce the 

effective stress of the soil and, hence, the shear strength of the soil for a specific period of 

time after driving. �e third stage is defined as the dissipation of excess pore water pres-

sure, which occurs at a certain rate depending on the soil permeability. Lastly, it is the 

increase in the soil strength overtime due to dissipation of the excess pore water pres-

sure, and soil aging.

Excess pore water pressure is developed due to the remoulding and disturbance of soil 

by driven piles. �e excess pore water pressure can approach up to twice the in situ ver-

tical effective stress in soil around the pile, although this can reach up to 3–4 times the 

effective stress at the toe of the pile [2]. In case of sensitive soils such as Leda clay, the 

resulting excess pore water pressure could be greater, i.e., up to 8 times of the effective 

stress [3]. �e dissipation of this excess pore pressure starts immediately after the excess 

pore water pressure build up. �is process is accompanied by changes in the stress field 

of the soil around the pile, where the effective stress of the soil increases as the pore 

water dissipation proceeds, which in turn leads to reconsolidation of the soil and, hence, 

increase in shear strength of the affected soil. �e shear strength of the reconsolidated 

soil around driven piles after dissipation was reported to be higher than the soil’s initial 

undisturbed shear strength [2]. �e dissipation rate is dependent on soil permeability, 

pile spacing and material, and thickness of the clay layer.

Pile driven into various types of soils, specifically in clay, experience an increase in 

capacity as a function of time mainly due to dissipation of excess pore water pressure 

generated around the pile during pile driving, and reconsolidation and aging of the dis-

turbed soil near the piles. �is time-dependent capacity increase is referred to as set-up 

or freeze. Immediately after driving, the rate of the set-up coincides with the rate of dis-

sipation showing a linear relation which lasts just minutes after driving the pile [4]. A 

non-linear trend with respect to the time log is typically observed after the initial time 

at which, the effective horizontal stress increases in the distressed soil and the soil is 

consolidated and its strength is increased [5]. �e duration of phase 2 is a function of 

soil (type, permeability, and sensitivity) and pile (type, permeability, and size) properties. 

Based on conventional consolidation theory, a very long time is required for the dissipa-

tion of excess pore water pressure to be completed (weeks to years). Essentially, there is 

a time after which the rate of dissipation is very slow and there would be no additional 

consequence. At this time, the primary consolidation is typically achieved. However, 

secondary compression continues immediately after the completion of primary con-

solidation and is independent of effective stress. At phase 3, aging of the soil will occur 

which could be related to thixotropy, secondary compression, particle interference, and 

clay dispersion [6–8]. Aging effects may increase the shear modulus, stiffness, and dila-

tancy of the soil, and decrease the compressibility of the soil [8, 9]. In addition, aging 

may increase the pile-soil interface friction [10] at an approximately linear rate with the 

log of time [8].
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Several previous researchers observed the set-up within 30 days after the pile instal-

lation day, and after that, the rate of change was very slow (e.g., [11–15]). �e set-up 

value is related to soil characteristics, pile type and the installation technique. Pile set-

up occurs in almost all types of soils including organic and inorganic clays, loose to 

medium dense silts, sandy silts, and fine sands [16, 17]. �e set-up in granular soils typ-

ically depends on the depth of the ground water table (GWT). Svinkin [18] stated that 

the rate of set-up is linear with time above GWT, while the set-up with respect to the 

time is a power function below GWT. �e increase in capacity was reported at approxi-

mately 100% over 3  months in non-cohesive soils. In clay soils, the set-up is mainly 

related to reconsolidation of the disturbed soil around the pile, and aging [2]. Alterna-

tively, pile set-up is also dependent on the driven pile types. �e set-up was shown to 

be affected by the composition of piles (i.e., timber, concrete, steel, and composite piles) 

and the level of soil displacement induced during pile installation process which can 

be a function of pile size and type (e.g., H-piles, open-ended pipe piles, and closed-end 

pipe piles).

Although, this rich literature provides an insight to the subject of the pile set-up, 

but the exact mechanism of set-up is not fully clear, and the pile set-up has not been 

incorporated in the current design practice. In this study, the rate and magnitude of 

set-up for driven piles in sensitive soils is investigated using medium-scale pile load 

tests installed in Leda clay, while monitoring the pore water pressure around the 

pile.

Test site characteristics

Pile load tests were conducted in the “Canadian Geotechnical Research Site No. 

1” located at Gloucester, Ontario, Canada. �is site has been traditionally used for 

measuring the behaviour of deep compressible clay layers [19]. �e soil in this site 

is a type of marine sensitive clay called Leda clay which covers Ottawa Valley and 

south of Province of Quebec in Canada. �is clay was formed near the end of the 

most recent glaciation period in the pre-historic Champlain Sea. �e soil unit weight 

was measured to be about 15.3 kN/m3 and the water content of the soil was meas-

ured at about 52% (referred to ASTM D2216 [20]). From the Atterberg limit tests, the 

plasticity index of this clay was determined at approximately 24% with a liquid limit 

of 51% (referred to ASTM D4318 [21]). Vane shear tests were performed according 

to ASTM D2573 [22] to determine the average undrained shear strength which was 

estimated to be about 35 kPa. �e coefficient of one-dimensional consolidation was 

measured according to ASTM D2435/2435M [23] at a value of 1.4 ×  10−8  m2/s. A 

direct shear box testing program according to ASTM D6528 [24] was also performed 

on intact clay specimens in order to determine its drained and undrained shear 

strength parameters (Table 1).

Table 1 Index properties of Leda clay in Canadian Geotechnical Research Site No. 1

ρ (Mg/m3) W (%) LL (%) PI (%) Su (kPa) C′ (kPa) Φ′ (°, deg) Cv  (m2/s)

1.53 52 51 24 35 8.6 26 1.40 × 10−8
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Experimental procedure

Test setup

�ree common types of pile including precast concrete, closed-end steel and open-

ended steel pipe piles with outside diameter of approximant 100 mm and embedment 

length of 2.0 m were used to perform pile load test. All three piles had a steel encasing 

system at the pile head with the aim to apply the axial load and prevent pile head damage 

during driving (Fig. 1).

�e area at the site was scrapped approximately 1 m below the surface to remove the 

top soil and expose the undisturbed clay for testing. �e model piles were driven to an 

embedment depth of 2 m while their spacing was kept at five times pile diameter to pre-

vent group effects on load transfer of the piles [25, 26]. A pile load testing frame was 

assembled at the test site to apply the axial load on model piles. �e frame designed 

to act as the reaction beam for pile load tests, and provide sufficient strength against 

applied load with minimal deflection (Fig.  2). �e horizontal reaction beams were 

assembled using two 10 × 2 lumber beams bolted to two open-ended steel reaction piles 

with a diameter of 152.4 mm and height of 3.0 m driven at a distance of approximately 

3.0 m to form the pile load test frame.

Pile installation

Pile driving was performed using a pulley which was attached on top of a tripod and 

drop hammer setup. �e drop hammer had a weight of 88 lb (40 kg) at an average drop-

ping height of 400 mm which was kept constant during the pile load test. �e impact 

energy generated by the hammer drop was about 78.5 J/blow. Pile driving was performed 

at approximately 10–15 blows per minute, generating a penetration of 1–2 mm/blows at 

shallow depths to as high as 5  mm/blow while attaining the target depth. Cumulative 

number of blows versus depth ratio indicated that open-ended steel pile resisted more 

than closed-end steel pile which this may be due to soil plug in the open-ended steel pile 

(Fig. 3).

Fig. 1 Model piles (from left to right: precast concrete pile, open-ended steel pile, and closed-end steel pile)
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Pile load tests

�e pile loading test was performed under tension to measure the pile shaft capacity 

according to ASTM D3689 [27]. �e pile head mechanism was used to connect a steel 

rod to the hydraulic jack and reaction frame allowing for the application of pullout loads. 

�e load was applied using a hydraulic jack and the applied load was measured through 

a calibrated load cell system placed at the jack, while the displacement of the pile was 

monitored with a displacement transducer (LVDT).

�e loading procedure was designed to reach failure by applying incremental load-

ing at 60  s intervals. �is allowed the interface force to reach the equilibrium. Imme-

diately after each test, the pressure from hydraulic jack was released to avoid excessive 

soil disturbance. �e failure principle used to distinguish the ultimate shaft capacity over 

time was pile load carrying capacity at pile head displacement of 10% pile diameter as 

Fig. 2 Setting the frame and pile load test in Canadian Geotechnical Research Site No. 1
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suggested by [28]. �e pile loading was performed at a displacement rate of 5 mm/min 

immediately after driving and repeated 1, 3, 7, 14, and 30  days after initial driving. It 

should be noted that pile load tests normally are not repeated on one pile in field. How-

ever, this procedure was applied here to avoid the impact of other variables (pile proper-

ties, soil variations, etc) on the pile capacity change.

Distribution of pore water pressure in the pile surrounding soil is an important factor 

to understand the increase in pile capacity over time. �erefore, a vibrating wire piezom-

eter with pressure capability of 0.7 MPa was installed close (25 mm) to the concrete pile 

toe in order to monitor the variation of pore water pressure while driving till the end of 

initial driving (EOID) as well as testing at different elapsed times as shown in Fig. 4 (1, 3, 

7, 14, and 30 days).
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Results and discussions

Evolution of pile capacity over time

Figure  5 shows the tensile load–displacement curves for pile load tests conducted on 

model piles at the end of initial driving (EOID) as well as 1, 3, 7, 14, and 30 days after 

the EOID. �e initial shaft capacity for the concrete pile (Fig. 5a) was measured at about 

990  N, and eventually reached 6.16  kN after 30  days after initial driving. �e rate of 

increase in pile shaft capacity was higher in the earlier stages changing from day 0 to 

day 1 and day 3. �is rate, however, was much less for the time period of 3–30 days after 

EOID. �is could be related to significantly higher rate of excess pore water pressure 

dissipation in the earlier stages, which led to significant increase in pile shaft capacity 

increasing from an initial value of about 1–4.8 kN only 3 days after initial driving.

�e initial shaft resistance for the closed-end pipe pile was measured at 945  N and 

slightly increased to 1.1 kN one day after the EOID. �e rate of increase between day 1 

and day 3 was significantly higher increasing up to 5.1 kN three days after initial testing. 

Similar to the concrete pile, the rate of change in shaft capacity between day 3 and day 

30 was not so significant, which could similarly be related to the difference in rate of dis-

sipation of excess pore water pressure around the pile (Fig. 5b). For the open-ended steel 

pile, the shaft capacity was measured to be 969 N initially after driving, and increased 

to 2.45 one day after driving (Fig. 5c). �e ultimate capacity of the pile was measured 

at 5.96 kN at day 7, and reached a steady state and almost constant capacity afterward. 

�e rate of set-up was found to be similar to the other piles tested here, in which, the 

rate of increase in shaft capacity was higher in the earlier stages (day 1–7) and slowed 

afterwards. �is may correlate to the rate of excess pore water pressure dissipation. As 

discussed earlier, there is a period of time after the primary consolidation in which the 

change in the rate of set-up is very slow (secondary compression). �e shaft capacity 

measured 14 and 30 days after the EOID slightly decreased from the maximum values 

measured 7 days after the EOID. �is could be related to the repeated shearing during 

load tests on the same pile which could have further disturbed the pile-soil interface and 

slightly reduced the ultimate pile capacity.

�e ultimate shaft capacity of precast concrete pile is almost 10% higher than the other 

two piles. �is can be related to possible water absorbance in concrete materials which it 

in turn facilitates the dissipation of excess pore water pressure and accordingly increase 

the shaft capacity (i.e., concrete can absorb some of the surrounding pore water). How-

ever, in general, all the piles revealed a similar evolution trend in shaft capacity.

Variation of pore water pressure around the pile

In order to examine the change in pore water pressure during pile driving and static load 

testing, the pore water pressure (PWP) was monitored using a piezometer close to the 

pile toe. Excess pore water pressure is developed due to remoulding and disturbance of 

the soil by driven piles. According to the relationship between effective stress and pore 

water pressure, when a pile is driven into the soil, total stress is increased as the pile 

pushes the soil away and changes the structure of the surrounding soil. In this case, the 

soil generates excess pore water pressure, which in turn leads to decrease in the effective 

stress. �e change in pore water pressure over time was recorded and the result is pre-

sented in Fig. 6. During pile driving, the pore water pressure around the pile increased 
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and eventually an excess pore water pressure of 70  kPa was recorded by the sensor 

installed at the toe of the piezometer. �e PWP recording was continuously repeated 

during every test over elapsed time of 1, 3, 7, 14, and 30 days after the EOID. �e results 

show that the PWP began to decrease due to dissipation until it reached a value of 

22 kPa, 30 days after the EOID. �is result demonstrates the relationship between PWP 

dissipation and evolution of pile shaft capacity over time.

�e pore water pressure builds up around the pile can be estimated by cavity expan-

sion theory using the undrained shear strength and the shear modulus of the soil [29]. 

Using this theory, the maximum excess pore pressure around the pile surface would 

be about three times the undrained shear strength of the soil (Su), which will lead to 

an excess pore water pressure value of 105 kPa. �e maximum excess pore water pres-

sure value measured in this experiment is slightly lower than what was proposed by this 

method (70 kPa), which could partly be related to the location of the pore pressure sen-

sor that was located at a distance of 25 mm from the surface of the pile. �e difference 

can also be explained by the fact that the excess pore pressures predicted by the cavity 

expansion theory may be overestimated, due to not following the correct strain path [30, 

31].

Mechanism of set‑up

�e gain in pile capacity is analyzed by two phenomena of primary consolation and sec-

ondary consolidation. �e sudden increase of shaft capacity is often linked to primary 

consolidation at initial times (day 0 up to day 7). Pile driving induces disturbance and 

alters the structure of the clay surrounding the pile, leading to development of excess 

pore water pressure as a result of soil disturbance. �e increase in pore water pressure 

results in reduction of effective stress in the pile surrounding soil and, hence, decreases 

the pile-soil interface shear strength. On the other hand, immediately after pile driving, 
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this generated excess pore water pressure starts to dissipate rapidly. �e rate of decrease 

in pore water pressure due to dissipation is dependent on pile characteristics such as 

diameter and materials, as well as soil permeability. Similarly, the rate of increase in shaft 

capacity is proportional to the rate of decrease in pore water pressure as shown in Figs. 5 

and 6. �e rate of dissipation of the excess pore water pressure and, hence, the rate of 

increase in shaft capacity began to decline about 3 days after initial driving.

�ese results underscore the importance of excess pore water pressure in reducing 

the ultimate pile capacity by reducing the mean effective stress during shearing at the 

pile-soil interface level. �e slight increase in pile shaft capacity, after dissipation of the 

excess pore water pressure, is mainly related to soil aging (secondary compression), since 

the effective stress-related set-up is adequately completed and, hence, the rate of set-up 

is independent of effective stress during this phase [32].

Duration of set‑up

�e pile set-up process may also be explained using Terzaghi’s theory for one-dimen-

sional consolidation in the pile surrounding soil. As per this theory, the time required 

for dissipation of excess pore water pressure, and hence the capacity increase, may be 

estimated using radial consolidation solution of Randolph and Wroth [33]:

where t is the time, d is the diameter of pile, and ch is an appropriate coefficient of con-

solidation of the soil. At the consolidation stage, soils that are located around the pile at 

a distance of approximately 3–5 times the pile radius, experiences consolidation [32]. 

Using this expression, the time of consolidation of the disturbed zone for the medium-

scale piles used here was estimated to be approximately 8  days under the assumption 

that pore water pressure is uniformly distributed within the remoulded soil around the 

pile. However, the dissipation of pore water pressure was observed to be longer in this 

experiment, though most of changes in PWP occurred in the first 7 days. �e difference 

in the predicted and measured dissipation time could be related to the location of the 

pore water pressure sensor, which was located about 25 mm away from the pile surface, 

or limitation of the approximation method proposed by Randolph and Wroth [33].

Magnitude of pile set‑up in marine clays

Developing a prediction equation to estimate pile set-up, and consequently the ultimate 

capacity of the design piles, can significantly reduce the construction cost through modi-

fying the pile size, the embedment depth, and number of piles. Several researchers have 

broadly supported Skov and Denver’s [34] prediction equation to estimate the bearing 

capacity of piles at a particular time considering the pile set-up. �is particular empirical 

relationship can predicate set-up linearly with respect to log of time.

�e bearing capacity Q at time t after the end of driving is contributed to an anticipated 

initial time, also called reference time to, and initial pile capacity Qo. A is a dimensionless 

(1)T =

cht

d2

(2)
Q

Q0

= Alog10

(

t

to

)

+ 1
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constant value used to characterize the pile and soil. �e time to is typically assumed 

to be the point where the dissipation of pore water pressure shows a linear trend with 

respect to log of time [4, 34, 35]. Based on a case study of 13 driven piles and almost 

21 pile load test data, Skov and Denver [34] proposed a value of A = 0.6 and t0 = 1 day 

for clay. From the data that was obtained from this field tests, a range of set-up param-

eter A = 1.5–3.5, can be suggested for this sensitive marine clay for an elapsed time of 

1 day to 1 month. �e pile capacity at different elapsed times may be estimated using 

this parameter and Eq. (2). �is approach may be used as an approximate approach in 

the design of pile foundations to predict potential magnitude of pile bearing capacity in 

marine sensitive clays. However, the application of these parameters will be limited to 

specific conditions as these values could vary significantly depending on site conditions 

and characteristics of piles used in different projects.

Steward and Wang [36] proposed an expression considering both the effect of aging 

and dissipation of pore pressure. �is method is used to evaluate the pile capacity 

assuming that the gain in strength due to aging only increases the soil friction rather 

cohesion of the soil [8]:

where ∅
′

R
 is the friction angle in drained condition; K is the coefficient of lateral earth 

pressure at rest; σv is vertical stress, and u(t) is expressed as the pore water pressure over 

elapsed time.

Equation  (3) can be used to predict the frictional capacity using the measured/pre-

dicted remoulded friction angle. From the field test data here, the frictional resistance 

of the concrete pile was approximately 0.76 kPa and the estimated frictional resistance 

using Eq.  (3) was about 2.7  kPa. It seems that this approach overestimates the shaft 

capacity for medium-scale piles, even though, the actual shaft capacity may be slightly 

higher since the excessive loading of the pile over time may have affected the maximum 

capacity that the pile might reach.

Comparison with past studies

Several researchers investigated the pile set-up in marine soils (e.g., [11, 37, 38]). Afshin and 

Rayhani [11] investigated the pi set-up in Leda clay by performing a series of small-scale 

pile load tests in steel drums (876 mm in height and 579 mm in diameter) in the lab. �ey 

reported an average set-up value of 2 after 12 days from initial pile driving. In general, the 

rates of set-up obtained from the laboratory tests conducted by Afshin and Rayhani [11] 

and those measured in the field seem to be similar. However, the magnitudes of set-up in 

the field are significantly higher than those measured in the lab. �is difference could be 

due to the difference in overburden pressure and the state of stress in both experiments.

�e average set-up value measured in this study is compared with some of the past 

results for driven piles in clay (Fig.  7). �e set-up rate for the piles investigated here 

shows a consistent trend with the results of past studies. However, marginal altera-

tion may occur mainly due to the soil properties, and also the level of the disturbance 

and remoulding during driving the piles due to variation in pile geometry and soil 

characteristics.

(3)f (s) = K [σv − u(t)] tan∅
′

R
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Contribution of pile set‑up in design

Several methods (e.g., Canadian Foundation Engineering Manual) are currently used to 

estimate pile capacity as a function of the pile geometry and the interface resistance of 

pile-soil for pile design. For total stress analysis, the pile shaft resistance is typically esti-

mated based on the undrained shear strength (Su) of the soil and an empirical adhesion 

coefficient (α).

�e undrained shear strength,  Su  =  35  kPa for Leda clay was obtained from vane 

shear test and this value is used to calculate the design shaft resistance. In addition, 

the empirical adhesion coefficient (α) is estimated from a reverse calculation using the 

undrained shear strength and it is approximately 0.44 for the initial shaft capacity at the 

EOID. Table 2 lists the measured pile capacity of all three piles which were tested in ten-

sion and also presents the calculated pile capacity using α-Method. �e estimated shaft 

capacity for all three piles is almost 1.5 times the initial measured capacity which was 

obtained immediately after driving the piles. However, it can be seen that the capacity 

increased up to 5 times from their initial capacity after 30 days. �ese results underscore 

the importance of considering the pile set-up in pile design. Consequently, the imple-

mentation of the set-up in design can reduce the number of piles and/or the embedment 

depth, which would reduce the cost of the construction.

(4)qs = Su α

Fig. 7 Pile capacity increase with time for piles driven into clay (modified after [39])

Table 2 Summary of measured and estimated shaft resistance

Pile type Measured shaft resistance (N) Estimated shaft  
resistance (N)

Rate of increase

Initial (day 0) Day 30

Precast concrete 990 6162 1479 4.2

Closed-end steel 969 4650 1435 3.2

Open-ended steel 945 5295 1412 3.7
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Using measured shaft capacity for the model piles, the range of β parameter used in 

the effective stress analysis of the piles in practice can also be estimated. �e unit shaft 

resistance is expressed in terms of the effective overburden pressure (σ′v) and an empiri-

cal interface coefficient (β) which is shown in following expression:

Table  3 presents the estimated β values over time using unit shaft resist-

ance measured at the field and the average effective stress, σv′ (i.e., 

σ
′

v = γ
′

z = (15.3 − 9.81) × 1 = 5.5 kPa). As shown, the β value is approximately at the 

range of 0.270–0.28 for all three piles when tested immediately after driving. Taking into 

account the evolution of pile capacity over time, the β value increased up to 1.3–1.7, 

30 days after initial driving. �is further underscores the importance of considering the 

pile set-up in design of driven piles in clay.

Conclusions

A series of pile load tests were carried out on model scale piles including precast con-

crete, closed-end steel pipe pile and open-ended steel pipe pile driven into a marine 

sensitive clay in Gloucester, ON, Canada. �e measurements include tensile load tests 

which were performed on all three model piles immediately after driving and repeatedly 

at elapsed times 1, 3, 7, 14, and 30 days after initial driving. �e shaft capacity of all three 

piles initially was at about 945–990 N. For the pile load tests conducted 14 days after 

the initial driving, the load carrying capacity for all three piles increased approximately 

4.5–5.5 times in average from their initial capacity. �e lowest and highest set-up values 

(30 days after driving) were in the range of 4–6 times for the open-ended steel pile and 

precast concrete pile, respectively. �e rate of increase in pile capacity was significant in 

the first couple of days from the initial pile driving. �is rate was ultimately decreased 

as the elapsed time increased up to 30 days. �ese changes could be due to quick dis-

sipation of excess pore water pressure and possibly greater rate of consolidation of the 

soil in earlier periods. However, when the change in the rate of set-up is very slow, this is 

correlated to the aging phase (secondary compression), since the effective stress-related 

set-up is adequately complete and, hence, the rate of set-up is independent of effective 

stress during this phase.

(5)qs = β σ
′

v = Ks tanδ σ
′

v

Table 3 β values estimated from measured shaft capacity

Pile Precast concrete pile Open‑ended steel pile Closed‑end steel pile

Time (day) β value Ks β value Ks β value Ks

0 0.28 0.63 0.276 1.57 0.269 1.53

1 1.07 2.01 0.698 3.49 0.324 1.62

3 1.38 2.96 1.57 6.44 1.44 5.90

7 1.58 – 1.70 – 1.58 –

14 1.59 3.66 1.35 4.77 1.45 5.12

30 1.76 – 1.33 – 1.51 –
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�e experimental results of medium size pile load tests demonstrated the importance 

of set-up phenomenon in pile design. However, the presented results are based on a lim-

ited number of pile load tests. A vast experimental pile load test that involves variation 

of effective parameters in set-up phenomenon, such as pile size, is required in order to 

reach a more accurate picture and create an empirical formulation for all type of piles 

with variety of geometries and materials.

Abbreviations

A: dimensionless constant value; C′: cohesion; ch: lateral coefficient of consolidation; Cv: coefficient of consolidation; 

d: diameter of pile; LL: liquid limit; PI: plasticity index; qs: shaft resistance; qt: toe/base resistance; Su: undrained shear 

strength; to: iitial time; t: time; w: moisture content; ρ: density; Φ′: friction angle; ∅
′

R
: friction angle in drained condition; K: 

coefficient of lateral earth pressure at rest; σv: vertical stress; u(t): pore water pressure over elapsed time; Qo: initial pile 

capacity; Q: bearing capacity at time t after the end of driving; α: adhesion coefficient; σ′v: effective overburden pressure; 

β: interface coefficient.
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